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Abstract

We study the Mott transition in the Hubbard model within the dynamical mean field theory approach where the density matrix

renormalization group method is used to solve its self-consistent equations. The DMRG technique solves the associated impurity

problem. We obtain accurate estimates of the critical values of the metal-insulator transitions. For the Hubbard model away from the

particle-hole symmetric case we focus our study on the region of strong interactions and finite doping where two solutions coexist. In this

region we demonstrate the capabilities of this method by obtaining the frequency-dependent optical conductivity spectra. With this

algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be

minimized.
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1. Introduction

One of the greatest challenges nowadays is the develop-
ment of reliable methods for solving problems in strongly
correlated systems in which the competition between the
kinetic and Coulomb energy of electrons, which are of the
same order of magnitude, leads to peculiar behaviors. As
analytical methods based on perturbative considerations
are quite unreliable in this parameter region, it is important
to consider non-perturbative techniques and numerical
methods to try to deal with these difficulties.

Great theoretical progress in our understanding of the
physics of strongly correlated electron systems has been
possible since the introduction of the dynamical mean field
theory (DMFT) [1,2]. This approach is based on the
natural extension of the familiar classical mean-field theory
of statistical mechanics to the treatment of models of
e front matter r 2007 Elsevier B.V. All rights reserved.
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strongly interacting electrons on a lattice. The DMFT
solution of the model is exact in the limit of large lattice
dimensionality or large connectivity [2,3]. It has allowed
for the successful investigation of model Hamiltonians
relevant to problems as diverse as colossal magneto-
resistance, heavy fermions and metal-insulator transitions
(MI) among others [3]. Presently, the field of realistic band
structure calculations of strongly correlated systems in
which density functional theory is blended with DMFT is a
very active one as was recently highlighted by Kotliar and
Vollhardt [4].
The key feature of DMFT is that it maps the original

lattice problem onto a self-consistent quantum impurity
model. This resulting quantum impurity remains, never-
theless, a fully interacting many-body problem that has to
be solved [3]. Currently, many numerical techniques have
been adapted to solve this quantum impurity problem as
quantum Monte Carlo [5], numerical renormalization
group [6,7] and exact diagonalization [8]. All these methods
give complementary information but are typically limited
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to systems with two orbitals. A proposal was recently
introduced which was based on the precise diagonalization
of the quantum impurity Hamiltonian with the powerful
density matrix renormalization group (DMRG) [9–11].
This method has the appealing features of making no a
priori approximations, the possibility of a systematic
improvement of the quality of the solutions and it is not
formulated as a low-frequency asymptotic method [12].
Thus it may provide equally reliable solutions for both
gapless and gapfull phases. More significantly, it provides
accurate estimates for the distributions of spectral inten-
sities of high frequency features such as the Hubbard
bands, that are of main relevance for analysis of X-ray
photoemission and optical conductivity experiments.

2. The method

The Hamiltonian of the Hubbard model is defined by

H ¼
tffiffiffiffiffiffi
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where U is the on-site Coulomb interaction, t is the
hopping, m is the chemical potential and d is the space
dimension. We take the half bandwidth of the non-
interacting model as unit of energy, thus D ¼ 2t ¼ 1. We
particularize to the case of the infinite-dimensional Bethe
lattice, in which the non-interacting density of states (DOS)
is Dð�Þ ¼ ð2=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

.
The treatment of this model Hamiltonian with DMFT

leads to a mapping of the original lattice model onto an
associated quantum impurity problem in a self-consistent
bath. In the particular case of the Hubbard model, the
associated impurity problem is the single impurity Ander-
son model (SIAM), where the hybridization function DðoÞ,
which in the usual SIAM is a flat density of states of the
conduction electrons, is now to be determined self-
consistently with the requirement that DðoÞ ¼ t2GðoÞ,
where GðoÞ is the impurity Green’s function. At the self-
consistent point GðoÞ coincides with the local Green’s
function of the original lattice model [3]. A central quantity
in this algorithm is the non-interacting Green’s function of
the impurity problem, G0ðoÞ ¼ 1=ðoþ m� DðoÞÞ ¼
1=ðoþ m� t2GðoÞÞ. Since it is essentially a Green’s
function, DðzÞ can be decomposed into ‘‘particle’’ and
‘‘hole’’ contributions as DðzÞ ¼ D4ðzÞ þ DoðzÞ with
D4ðzÞ ¼ t2hgsjcð1=ðz� ðH � E0ÞÞÞc

