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We comment on and translate Gustav Kirchhojfs important paper oj 1857 entitled (fOn the mo
tion if electricity in conductors. " The signifICance oj this paper is that Kirchhoff proved with action 
at a distance that electric disturbances travel along wires oj negligible resistance with the velocity if 
light. He accomplished this with the laws if Newtonian electrodytuJmics (Coulomb, Ampere, F. 
Neumann and Weber) before Maxwell had formulated his equations. 
PACS: 01.60. +q; 01.65. +g; 41.1O.-:i 

This paper presents the first English translation of 
Kirchhoffs important work On the motion if electricity in con
ductors (Ueber die Bewegung der Elektridtiit in Leitem). It 'WaS 

first published in the Annalen der Physik (also known dur
ing the last century as Poggendorffs Annalen, after Johann 
Christian Poggendorff of Berlin, who 'WaS for a long time 
its editor), Volume 102, p. 529 (1857). It then appeared in 
Kirchhoff's collected works: G. KirchhofPs Gesammelte 
Abhamllungen (Barth, Leipzig. 1882), pp. 154-168, on 
which we based this translation. 

Gustav Ki,chhoff (1824-1887) had p,eviow;ly pub
lished other papers related to electromagnetism. Two of 
these have already been translated into English, and here 
we discuss them briefly due to their relevance to the pres
ent paper. In tile earlier of the two, first published in 1849, 
"On a daluawn ifOhm's laws, in connexion with the theory if 
electrostatics" (Philosophical Magazine, Volume 37, pp. 463-
468 (1850», Kirchhoff for the first time identified Ohm's 
'c\cctroscopic force' and the 'tension' in a voltaic cell 
(batteI)') with the electrostatic potential. This was concep
tually important for establishing a link between electrostat
ics and electrodynamics. According to him the driving 
force generating the current at any point of the conductor 
is due to a difference of electrostatic potential between two 
:ldj:lcent points along its length. This potential is generated 
by the free electricity (net charge) along the surface of the 
conductor, which is maintained in a stc:ldy state by the 
volt::lic ccll. He :lIsa corrected Ohm's assumption that, in a 
~tatiol1:l'Y situation (DC current) therc is a ul1ifonn distri
hution of frec e1cctricity througllout the body of the COtl

duc'tor. He showed that, for stational)' currents, the free 
electricity can only exist at thc surface of the conductor. In 
the present paper he shows that this is a special case, valid 

for stationary situations, but that in general there will be 
free electricity distributed throughout the substance of the 
conductor. 

In the second paper, "On the motion of electricity in 
wires" (Philosophical Magazine, Volume 13, pp. 393-412 
(1857», Kirchhoff develops the theory of propag,uion of 
an electrical disturbance along a thin wire, taking into ac
count the self-inductance of the wire. Wilhelm Weber had 
independently perfonned a similar investigation shortly 
before Kirchhoff, but Weber's work was delayed in publi
cation. The remarkable implication of their analyses was 
that in a circuit of negligible resistivity, oscillating currents 
could be propagated along the wire with a constant veloc
ity numerically equal to the velocity of light. Moreover, 
this velocity would be independent of the nature of the 
conductors, of the cross section of the wire, and of the 
density offree electricity. This result is even more impor
tant if we remember that it came before Maxwell's equa
tions in their complete fonn (1860-1864). Kirchhoff and 
Weber's circuit theories were based entirely on the action
at-a-distance laws of Coulomb, Ampere, F. Neumann and 
Weber. This contradicts the commonly held belief that 
time delays in the propagation of electrical signals can only 
be explained with free energy traveling through space. In 
the present paper Kirchhoff generalizes this theory to 
three-dimensional conductors of arbitrary shape, which 
lends importance to the English translation of this remark
able paper. 

