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We present results for the correlation exponentKr of the Tomonaga-Luttinger liquid description of the
one-dimensional Kondo lattice as a function of conduction-electron density and coupling constant.Kr is
obtained from the first derivative of the Fourier transform of the charge-charge correlation function. We also
show that the spin correlation function can only be described in this picture if we include logarithmic correc-
tions, a feature that had been previously overlooked. A consistent description of both charge and spin sectors
is then obtained. Finally, we show evidence that the spin sector of the dimerized phase at quarter-filling is
gapless.
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The Kondo lattice model is the simplest model believed to
describe the low energy physics of heavy fermion materials.1

Its one-dimensional version has been thoroughly studied in
the last 10 years and a great deal of understanding has been
gained. However, some outstanding issues remain, some of
which may have implications in the higher dimensional
cases. For example, the question of whether the localized
spins should be counted in a Luttinger’s theorem determina-
tion of the size of the Fermi momentum is still
controversial.2–6 Furthermore, even the phase diagram still
presents some surprising phases: at quarter conduction elec-
tron filling the spins are dimerized and the charge sector is
gapped.7 The latter phase may be at the origin of the spin-
Peierls phase observed in the quasi-one-dimensional organic
compoundssPerd2Msmntd2 sM =Pt,Pdd.8 At a generic incom-
mensurate filling, however, the system is gapless in both the
spin and charge sectors and it is reasonable to assume9 that it
is a Tomonaga-Luttinger liquid(TLL ).10 In this paper, we
will assume that this is the case. In an attempt to systemati-
cally characterize this behavior, we have determined the non-
universal TLL exponentKr as a function of coupling con-
stant and conduction electron density. We found that a
consistent picture of charge and spin sectors can be obtained,
only if logarithmic corrections are included in the spin cor-
relations. Moreover, we also show that the spin excitation
spectrum of the quarter-filled case is gapless. We give argu-
ments showing that the presence of dimerization and the ab-
sence of a spin gap are not mutually exclusive.

We considered the one-dimensional spin-1
2 Kondo lattice

Hamiltonian withL sites

H = − o
j=1

s=±1

L−1

cj ,s
† cj+1,s + h.c. +Jo

j=1

L

Sj ·sj ,

wherecjs annihilates a conduction electron in sitej with spin
projection s /2, Sj is a localized spin-12 operator andsj

= 1
2oab cj ,a

† sabcj ,b is the conduction electron spin density
operator.J.0 is the Kondo coupling constant between the
conduction electrons and the local moments and the hopping
amplitude has been set to unity to fix the energy scale. We
studied the model with the density matrix renormalization

group (DMRG) technique11 with open boundary conditions.
We used the finite-size algorithm for sizes up toL=120
keeping up tom=600 states per block. The discarded weight
was typically about 10−5–10−8 in the final sweep.

TLLs with periodic boundary conditions and SU(2) sym-
metry have charge and spin correlation functions given as-
ymptotically by10

kdns0ddnsxdl =
Kr

spxd2 + A1
coss2kFxd

xKr+1 + A2
coss4kFxd

x4Kr
, s1d

kSTs0d ·STsxdl =
1

spxd2 + B1
coss2kFxd

xKr+1 , s2d

where dnsxd=nsxd−knsxdl, STs jd=Sj +sj, Kr is the nonuni-
versal charge correlation exponent andkF is the Fermi mo-
mentum. Local charge perturbations, such as introduced
by impurities or boundaries, induce density oscillations,
called Friedel oscillations. In the case of a TLL, they take the
form 3,4,12

kdnsxdl = C1
coss2kFxd
xsKr+1d/2 + C2

coss4kFxd
x2Kr

. s3d

The main goal of this work is to presentKr as a function of
the conduction electron density and the Kondo couplingJ for
the one-dimensional Kondo lattice model. A previous work4

determinedKr, but only for the densityn= 2
3. Besides, in that

work, the authors argued that the system has a “large” Fermi
surface, with 2kF

L =psn+1d smod 2pd, not a “small” one with
2kF

S=pn smod 2pd. Indeed, under some assumptions, the
presence of low-lying excitations with momentum 2kF

L can
be proved.2 Assuming a “large” Fermi surface, the numerical
results show that the dominant term in the charge Friedel
oscillations is the second one in Eq.(3). From the decay of
the envelope function of this term,Kr was determined atn
= 2

3.4 However, more recent work has called into question the
presence of a “large” Fermi surface, particularly for smallJ.5

If the Fermi surface is small, both terms in Eq.(3) oscillate
with the same period atn= 2

3 and the envelope function
method cannot be unambiguously applied. In order to avoid
this ambiguity, we determinedKr from the first term in Eq.
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(1), or, equivalently, from the derivative of the Fourier trans-
form of the charge-charge correlation function atq=0,

Kr = pU ] Csqd
] q

U
q=0

, s4d

where

Csqd =
1

Lo
j ,k

eiqs j−kdkdns jddnskdl.

