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Localization-Induced Griffiths Phase of Disordered Anderson Lattices
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We demonstrate that local density of states fluctuations in disordered Anderson lattice models univer-
sally lead to the emergence of non-Fermi liquid (NFL) behavior. The NFL regime appears at moderate
disorder (W � Wc) and is characterized by power-law anomalies, e.g., C�T � 1�T �12a�, where the
exponent a varies continuously with disorder, as in other Griffiths phases. This Griffiths phase is not as-
sociated with the proximity to any magnetic ordering, but reflects the approach to a disorder-driven metal-
insulator transition (MIT). Remarkably, the MIT takes place only at much larger disorder WMIT � 12Wc,
resulting in an extraordinarily robust NFL metallic phase.
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The nature of the non-Fermi-liquid (NFL) behavior
observed in several heavy fermion compounds remains
largely unresolved [1]. In the cleaner systems, the prox-
imity to a quantum critical point seems to be at the origin
of many of the observed properties [2,3]. Exotic impurity
models cannot be discarded [4], though their behavior in
concentrated systems remains ill understood [5].

In other compounds, nonstoichiometry has prompted
the investigation of disorder-based mechanisms. A phe-
nomenological “Kondo disorder” model (KDM), describ-
ing a broad distribution of Kondo temperatures TK , has
been successfully applied to several of these systems [6,7].
Alternatively, the formation of large clusters of magneti-
cally ordered material within the disordered phase has also
been proposed [8]. Both scenarios lead to a wide distribu-
tion of energy scales, giving rise to similar thermodynamic
anomalies and NMR response [7]. In addition, the predic-
tions of the KDM prove to be consistent with a number of
other experiments, including optical conductivity [9], mag-
netoresistance [10], and dynamic neutron scattering [6,11]
measurements.

Despite these successes, a number of basic questions
remain unresolved, including the following: (1) What
is the microscopic origin of the ubiquitous power-law (or
logarithmic) anomalies? (2) Can a model calculation be
done, which can produce these power laws in a universal
fashion? (3) Are these properties tied to the proximity to a
quantum phase transition, and if so, which one? (4) How
robust is the anomalous behavior with respect to the varia-
tion of materials parameters?

Within our model, all these questions find clear-cut and
physically transparent answers: (i) The anomalies can be
ascribed to a power-law distribution of TK ’s, whose ex-
ponent varies continuously with disorder strength. The re-
sulting NFL behavior, e.g., g � C�T � 1�T �12a�, a , 1
sets in for relatively weak randomness, irrespective of the
detailed model for disorder. This should be contrasted
with the KDM [6,7], where the occurrence of NFL be-
havior requires fine-tuning. (ii) We find universal behavior
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reflecting the nonlocal, many-body processes associated
with Anderson localization effects in the presence of strong
electron correlations. (iii) For stronger disorder, the NFL
metallic behavior persists over a surprisingly large interval
before a disorder-driven metal-insulator transition (MIT)
is reached. This novel Griffiths phase is a manifestation
of quantum critical behavior associated with the approach
to a disorder-driven metal-insulator transition and does not
require the proximity of any magnetically ordered phase.

We consider a disordered infinite-U Anderson lattice
Hamiltonian
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in usual notation. The infinite-U constraint at each f or-
bital is assumed (n

f
j �

P
s f

y
jsfjs # 1). We have stud-

ied different types of disorder, including randomness in the
conduction electron site energies ´i , the f-electron ener-
gies Efj , as well as the hybridization Vj . Within our ap-
proach, we find that most of our conclusions remain valid
for any specific form of disorder, indicating robust and uni-
versal behavior.

We treat the above Hamiltonian within the recently
proposed statistical dynamical mean field theory [12].
This approach reduces to the usual dynamical mean-field
theory in the limit z ! ` (with tjk � t�

p
z) [6,13,14],

but unlike the latter, it incorporates Anderson localization
effects. As a result, the spectral function of the local bath
“seen” by each impurity has strong spatial fluctuations
and contains information coming from sites which are
many lattice parameters away. Physically, the fluctuations
of the conduction electron wave functions lead to the
distribution of Kondo temperatures, which in turn creates
a renormalized effective disorder seen by the conduction
electrons. This nonlocal feedback mechanism results in
© 2001 The American Physical Society



VOLUME 86, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JANUARY 2001
the universal form of all the relevant distribution functions
that we find.