Before presenting the translation, we would like to 
make a few comments which may help the understanding 
of dle paper. What Kirchhoff and Weber represent by c 
would today be written as ..fic. where this last c has the 
value 3 x 108 ms-t • The quantity which we represent to-
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day bye (or by (,ucEdr>:1 in the International System of 

Units), is the ratio of electromagnetic to electrostatic units 

of charge. The value -.fie = -.fi/ .JPuEo \VaS first deter

mined experimentally -by Kohlrausch and Weber in 1856. 
Moreover, Weber and Kirchhoff usually worked with 
Fechner's hypothesis (1845), according to which the cur
rents in metallic wires consist of equal and opposite 
streams of positive and negative electricity. As a result,. they 
customarily wrote 2i to denote the current strength. These 

two facts explain the coefficients 2 and 2 x 4 which appear 
in equations (1), (2), (3) and (5) of the present paper. 

Equations (1) to (3) of this paper could be written in 
modern vectorial notation as 

- ( 8A) ;~-k V¢+ 8t 

where] os the cutrent density, ]~(J .. ;,,;.)~ 
(u.v,w), k is the conductivity of the conductor, tP is the 

electrostatic potential (represented by Kirchhoff as 0.), 
and A is the magnetic vector potential. This is essentially 
Ohm's law generalized by Kirchhoff to three dimensional 
conductors and to take into account the effects of self
induction. 

Nowadays, we usually utilize F. Neumann's fonnula 
(1845) for the vector potential generalized to three di
mensions, namely 

A-( ) P. fff;-,dx'dy'dx' x,Y,z =-
4" , 

where J' is the current density at the point (x',y',z') and 

r is the distance between the points (x,y,z) and (x',y',z'). 
However, in this paper Kirchhoff utilizes Weber's formula 
for the vectol"'potential, namely 

A(x,y,z)~& JJJ (J' or)r dx'd~'dz' 
4" r 

where; is the vector from (x,y,z) to (x',y',z'). Pro

vided we have a closed circuit, both expressions agree with 
olle another. The ,uQ/4tr does not appear in IGrchhofPs 
memoir because he utilizes another system of units (the 
mechanical or absolute system). 

Equation (5) would be written today as 

VoJ~_Jp 
Jt 

where p is the vol\lme density of charge (representCl:d by 

Kirchhoff as E). This is the equation of conservation of 
charge. Kirchhoffalso utilizes Poisson's equation (1813) of 
the electrostatic potential, namely 

V'¢~-4"p, 

which he writes as 

Pag!: 20 APEIRON Nr. 19Jmll: 1994 

O'n O'n O'n 
--+--+--=-4JlE. 
iJx2 iJl iJz 2 

We now present the translation. 

On the Motion of Elec
tricity in Conductors' 

G. Kirchhoff 

In an earlier paper2 I developed a theory of the motion 
of electricity in linear conductors. I will now show how 
the fanner considerations can be generalized to conduc
tors of any fonn. 

The Cartesian coordinates x, y, z locate a point in the 
conductor. The current which at time t flows through this 
point we resolve along the three coordinate axes to give 
the current density components u, v, w. These current 
densities have to be equal to the products of the compo
nents of the e.m.£ and electrical conductivity at point 
(x,y,z) and are assumed to involve one unit of electrical 

charge. The e.m.£ is partly due to the presence of free 
electricity, and partly due to induction which arises in all 
parts of the conductor because of changes in the current. If 

0. represents the potential fWlct10n of the free electricity 
relative to the point (x,y,z), then the components of the 

flfSt part of the e.m.£ are 

on on on 
-2--,-2--,-2--ox or oz 

In order to derive the components of the second part, I 
denote the coordinates of a second point of the conductor 
by x',y',z', while u',v', w' are the values of u, v, w for 

this point. Let r be the distlnce between the points (x,y,z) 
and (x',y',z') and write: 

JJJ
dx'd 'dz' 

U ~ :, (x-x'~u'(X-X')H'(Y- Y')+w'(z-z')j 

JJJdx'd 'dz' v~ ,; (y-y'Xu'(x-x')+"(Y-Y')+w'(z-z')] 

JJJ
dx'd 'dz' w~ ,; (z-z')[u'(X-X')H'(Y-Y')+w'(z-z')] 

where the integrations extend over all of the volume of the 
conductor. According to Weber's law of induction, the 
components of the second part of the e.m.£ under con
sideration are: 

88U 881/ 8 OW 

P~.Antlal. Bd. 102. 1857. 
2 G. Kirchhoff, G~I/I,""r~ Abhmdlungm (Banh, leipzig, 1882), p. 