This method has been shown to give very accurate results by
Daul and Noack.13 These authors determined the exponent
Kr (by the DMRG technique) for the one-dimensional Hub-
bard model and found good agreement with the exact results.
For this reason, in the present work we will use this proce-
dure to estimate the exponentKr.

Haldane has conjectured that the TLL is the generic uni-
versality class of one-dimensional gapless systems.14 Al-
though a rigorous proof usually relies on the integrability of
the model, renormalization group arguments confirm this
conjecture in paramagnetic phases.10 Much less is known
about the case of systems with ferromagnetic ground states.15

However, even in this case, the spin sector usually decouples
from the charge sector and it is possible for the latter to
remain a TLL. The one-dimensional Kondo lattice model is
ferromagnetic for sufficiently largeJ.16 In Fig. 1 we show its
charge gap as a function of system size forJ=10 (inside the
ferromagnetic phase) and the densitiesn=0.4 andn=0.6.
The extrapolated values suggest that the ferromagnetic
phase, like the paramagnetic one, has no charge gap. Thus, it
is quite natural to expect that, inside the ferromagnetic phase,
the charge sector may also be described as a TLL and we will
assume this to be the case. In fact, as we will see below, our
results are consistent with this assumption. Note that this
appears to happen also in the case of the Hubbard model
with next-nearest neighbor hopping.13

We first focus on the generalq-dependence ofCsqd. In
Fig. 2 we present the Fourier transform of the charge-charge
correlation function forn=0.8, L=40, and several values of
J. We have checked that thequalitative behavior ofCsqd
presents no finite size effects, and also observed that the
simple sum ruleCs0d=0 is satisfied(within the accuracy of

the DMRG) for all values of density and Kondo couplingJ
shown. For small values ofJ and all densities,Csqd increases
linearly with q up toq=pn, and then saturates atCsqd=n for
n,q/p,1. On the other hand, for large Kondo coupling
Csqd increases linearly withq up to q=2pn smod 2pd,p

and then saturates atCsqd=n s1−nd for n,
1
2

sn.
1
2

d and
2pn smod 2pd,q,p.

In order to get some insight into the behavior ofCsqd we
consider free fermions with spin-S in a one-dimensional
nearest-neighbor tight-binding lattice. In this case, the Fou-
rier transform of the charge-charge correlation function
C0

Ssqd is

C0
Ssqd

s2S+ 1d
= Hq/2p, 0 ø q/p ø 2m,

m, 2mø q/p ø 1,
s5d

where m=minfn/ s2S+1d ,1−n/ s2S+1dg. We will need two
particular cases, with the restrictionn,1. For spin-12 fermi-
ons

C0
1/2sqd = Hq/p, 0 ø q/p ø n,

n, n ø q/p ø 1,
s6d

while for spinless fermions, ifn,
1
2,

C0
0sqd = Hq/2p, 0 ø q/p ø 2n,

n, 2n ø q/p ø 1,
s7d

and if n.
1
2,

C0
0sqd = Hq/2p, 0 ø q/p ø 2s1 − nd,

1 − n, 2s1 − nd ø q/p ø 1.
s8d

Our results forCsqd in the one-dimensional Kondo lattice
model all tend to the free spin-1

2 case whenJ→0 (see Fig.
2), as expected. Besides, forJ@0, Csqd tends to theS=0
case,C0

0sqd. This is also to be expected, since in this case the
conduction electrons form unbreakable mobile singlets with
the localized spins, effectively behaving like spinless
fermions.16

The cusp ofCsqd at q=2kF
S=np, for small values ofJ, is

the signature that the charge density oscillations[Eq. (1)] are

FIG. 1. Charge gap versus 1/L for J=10 and densitiesn=0.4
andn=0.6. Here,EsNd is the ground state energy of the sector with
N electrons. The dashed lines are fits toD`+c1/L+c2/L2.

FIG. 2. Fourier transformCsqd versus momentum for several
values of J, L=40, and densityn=0.8. The arrows indicate the
position of the cusp.

