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We derive a general relation between the nonanalyticities of the ground state energy and those of a
subclass of the multipartite generalized global entanglement (GGE) measure defined by de Oliveira et al.
[Phys. Rev. A 73, 010305(R) (2006)] for many-particle systems. We show that GGE signals both a critical
point location and the order of a quantum phase transition (QPT). We also show that GGE allows us to
study the relation between multipartite entanglement and QPTs, suggesting that multipartite but not
bipartite entanglement is favored at the critical point. Finally, using GGE we were able, at a second-order
QPT, to define a diverging entanglement length (EL) in terms of the usual correlation length. We
exemplify this with the XY spin-1=2 chain and show that the EL is half the correlation length.
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Quantum phase transitions (QPTs) occur at zero tem-
perature and are characterized by nonanalytical changes in
the physical properties of the ground state of a many-body
system governed by the variation of a parameter � of the
system’s Hamiltonian H���. These changes are driven
solely by quantum fluctuations and are usually character-
ized by the appearance of a nonzero order parameter [1].
Since QPTs occur at T � 0, the emerging correlations have
a purely quantum origin. Therefore, it is reasonable to
conjecture that entanglement is a crucial ingredient for
the occurrence of QPTs (e.g., Refs. [2–5], and references
therein). If this is true, then the QPT would imprint its
signature on the behavior of an entanglement measure.
Under a set of reasonable general assumptions, Wu et al.
[6] have demonstrated that a discontinuity in a bipartite
entanglement measure (concurrence [7] and negativity [8])
is a necessary and sufficient indicator of a first-order
quantum phase transition (1QPT), the latter being charac-
terized by a discontinuity in the first derivative of the
ground state energy. Furthermore, they have shown that a
discontinuity or a divergence in the first derivative of the
same measure (assuming it is continuous) is a necessary
and sufficient indicator of a second-order QPT (2QPT),
which is characterized by a discontinuity or a divergence of
the second derivative of the ground state energy. Never-
theless, most of the models of 2QPTs considered so far did
not present any long-range bipartite entanglement at the
critical point, even though the correlation length diverges.
Moreover, contrary to expectations, most of the measures
discussed in the literature are, to the best of our knowledge,
not maximal at the critical point, the exceptions being the
one-site von Neumann entropy of the Ising chain [3], the
localizable entanglement of a finite Ising chain with 14
sites [9], and some classes of the generalized global en-
tanglement (GGE) for the Ising chain [5].

In this Letter, we first extend the results of Wu et al. [6]
to a multipartite entanglement (ME) measure [10,11], the
GGE introduced in Refs. [5,12], and discuss how non-
analyticities in the energy are signaled by the GGE.

Second, we define an entanglement length (EL) for an
arbitrary collection of two-level systems. In the case of a
symmetry-breaking 2QPT, this EL diverges at the critical
point and is simply related to the correlation length. This
result indicates that ME is most favored at that point,
contrary to bipartite entanglement [2,3,13]. We consider
the consequences of this result for specific spin-1=2 models
presenting 1QPT or 2QPT.

In particular, for the 2QPT of the one-dimensional trans-
verse field XY model we obtain all the relevant critical
exponents, with the EL defined in terms of correlation
functions (CFs) appearing in the GGE. We also show in
this specific case that the GGE is maximal at the critical
point, thus signaling the QPT, as three of us had already
observed in the Ising case [5]. This last result, together with
a diverging ME length at the critical point, reinforces that
ME plays a significant role in QPTs.

Following Ref. [6], a discontinuity in (discontinuity in or
divergence of the first derivative of) the concurrence or
negativity is both necessary and sufficient to signal a 1QPT
(2QPT) for systems of distinguishable particles governed
by up to two-body Hamiltonians. The energy per particle
(") derivatives depend on the two-particle density matrix
elements as [6]

 @�" � �1=N�
X
ij

Tr��@�U�i; j���ij�; (1)

 @2
�" � �1=N�

X
ij

fTr��@2
�U�i; j���ij�

� Tr��@�U�i; j��@��ij�g; (2)

where �ij is the reduced two-particle density operator and
U�i; j� includes all the single and two-body terms of the
Hamiltonian associated with particles i and j. Now, assum-
ing that U�i; j� is a smooth function of the Hamiltonian
parameters and that �ij is finite at the critical point, the
origin of the discontinuity in the energy (discontinuity in or
divergence of the first derivative of the energy) is the fact
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that one or more of the elements of �ij (@��ij) are discon-
tinuous (divergent) at the transition point � � �c [6]. Since
the concurrence and the negativity are both linear functions
of the elements of �ij, it turns out that a discontinuity or
divergence in one of them (in the derivative of one of them)
implies a discontinuity or divergence of the energy (in the
derivative of the energy) and vice versa [6]. A natural
question then arises: Does a ME measure show the same
feature? In what follows, we give an explicit affirmative
answer to this question [10].