131. 



where ( is the constant velocity with which two electric 
charges have to move toward each other so that they will 
not exert a force on each other. If k is the conductivity of 
the conductor, we have: 

u =_2k(on +~ au) ax (2 8t 

v = _2k(on +~ OV) oy (2 ot 

w = _2k(on +~ OW). 
OZ (2 8t 

(I) 

(2) 

(3) 

It must not be assumed that the free electricity is confined 
to the surface of the conductor, as in equilibrium cases or 
at constant current. In fact, it will be shown that, in gen

eral, the opposite is true. I denote by e the density of free 

electricity at point (x,y,z) , bye' the density at (x',y',z') 
bye the density in a surface element dS, and bye' the same 
for a second surface element dS'. Then we have: 

I dx'dy'dz' IdS' .0= £'+ -,', , , (4) 

where the first integration is over the volume, and the sec
ond over the surface of the conductor. 

To these equations we can add two more which deal 
with the time changes of the density of free electricity. For 
every point inside the conductor we have therefore: 

au av aw I dE -+-+----_. ax ay az - 2 at ' (5) 

:Illd if we denote the normal to element dS directed in
w:lrd by N, then further for every point of the surface: 

• 

ucos(N,x) + vcos(N,y) + wcos(N,z) = _~ ik . (6) 
201 

• • • 
From these equations we can derive a remarkable rela

tionship between £ and o. Substituting the values of u, v, 
IV from (1), (2), and (3) into (5), and using: 

o'n o'n o'n 
--+--+--=-4Jr£ 
ox2 oy2 OZ2 

olle finds 

de =_16k[1f£_~~(au + av + aw)] 
at c2 at ax CJy az . 

As the equation for U may be written: 

J 8' 
U = - d<'dy'dz';pu'(x-x')+v'(y- Y')+w'(z-z')] 

it follows that: 

au =-Jdx'dY'dz,a~U' 
ax dx 

a2~ -J dx'dy'dz' ax; [u'(x- x') + v'(y- y') +(z-z')]. 

Fonning the value of 6'V / oy and OW / 8z in a similar 

manner, one obtains: 

au OV OW -+-+--
8x 8y OZ 

=- dx'dy'dz' U'_f +v'-' +w'-' I ( 8~ 8~ 8~) 
ax oy oz 

because of: 

for all points (x',y',z') which do not coincide with point 

(x,y,z) and extend through the infmitely sma.1I volume 

surrounding point (x,y,z), the integrals of the second 

parts of 8U / ax, 6'V / oy, OW / oz are infinitely small. It 

is easy to convince ourselves of the validity of this last as
sertion by the method which Gauss used to prove that the 
contribution to the potential at a point by masses infinitely 
near to the point is negligible compared to the contribu
tion from continuously distributed matter throughout 
space.3 If in the integraJ on the right side of the equation 
the differential coefficients with respect to x, y, z, are re
placed with the negative coefficients with respect to 
x',y',z' and the result is divided in three partial differen

tials with respect to x', y' and z' , one obtains: 

au OV OW 
--+-+-ox oy 8z 

IdS' = - -,-[u'cos(N', x)+v'cos(N', y) +w'cos(N', z)] 

Idx'dY'dz'(8U' av' 8W') - -+-+--, ox' oy' oz' 
where N' is the inwan:l directed normal of the surface 
element dS'. In view of equations (6), (5) and (4), this 
equation may by written: 

au OV OW Ion --+--+--=-ox oy oz 2 8t 

From this it follows that: 

(7) 

This equation shows clearly that e = 0 is a special case, and 
in general we find free electricity inside of conductors. It is 
probable that the so called mechanical actions of the dis
charge current of a Leyden jar, as for example in the pul-

3 Rrsulhllf am den Bf'Obal/Uungen des nldgllc/;,,-I1C11S Vcmm; 1839, p. 7. 
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verization of a fine wire, the internal free electricity plays 
an importmt role. 

