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Abstract

We study the Mott transition in the Hubbard Model within the dynamical mean field theory (DMFT) approach. The DMFT

equations are solved using the density matrix renormalization group technique. The densities of states for the half-filled and heavily

doped cases are shown. The full phase diagram is also presented.
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1. Introduction

The Mott metal–insulator transition still poses a great
theoretical challenge, and the process of doping the Mott
insulator is thought to be a source of many interesting
phenomena, such as high-temperature superconductivity or
colossal magnetoresistance. Particularly difficult is the
regime in which the electronic kinetic and Coulomb
energies are of the same order. In this case, analytical
tools based on perturbative approximations usually fail
and direct numerical studies are limited to low-dimensional
systems. An alternative approach known as the dynamical
mean field theory (DMFT) is an approximation that allows
the study of both the weakly and the strongly interacting
limits and the transition between them within a single
theoretical framework [1]. Currently, a large effort is being
made to incorporate the DMFT method as the local
correlation physics ‘‘engine’’ for first-principle calculations
of realistic compounds [2,3].
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For the paramagnetic Hubbard Model in a Bethe lattice
in the limit of infinite dimensions,
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the DMFT method maps the original lattice problem on an
Anderson impurity embedded in a self-consistently deter-
mined bath [1]. In order to solve this impurity problem
with exact diagonalization or the density matrix renorma-
lization group (DMRG), it is convenient to use a bath
consisting of two chains attached to the impurity [4,5]. The
energy and hoppings of the non-interacting sites are
determined by the requirement that the hybridization
function DðoÞ is related to the impurity Green’s function
GðoÞ by DðoÞ ¼ t2GðoÞ. We take the half bandwidth of
the non-interacting model as the unit of energy, thus
D ¼ 2t ¼ 1.
Here, we will show the solutions of the DMFT equations

obtained with DMRG in chains of up to 101 sites (50 sites
on each side chain plus the impurity) and using up to 256
states to describe each DMRG block.
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Fig. 1. Density of states for the doped Hubbard Model: (a) U=D ¼ 2:0,
m=D ¼ 0; (b) U=D ¼ 2:0, m=D ¼ 0:4; (c) U=D ¼ 3:0, m=D ¼ 0; (d)

U=D ¼ 3:0, m=D ¼ 0:4. The structure seen in the DOS comes from finite

size effects.
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Fig. 2. Real part of the optical conductivity sðoÞ for U=D ¼ 2 and

m=D ¼ 0:4. A small imaginary part Z ¼ 0:1 has been used to compute s.
The dotted line corresponds to the low-frequency Lorentzian fit.
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Fig. 3. Phase diagram of the paramagnetic Hubbard Model. M (I) stands

for a metallic (insulating) state. Triangles (circles) show the boundary of

the metallic (insulating) phase.
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2. Results

The density of states (DOS, Fig. 1a) for small U=D and
m=D ¼ 0 is particle–hole symmetric and metallic. The DOS
exhibits the usual quasiparticle peak around o ¼ 0 with the
lower and upper Hubbard bands at o��U=2 [1]. When m
is increased (Fig. 1b) the quasiparticle peak moves and
merges with the upper Hubbard band, while the lower
Hubbard band loses weight and remains at energies
o��U . For the insulating solution, at m ¼ 0, a clear
gap is seen between the lower and upper Hubbard bands
(Fig. 1c). In contrast to the metallic case, as the chemical
potential is increased no distortion is seen in the DOS, but
a rigid shift of the bands instead (Fig. 1d).

The boundary of the metallic phase Uc2 can be ob-
tained following either the doping (defined as the deviation
of the charge with respect to one electron per site) or the
Drude weight. In the doped case (Fig. 2) the optical
conductivity has a Lorentzian shape at low frequencies,
from which the Drude weight can be obtained [6]. At
larger frequencies o�U interband contributions from
transitions to the lower Hubbard band enhance the
optical conductivity. The boundary of the insulating
solution Uc1 can be obtained for m ¼ 0 as the value of U

for which the gap closes. For ma0 Uc1 can be ob-
tained following the first excited state and finding where
it touches the Fermi level. The full phase diagram ob-
tained in this way is shown in Fig. 3. There is a finite region
where metallic and insulating solutions coexist. A more
detailed description of the transition region can be
found in Ref. [6]. The phase diagram shows a reason-
able agreement with the one obtained with exact
diagonalization [7].
3. Conclusions

The DMRG method, in its various forms [5,6,8,9], has
been shown to be a reliable method to obtain the phase
diagram and the DOS of the single band Hubbard Model
at zero temperature. These results open the way for the
DMFT solution of more complex problems such as the
multi-orbital case.
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