The simplest model for incorporating localization ef-
fects is obtained by focusing on a Bethe lattice of coor-
dination z (with nearest neighbor hopping t, used as a unit
of energy). The resulting set of self-consistent stochastic
equations is governed by the local actions [12,15]
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Here G
� j�
ck �v� is the local c-electron Green’s function on

site k with the nearest neighbor site j removed. It is
determined recursively from [12,15]
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The local self-energy Sfj�v� is obtained from the solution
of the effective action (2) [12,15,16]. In order to solve the
impurity problems, we have used the large-N mean-field
theory at T � 0 [17]. We have solved Eqs. (2)–(5) nu-
merically by sampling. In implementing this procedure,
we have carried out large-scale simulations for z � 3, with
ensembles containing up to Ns � 200 sites, and frequency
meshes containing up to Nomega � 8000 frequencies. The
numerical integrations needed to solve the impurity prob-
lems have been done by a combination of spline interpo-
lations and adaptive quadrature routines. These careful
numerics have made it possible to obtain Kondo tempera-
tures spanning 15 orders of magnitude, which was crucial
in order to examine the long tails of the relevant distribu-
tion functions.

One of the greatest advantages of our approach is its
ability to focus on full distribution functions, which is es-
sential for characterizing any Griffiths phase. Some typical
results are presented in Fig. 1, where we show the evolu-
tion of the distribution of local Kondo temperatures as a
function of disorder, from which one computes the overall
response of the lattice system (see the discussion in the first
reference of [6]). We find that [Fig. 1(a)] the distribution
has a universal log-normal form for weak disorder. We
have verified that such a log-normal behavior is obtained
irrespective of the type and shape of the bare disorder dis-
tribution, as long as it is not too large.

As the disorder is increased, the distribution P�TK � no
longer retains its log-normal form. Instead, a long tail
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FIG. 1. (a) Distribution of log�TK � for various values of dis-
order strength W�t. (b) Distribution of TK showing the emer-
gence of NFL behavior. Here ´i’s are distributed uniformly
with width W , and we have used z � 3, Ef � 21, V � 0.5,
and m � 20.5, in units of t.

emerges on the low-TK side, with a power-law asymptotic
form [Fig. 1(b)]

P�TK � � T
�a21�
K . (6)

The exponent a varies continuously with disorder, as seen
on a plot of log�P��� log�TK ����� in Fig. 2.

Note that the value a � 1 [Figs. 1(b) and 2], with
P�TK � � const, corresponds to the condition for marginal
Fermi liquid behavior observed in some Kondo alloys
[6,7], with logarithmically divergent magnetic susceptibil-
ity x�T � and specific heat coefficient g. This divergent be-
havior becomes more singular as the disorder is increased
past this marginal case. For example, if we use the simple
Wilson interpolation formula for x�T � [18]

x�T � �
Z L
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T
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FIG. 2. Power-law asymptotics of P��� log�TK ���� as the disorder
increases. The linear behavior for small log�TK � implies a
power-law dependence of P�TK �. Inset: The exponent a of
Eq. (6). Same parameters as in Fig. 1.
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We thus have power-law divergences with exponents
which vary continuously with the disorder strength. If
we take t � 104 K, this should be observed below a few
tens of Kelvin. Such generic behavior has been fitted to
some NFL compounds [19]. Besides, x�0� will diverge at
a critical disorder strength (Wc � 1 in Fig. 2)
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�
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with a similar result for g. Note, however, that other higher
order correlation functions, such as the nonlinear suscep-
tibility x3�0�, which probes higher negative moments of
the distribution [x3�0� � 1�T3

K ], will begin to diverge at
different critical values of disorder,

x3�0� �
1

a 2 3
�

1
Wc3 2 W

, (9)

where Wc3 � 0.66 for the parameters of Fig. 2.
This general behavior is characteristic of Griffiths phases

[20] and should not be confused with a true phase transi-
tion. The system should be viewed as a disordered metal
with embedded clusters of Anderson insulators. It is pre-
cisely these poor conducting regions, with depleted densi-
ties of states, which give rise to imperfectly quenched spins
and the corresponding singular thermodynamic properties.

We should also stress that the main mechanism that
dominates the Griffiths phase is qualitatively different from
the one in the KDM. There, TK fluctuations were simply
caused by the distribution of local parameters (Vj , Efj) and
the conduction electron density of states (DOS) does not
fluctuate. By contrast, in the present treatment, fluctuations
in the latter are dominant. To illustrate this, all the results
we present are obtained for a model with conduction band
disorder only, although similar results follow for any form
of disorder. We stress that, in a KDM treatment of this
case, TK fluctuations are severely limited. Here, however,
TK fluctuations are enhanced by the fluctuations in the local
conduction DOS, reflecting the localization effects and the
approach to a disorder-driven MIT.

