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Correlation exponent K, of the one-dimensional Kondo lattice model
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We present results for the correlation expon&ntof the Tomonaga-Luttinger liquid description of the
one-dimensional Kondo lattice as a function of conduction-electron density and coupling cokstast.
obtained from the first derivative of the Fourier transform of the charge-charge correlation function. We also
show that the spin correlation function can only be described in this picture if we include logarithmic correc-
tions, a feature that had been previously overlooked. A consistent description of both charge and spin sectors
is then obtained. Finally, we show evidence that the spin sector of the dimerized phase at quarter-filling is
gapless.
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The Kondo lattice model is the simplest model believed togroup (DMRG) techniqué! with open boundary conditions.
describe the low energy physics of heavy fermion matetials.We used the finite-size algorithm for sizes up lie 120
Its one-dimensional version has been thoroughly studied ikeeping up tan=600 states per block. The discarded weight
the last 10 years and a great deal of understanding has beesms typically about 1#—1072 in the final sweep.
gained. However, some outstanding issues remain, some of TLLs with periodic boundary conditions and &) sym-
which may have implications in the higher dimensionalmetry have charge and spin correlation functions given as-
cases. For example, the question of whether the localizegmptotically by-°
spins should be counted in a Luttinger’s theorem determina-
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presents some surprising phases: at quarter conduction elec-

tron filling the spins are dimerized and the charge sector is 1 cog2KeX)

gapped. The latter phase may be at the origin of the spin- (S'(0) - S'(x)) = ()2 +B; N (2

Peierls phase observed in the quasi-one-dimensional organic

compoundgPep,M(mnt), (M=Pt,Pd.8 At a generic incom-  where dn(x) =n(x) —(n(x)), S'(j)=S;+s;, K, is the nonuni-
mensurate fillinghowever, the system is gapless in both theversal charge correlation exponent agdis the Fermi mo-
spin and charge sectors and it is reasonable to adsthiatsét ~ mentum. Local charge perturbations, such as introduced
is a Tomonaga-Luttinger liquidTLL).1° In this paper, we by impurities or boundaries, induce density oscillations,
will assume that this is the case. In an attempt to systematealled Friedel oscillations. In the case of a TLL, they take the
cally characterize this behavior, we have determined the norform 3412

universal TLL exponenK, as a function of coupling con-

stant and conduction electron density. We found that a (on(x)=C codZkex) . codakex) 3
consistent picture of charge and spin sectors can be obtained, 1 x(Ky+1i2 2 K,

X
only if logarithmic corrections are included in the spin cor- ) ) , i
relations. Moreover, we also show that the spin excitation| "€ Main goal of this work is to preseky, as a function of

spectrum of the quarter-filled case is gapless. We give argl’€ conduction electron density and the Kondo cogp.llilﬁ%
ments showing that the presence of dimerization and the a"® one-dimensional Kondo lattice model. A previous work
sence of a spin gap are not mutually exclusive. determinedK,,, but only for the density=3. Besides, in that

We considered the one-dimensional séinKondo lattice  WoOrk, the authors argued that the system has a “large” Fermi
Hamiltonian withL sites surface, with R==7(n+1) (mod 27), not a “small” one with

2k§:7rn (mod 27). Indeed, under some assumptions, the
+ presence of low-lying excitations with momenturthcan
H=- E Cj,oCi+10* N-C. +JE ST be provedt Assuming a “large” Fermi surface, the numerical
)= =t results show that the dominant term in the charge Friedel
==l oscillations is the second one in E®). From the decay of
wherec;,, annihilates a conduction electron in sjteith spin  the envelope function of this ternk(, was determined at
projection o/2, S; is a localized spin} operator ands; :§.4 However, more recent work has called into question the
:%zaﬁ ciagaﬁcm is the conduction electron spin density presence of a “large” Fermi surface, particularly for sndall
operator.J>0 is the Kondo coupling constant between thelf the Fermi surface is small, both terms in Eg) oscillate
conduction electrons and the local moments and the hoppingith the same period an:§ and the envelope function
amplitude has been set to unity to fix the energy scale. Wenethod cannot be unambiguously applied. In order to avoid
studied the model with the density matrix renormalizationthis ambiguity, we determineld, from the first term in Eq.
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FIG. 1. Charge gap versus l1Lfor J=10 and densitiesn=0.4
andn=0.6. HereE(N) is the ground state energy of the sector with  F1G. 2. Fourier transfornC(q) versus momentum for several
N electrons. The dashed lines are fitsig+c; /L +C,/L%. values ofJ, L=40, and densityn=0.8. The arrows indicate the
position of the cusp.
(1), or, equivalently, from the derivative of the Fourier trans-

form of the charge-charge correlation functiongat0, the DMRG for all values of density and Kondo couplirg
9C(q) shown. For small values dfand all densitiesC(q) increases

