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Luttinger liquid superlattices: Realization of gapless insulating phases
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We investigate Luttinger liquid superlattices, periodic structures composed of two kinds of one-dimensional
systems of interacting electrons. We calculate several properties of the low-energy sector: the effective charge
and spin velocities, the compressibility, various correlation functions, the Landauer conductance, and the Drude
weight. The low-energy properties are subsumed into effective parameters, much like homogeneous one-
dimensional systems. A generic result is theweighted average nature of these parameters, in proportion to the
spatial extent of the underlying subunits, pointing to the possibility of ‘‘engineered’’ structures. As a specific
realization, we consider a one-dimensional Hubbard superlattice, which consists of a periodic arrangement of
two long Hubbard chains with different coupling constants and different hopping amplitudes. This system
exhibits a rich phase diagram with several phases, both metallic and insulating. We have found that gapless
insulating phases are present over a wide range of parameters.

DOI: 10.1103/PhysRevB.65.115115 PACS number~s!: 71.10.Pm, 71.10.Fd, 71.30.1h, 73.22.2f
ha
e
w

f
p
di
e

rm
b
c
xc
de
re

m
ed
ra
-
ca
s

gy

m
s
e-
m
e

ne
s

fre
lit

er

se
is

ns

n in
na-
LL
on-

n
to

rent

sis-
unc-

ho-
one

of

e-
lat-
re

rk-
er-
be
ve
nd

al
ng-
ich
size
tly,
I. INTRODUCTION

The physics of one-dimensional electronic systems
been the subject of a vigorous onslaught recently, both th
retical and experimental. Experimentally, the ability to gro
nanostructures such as quantum wires1–3 and carbon
nanotubes4–9 has enabled the investigation of systems o
truly one-dimensional nature. On the theoretical side, the
culiarities of the behavior of interacting electrons in one
mension have culminated in the proposal of a unique univ
sality class dubbed the Luttinger liquid10–16 ~LL !, which
stands in sharp contrast with the higher dimensional Fe
liquids established by Landau. The LL is characterized
the absence of stable quasiparticles, its low-energy se
being exhausted by collective charge- and spin-density e
tations. Since the latter travel at different velocities, an ad
electron splits up into well separated charge and spin deg
of freedom. Furthermore, correlation functions decay in
power-law fashion, with exponents set by only a few para
eters. This generic behavior has been tested and confirm
the case of edge transport in systems which exhibit the f
tional quantum Hall effect.17–21LL theory has also been suc
cessfully used to describe some low-energy properties of
bon nanotubes,22–24 though the situation in quantum wire
remains controversial.25,26

The effect of boundary conditions on the low-ener
properties of LL’s was considered several years ago.27 More-
over, the interplay between boundary, finite-size, and ther
effects has been shown to alter considerably the propertie
the system.28,29In particular, the zero-temperature critical b
havior of the bulk always crosses over to a boundary do
nated regime. These studies are important to explain the
perimental results of tunneling spectroscopy into o
dimensional systems. More recently, it has been propo
that one-dimensional systems with gapless degrees of
dom and open boundary conditions form a new universa
0163-1829/2002/65~11!/115115~14!/$20.00 65 1151
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class of quantum critical behavior called ‘‘bounded Lutting
liquids.’’30

A particular kind of boundary effect emerges in the ca
of inhomogeneities. In general, an inhomogeneous LL
modeled by allowing the velocities of collective excitatio
ur andus and the correlation exponentsKr andKs to vary
in space. The absence of conductance renormalizatio
long high-mobility GaAs wires, for instance, has been a
lyzed and explained in terms of an inhomogeneous
model, where the Fermi liquid leads are replaced by a n
interacting one-dimensional electron gas.31–35 Furthermore,
LL’s with different inhomogeneity profiles have also bee
used in the context of the fractional quantum Hall effect,
describe transitions between edge states at diffe
fillings,36,37 or between an edge state and a Fermi liquid.38