yjgsi and DoðzÞ ¼

t2hgsjcyð1=ðzþ ðH � E0ÞÞÞcjgsi for a given Hamiltonian H

with ground-state energy E0. By standard Lanczos
technique, H can be tri-diagonalized and the functions
D4ðzÞ and DoðzÞ can be expressed in terms of respective
continued fractions [13]. As first implemented in Refs.
[8,14], each continued fraction can be represented by a
chainof auxiliary atomic sites whose energies and hopping
amplitudes are given by the continued fraction diagonal
and off-diagonal coefficients, respectively. From the self-
consistency condition, the two chains representing the
hybridization, are ‘‘attached’’ to the right and left of an
atomic site to obtain a new SIAM Hamiltonian, HSIAM. In
fact G0ðzÞ constitutes the local Green’s function of the site
plus chain system.
The algorithm in Refs. [8,14], basically consists in

switching on the local Coulomb interaction at the impurity
site of the SIAM Hamiltonian and use the Lanczos
technique to re-obtain DðzÞ, iterating the procedure until
the set of continued fractions coefficients converges.
Diagonalizing the Hamiltonian using DMRG, allows to

handle chains of arbitrary length [15]. Here we used up to
101 sites keeping 128 states per block.
The SIAM Hamiltonian reads

HSIAM ¼
XNC
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with cs being the destruction operator at the impurity site,
and cas being the destruction operator at the a site of the
hybridization chain of 2NC sites. The set of parameters
faa; bag are directly obtained from the coefficients of the
continued fraction representations of DðzÞ by the procedure
just described.

3. Results

3.1. Half-filled Hubbard model

In Fig. 1 we show the DMFTþDMRG results (solid
lines) for the DOS for several values of increasing
interaction U . The results are compared to the iterated
perturbation theory (IPT) results (dashed lines) [1,16]
which is a useful analytic approximate method that can
be solved on the real frequency axis at T ¼ 0. It can be seen
that for U=D not too close to the coexistence region IPT
gives results which are consistent with DMRG.
At large values of the interaction the system evolves

toward an insulating state with a gap of order U. It was
seen [9] that a metallic state only exists if the self-consistent
equations are solved in chains larger than a critical length
Lc. In Fig. 2 we present results of the divergence of Lc and
also show the closure of the gap as a function of U. A
distinctive feature of the metal-insulator transition in the
paramagnetic state of the Hubbard model at half-filling [3]
is that there are two distinct critical values of the
interaction associated with the transition: Uc1 and U c2.
The former signals the insulator to metal transition
obtained upon lowering the interaction, while the latter
corresponds to the metal-to-insulator transition obtained
when the Fermi liquid is destroyed by increasing the
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Fig. 1. Density of states DOS ¼ ð1=pÞ ImGðoþ 0:1IÞ corresponding to

the half-filled Hubbard model (solid lines). We also show the IPT results

(dashed lines).
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Fig. 2. (a) Extrapolated gap (circles) and (b) critical length Lc as a

function of interaction U (for large U=D symbols are larger than the error

bars).
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Fig. 3. Density of states (DOS) for the Hubbard model ðU=D ¼ 2:6Þ at
three different dopings: (a) insulating, (b) lightly doped and (c) heavily

doped metallic cases. The finite DOS in (a) at the Fermi energy is due to

the broadening used.
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interaction strength and is signaled by the divergence of Lc.
We obtained estimates of these two values that are
consistent with those from NRG calculations [6]. We find
U c1 ¼ 2:39� 0:02 and U c2 ¼ 2:95� 0:05. Our criterion for
the investigation of metallic versus insulating states was
based on the behavior of Lc and the size of the gap in the
DOS (given by the energy of the first pole).