• • • 
I would like to apply the theory developed here to the 

case considered in the initially mentioned paper, i.e. the 
case in which the conductor is an infinitely thin wire with 
no electrical bodies in its vicinity. I will show that the the
ory furnishes the same results which I obtained previ
ously, and in addition it supplies answers to questions 
which so far have remained unanswered. 

To begin with I will simplifY the general equation by 
the assumption that the conductor is cylindrical of circular 
cross-section. and that the current. as well the distribution 
of free electricity. is symmetrical about the axis. I take the 
axis as the x-direction, and for y and z I introduce the new 

coordinates p and cp. so that: 

y=pcoscp, z=psinrp 

and correspondingly: 

y' = p' cos rp', z' = p' sin rp' 

Furthennore, I denote the current density, perpendicular 
to the current along the axis--posirive for the progressive 

direction of the axis-at point (x,p,cp) by at and at point 

(x',p',cp') by u'. We then have: 

Hence: 

• 

v = acosrp, w:::: asinrp, 

v' = a'costp', w'=a'sinrp' 

U=_2k(O'n +~ au), 
ax c2 at 

(8) 

If we ignore the action of the free electricity on the end
faces of the cylinder, then, with a being the radius of the 
cylinder. equation (4) may be written: 

J dx'p'dp'dQ>' J dx'dQ>' 
0= Ii'+a e'. 

f r 

Equation (5) becomes: 

au 1 O{X7 1 as 
-+---=-~-; 

ox p op 2 ot 

(10) 

(11) 

alld cqll:ltion (6), which refers to the surface, beco~·l1es: 

1& 
a=~-. 

2m 
(12) 

The expressions for nand U are greatly simplified if it is 
assllmed that the cross-section of the cylinder is infinitely 
small, while the wire is of finite length. I call this length ~ 
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and the origin of the coordinates is taken to be the middle 
of the cylinder. The limits of the integrations in the x'
direction are then -1/2 and+I/2. For brevity I will take: 

x' -x =';; 

for dx' the integrand may then be written de;. The inte

gration along'; then has the limits -1/2 - x and 1/2 - x, of 

which the first one is ah:vays negative and the second one 
is always positive. The quantity r of the integrals is deter
mined by the equation: 

,2 =';2 + [12 

where: 

p' = p' + p" -2pp'cos{Q>-Q>'). 

For the transformation of the second part of n in the 
integrnl; 

I will develop e' according to Taylor's theorem in pov.rers 
of ~ that is: 

,_ Be iJe e;2 . 
e -e+-q+--,--+ ... , ax ox 1·2 

the individual terms into which the integral has been split 
then take the fonn: 

But we have: 

and 

When f3 is infinitely small, which occurs when a is infi
nitely small. the first-and only the first-teml becomes 
infinitely L'lrge. One may therefore neglect all following 
temlS compared to the first one, and write: 

J "dq .Ji' - 4x' 
r~'=". = 2"og,-'..:.~'"'-
~p' +~' P 

or also, by neglecting finite tenns compared to the infinite 
tenn: 



f\lrtJlermorc: 

2. f Jogf3dfP i =2nlogp', when p' > p. 

" 
In the second part of n we havep' = a. The second 

P:lll therefore js: 

dx'd ' 1 
af fP e'=4naelog-. 

r a 

Similar considerations may be applied to the first part of 

n. Denoting the value of & at the point (x,p',ip') by e~, 
thcn these considerations lead to: 

e'dx' l 
f-r-=2e~log f3 

Furtllermore: 

f logpd<p' = 2;rlogp', when p' > p 

= 2;r!ogp, when p> p'. 