With an eye to practical applications as diodes or tran
tors, researchers have recently begun to fabricate heteroj
tions of carbon nanotubes23,39–44 which look especially
promising. They happen to be another realization of an in
mogeneous one-dimensional system. Taking this idea
step further, we have been led to consider another kind
heterostructure:a superlattice. The effect of electronic cor-
relations in superlattices was initiated through a on
dimensional Hubbard-like model called a Hubbard super
tice ~HSL!,45–47 consisting of a periodic arrangement whe
the Hubbard on-site repulsionU is turned on and off in a
repeated fashion. Despite its simplicity, a number of rema
able features were found, in marked contrast with the oth
wise homogeneous system: local moment weight can
transferred from repulsive to free sites, spin-density wa
~SDW! quasiorder is wiped out as a result of frustration, a
strong SDW correlations~in a subset of sites! could set in
above half filling. Furthermore, the evolution of the loc
moment and of the charge gap, together with a stro
coupling analysis, showed that the electron density at wh
the system becomes a Mott insulator increases with the
of the free layer relative to the repulsive one. More recen
©2002 The American Physical Society15-1
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the possibility of a periodically modulated hopping at ar
trary filling and magnetization has been considered.48

In order to generalize the effects of a superlattice struc
in an interacting one-dimensional system, we consider he
general Luttinger liquid superlattice~LLSL!, making at first
no reference to the underlying microscopic details. We sh
how its low-energy properties bear strong resemblance
conventional Luttinger liquid. However, as in the case
bounded Luttinger liquids,30 new effective parameters hav
to be introduced, which are the superlattice analogs of
spin and charge velocities and stiffnesses. These encod
the information necessary for a description of the low-ene
sector. Moreover, these effective parameters turn out to
the properties of the underlying subunits in proportion
their spatial extent. This spatial averaging characteristic s
gests the possibility of fine tuning the physical properties
a careful selection of the superlattice modulation, a feat
which may prove useful in nanodevice applications. We th
consider specific realizations of the LLSL by analyzing
full detail a general HSL. We find a proliferation of phase
both metallic and insulating. Surprisingly, the insulati
phases often have no charge gap, because additional c
can be accommodated in the compressible subunits. A pa
account of these results has appeared in Ref. 49.

The paper is organized as follows: In Sec. II, we introdu
the Bosonic formulation of the Tomonaga-Luttinger mod
and our model. We obtain the effective charge and spin
locities, the correlation functions with the effective exp
nents and the Drude weight for LL superlattices. The ap
cation of these results to various cases where the
describes the low-energy sector of a Hubbard model is a
lyzed in Sec. III. We close with the conclusions in Sec. IV

II. MODEL

We briefly review the general aspects of a homogene
LL in order to set up the notation. The low-energy, larg
distance behavior of a one-dimensional Fermionic sys
with spin-independent interactions is described by
Hamiltonian10–16

H5Hr1Hs1
2g1

~2pa!2E dx cos~A8Fs!, ~1!

wherea is a short-distance cutoff,g1 is the spin backward-
scattering amplitude, and

Hn5E dxS punKn

2
Pn

21
un

2pKn
~]xFn!2D , ~2!

with n5r ands for the charge and spin degrees of freedo
respectively.

The phase fields are

Fn~x!52
ip

L (
pÞ0

1

p
e2aupux/22 ipx@n1~p!1n2~p!#

2Nn

px

L
, ~3!
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and

Pn~x!5
1

L (
pÞ0

e2aupux/22 ipx@n1~p!2n2~p!#1
Jn

L
. ~4!

Here r r(p)@s r(p)# are the Fourier components of th
charge-~spin-!density operator for the right (r 51) and left
(r 52) branches of moving fermions. Introducing the tot
number operators~measured with respect to the ground sta!
Nrs for branchr and spins, the total~charge and spin! num-
ber and current operatorsNn ,Jn are

Nn5
1

A2
@~N1,↑1N2,↑!6~N1,↓1N2,↓!# ~5!

and

Jn5
1

A2
@~N1,↑2N2,↑!6~N1,↓2N2,↓!#, ~6!

where the upper and lower signs correspond ton5r ands,
respectively.

The operatorsFn andPn in Eqs.~1! and ~2! obey Bose-
like commutation relations:@Fn(x),Pm(y)#5 idnmd(x2y).
Consequently, at least forg150, Eq. ~1! describes indepen
dent long-wavelength oscillations of the charge and spin d
sity, with linear dispersion relationsvn(k)5unuku (un is the
velocity of elementary excitations! and the system is con
ducting. The only nontrivial interaction effects in Eq.~1!
come from the cosine term. However, for repulsive SU~2!
invariant interactions (g1.0), this term is renormalized to
zero in the long-wavelength limit, and at the fixed point o
hasKs* 51. The three remaining parameters in Eq.~1! then
completely determine the long-distance properties of the s
tem; in particular,Kr determines the long-distance decay
all the correlation functions of the system.