To confirm this picture, we examine the localization prop-
erties of the conduction electrons. We focus on the typi-
cal DOS rtyp � exp�	lnrj
�; rj � �1�p�ImGcj�v � 0�,
as shown in Fig. 3. This quantity vanishes at any disorder-
driven MIT [12], and thus can serve as an order parameter
for localization. Remarkably, we find a strong decrease of
this quantity upon entering the Griffiths phase (W�t � 1),
reflecting the strongly enhanced conduction electron scat-
tering due to Kondo disorder. Yet, the actual localization
transition, where the typical DOS vanishes, occurs only at
much larger disorder (W�t � 12). This results in a very
extended NFL metallic region, where the thermodynamics
is singular, and the conduction electrons are almost, but
not completely, localized.
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FIG. 3. Localization properties of the conduction electrons as
monitored by the typical DOS as a function of disorder. The
same quantity in the absence of Kondo spins is shown for com-
parison. The vertical dashed line indicates the boundary of the
NFL phase. Same parameters as in Fig. 1.

This dramatic effect has a simple physical origin. Con-
sider the distribution of the effective scattering potentials
of the conduction electrons Fj�v � 0� [see Eq. (5)] in-
troduced by the f sites. Note that [6] Fj�v � 0� �
2ZjV 2� ˜́fj , where Zj is the quasiparticle weight and ˜́fj

the (renormalized) energy of the Kondo resonance at site j.
For sufficient disorder, the Kondo resonances are randomly
shifted up or down in energy, giving rise to Fj’s that can be
random in magnitude but also in sign. The resulting distri-
bution for the inverse quantity F

21
j is shown in Fig. 4 and
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FIG. 4. Distribution function for the quantity F
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j �0� as a func-

tion of disorder. The inset shows the behavior of the concentra-
tion of the strong scattering Kondo centers [F21

j �0� � 0], which
reaches a maximum just after the NFL phase is entered. Same
parameters as in Fig. 1.
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is found to broaden with disorder. For W�t � 1.5, a fi-
nite density of F

21
j � 01 (i.e., Fj � 1`) sites emerges.

This is crucial, since the corresponding f sites act as uni-
tary scatterers (US’s), characterized by a maximally al-
lowed scattering phase shift (d � p�2) for the conduction
electrons. If all the f sites were US’s, the system would
be a Kondo insulator. The presence of a finite fraction of
US’s should be viewed as the emergence of droplets of
a Kondo insulator within the heavy metal. Interestingly,
at stronger disorder (W�t . 4) the distribution of F

21
j �0�

continues to broaden, leading to a decrease in the num-
ber of US’s. This is illustrated by plotting P�F21

j � 0�
in the inset of Fig. 4. In this regime, while the bare dis-
order increases, the effective disorder produced by the f
sites is reduced, stabilizing the almost localized metallic
phase. This mechanism may be at the origin of the puz-
zling behavior of materials such as SmB6 [21], where the
low temperature resistivity remains anomalously large yet
finite over a broad range of parameters.

Finally, we note that a similar NFL phase was identified
in a study of the Mott-Anderson transition in the disordered
Hubbard model [12]. We have reexamined this system, and
concluded that the NFL behavior should be attributed to
a related Griffiths phase rather than a separate thermody-
namic phase of the system. Despite the similarities, sev-
eral features prove dramatically different. For Hubbard
models, the emergence of NFL behavior does not have a
dramatic effect on the conduction electrons and no US’s
emerge. This observation may explain the strong corre-
lation between thermodynamic and transport anomalies in
Kondo alloys, but not in doped semiconductors. In the lat-
ter materials, the thermodynamics is still singular close to
the MIT, while transport remains more conventional [22].

It would be of particular interest if it could be tested ex-
perimentally whether these localization effects are respon-
sible for the observed NFL behavior of disordered heavy
fermion systems. A scanning tunneling microscopy study
might be able to detect the predicted insulator droplets. In
order to distinguish this from the magnetic Griffiths phase
scenario [8], a systematic study of systems with compa-
rable amounts of disorder but different magnetic character
would be useful. Besides, since the present theory relies
very little on intersite magnetic correlations, a determina-
tion of the typical size of the relevant magnetic clusters
could also serve as a test.

In summary, we have investigated and solved a micro-
scopic model for disordered Anderson lattices that displays
an unprecedented sensitivity to disorder, leading to lo-
calization-induced non-Fermi-liquid behavior. Our results
demonstrate that a well defined Griffiths phase can exist,
which is not restricted to the vicinity of any magnetic or-
dering and yet seems to be consistent with most puzzling
features of disordered heavy fermion systems and Kondo
alloys.
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