For both of these expressions we may write 2iTioga 

when ignoring finite quantities compared to infinite 
quantities. Therefore: 

Let: 

dx' 'd 'd ' l a 
I p p rp e'=41dog-Ip'dp'E~. 

, a" 

a 

2iTae + 2iT J p'dp' t..~ = E, 

o 

tint is, jf Edt is the amount offree electricity contained in 
the element dx of the wire,4 then we find: 

I 
!1~2Elog-. 

a 
(13) 

The expression of U in equation (9) can be treated in 
the same way. In this expression I am thinking of ,,' and 
(j' to be developed in powers of,g, and the values ofll and 
a at the point (x,P',Q?') to be denoted by u:, :md cr:. In 

the parts into which the expression em be split we find 
integrals of the form: 

We have; 

4 I, is h~rc thL' ""Ille '[llamity which ill the ftmncr paller WaS <knOlcd 
by," 

1 

Of the specified integrals taken from a negative to a 
positive finite limit, only for n = 2 do we obtain an infin
ity, provided Pis infinitely small. All other integrals can be 
neglected compared with this, and dIe finite part of the 
infinite tenn can also be neglected. A factor of it is: 

ocr' u;- o:(pCO~I'-I")-p') 

but, because of the smallness of p and p', we can replace 

this by u;. Using the same method used before for the 

calculation of 0, we obtain: 

U = 4rrlog !J p'dp'u~. 
If we denote by i the quantity of electricity which in 

unit time passes through the cross-section of the wire, i.e. 
the current intensity, the equation can be simplified to: 

U=2ilogi. 
a 

Substituting this value of U and the value of 0 from (13) 
into the equation (8), we obtain: 

£ (dE 4 d;) u=-4log-k -+-- . 
a ax c2 at 

The right-hand side of this equation is independent of p, 
and since u is independent of p we have: 

hence: 

• 2 I (dE 4 d;) 1=-4nu klog- -+-, - . 
a ax c- aJ (14) 

A second equation between the quantities E and. i can 
be derived from equations (11) and (12). If olle multiplies 
the first one with pdpJQ? then integrates it over the 

cross-section of the wire, and subtr;lcts from the result the 
second equation, after having multiplied it by 21l'G, olle 
obtains: 

0; 10£ 
-=---
ox 2 ot (15) 

The derivation of equ;ltions (14) and (IS) presupposes 
that the w'lre is straight. But s'lllce these cquat'tons show 

APEIRON Nr. 19 Jlllle 1994 Page 23 



til;:!t tile electrical stl.te at a point inside the wire is inde
pendent of the electrical state at all other points at a finite 
distl.nce from the fonner, the equations will also be valid 
for bent wires. The radius of curvature, however, has to be 
everywhere finite, so that the distance between two points, 
with a finite piece of wire between them, cannot be infi
nitely close to each other. Equations (14) and (15) are the 
very same equations which I derived for the same case in 
the earlier paper. The more general theory developed here, 
therefore, leads to the same results obtl.ined before, but it 
leads to further consequences. If, for example, (14) and 

(15) are used to detennine E and (13) to detennine n, it is 
possible to calculate e from (7), i.e. the density of free 
electricity inside the wire, so long as c is given for zero 
time. If the initial value of c is independent of p, then c 
remains independent of it, that is the density of electricity 
is the same at all points of the cross-section, for according 
to (13) n is independent of p, and p does not appear in 
equation (7). After calculating Cone can find e. If the initial 
value of e is independent of p, as has been assumed, we 
make use of the equation: 

E = 2;rae + ;ra2 c 

With the same assumption it is easy to calculate afrom 

ebecause: 

1 P 8e 
0'=---. 

2 a ill 

That this equation is valid for p = a we learn from 

equation (12), and that a is proportional to p from equa
tion (11). If one multiplies it by pjp and integrates, re

membering that u and e are independent of p, one finds: 

u=_p(au +_!.:h) + Constant. 
• 2 ax 2 at p 

The constant of integration has to be zero, because, 
for p = 0, a must not be infinite. In fact the opposite is 

tnle; it has to disappear, because along the axis of the wire 
the current has to be in the direction of the axis. 