We now consider a LLSL, consisting of a repeated patt
of two different LL’s with parametersul,n , Kl,n and sizes
Ll (l51,2) perfectly connected~Fig. 1!. We use the adia-
batic approximation, in which the scale of the inhomogene
between the two liquids is much larger than the Fermi wa
length 2p/kF . Thus the single-particle backscattering fro
the inhomogeneities can be neglected. Accordingly, the lo
energy properties of this LLSL are described by generaliz
the usual bosonized Hamiltonian of Eq.~1! as follows:

H5
1

2p (
n5r,s

E dxH un~x!Kn~x!~]xQn!2

1
un~x!

Kn~x!
~]xFn!2J , ~7!

FIG. 1. Schematic representation of a Luttinger liquid super
tice. Here,ul,n , Kl,n , andLl are the velocities, interaction param
eters, and sizes of two Luttinger liquids (l51,2).
5-2



th

d

th
d

ro
s

irr

io
t

ig

with

.,

re-
be
y
gap
y

us
cy

is

LUTTINGER LIQUID SUPERLATTICES: . . . PHYSICAL REVIEW B 65 115115
where the sum extends over separated charge (n5r) and
spin (n5s) degrees of freedom, each of which wi
interaction- and layer-dependent parametersun(x) and
Kn(x). For x on the first ~second! ‘‘layer’’ one has Kn(x)
5K1,n(K2,n) andun(x)5u1,n(u2,n).

The boson phase fieldsFn are related to the charge an
spin densities,r ands, throughA2]xFn(x)/p5n, while Qn

is such that]xQn is the momentum field conjugate toFn :
@Fn(x),]yQm(y)#5 idn,md(x2y). Note that Pn(x)
5]xQn(x) in Eqs.~1! and ~4!.

The equations of motion for the fieldsFn andQn are

] tFn5un~x!Kn~x!]xQn , ~8!

] tQn5
un~x!

Kn~x!
]xFn , ~9!

which illustrate their duality under the replacementKn(x)
→1/Kn(x). Substituting Eq.~9! into Eq. ~8! yields

] ttFn2unKn]xS un

Kn
]xFnD50, ~10!

and a similar equation forQn .
We now have to set up the matching equations at

interfaces between layers. The equations of motion lea
the continuity ofFn andQn and their time derivatives. The
right-hand sides of Eqs.~8! and~9! yield, as additional con-
ditions, the continuity of both (un /Kn)]xFn andunKn]xQn

at the contacts. Note that the continuity ofFn andQn guar-
antees that of the Fermionic field.31–33 Physically, these
boundary conditions simply encodethe conservation of both
charge and spin currents jn5A2] tFn /p ~since we are ne-
glecting umklapp processes and backscattering of elect
with opposite spin!. We stress that, under these condition
these are the only universal requirements on the fields,
spective of the actual interface potentials.

The superlattice structure is incorporated into the solut
of the equations of motion in a way completely analogous
the discussion of reflection and transmission in the Kron
Penney model. That is, we diagonalize the Hamiltonian~7!
by expanding the phase fields in normal modes

Fn~x,t !52 i (
pÞ0

sgn~p!
fp,n~x!

2Avp,n

@b2p,neivp,nt

1bp,n
† e2 ivp,nt#2f0,n~x!1glnt, ~11!

Qn~x,t !5 i (
pÞ0

up,n~x!

2Avp,n

@b2p,neivp,nt2bp,n
† e2 ivp,nt#1u0,n~x!

2tlnt, ~12!

wherebp,n
† , are boson creation operators (p.0). The normal

mode eigenfunctionsfp,n(x) and eigenvaluesvp,n satisfy

vp,n
2 fp,n~x!1unKn]xS un

Kn
]xfp,nD50, ~13!
11511
e
to

ns
,
e-

n
o
-

@obtained by taking Eq.~11! into Eq. ~10!#, subject to the
same boundary conditions at the contacts as before,
fp,n(x) replacingFn(x). The eigenvalues are given by

cosp~L11L2!5cosS vp,nL2

u2,n
D cosS vp,nL1

u1,n
D

2
Dn

2
sinS vp,nL2

u2,n
D sinS vp,nL1

u1,n
D , ~14!

where Dn5hn1hn
21 and hn5K1,n /K2,n . For p!p/(L1

1L2), the dispersion relation of the LLSL is linear, i.e
vn(p)5cnupu, with an effective velocity

cn5
u1,n~11 l !