In [5] three of us introduced two new quantities, both of
which can be seen as generalizations of the Meyer-Wallach
[14] global entanglement, originally defined for a system
of N parties (particles). The first one is the average linear
entropy of all N1 <N particles, where we assume a fixed
‘‘distance’’ between the N1 particles. The second quantity
is an average over all possible distances or configurations
in which the N1 particles can be arranged [5,12]. For N1 �

1 both quantities are the same [G�1� � E�1�G ] and we re-
cover the Meyer-Wallach measure. The first nontrivial case
appears when N � 4, and we pick two particles (N1 � 2)
labeled by i and j. Now for a density matrix �j;j�n of
dimension d we have G�2; n� � d

d�1 f1� �1=�N � n��	PN�n
j�1 Tr��2

j;j�n�g, which is the mean linear entropy of all
pairs of particles n � ji� jj sites apart, i.e., the mean
entanglement between these pairs and the remaining N �
2 particles. Averaging over all possible distances 1 
 n <
N, E�2�G �

1
N

PN
n�1 G�2; n�. In order to simplify the notation

(with no loss of generality), from now on we will work with
the linear entropy of a single pair of particles n sites apart,
which we call G�2; n�. Note that in this notation G�2; n� �
G�2; n�, being the average of G�2; n� over all particles n
sites apart. For a translationally symmetric system
G�2; n� � G�2; n�.

Considering G�2; n� as a function of the tuning parame-
ter � we can write it and its derivative in terms of the lm
elements of �ij (��j;j�n�lm) as

 G �2; n� �
d

d� 1

"
1�

Xd2

l;m�1

j��j;j�n�lmj
2

#
; (3)

 @�G�2; n� �
2d

1� d

Xd2

l;m�1

j��j;j�n�lmj@�j��j;j�n�lmj: (4)

Therefore, since a discontinuity in one or more ��j;j�n�lm
signals a 1QPT, a discontinuity in G�2; n� also signals a
1QPT. If G�2; n� is continuous and @�G�2; n� shows a
discontinuity or divergence, it signals a 2QPT. In this sense
G�2; n� is at least as good as the concurrence or negativity
to signal a QPT. Note that the previous result is valid only if
the discontinuous or divergent quantities do not acciden-
tally all vanish or cancel with other terms in Eqs. (3) and
(4) [assumptions (b) and (c) in Ref. [6] ]. An added bonus
of our approach, however, is that we do not need a further

assumption, as in Ref. [6], related to the artificial or acci-
dental divergences due to the maximization or minimiza-
tion processes appearing in the definitions of the
concurrence and the negativity. Moreover, G�2; n� is richer
than the concurrence or negativity for signaling and clas-
sifying the order of a QPT, since it can be employed for the
derivation of an EL, as we now demonstrate.

We particularize our discussion to two-level (qubit)
systems [1]. In this case G�2; n� is written as

 G �2; n� �
4

3

"
1�

1

4

X3

�;��0

h��j �
�
j�ni

2

#
; (5)

where ��i , � � 1; 2; 3, are the Pauli operators and �0
i is the

identity. Thus, as any measure dependent only on the two-
particle reduced density matrix, G�2; n� is completely de-
termined by one- and two-point CFs. Whenever the system
undergoes a second-order symmetry-breaking QPT, it will
be reflected in one or more CFs and hence in the behavior
of G�2; n�. If the dominant (less rapidly decaying) CF
decays with a power law (h��0

i �
�0
j i � n

��) at the critical
point (implying a diverging correlation length) and expo-
nentially in its vicinity (h��0

i �
�0
j i � e

�n=�C), so will

G�2; n� increase. For large n, G�2; n� � G�2;1� �

h��0
i �

�0
j i

2=3. Hence, close to the critical point G�2; n� �
G�2;1� � Ce�2n=�C , where C is a constant, and G�2; n�
increases exponentially fast, saturating for n
 �C=2. We
can then define an EL that is proportional to the correlation
length, �E � �C=2. The EL also diverges at the critical
point with the same exponent as �C, such that �E � j��
�cj��. At � � �c, for large n, G�2; n� � G�2;1� �
C0n�2�, where C0 is a constant. G�2; n� now increases as
a power law with a power that is twice the CF exponent.
Thus, G�2; n� inherits all the universal properties of the
CFs. Moreover, due to the G�2; n� scaling with n, at the
critical point the entanglement is more distributed in the
system (any two spins are entangled with the rest of the
chain) than away from it, indicating ME [3] prevails at the
critical point. We emphasize that this result is quite gen-
eral, applying to any collection of two-level systems with a
second-order symmetry-breaking QPT. Next, we particu-
larize to two specific cases in order to illustrate our general
results.

