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Abstract

We link the formation of an odd-frequency paired state to the development of an anomalous three-body scattering
amplitude. We show how a simple ansatz leads to a simple realization of odd-frequency superconductivity in a mean-
field model of the Kondo lattice. The gapless quasiparticles of this state are equal mixtures of particle and
hole at zero frequency and their spin and charge coherence factors vanish, unlike conventional even-paired BCS
quasiparticles. We discuss the difficulties this and other models face in attempting to explain experiments in heavy-

fermion superconductors.

The nature of superconductivity in heavy fermion ma-
terials is still rather controversial. The presence of gapless
excitations led to the suggestion that the superconduct-
ing state is unconventional as compared to the classic
paradigm of phonon mediated BCS-Eliashberg super-
conductivity. The strong electronic correlations in the
active f-shells of its constituent rare-earth and actinide
atoms suggested, from the outset, that an analogy with
superfluid *He might be fruitful [1]. Indeed. the strong
interactions in the latter material are known to lead to an
instability towards a p-wave paired superfluid with gap-
less fermionic excitations [2]. This early suggestion is at
the heart of many of the later attempts to understand the
nature of heavy-fermion superconductivity [3] m a
p-wave or d-wave scenario. Yet, unlike the case of *He.
after more than a decade of scrutiny, an undisputed
theory for these fascinating materials does not exist.

The distinctive feature of heavy-fermion materials 1s
the crucial role played by the local moments in the
formation of the normal and the superconducting state. It
is only by the release of the large spin entropy into the
fermionic carriers that the latter can acquire their enor-
mous masses. In addition, the large jumps in the specific
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heat at the superconducting transition point to the active
participation of the spin degrees of freedom in the con-
densation process. In the case of UBe;s, to take an
extreme example, the condensation entropy is about
0.2R In 2. It is in this sense that heavy-fermion supercon-
ductivity should be understood as a spin ordering process.
More importantly. the puzzling case of UBe,;. which
becomes a superconductor even before a Fermi liquid is
formed. suggests that the naive approach of a heuristic
separation of the formation of the heavy Fermi liquid
state from the subsequent superconducting instability
should be taken with caution. Finally. the ‘pacific’ co-
existence with static antiferromagnetic order in UPts,
URu,Si,, UPd,Al; and UNi,Al; shows the intimate
connection between the two types of order.

It is noteworthy that the gapless excitations in these
materials lead to ubiquitous T2 NMR and NQR relax-
ation rates | Ty. In the case of UPd,Al; this power law
has been found to be obeyed over three to four orders of
magnitude of the relaxation rate [4]. This is consistent
with a line of nodes in the gap. which occurs in d-wave
pairing models. However. such universality is not to be
found in other properties. particularly the specific heat.
In superconducting UPty; for example. C.=7T +
BT? [5]. in UPd,Al;. C. =+ T + AT? [6], and in
UBe,;. C, =T + AT * [7]. Though the presence of the
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Odd-Frequency s-wave BCS with line nodes.
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Fig. 1. (a) Contrasting gapless Fermi surface of an odd-fre-
quency paired s-wave state. with gapless line-nodes in a BCS
superconductor. Shown beneath, corresponding (b) quasipar-
ticle density of states N(w) and (c) spin coherence factors.

linear term in the case of UPt; has been attributed to
disorder [8], UPd,Al; seems to show an intrinsic linear
term.

While it would be too unwise to rule out the p-wave or
d-wave pairing hypotheses. in view of the experimental
difficulties in determining the intrinsic low temperature
behavior, this apparent contradiction between the two
sets of experiments has led us to explore a different
scenario. Since the NMR relaxation rate is always T3, we
conjecture that it is a consequence of the spin coherence
factors rather than a density of states effect. In a qualitat-
ive way. the NMR relaxation rate at temperature 7T is

(TH™ '~ TINI<o|S 5 o>l r (1
where
<o |S . |w>* = [<k[ S 1K Y20l — Endlor — Ex) (2)

is @ momentum average of the quasiparticle spin matrix
elements and N{m) is the density of states at energy . In
the presence of a line of nodes. a T3 law is accomplished
by a constant spin matrix element and a linear density of
states N{w) ~ . An alternative way of getting the same
law would be through a constant density of states N{)
and a linear spin matrix element (Fig. 1)

[{o|Sijwdl~ao. (3)

In conventional BCS theory. the vanishing of the charge
coherence factors occurs when the quasiparticle is an
equal mixture of particle and holes (4, = ;). In general,

de = Wy + e’ 4. where

PR
|, O+ (A )

At a gap node A,/¢;, = 0 and u, and v, are either zero or 1,
quasiparticles are unpaired and the coherent factors are
unity. We consider here the possibility of strongly paired
low-energy quasiparticles such that A./g, - oc . This is
achieved by an anomalous pole in the three-particle
channel that leads to an odd-frequency gap function [9]
that diverges at zero frequency, Ay (o) o 1jm.