A11Dnlu1,n /u2,n1~ lu1,n /u2,n!2
, ~15!

wherel[L2 /L1; clearly,cn→u2,n as l→`, andcn→u1,n as
l→0. Also, from Eq.~14! it follows that the spectrum of
elementary excitations of a LLSL has bands and gaps,
flecting the superlattice structure. In this regard, it should
mentioned that, for a Luttinger liquid with a periodicall
modulated particle density, the presence of a plasmon
was reported.50 Here, we will focus only on the low-energ
properties of the LLSL.

On the other hand, the zero mode functionsf0,n(x) and
u0,n(x), satisfy

tln5
un~x!

Kn~x!
]xf0,n~x!, ~16!

gln5un~x!Kn~x!]xu0,n~x!, ~17!

which follow from Eqs.~8! and ~9!. While for the homoge-
neous system one has

f0,n~x!5p
Nn

L
x, ~18!

and

u0,n~x!5p
Jn

L
x, ~19!

for the LLSL there will be, in general, an inhomogeneo
periodic density profile. As we will see, there is a tenden
for the charge to accumulate more in theless interactive
layer. Thus the zero mode functions will reflect th
inhomogeneity.51 Now, since each layer is a LL,f0,n and
u0,n will vary in such a way thatDf0,n5pNln and Du0,n
5pJln across each layerl, with layer-specific number and
current operators. We then obtain

f0,n~x!5Am,ln1
pNlnx

Ll
, ~20!

u0,n~x!5Bm,ln1
pJlnx

Ll
, ~21!

where
5-3
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SILVA-VALENCIA, MIRANDA, AND DOS SANTOS PHYSICAL REVIEW B 65 115115
Am,ln5H ~m21!pL2S N2n

L2
2

N1n

L1
D if l51,

mpL1S N1n

L1
2

N2n

L2
D if l52,

~22!

with an analogous expression forBm,l,n obtained with the
replacement ofNl,n by Jl,n . Herem51,2,3, . . . labels the
unit cell. Analogously, from Eqs.~8! and ~9! we have

gln5pun~x!Kn~x!
Jln

Ll
, ~23!

tln5p
un~x!

Kn~x!

Nln

Ll
. ~24!

In a LL, the ground-state value oftr measures the charg
compressibility, whereasts is related to the spin susceptibi
ity. Considering the LLSL zero modes@Eqs. ~20! and ~21!#
and the Hamiltonian~7! we find that the superlattice com
pressibility is given by

1

ks
5

11 l

k11 lk2
, ~25!

wherekl52Kl,r /pul,r is the compressibility of each laye
Clearly ks is nothing but an average of the individual com
pressibilities weighted by the layer lengths.

Interactions in a one-dimensional system can enha
charge density or superconducting fluctuations dependin
whether they are repulsive or attractive. Let us then cons
the correlation functions for the LLSL atT50. The
asymptotic~i.e., for well separatedx andy) behavior of the
density-density correlation function is

^n~x!n~y!&;
ar

p2ux2yu2
1A1

e2i [ f̄(x)2f̄(y)]

ux2yuKr* 1Ks*

1A2

e4i [ f̄(x)2f̄(y)]

ux2yu4Kr*
, ~26!

where

Kn* 5
A11Dnlu1,n /u2,n1~ lu1,n /u2,n!2

1

K1,n
1 l

1

K2,n

u1,n

u2,n

[ f ~K1,n ,K2,n!,

~27!

an5Kn* S 11 l

K1,n

K2,n
1 l

u1,n

u2,n

D 2

35
S K1,n

K2,n
D 2

if x and yP1,

K1,nu1n

K2,nu2n
if ~x,y!P~1,2!,

S u1n

u2n
D 2

if x and yP2,

~28!

andf̄(x)5kFx2f0,r(x). The second and third terms on th
right-hand side of Eq.~26! respectively correspond to th
11511
ce
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2kF and 4kF correlations in the homogeneous case. An
similarly to the homogeneous system, the former domin
over the latter forKr* > 1

3 ~see, however, Ref. 52!.
The correlation functions for spin-spin, singlet~SS! and

triplet ~TS! superconducting pairing are given by

^S~x!•S~y!&;
as

p2ux2yu2
1B1

e2i [ f̄(x)2f̄(y)]

ux2yuKr* 1K̄s

1B2

e2i [ f̄(x)2f̄(y)]

ux2yuKr* 1Ks*
, ~29!