Ky=m ——| , (4) linearly with g up tog=n, and then saturates @tq)=n for

94 [q=0 n<g/m7<1. On the other hand, for large Kondo coupling
where C(q) increases linearly witlg up to g=27n (mod 27) <
and then saturates &(q)=n (1-n) for n<% (n>§) and
C(g) = EE g9079¢ sn(j) n(k)). 27 (mod 27) <q< 7.
L5k In order to get some insight into the behaviorGiig) we

. . consider free fermions with spi-in a one-dimensional
This method has been shown to give very accurate results br;( b

03 i earest-neighbor tight-binding lattice. In this case, the Fou-
Daul and Noack: Thesg authors determ!ned the exponentie, transform of the charge-charge correlation function
K, (by the DMRG techniquefor the one-dimensional Hub- c3(q) is
bard model and found good agreement with the exact results.’
For this reason, in the present work we will use this proce- C3(@) a/27, 0<q/m=2m,
dure to estimate the exponexy. m =

Haldane has conjectured that the TLL is the generic uni-
versality class of one-dimensional gapless syst&émal- where m=min[n/(2S+1),1-n/(2S+1)]. We will need two
though a rigorous proof usually relies on the integrability of particular cases, with the restriction< 1. For spins fermi-
the model, renormalization group arguments confirm thisons
conjecture in paramagnetic phas€sMuch less is known

Cl/Z( ) - {

(5

m, nsglr<1,

g/m, O0<g/lm=n,
n, nsg/nm=<1,

about the case of systems with ferromagnetic ground states.
However, even in this case, the spin sector usually decouples
from the charge sector and it is possible for the latter to ) ] 1
remain a TLL. The one-dimensional Kondo lattice model isWhilé for spinless fermions, ifi<3,
ferromagnetic for suffipiently largd. 1o In Fig. 1 we s.how its . {q/Zw, 0<g/m=2n,
charge gap as a function of system sizeJerl0 (inside the Co(q) = (7)
ferromagnetic phageand the densitie®=0.4 andn=0.6. n, n<gm=1,
The extrapolated values suggest that the ferromagnetig,q n>%,
phase, like the paramagnetic one, has no charge gap. Thus, it
is quite natural to expect that, inside the ferromagnetic phase, o,.._JaR2m Osdwm<21-n),
the charge sector may also be described as a TLL and we will Cola) = {1 -n, 2l-ns<gnr=<1.
assume this to be the case. In fact, as we will see below, our . _ _ .
results are consistent with this assumption. Note that this Our results forC(q) in the one-dimensional Kondo lattice
appears to happen also in the case of the Hubbard modgiodel all tend to the free spi%mase when)— 0 (see Fig.
with next-nearest neighbor hoppitd). 2), as expected. Besides, fde>0, C(qg) tends to theS=0

We first focus on the generajdependence o€(q). In  caseCY(q). This is also to be expected, since in this case the
Fig. 2 we present the Fourier transform of the charge-chargeonduction electrons form unbreakable mobile singlets with
correlation function fom=0.8, L=40, and several values of the localized spins, effectively behaving like spinless
J. We have checked that thgualitative behavior ofC(q)  fermions?!®
presents no finite size effects, and also observed that the The cusp oiC(q) at q=2kZ=n, for small values of, is
simple sum ruleC(0)=0 is satisfiedwithin the accuracy of the signature that the charge density oscillatiges. (1)] are

(6)

(8)
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FIG. 3. The exponeri, obtained with Eq(4) as a function of
J with L=40. The densities are indicated. Inskf; vs density for
J=0.35 andJ=0.5.