For an arbitrary spin-1=2 model presenting a 1QPT, at
least one of the CFs is discontinuous at the transition point.
Thus, it is intuitive that G�2; n� is also discontinuous. A
simple example is the frustrated two-leg spin-1=2 ladder
discussed in Refs. [6,15], where all but the h��i �

�
j i, � �

x; y; z, and h�zi i expectation values vanish. The latter are
discontinuous at the transition point but constant other-
wise. The transition is clearly of first order and G�2; n� is
able to signal it.

The one-dimensional XY model in a transverse magnetic
field is described by the following Hamiltonian:
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 H � �
XN
i�1

�
J
2
��1� 	��xi�

x
i�1 � �1� 	��

y
i�

y
i�1� � h�

z
i

�
;

(6)

whereN is the total number of spins (sites) and 	 > 0 is the
anisotropy. This Hamiltonian is symmetric under a global

 rotation about the z axis (�x�y�i ! ��x�y�i ), implying a
zero magnetization in the x or y directions (h�x�y�i i � 0).
However, as the magnetic field h is decreased (or J in-
creased) this symmetry is spontaneously broken at � �
J=h � 1 (in the thermodynamical limit) and a doubly
degenerate ground state with finite magnetization (�M)
in the x direction develops, characterizing a ferromagnetic
phase. It is possible then to define a symmetric ground state
(with h�xi i � 0) as a superposition of these two degenerate
ones. These states are of no use in practice, however, as
they do not exist in real macroscopic objects undergoing a
phase transition (‘‘clustering property’’). We call nonsym-
metric or broken-symmetry states the ones in which there
is a finite magnetization (hSxi � �xi =2i � �M). Note that
at the paramagnetic phase there is no such distinction. By
further decreasing the magnetic field, a second phase tran-
sition occurs at 	2 � h2 � 1. In this ‘‘third’’ phase the
approach of the CFs to their saturation values is not mono-
tonic but oscillatory [16]. We should also say that this
model reduces to the Ising model for 	 � 1, where only
the first critical point exists, and to the XX model as 	! 0.
However, the XX model belongs to a different universality
class and we consider here only 0< 	 
 1 [16].

The XY model can be solved exactly and all the CFs are
known [16]. To calculate G�2; n� all we need is the one-
and two-point CFs [see Eq. (5)]. Because of the transla-
tional invariance of the model, �ij depends only on the
distance n � ji� jj between the spins and h��i �

�
j i �

h��j �
�
j�ni � p��n . Remembering that �ij is Hermitian

and has a unitary trace we are left with nine independent
elements of �ij, which may be functions of at most nine
one- and two-point CFs. This number can be further re-
duced by the symmetries of the problem. The global sym-
metry under a 
 rotation about the z axis yields
h�x�y�i � h�xi�

y
i i � h�

x
i�

z
i i � h�

y
i�

z
i i � 0 in the para-

magnetic phase (� 
 1). We end up with four elements:
h�zi and h��i �

�
i i, � � x; y; z. In the ferromagnetic phase

(� > 1) this no longer holds since the Hamiltonian sym-
metry is not preserved by the ground state and we need to
evaluate the nine one- and two-point CFs. The four CFs
appearing in the paramagnetic phase and h�x�y�i plus the
three off-diagonal two-point ones were calculated in
Ref. [16]. The first two pyzn � pxyn � 0 for all values of 	
and � [16]. The last off-diagonal CF (pxzn ) was obtained
exactly in terms of complex integrals whose calculation is
cumbersome. However, we were able to obtain excellent
bounds for it by imposing the positivity of the eigenvalues
of �ij [12].