^OSS
† ~x!OSS~y!&5^OTS0

† ~x!OTS0
~y!& ~30!

;
C1

ux2yuK̄r1Ks*
, ~31!

^OTS61

† ~x!OTS61
~y!&;

C2

ux2yuK̄r1K̄s
, ~32!

whereK̄n5 f (1/K1,n,1/K2,n) @Eq. ~27!#, reflecting the duality
properties~in the homogeneous limit we haveK̄n→1/Kn).
One should note that the correlation functions depend
only on the differencex2y, but also on the actual position
x andy, through the zero mode functions. It is interesting
note that, even though we now have new effective coupl
constants (Kn* ,K̄n), the scaling laws between the exponen
of the correlation functions are not broken by the superlat
structure. In other words, the replacementKn→Kn* and

Kn
21→K̄n in the exponents of the correlation functions of t

homogeneous system yields the exponents given above
the superlattice.

Finally, we discuss the conducting properties. Let us fi
consider a LLSL in the presence of a weak external spa
and time-dependent electrostatic potentialV(x,t), such that
the electric fieldE(x,t)52]xV(x,t). The interaction of the
fermions withV(x,t) is described by a source term

Hext52eE dxr~x!V~x,t !. ~33!

Now the equation of motion forFr is31–34

F2
] tt

ur~x!Kr~x!
1]xS ur~x!

Kr~x!
]xD GFr~x,t !52eE~x,t !.

~34!

Defining the Bosonic Green’s function

G~x,y,t !52 iu~ t !^@Fr~x,t !,Fr~y,0!#&, ~35!

the nonlocal conductivity is given by

s~x,y,t !52
2g0

p
] tG~x,y,t !, ~36!

whereg05e2/h is the conductance quantum. First, we co
sider the usual order of limits, takingq→0 beforev→0,
5-4
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LUTTINGER LIQUID SUPERLATTICES: . . . PHYSICAL REVIEW B 65 115115
which yields the Drude weight, appropriate for a situation
a uniform static electric field.53 In this case

s~q50,v→0!52g0crKr* d~v!, ~37!

which has the same form as for the homogeneous case,54 but
with the effective velocity and effective exponent replaci
the corresponding uniform quantitiesur andKr . Taking the
limits in the reverse order yields the Landauer conductan
which corresponds to a situation where an electric field
applied to a finite region of the sample.53 In the LLSL we
have

s~q→0,v50!52g0Kr* d~q!, ~38!

which is similar to the homogeneous case,55 except that the
effective exponent appears. Naturally, the conductance re
malization of Eq.~38! is usually hidden in the presence
Fermi-liquid leads.31–33 However, it should be accessible
ac measurements, ifv.cr /L, the inverse traversal time o
the sample.56

III. HUBBARD SUPERLATTICES

For the sake of illustrating the LLSL with a specific rea
ization, we now discuss a one-dimensional Hubbard su
lattice ~HSL!.45–48 We first consider a periodic arrangeme
of L1 sites in which the on-site coupling isU1>0, followed
by L2 others with on-site couplingU2.0; the hopping pa-
rametert is uniform, as shown in Fig. 2~a!. We subsequently
consider the on-site interaction as being uniform but the h
ping integrals as periodic:t1 betweenL1 sites, followed byt2
betweenL2 sites; see Fig. 2~b!.