FIG. 4. The exponeri, vs 1/L for J=0.35,n=0.4(circles and
n=0.8(squares The dashed lines are fits according to B}, with
Kp:0.55(0.76), a=17.0(10.3, and b=-196.1(-120.5 for n

dominated by the i€ term. As we increasé the cusp moves =0-4(0.8).
to q=27n (mod 2r). At first sight, this might seem like an
indication that the system crosses over frorrk%dominated =0.4 (circles andn=0.8 (squarey as a function of 1L at
region to a kﬁ-dominated one ad increases. Indeed, this is J=0.35. In order to incorporate the finite-size dependence,
what happens in the Hubbard model when we increase th@e determined the extrapolated exponent assuming that
on-site repulsion U.}” However, since K=2mn K, (L) behaves like
:4kk (mod 2mr), the change might be due to a phase transi-
tion from a small Fermi surface to a large dhedeed, there K (L) =K,+alL+ b/L2. 9
have been indications of an intervening ferromagnetic phase
at intermediate values af,'® which could give rise to this In Fig. 4 the dashed lines are fits to our data using (&y.
change. Unfortunately, the study of otiepin-spin correla- ~ The exponent&, obtained through the fits are 0.55 and 0.76
tion functions has not shed any light on the is8tiee size of for n=0.4 andn=0.8, respectively. The values &f, shown
the Fermi surface for intermediate values bfemains an in the inset of Fig. 3 for small values dfandL=40 should
open guestion. be seen as upper limits. From the uncertainty of about 0.05 in
In Fig. 3 we show the exponekt, calculated through Eq. the values ofK, for fixed L, we estimate the error in the
(4) for several values ofi and Kondo coupling). For all ~ extrapolated values to be0.1.
densities we see th#t, tends to unity whed— 0, in agree- Now that we have accurately determined the expokgnt
ment with our expectation that the system tends to a noninwe should be able to describe all correlation functions, since
teracting spin% electron gas wittk®=1. On the other hand, the only parameters needed &gand the Fer_mi momentum
in the strong coupling limitk,~0.5, as expected for free ke [K,=1 because of S&2) symmetry. In particular, we can
spinless fermiongcf. Eqgs.(4) and (7)]. We have observed cross-check our results with the spin-spin correlation func-
that for densitiesn>3 and J~1.5, K, attains its smallest tion [Eg.(2)]. Previous work showed that for small values of
values. This is a region where charge oscillations are erthe Kondo coupling) the size of the Fermi surface is small,
hancedsee, e.g., Fig. 1 of Ref)3Actually, for some values SO thatkg is fixed (see also Ref. )8To eliminate the effect
of J andn>1 we were unable to determini¢ , as for ex- Of the open boundaries on the spin-spin correlation function,
ample atl=1-7 andn=0.9. At these points, our data did not We considered a large system and averaged the correlations
satisfy the simple sum rulg(0)=0, even increasing the trun- OVEr pairs of sites separated by a given distande get
cationm up to m=600. The exponerk,, also did not con- (S (0? -S'(1)), as discussed by other a”thé‘;g" InFig. 5,
verge as a function af. A truncation ofm=600 is more than  the circles correspond to this averaged spin-spin correlation
enough to get precise values in other parameter regionfunction P(1)=(S'(0)-S'(1))a,eq for n=0.4 andn=0.8 atJ
Typically, for small values ofl andL=40, K, obtained with =0.35 andL=120. We restricted thg yalues to the interval
truncationsm=400 andm=600 differ by less than & 1072 30=<1=<90, because the TLL description only makes sense
and C(0)~10™* with m=400. It is interesting to note that asymptotically and large values bfnay be compromised by
this region where the charge oscillations are strongest corrdle open boundarieg\ direct attempt at fitting the data of
sponds to the ferromagnetic phase at intermedidfeFor ~ Fig. 5 with Eq. (2) yields K< 0, which is clearly incorrect
completeness, we also show in the inset of Fig. 3 the deper!Ve believe the discrepancy is due to logarithmic corrections,
dence ofK, on the density ford=0.35 andJ=0.5 with L Which are well established in other models with(@sym-
=40. As we can seé, decreases with increasirly metry, e.g., the Heisenberg modef: Thus, assuming a ge-
Given this qualitative behavior df, as a function ofJ, ~ Neric form
we now set out to determine some quantitative values of the N
exponent. For this, we must be careful to take into account (ST(0) - ST(x)) = 1 S+ 1003(2|L<F+>?|ﬂ X’ (10)
finite-size effects. In Fig. 4 we shoW, for the densities (7x) X°p
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0.15 - (a) work with a largeJ value in order to produce large spin gaps,
] ’ T Tren ., since the spin gap generally increases Wittt half-filling,
0.05 “L’H o ; , gy g ﬁ i where the system is known to be fully gapﬁédhe data
Pi) * PTititiaieneniond clearly tend to saturate at a nonzero value in the thermody-
2005 fi i namic limit. By contrast, am=0.5 andn=0.8 the data
g strongly indicate that the spin sector is gapless. Thus, the
—015 , dir_nerized phase discovered in Ref. 7 has a chalrge.gap. but no
730 60 | 90 spin gap. In that reference, the effect of dimerization in the
0.15 e : (b) localized spin subsystem on the conduction electrons was
IR R T IE IR discussed. If we integrate out the local moments, an effective
0.05 [hiik i it g hg ity iyl ] exchange interaction among the conduction electrons is gen-
P(l) +’*‘+++++. erated. This is in a sense the “complement” of the RKKY
~0.05 *” interaction, which induces an effective exchange interaction
. LY r‘ 9*"‘ T between local moments once the conduction electrons are
045 R mtegrated out. T_hls e_ffectlve ex_change interaction is propor-
T30 60 [ 90 tional to the static spin susceptibility of the dimerized local-
ized spins