J. C. XAVIER AND E. MIRANDA PHYSICAL REVIEW B 70, 075110(2004)

075110-2



dominated by the 2kF
S term. As we increaseJ the cusp moves

to q=2pn smod 2pd. At first sight, this might seem like an
indication that the system crosses over from a 2kF

S-dominated
region to a 4kF

S-dominated one asJ increases. Indeed, this is
what happens in the Hubbard model when we increase the
on-site repulsion U.17 However, since 4kF

S=2pn
=4kF

L smod 2pd, the change might be due to a phase transi-
tion from a small Fermi surface to a large one.6 Indeed, there
have been indications of an intervening ferromagnetic phase
at intermediate values ofJ,18 which could give rise to this
change. Unfortunately, the study of other(spin-spin) correla-
tion functions has not shed any light on the issue:5 the size of
the Fermi surface for intermediate values ofJ remains an
open question.

In Fig. 3 we show the exponentKr calculated through Eq.
(4) for several values ofn and Kondo couplingJ. For all
densities we see thatKr tends to unity whenJ→0, in agree-
ment with our expectation that the system tends to a nonin-
teracting spin-12 electron gas withKr

0=1. On the other hand,
in the strong coupling limitKr,0.5, as expected for free
spinless fermions[cf. Eqs. (4) and (7)]. We have observed
that for densitiesn.

1
2 and J,1.5, Kr attains its smallest

values. This is a region where charge oscillations are en-
hanced(see, e.g., Fig. 1 of Ref. 3). Actually, for some values
of J and n.

1
2 we were unable to determineKr, as for ex-

ample atJ=1.7 andn=0.9. At these points, our data did not
satisfy the simple sum ruleCs0d=0, even increasing the trun-
cation m up to m=600. The exponentKr also did not con-
verge as a function ofm. A truncation ofm=600 is more than
enough to get precise values in other parameter regions.
Typically, for small values ofJ andL=40, Kr obtained with
truncationsm=400 andm=600 differ by less than 5310−2

and Cs0d,10−4 with m=400. It is interesting to note that
this region where the charge oscillations are strongest corre-
sponds to the ferromagnetic phase at intermediateJ.18 For
completeness, we also show in the inset of Fig. 3 the depen-
dence ofKr on the density forJ=0.35 andJ=0.5 with L
=40. As we can see,Kr decreases with increasingJ.

Given this qualitative behavior ofKr as a function ofJ,
we now set out to determine some quantitative values of the
exponent. For this, we must be careful to take into account
finite-size effects. In Fig. 4 we showKr for the densitiesn

=0.4 (circles) and n=0.8 (squares) as a function of 1/L at
J=0.35. In order to incorporate the finite-size dependence,
we determined the extrapolated exponent assuming that
KrsLd behaves like

KrsLd = Kr + a/L + b/L2. s9d

In Fig. 4 the dashed lines are fits to our data using Eq.(9).
The exponentsKr obtained through the fits are 0.55 and 0.76
for n=0.4 andn=0.8, respectively. The values ofKr shown
in the inset of Fig. 3 for small values ofJ andL=40 should
be seen as upper limits. From the uncertainty of about 0.05 in
the values ofKr for fixed L, we estimate the error in the
extrapolated values to be&0.1.

Now that we have accurately determined the exponentKr

we should be able to describe all correlation functions, since
the only parameters needed areKr and the Fermi momentum
kF [Ks=1 because of SU(2) symmetry]. In particular, we can
cross-check our results with the spin-spin correlation func-
tion [Eq. (2)]. Previous work showed that for small values of
the Kondo couplingJ the size of the Fermi surface is small,5

so thatkF is fixed (see also Ref. 18). To eliminate the effect
of the open boundaries on the spin-spin correlation function,
we considered a large system and averaged the correlations
over pairs of sites separated by a given distancej to get
kSTs0d ·STsldl, as discussed by other authors.5,13,19 In Fig. 5,
the circles correspond to this averaged spin-spin correlation
function Psld=kSTs0d ·STsldlaveg for n=0.4 andn=0.8 at J
=0.35 andL=120. We restricted the values to the interval
30ø l ø90, because the TLL description only makes sense
asymptotically and large values ofl may be compromised by
the open boundaries.A direct attempt at fitting the data of
Fig. 5 with Eq. (2) yields Kr,0, which is clearly incorrect.
We believe the discrepancy is due to logarithmic corrections,
which are well established in other models with SU(2) sym-
metry, e.g., the Heisenberg model.20,21 Thus, assuming a ge-
neric form

kSTs0d ·STsxdl =
1

spxd2 + B1
coss2kFxdlnax

xKr+1 , s10d

FIG. 3. The exponentKr obtained with Eq.(4) as a function of
J with L=40. The densities are indicated. Inset:Kr vs density for
J=0.35 andJ=0.5.