Both cases above are contemplated if one writes
Hamiltonian as

H52(
i ,s

t i ,i 11~cis
† ci 11s1H.c.!1(

i
Uini↑ni↓ , ~39!

where, in standard notation,i runs over the sites of a one
dimensional lattice,cis

† (cis) creates~annihilates! a fermion
at site i in the spin states5↑ or ↓ and nis5cis

† cis . It is
important to notice that the SL structure breaks particle-h
symmetry.47 The homogeneous Hubbard model, in a gran
canonical ensemble description, is invariant under a parti
hole transformation@cis→cis

† (21)i # only whenm5U/2. In
the superlattice case, a uniform chemical potential can

FIG. 2. Schematic representation of Hubbard superlattices
~a! the hopping is uniform but the interaction isUl in the l sub-
chain. In ~b! the interaction is uniform, whereas the hopping c
assume two values.
11511
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ensure this symmetry throughout the whole system. Inste
under a particle-hole transformation the system is map
onto a different one with a spatially modulated chemical p
tential.

A weak-coupling perturbation theory, similar to that fo
the homogeneous model can be used to show that Eq~7!
indeed describes the low-energy and small momentum se
of the discrete model of Eq.~39! in the limit of long layers;
see the Appendix. Then, in Eq.~7! one hasKn(x)5Kln and
un(x)5uln for x on the layerl51,2, whereKln anduln are
the usual uniform weak-coupling LL parameters for ea
layer. It is by now well established that a LL description
appropriate for the low-energy sector of the Hubbard mod
even in the strong-coupling limit U→`.54 Now, each long
Hubbard subchain is still a finite-sized LL, though connec
to particle reservoirs at each end.51 We therefore make the
quite reasonable assumption that the above LLSL descrip
remains valid even in the strong-coupling limit. With respe
to magnetic properties, the superlattice structure~with repul-
sive interactions! does not break SU~2! symmetry, so that the
inhomogeneousKs is still expected to renormalize toKs

→1.
Because each subchain is anopen LL, there will be a

certain amount of charge redistribution between them, le
ing to a nonuniform charge profile. Let us first consider t
special case of two layers only@with parameters (U1 ,t1) and
(U2 ,t2)# initially disconnected and with the same initial de
sity n5N/L. In general, these two subsystems will not ha
the same chemical potential. We then bring them in con
with each other, so that particle exchange is allowed. E
trons will flow from one system to the other until the
chemical potentials exactly match:

m~ t1 ,U1 ,n1!5m~ t2 ,U2 ,n2!, ~40!

wherem andnl are the chemical potential and the equili
rium densities of each layer, respectively. This is just
condition for thermodynamic equilibrium. Naturally, conse
vation of total charge dictates that

n11 ln25n~11 l !. ~41!

In order to determinen1 and n2, we must solve simulta-
neously Eqs.~40! and ~41!. The extension to the case o
more than two layers leads to no modifications of the ab
equations and the charge profile will be periodic with t
densities determined as above.

The dependence ofm on the densityn and on the inter-
actionU can be obtained from the exact solution of the h
mogeneous Hubbard model.57 As a function ofn, the chemi-
cal potential m(t,U,n) increases monotonically and i
discontinuous at half filling, where it jumps fromm2(t,U) to
m1(t,U)5U2m2(t,U). Thus the homogeneous model is
Mott insulator at half filling.m2(t,U) is the lower chemical
potential at half filling, given by57

m2~ t,U !52t24tE
0

` J1~v!dv

v@11e(1/2)vU/t#
, ~42!

In
5-5
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where J1(v) is a Bessel function. To increase the partic
number above half filling, we need to pay an energy given

DH5m1~ t,U !2m2~ t,U !5U22m2~ t,U !, ~43!

which is the quasiparticle gap. For later use, we also qu
the chemical potential of the noninteracting case,

m~ t,0,n!522t cosS pn

2 D . ~44!

A. U1Ä0 case

We first consider the case in which one of the layers
‘‘free’’ ( U150) and taket15t25t for simplicity. Figure 3
shows the phase diagram forl 5L2 /L150.5 and 2; the case
l 51 has been discussed in Ref. 49. For the sake of comp
son, one should also keep in mind the phase diagram for
homogeneous LL, in which there is a single gapped~Mott!
insulating phase for any nonzero repulsion at half fillin
upon either electron or hole doping the system becomes
tallic. In what follows, we start with a qualitative discussio
of the phase diagram, after which we provide the details
how the boundaries and special points are determined.