3.2. Doped Hubbard model

In this section we illustrate the application of this new
method to the Hubbard model away from particle-hole
symmetry, focusing on the region of the phase diagram
where two solutions coexist near the correlation-driven
Mott metal-insulator transition and obtain the phase
boundaries with unprecedented precision [17]. We also
illustrate the capabilities of the methodology by computing
the frequency-dependent optical conductivity, which re-
quires the reliable description of higher energy features,
such as the Hubbard bands, that lie beyond the scope of
the NRG method.
In Fig. 3 we show the evolution of the DOS for the two

solutions as one moves away from the half-filled particle-
hole symmetric case. The chemical potential m is increased
at fixed U. The results show that, in the insulating case,
when the chemical potential is moved within the Mott gap,
the lower and upper Hubbard bands shift rigidly, without
any ostensible transfer of spectral weight taking place
(Fig. 3(a)). The apparent substructure in the Hubbard
bands seen in the insulating DOS results from finite-size
effects. In contrast, in the lightly doped case one observes
that, as the central quasi-particle peak rapidly moves
through the region between the Hubbard bands, there is a
transfer of spectral weight as well as an evolution of the
line shapes (Fig. 3(b)). More precisely, one finds that the
quasi-particle peak receives spectral weight from both
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Hubbard bands. For larger values of m, as the system gets
heavily doped, one finds that the quasi-particle peak
eventually broadens as it merges with the closest Hubbard
band (Fig. 3(c)). As these features coalesce, they also draw
spectral weight from the other Hubbard band that remains
at an energy distance of the order of U [3].

We have also computed the frequency-dependent optical
conductivity. From the lattice Green’s Gð�k; nÞ function,
where �k is the non-interaction dispersion, we can evaluate
the optical conductivity within DMFT as [3,18]:

Resðoþ I0þÞ ¼
pe2

_ad

Z 1
1

d�Dð�Þ

Z 1
1

dn

�rð�; nÞrð�; nþ oÞ
yðnþ oÞ � yðnÞ

o
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where a is the lattice spacing, d is the spatial dimension,
rð�; nÞ ¼ ImGð�; n� I0þÞ=p, and I0þ denotes an infinitesi-
mal imaginary part. The evaluation of rð�; nÞ requires the
previous computation of the local self-energy. While in the
standard exact diagonalization solution of the DMFT
equations this is a cumbersome procedure due to the small
number of Green’s function poles, the use of DMRG
dramatically changes the situation and reliable SðoÞ on the
real axis can be easily obtained from the self-consistency
condition [3]. In Fig. 4 we show the optical conductivity for
two coexistent solutions (for parameters U=D ¼ 2:6 and
m ¼ 0:2) and for the metallic state for weak interaction
ðU=D ¼ 0:6Þ. In the metallic case we see that, despite the
very small doping, the small frequency regime of sðoÞ can
be very well described by a simple Lorentzian form that
follows from a Drude model [19]:

Resðoþ I0þÞ ¼
DWt

1þ ðotÞ2
, (4)

where t is the relaxation time and DW is the Drude weight,
which is a measure of the number of quasi-particle carriers
in the metal. For large U=D we observe that, in addition to
the small Drude part, the optical conductivity spectrum has
a large mid-infrared contribution at frequencies of order U.
This regular part corresponds to finite frequency optical
0.0 1.0 2.0 3.0 4.0
0.0

0.1

0.2

0.3

0.0

0.5

1.0

1.5

2.0

1.0 2.0 3.0 4.0

R
e 

σ(
ω

 +
  I

η)

R
e 

σ(
ω

 +
  I

η)

ω ω

U/D=0.6 µ=0.2 U/D=2.6 µ=0.2a b

Fig. 4. Metallic (solid line) and insulating (dashed) optical conductivities

for the Hubbard model in the purely metallic (a) and coexistent (b)

regimes. The dotted line is a Lorentzian low-frequency fit (Drude model).