To illustrate this idea, consider a Kondo lattice Hamil-
tonian,

H= Z i + Z Hin[J] (5)
A i

1] —

o : ;

where , is a conduction electron spinor, coupled to an
array of § = } local f-moments §; = 4/} f; via an antifer-
romagnetic exchange interaction

Hio[il=JWsi;)-S; (6)

Here i/; denotes the conduction electron in a tight-bind-
ing representation. This Hamiltonian is the simplest toy
model for a heavy fermion metal. Consider now the
fundamental three-body spinor &;, = (S;+6,4) ;5. In the
normal state, strong Kondo scattering of the conduction
electrons off the local moments leads to the enhancement
of the mass of the carriers. This three-body operator thus
behaves as a charged fermion field. We will look for
a correlated state where this quantity acquires an anom-
alous pole. Since it has fermionic character it cannot
condense [10]. However. generalizing the concept of
three-body fermionic bound states, we envisage the possi-
bility of symmetry-breaking three-body amplitudes that
act as collective order parameters. For that, we write

— JE() = 2Vd(0 — T3, (7)

Here V; is a two component complex spinor representing
the anamalous three-body amplitude and carrying the
charge and spin of the three-body composite, ¢; is a real
fermionic field (a Majorana fermion, ¢ = ¢;) thatembo-
dies the fermionic nature of ¢}, and 6¢; represents fluctu-
ations that are neglected in the mean-field theory. Eq. (6)
can be rewritten as

Hill([,i]: 7J(J;(,) (8)

by means of the identity (§-a)* = 3 — §- 6. Substitution
of the ansatz Eq. (7) into Eq. (8) then leads to

. iy,
Hyy = 23[1111_?(0'5;)40 Vi + (H-C-)} + ‘,] J:|~ (9)
J
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This mean field theory can be solved by noting that the
combination

ny =28, (10)

in such that y; = ] and its components satisfy a canoni-
cal anticommutation algebra, {4, ni} = 6*3;. We thus
end up with

Wty
FI’=Z[[/I;(6'P]j)I/j+(H.C.)]+M, an
J

This type of Hamiltonian was previously obtained via
a Majorana fermion representation of spins in Ref. [11].
where many details of its properties can be found. In
particular, it was found that for most lattices, the free
energy is minimized by a staggered configuration of the
V;spinor V; = 2% °V, @ = (n, n, 7) [11]. The mean field
Hamiltonian will then be, after gauging the staggered
phase into a redefinition of the conduction electron field
operators

Hoeo = Y &li + 3 [ilo-m) V + (H.C], (12)
k A

where & = ¢, .5, and we dropped the constant term.

The Hermitian nature of the Majorana fields will lead
to a mixing of the particle and hole components of the
conduction electrons through anomalous resonant scat-
tering off the local three-body composites. If we take
a particular choice for the V spinor

1
V= VU(O) (13)

the main effect of these resonant pairing processes is to
generate a singular pairing self-energy for the up spin
conduction electrons

Vi ,
AT((:))=2 (1 —1q). (14)

)

where 7 i1s a Nambu matrix. It is precisely this singular
behavior that leads to the unconventional coherence
factors mentioned before. Due to the odd-frequency na-
ture of the gap function, the system exhibits surfaces of
gapless excitations. We can decompose the gapless
quasiparticles as

ay = \Z Lugthir + ta¥h-1 + v 1= 2Zum, (15)
where

u? 1 1

Uk < V1 +H (Ao do=k

e Is the symmetric part of &, Z, = [1 + p2/V?] ! and
E, is the quasiparticle energy. At zero frequency,

uf = v} = 4. Quasiparticles at the Fermi surface are
strongly paired and their charge and spin coherence
factors vanish linearly with frequency

(]S, o) ~u () — v?(w) ~ Alw)™ ' ~ w, (17

Whilst the approach developed here clearly does not
provide a theory of heavy fermion superconductivity, it
furnishes a tentative illustration of how strongly corre-
lated spin systems such as UBe; 3 may undergo a conden-
sation process in which the local moments play an active
role. Recently, some independent support for odd-fre-
quency pairing in Kondo lattice systems has been ob-
tained by Zachar, Kivelson and Emery [12]; at a special
solvable Toulouse point of the one-dimensional Kondo
lattice model, these authors show the presence of an
incipient odd-frequency pairing instability. Various inad-
equacies of our approach in its current form are quite
clear: this simplistic model is unable to account for the
condensate anisotropy clearly seen in the thermal con-
ductivity and ultrasonic attenuation measured for UPt;
[13, 14]; moreover, the apparent lack of any residual
linear term in the specific heat in this compound does not
appear to be consistent with a Fermi surface of gapless
Majorana excitations. We hope, however, that our specu-
lations and the questions they raise will inspire others to
go beyond phenomenology and consider the vital ques-
tion of how the local moments of heavy fermion com-
pounds participate in heavy fermion superconductivity.
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