In the case of a superlattice, while forn,1 the system is
always metallic, interesting metal-insulator transitions ha
been found forn.1, as displayed in Fig. 3. Indeed, for
densityn just above half filling, the system is still metallic
with more particles occupying the free layer than the rep
sive one in order to decrease the overall electronic repuls
One hasn1.1 andn2,1, as shown in Fig. 4. As the densit
is increased for givenl andU2, electrons will be accommo
dated in both layers without affecting the metallic charac
see Figs. 3 and 4. This will persist until the repulsive laye
half filled (n251), when it becomes aMott insulator. Recall
that an insulating phase in one of the subsystems is sign
in Fig. 4 by a horizontal plateau in the correspondingni(m)
( i 51,2) plots. The system as a whole is therefore aninsu-
lator, since it can be thought of as a series arrangemen
resistors. However, the unusual fact is thegaplessnature of
this insulating phase: charge can be accommodated in
free layer at no energy cost, since the system is compres
(]n/]mÞ0) in this range ofn; see Fig. 4.

FIG. 3. Phase diagram of a Hubbard superlattice withU150
and t15t25t for two layer length ratios:l 50.5 and 2. For eachl,
there are two metallic phases and two insulating ones. The two
locate (Uc ,nc), whereUc /t53.2309 andnc5(21 l )/(11 l ).
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As the density is further increased, the system respond
two different ways, depending on whetherU2 is larger or
smaller thanUc[3.2309t ~for all l ); see Figs. 3 and 4. If
U2,Uc @Fig. 4~a!#, the insulating state can only be sustain
up to a limited amount of additional charge; that is, as lo
as it is energetically favorable to accommodate this ex
charge in the free layer, while keepingn251. Further in-
crease inn soon leads to an increase in the occupation of
repulsive layer~with 2.n1.n2.1) and the system reenter
an overall metallic phase. This metallic character will be lo
again for largern, when the free layer becomes complete
full ( n152,1,n2,2), with the superlattice displaying insu
lating behavior. Again, this insulating phase is gapless.

If U2.Uc @Fig. 4~b!#, on the other hand, all added ele
trons will be accommodated in the free layer (1,n1,2,n2
51), so that the superlattice remains in the state of a gap
insulator. Further increase in the electron density leads to
free layer becoming abandinsulator (n152), while keeping
the repulsive one pinned at half filling; the densitync at
which this occurs depends on the aspect ratiol and is given
by @cf. Eq. ~41! and Refs. 46 and 47# nc5(21 l )/(11 l ).
Only at this special density does the superlattice becom
Mott insulator, since it is incompressible (]n/]m50); see
Fig. 4~b!. For n.nc , the free layer remains completely ful
so that all added electrons go to the repulsive layer; the
perlattice behaves again as a gapless insulator.

At this point it is worth commenting that the phase di
gram of Fig. 3 differs in two aspects from the one found f
thin layers, obtained by means of Lanczos diagonalizatio
In Ref. 46 nogaplessinsulating phases were probed, and t
insulating phase forn5nc was found to extend down to an
U2.0. The former difference is due to the fact that on

ts

FIG. 4. Particle densities for thel 52 Hubbard superlattice with
U150, as functions of the chemical potential:n is the overall
charge density~full lines!, n1 is the density at free sites~short-
dashed curves!, andn2 is the density at repulsive sites~long-dashed
curves!. Two cases are considered:~a! U252t,Uc and ~b! U2

54t.Uc .
5-6
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gapped insulating phases were probed, while the latter ca
traced back to finite-size effects.

Let us now fill in the details on how the lines and spec
points of Fig. 3 are determined. The dotted horizontal line
n5nc is obtained by setting bothn152 andn251. How-
ever, this condition can only be obtained ifU2.Uc , where
Uc is determined implicitly by~see Fig. 4!

m1~ t,Uc!5m~ t,0,n152!52t. ~45!

Since neither Eq.~45! nor Eq.~42! depends onl, this condi-
tion yields the sameUc'3.230 97t for any finite aspect ratio

Besides, forU2,Uc , the system is always gapless. F
U2.Uc andn5nc , the system shows a Mott-Hubbard ga
given by the energy difference between the highest occu
state, which is the upper edge of the noninteracting ban
2t, and the lowest unoccupied level, which is the high
chemical potential of the half filled Hubbard chain
m1(t,U2)

DS5m1~ t,U2!22t5U222t2m2~ t,U2!. ~46!

For the one-dimensional Hubbard model, one hasDH

;(8AtU/p)exp(22pt/U) in weak coupling andDH}U in
strong coupling. For the HSL, we found thatDS is linear
with U2 for largeU2 and is always lower than the gap of th
corresponding homogeneous system; see Fig. 5.