With all the necessary CFs in hand, G�2; n� for the
XY model reads G�2; n� � 1� 1

3 �2h�
x
ji

2 � 2h�zji
2 �

2h�xj�
z
j�ni

2 � h�xj�
x
j�ni

2 � h�yj�
y
j�ni

2 � h�zj�
z
j�ni

2�. In
Fig. 1 we plot the lower and upper bounds for G�2; 1�
(by using the upper and lower bounds of pxzn , respectively)
as a function of � and for a few 	’s. We first note that it is
maximal at the critical point for any anisotropy (this is true
throughout the interval 0<	 
 1). Second, the bounds
obtained are very tight and can barely be distinguished for
some anisotropies. Only in the ferromagnetic phase and for
	! 0 do the bounds become distinguishable. The deriva-
tive of G�2; 1� with respect to � is depicted in Fig. 2,
exhibiting, as expected, a divergence at the critical point.
Now we analyze how G�2; n� approaches its asymptotic
value. It can be seen in Fig. 3 that G�2; n� is an increasing
function of the distance n. To study this behavior analyti-
cally we make use of the asymptotic form of the CFs of
the XY model: for � < 1 [16], h�xj�

x
j�ni � n

�1=2�n2 ,
h�yj�

y
j�ni � n

�3=2�n2 , and h�zj�
z
j�ni � h�

zi2 � n�2�2n
2 ,

with �2 � �1=��
�����������������������������������
1=�2 � �1� 	2�

p
�=�1� 	�, while at

the critical point h�xj�
x
j�ni � n

�1=4, h�yj�
y
j�ni � n

�9=4,
and h�zj�

z
j�ni � h�

zi2 � n�2. We can see from these ex-
pressions that, for large values of n, the dominant correla-
tion is, as expected, in the x direction. Thus, for large n we
can write G�2; n� � G�2;1� � h�xj�

x
j�ni

2=3, such that

 G �2; n� � G�2;1� � Cn�1�2n
2 ; � < �c; (7)

 G �2; n� � G�2;1� � C0n�1=2; � � �c: (8)

From these expressions, we see explicitly that, at the
critical point, the entanglement between two spins n sites
apart increases as a power law of their distance, whereas
away from the critical point it increases exponentially
and saturates very fast. For the XY model the EL defined
before reads �E �

	
2�1��� , where we have used that �2 �

1� ��� 1�=	 near the critical point. Note that �E di-
verges at the critical point as expected and that the ratio

0 0.5 1 1.5 2
λ

0.1

0.2

0.3

0.4

0.5

G
(2

,1
)

FIG. 1 (color online). Upper and lower bounds of G�2; 1� for
the XY chain for three values of the anisotropy: 	 � 1 (red solid
line), 0.6 (blue dashed line), and 0.2 (black dotted line).
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between �E and the correlation length �C is fixed:
�E=�C � 1=2. Thus at the critical point the entanglement
in the XY model is more distributed in the chain, as already
indicated by the block entanglement [4].

In conclusion, we related the nonanalytic properties of
the ground state energy to the nonanalyticities of G�2; n�
for an arbitrary many-particle system. Thus, G�2; n� is able
to signal both the QPT points and the order of the tran-
sition. G�2; n� is a ME measure which, for many reasons
[12], is operationally good. Since no maximization or
minimization process is needed for its calculation, no
accidental discontinuities or divergences will occur (in
contrast to the concurrence or the negativity). Moreover,
for two-level systems G�2; n� is simply related to one- and
two-point CFs. Therefore, for those systems undergoing a
2QPT it is possible to define a critical exponent and an
entanglement length which is half the more familiar corre-
lation length. We have exemplified those results with an

explicit calculation for the XY transverse field spin-1=2
chain. This result adds strength to the conjecture of
Osborne and Nielsen [3] that at the critical point bipartite
entanglement (as given by the concurrence or negativity) is
not maximal due to entanglement sharing since all the
parties involved are entangled as the entanglement length
diverges. In fact, what should be maximal and favored is
the multipartite entanglement, as we have demonstrated
plenty. It is worth mentioning that any knowledge of the
behavior of ME can only be achieved via GGE and not by
any CF alone. We expect that these findings will contribute
to the understanding of the relevance of entanglement,
especially ME, in QPTs.

We thank A. O. Caldeira for interesting discussions and
acknowledge support from CNPq and FAPESP.

Note added.—After this work was completed we be-
came aware of an independent derivation of the EL for the
XY model in terms of the two-site von Neumann entropy
[17]. We point out, however, that the relatively simple form
of G�2; n�, as given by the one- and two-point CFs, allows
it to be employed for the determination of the order of the
QPT as well as for the derivation of an EL for an arbitrary
two-level system undergoing a 2QPT.
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FIG. 3 (color online). Lower bound of G�2; n� for 	 � 0:6 and
for three values of n: n � 1 (solid line), 2 (dashed line), and 7
(long-dashed line).
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FIG. 2 (color online). Derivative of the lower bound of G�2; 1�
for three values of anisotropy: 	 � 1 (red solid line), 0.6 (blue
dashed line), and 0.2 (black dotted line). The second phase
transition is also imprinted for the 	 � 0:2 as the curve crosses
the abscissa at � � 1=
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