For small U=D, the data and the Lorentzian fit agree in almost all the

frequency ranges.
excitations between the two Hubbard bands and between
the latter and the central quasi-particle peak and is almost
absent for small values of the Coulomb interaction.
In Fig. 5(a) we show the evolution of the doping for fixed

chemical potential, varying the Coulomb interaction. The
doping increases as m moves to larger values, i.e., away
from the particle-hole case. At fixed m, increasing the
correlation U from the non-interacting limit acts to
decrease d continuously to 0, where the metallic solution
is no longer stable and gives rise to the insulating one. The
extrapolation of the lowest doping values towards zero for
different chemical potentials provides an accurate estimate
of the critical line mc2ðUÞ which locates the instability of the
metal towards an insulating solution. The DW is shown in
Fig. 5(b). Its behavior is qualitatively different from that of
d, since DW ðUÞ does not uniformly increase with increas-
ing m. In the low U=D region, the DW decreases as the
chemical potential is increased, reflecting the lowering of
the kinetic energy due to the fewer number of carriers. In
contrast, for larger values of the interaction close to the mc2
line, the DW decreases as m decreases towards particle-hole
symmetry, reflecting the enhancement of the effective mass
as the metal-insulator transition is approached.
We have also investigated the instability of the insulating

state towards the metal. This transition is signaled by the
collapse of the Mott–Hubbard gap as the chemical
potential is brought to a Hubbard band edge. Following
the energy of the lowest unoccupied state (LUS) in the
upper Hubbard band with respect to the Fermi level in the
insulator as m increases, it is possible to determine the
transition line mc1ðUÞ (Fig. 5(c)) as the value of the critical
chemical potential for which the energy of the LUS
vanishes. As the bands move in an approximately rigid
way for momc1ðUÞ the value of the chemical potential
varies linearly and agrees with half the size of the band gap
at m ¼ 0 (see Fig. 6). For m4mc1ðUÞ a finite number of
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Fig. 5. (a) Doping d and (b) Drude weight (DW) for the metallic states for

various U=D and m=D values. (c) Energy of the lowest unoccupied state

(LUS) in the upper Hubbard band for insulating solutions.
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poles appear at positive and negative small values of o� m,
signaling the metallic state.

In Fig. 6 we present results for the critical lines which
draw the phase diagram of the model away from particle-
hole symmetry at T ¼ 0. We plot the mc1ðUÞ and mc2ðUÞ
lines that determine three regions in the m-U phase
diagram: for m4mc1ðUÞ (momc2ðUÞÞ only metallic (insulat-
ing) solutions are found. In the middle there is a region of
coexistence of both kinds of states. The phase diagram
presented here shows an overall agreement with the one
obtained through exact diagonalization in the ‘‘star
geometry’’ [20] where the impurity site is connected with
hopping terms to all the other sites. The main differences
are found for the mc2ðUÞ line because, as the metal to
insulator transition is approached, the quasi-particles
develop a diverging mass corresponding to a very narrow
quasi-particle peak. In the language of the associated
SIAM, this narrow resonance implies a large correlation
length which can be fully realized only in long enough
systems. This can only be obtained with the method
presented here, allowing for very accurate results.

4. Conclusions

We have shown that the DMRG method, in addition to
being largely used to compute spectral quantities of low-
dimensional strongly correlated systems allows for a
practical implementation of an accurate impurity solver
of the DMFT equations of the Hubbard model in a general
case. We have computed the density of states and the
frequency-dependent optical conductivity as well as the
behavior of the doping and the Drude weight as a function
of the chemical potential near the metal-insulator transi-
tion. We have demonstrated the accuracy of the method by
making a comparison of the respective predictions of these
quantities for the metal-insulator critical line. Due to the
fact that with this method long enough systems can be
handled, these critical lines can be very accurately
obtained.
The implementation of the DMRG method within the

DMFT is an important step towards achieving an exact,
unbiased and general impurity solver to be used in a
realistic ab initio strongly correlated electronic structure
calculation program [4]. The next step ahead is to general-
ize the methodology for the multi-orbital case, where
interesting physical problems remain open, such as the
orbital-selective Mott transition with a fully rotationally
invariant Hamiltonian.
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