FIG. 4. The exponentKr vs 1/L for J=0.35,n=0.4 (circles) and
n=0.8 (squares). The dashed lines are fits according to Eq.(9), with
Kr=0.55s0.76d, a=17.0s10.3d, and b=−196.1s−120.5d for n
=0.4s0.8d.
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we can produce an excellent fit to the numerical resultsusing
the exponents Kr independently obtained beforeand only
two fitting parameters:a=4.0sa=5.1d and B1=0.17sB1

=0.11d for n=0.4sn=0.8d. This is seen as the dashed line in
Fig. 5. Logarithmic corrections thus appear to be crucial for
a complete description of the spin correlations of the one-
dimensional Kondo lattice model. As far as we know, this
point has not been stressed before. We note that the above
values ofa differ from the expected values of1

2.22 A more
accurate determination of the exponent of the log correction
may require much larger system sizes.

Finally, we would like to address the quarter-filled case,
n= 1

2, which has been shown to exhibit spin dimerization.7 At
this filling, the system has a charge gap and the charge sector
cannot be described as a TLL.7 Furthermore, since the spins
are dimerized, we would naively expect a finite spin gap, as
in the frustratedJ1−J2 Heisenberg model.23 We would now
like to show that in fact the spin sector is gapless. In Fig. 6
we show the spin gap as a function of the lattice sizeL for
J=1.2 and densitiesn=0.5, n=0.8, andn=1.0. We chose to

work with a largeJ value in order to produce large spin gaps,
since the spin gap generally increases withJ. At half-filling,
where the system is known to be fully gapped,16 the data
clearly tend to saturate at a nonzero value in the thermody-
namic limit. By contrast, atn=0.5 and n=0.8 the data
strongly indicate that the spin sector is gapless. Thus, the
dimerized phase discovered in Ref. 7 has a charge gap but no
spin gap. In that reference, the effect of dimerization in the
localized spin subsystem on the conduction electrons was
discussed. If we integrate out the local moments, an effective
exchange interaction among the conduction electrons is gen-
erated. This is in a sense the “complement” of the RKKY
interaction, which induces an effective exchange interaction
between local moments once the conduction electrons are
integrated out. This effective exchange interaction is propor-
tional to the static spin susceptibility of the dimerized local-
ized spins

Hef f , J2o
jk

xls j − kdsj ·sk. s11d

If only nearest neighbor terms are retained,xls j −kd
=d j ,k+1Ds jd, whereDs jd,s−1d jD0 is the dimer order param-
eter. This leads to astaggered exchange interactionbetween
conduction electron spin densities

Hef f , o
j

s− 1d jsj ·sj+1. s12d

This kind of interaction can be analyzed through
bosonization.10 Among the many terms that are generated,
those which involve combinations likee−i4kFxcR

†sxdcLsxd
3cR

†sx+1dcLsx+1d will have just the right oscillating factor
to cancel thes−1d j in Eq. (12), since4kF=p at quarter fill-
ing. One of the terms is,sins2Î2frd (in the notation of Ref.
10), which is relevant and opens a charge gap ifKr,1.10

The DMRG results show that this condition is fulfilled
throughout the phase diagram. Thus, the above analysis
seems to be consistent with the presence of a charge gap. A
term of the form,sins2Î2fsd is also generated. However, it
is marginal if Ks=1 and only generates a spin gap if the
coefficient has the right sign. We conclude that the presence
of a charge gap and the absence of a spin gap we find are
consistent with the bosonization analysis.

In conclusion, we have presented a systematic study of
the nonuniversal exponentKr in the Kondo lattice model, as
a function of the conduction electron density and the Kondo
coupling. The qualitative behavior of the charge structure
factor Csqd in the weak and strong coupling limits could be
ascribed to free spin-1

2 and spinless fermions, respectively.
We also showed that the spin correlation function can be
described within a Tomonaga-Luttinger liquid scheme only if
logarithmic corrections are included. Finally, we have dem-
onstrated that, although the charge sector has a gap at quarter
filling, there are gapless spin excitations.

We thank A. Villares for useful discussions. This work
was supported by FAPESP 00/02802-7(J.C.X.), 01/00719-8
(J.C.X., E.M.), and CNPq 301222/97-5(E.M.).

FIG. 5. The spin-spin correlation function for densitiesn=0.4
(a) andn=0.8 (b) (J=0.35 andL=120). The dashed line is a fit of
Eq. (10) with a=4.0 andKr=0.55 for n=0.4, anda=5.1 andKr

=0.76 forn=0.8.

FIG. 6. Spin gap as function of 1/L for the densitiesn=0.5, n
=0.8 andn=1 sJ=1.2d. The data forn=1 have been multiplied by
10−2 for comparison.
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