• • • 
In the previous paper I discussed the solution of equa

tions (14) and (15) for the special case which is approached 
the smaller the resistance of the wire is made. I proved that 
ill this case the electricity in the wire progresses like a wave 
in a taught string with the velOCity of light in empty space. 
It is of interest to consider the opposite case which is ap
proached the greater the resistance of the wire is .made. I 
will do this here on the assumption that the two ends of 
the wire are connected with each other. 

As in the previous paper, I let the resistance of the wire 
be r, alld WTite: 

Page 24 
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then the solution of the differential equations (14) and 
(15), whatever the value of r, is as follows: 

i= L --'-(A\Cle-.l." + A.2C2e-lll)cosnx 
2n 

+ L(AIC{e-l
" +A2C2e-..1.")sinnx 

where It is a multiple of 2nJl. and A\ and A2 have the 

values: 

.!2...[1± l-(.EL.nI)'] 
32yl ".,fi 

and C" C2• C;, and Ci are arbitrary constants. The sum
mation is over all values of n. The C-constants are easily 
detennined if E and i are given for t = O. If the functions 
of x, which must transfonn to E and i for t = O. have the 
fonn: 

L:(E" sinnx+ E~ cosnx) 

and 

L(-i"cosnx+j~ sinnx) 

one obtains the equations: 

and 

E" =C1 +C2 

;. =...!...(.:t,C, +.:t,C,); 
2. 

E~=C;+Ci 

i; =1-(AtCl +A2C£); 
2n 

their solutions are: 

c, A2:E" - 2ni" 
A2 -At 

C, -AtE" -2ni" 
A2 -At 

C; A2E~ -2ni~ 

A2 -AI 

In the earlier paper we examined the case in which: 

32y 

".,fi 
can be treated as infinitely large. It will now be assumed 
that this quantity is infinitely small. The two roots A! and 

A2 are then real. If A2 is the greater root, so by ignoring 

tenns of lower order. 



From this it follows: 

~=(16r nl)'; 
AZ crJ2 

this expression is infinitely small, because nl is a multiple 
of 2rr, which is finite. The expressions of the C
coefficients may then be written: 

C E 2n. C' E' 2n., 
1 = Q -"'I;ln. 1 = n -;:;'1/' 
Al 2n. C' A'E,2n. 

CZ=-A,z ErI+~'n. 2=-I; "+~'n' 

The coefficient of sinnx in the expression of E is 
therefore: 

E (e~J.ll _~e-.t21)_ 2n j (e-J.,I _e-,t~) 
" 1 A. n A, , 

or 

E e-.t" _ 2n i (e-A,I _e-.t,l) 
" A,2 n • 

and the coefficient of -cosnx in the expression ofi: 

En :~ (e-J.,/ - e-J.2,) - in( ~: e-J.,I _ e-J.2/) 

By setting E~ and j~ for En and ill, one obtains the coef

ficients of cosnx in E, and of sinnx in i. Excluding the case 
when the initial value of i is infinitely large, compared to 
the value which i assumes for constant initial values of E. 
the expression can be simplified when the initial value of 
i = O. It can be seen that when i = 0 for t = 0, that is 
when i~ "" 0, the value of j is of the order of E.\I/2n . Un

der the same circumstances i" is of the order of E~AI /2n . 
The coefficients of sinnx in E and of -cosnx in i may be 
written 

;md .. 

E ~ _.t,1 +(i _ E '&)e-l.ll 
"2n e ""2n . 