FIG. 5. The spin-spin correlation function for densities0.4
(@) andn=0.8(b) (J=0.35 andL=120). The dashed line is a fit of o i e .
Eq. (10) with @=4.0 andK,=0.55 forn=0.4, anda=5.1 andK, Hefr~J %X(J K)s; - . 1D
=0.76 forn=0.8.

If only nearest neighbor terms are retaineg(j—k)
we can produce an excellent fit to the numerical residiag = j,k+1D(j)a whereD(j) ~ (-1)!D, is the dimer order param-
the exponents Kindependently obtained befomnd only  eter. This leads to staggered exchange interactitvetween
two fitting parametersia=4.0(a=5.1) and B;=0.17(By  conduction electron spin densities
=0.11) for n=0.4(n=0.8). This is seen as the dashed line in
Fig. 5. Logarlthmu_: corrections thL_Js appear to be crucial for Heorf ~ > (- s - Sj41. (12)
a complete description of the spin correlations of the one- i
dimensional Kondo lattice model. As far as we know, this
point has not been stressed before. We note that the aboWis kind of interaction can be analyzed through
values ofa differ from the expected values (%f.z2 A more  bosonizatiod? Among the many terms that are generated,
accurate determination of the exponent of the log correctiothose which involve combinations Iike““kFXl/f,Q(x)sz(x)
may require much larger system sizes. X¢;(x+ 1)y (x+1) will have just the right oscillating factor
Finally, we would like to address the quarter-filled case,to cancel the-1)! in Eq. (12), since4ke= at quarter fill-
n:%, which has been shown to exhibit spin dimerizatidit. ing. One of the terms igsin(z\@ﬁp) (in the notation of Ref.
this filling, the system has a charge gap and the charge sect@p), which is relevant and opens a charge gafK ji< 110
cannot be described as a TE|Eurthermore, since the spins The DMRG results show that this condition is fulfilled
are dimerized, we would naively expect a finite spin gap, ashroughout the phase diagram. Thus, the above analysis
in the frustrated); -J, Heisenberg modéf We would now  seems to be consistent with the presence of a charge gap. A
like to show that in fact the spin sector is gapless. In Fig. Germ of the form~sin(2y24,) is also generated. However, it
we show the spin gap as a function of the lattice sizlor g marginal if K,=1 and only generates a spin gap if the
J=1.2 and densities=0.5,n=0.8, andn=1.0. We chose t0 ¢qefficient has the right sign. We conclude that the presence
of a charge gap and the absence of a spin gap we find are

0.003 ' ' consistent with the bosonization analysis.
—=en=0.5 In conclusion, we have presented a systematic study of
the nonuniversal exponekt, in the Kondo lattice model, as
& 0002 | a function of the conduction electron density and the Kondo
o coupling. The qualitative behavior of the charge structure
= factor C(qg) in the weak and strong coupling limits could be
% ascribed to free spié-and spinless fermions, respectively.
0.001 | We also showed that the spin correlation function can be
described within a Tomonaga-Luttinger liquid scheme only if
logarithmic corrections are included. Finally, we have dem-
0.000 s . onstrated that, although the charge sector has a gap at quarter
0.000 0.020 4, 0.040 filling, there are gapless spin excitations.
FIG. 6. Spin gap as function of L/for the densities1=0.5,n We thank A. Villares for useful discussions. This work
=0.8 andn=1(J=1.2). The data fom=1 have been multiplied by Wwas supported by FAPESP 00/02802J37C.X), 01/00719-8
1072 for comparison. (J.C.X., E.M), and CNPq 301222/97-&.M.).
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