If one excludes from these considerations the values of t 
which are so small that All becomes infinitely small, then 

A2t becomes infinitely large. Hence, the second tenn in 

the second expression can be neglected compared with the 
first one. As the same considerations with respect to the 
coefficients of cosnx and simrx arc valid in the expressions 
of E and i, then, substituting for AI the previously ob

tlilled value, we have: 

E "(E· E' ) -"",,', :; = ~ "SIllIlX+ ~"COSIIX I! ' (16) 

j = 4;/2::: n( -E" COS/IX + E:' sinnx)e _¥,,2, • (17) 

These expressions are independent of c. When c is in
finitely large, the solutions of the differential equations 
(14) and (15) become: 

. 4rl aE 1=---
r ax 

ai I aE 
ax =-2 at . 

Eliminating i, one obtains: 

aE = Sri a'E 
at ,ax2 ' 

which is an equation of the same fonn as the one which 
determines the conduction of heat in the· conductor. 
Therefore. in the case considered here. the electricity 
propagates through the metal like heat does. 

With the assumptions made with regard to the resis
tance " in equations (16) and (17), it is easily proved a 
posteriori that (16) and (17) are real solutions of (14) and 
(15). It is possible to convince oneself without difficulty 

that (4/Cl)(iJi/iJt)is infinitely small compared with 

aE/ax when i and E are taken from (17) and (16). 

The case in which the ends of the wire are separated 
from each other, and are subject to two potential values, 
can be treated in a similar manner as the case where the 
wire fonns a closed loop. In the open circuit, and provided 
the resistance of the wire is large enough, one finds the 
same analogy between the conduction of electricity and 
heat. 

With Jacobi'S resistance standard, a copper wire of7.62 
m length, 0333 mm diameter, as shown in the previous 
paper, is: 

32r =2070 
".J2 

For a wire of the same material, the same cross-section, 
and a length of 1()(X) km this quantity is 0.034, By way of 
an approximation, it can be treated as infinitely large in the 
first case, and as infinitely small in the second C.1SC. In the 
first case the electricity propagates like a wave in a taught 
string. and in the second case it travels like heat. 

Thomson has examined the motion of electricity in an 
underwater telegraph wire. He assumed-without 
checking the reliability of this assumption--that induction 
makes no significant contribution to the phenomena. For 
this case he showed that electricity propagates like heat. 
The present considerations have proved that this conc!tl
sion is also justified in the case of a simple wire, provided it 
is long enollgh. It will be all the more correct in the 1I1l

dcn.vater telegraph wire, in which the motion of the elec
tricity is considerably slowed down on account of conduc
tion in the seawater. 
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- Page 20, the last equation should read:

−

8

c2
∂U

∂t
, −

8

c2
∂V

∂t
, −

8

c2
∂W

∂t
,

- Page 21, the first equation on the second column should read:

∂U

∂x
= −

∫

dx′dy′dz′
∂ 1

r

∂x
u′
−

∫

dx′dy′dz′
∂2 1

r

∂x2
[u′(x− x′) + v′(y − y′) + w′(z − z′)] .

- Page 22, equation (12) should appear as:

σ =
1

2

∂e

∂t
. (12)

- Page 22, the fourth equation in the second column should read:
∫ l

2
−x

−
l

2
−x

dξe′
√

β2 + ξ2
,

- Page 23, the third equation on the first column should read:

α

∫

dx′dϕ′

r
e′ = 4παe ln

l

α
.

- Page 24, the equation for C2 and C′

2
should read:

C2 =
−λ1En + 2nin

λ2 − λ1

,

C′

2
=

−λ1E
′

n
+ 2ni′

n

λ2 − λ1

.

- Page 24, below the last line of the second column we should have:

λ2 =
c2r

16γl
, λ1 =

8γl

r
n2 .

- Page 25, the seventh line in the first column should read:

C2 = −

λ1

λ2

En +
2n

λ2

in , C′

2
= −

λ1

λ2

E′

n
+

2n

λ2

i′
n
.

- Page 25, the second line in the second paragraph of the second column
should read:

tance r in equations (16) and (17), it is easily proved a

- Page 25, in the last paragraph there should be a footnote after Thomson’s
name with the following information:

Phil. Mag. Ser. IV, Vol. II, p. 157.
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