The two metallic phases are characterized byn1,2,n2
,1 ~lower one! and n1,2,n1.1 ~upper one!. The metal-
insulator transition~MIT ! lines can therefore be obtained b
means of Eqs.~40! and~41!, the Lieb-Wu chemical potentia
m(t,U2 ,n2) and Eq.~44!. Therefore, in Fig. 3,~i! n8 is the
line in which the lower Hubbard band of the interacting su
chain becomes fully occupied,~ii ! n9 is the one in which the
upper Hubbard band starts to fill, and~iii ! n- is the line in
which the noninteracting subchain fills up. Thus

m2~ t,U2!522t cosS p

2
@~11 l !n2 l # D , ~47!

m1~ t,U2!522t cosS p

2
@~11 l !n2 l # D , ~48!

2t5mS t,U2 ,
~11 l !n22

l D . ~49!

FIG. 5. The Mott-Hubbard gap atn5nc as a function of the
on-site coupling for both the homogeneous model~dashed line! and
the superlattice~full line!. This behavior is the same for alll.
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The LL description of Sec. II is only valid in the metalli
regions of the phase diagram, where no gap is presen
either the spin or the charge sectors. In these regions,
have

cr5
vF~11 l !

A11DrlvF /u2,r1~ lvF /u2,r!2
,

cs5
vF~11 l !

11 lvF /u2,r
,

wherevF is the Fermi velocity. When the insulating phase
approached from the lower metallic region~see Fig. 3!, cr

→0 as a result ofu2,r→0 in the interacting layer. In Fig. 6
we show the effective exponentKr* as a function of the
filling n. For any l, both metallic phases have 1/2,K2,r

,Kr* ,1 and the charge and spin-correlation functions
cay faster than in the homogeneous system. This is a d
consequence of the ‘‘weighted average’’ character of the
fective exponentKr* . By the same token, for a givenn on the
lower metallic phase,Kr* decreases asl increases. In the
upper metallic phase,Kr* always tends to the noninteractin
value of 1 as the upper insulating region is approached;
the superlattice with largerl, Kr* reaches 1 at a lower overa
density.

B. General case:U2ÐU1Å0

We now consider a more general HSL, with different no
vanishing coupling constants on each layer (U1ÞU2), while
keeping the same hopping amplitudet throughout the lattice
@Fig. 2~a!#. Using once again the exact expression for t
chemical potential as a function of bothU andn,57 we have
determined the charge profile of the superlattice system.
charge tends to accumulate in the layer with the smaller c
pling, which we choose to call layer 1. This is rather intu
tive, since electrons decrease their mutual repulsion en
by flowing into the less interacting layer.

The phase diagram for this HSL is very rich. We obser
six different phases, three metallic (M1 , M2, andM3) and
three insulating (I 1 , I 2, and I 3), each characterized by it
charge profile, as shown for three illustrative cases in Fig
The topology of the phase diagram is the same for anyl and
the limiting casesU1→0 ~Sec. III A! andU15U2 ~homoge-
neous chain! are recovered. On each phase diagram of Fig

FIG. 6. The correlation exponentKr* as a function of the density
n for U150, U2 /t52, andl 50.5,2.
5-7
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there are five MIT lines, labeled bynI throughnV , which are
determined similarly to the caseU150 discussed before~see
Table I!. We get line I:

m2~ t,U1!5mS t,U2 ,
~11 l !n21

l D ; ~50!

line II:

m1~ t,U1!5mS t,U2 ,
~11 l !n21

l D ; ~51!

line III:

m@ t,U1 ,~11 l !n2 l #5m2~ t,U2!; ~52!

line IV:

m@ t,U1 ,~11 l !n2 l #5m1~ t,U2!; ~53!

FIG. 7. Phase diagram for al 51 (nc51.5) Hubbard superlat-
tice with U1.0, and three different values ofU2. In each case there
are three metallic~M! phases, and threegapless insulating ~I!
phases;gappedinsulating phases appear as horizontal dashed li
In ~a!, U253t and U* '2.15t ~see text!; in ~b!, U254t, U*
'2.39t, andUa'0.64t; and in ~c!, U2516t, U* '3.02t, andUa

'12.2t.
11511
line V:

m~ t,U1 ,n152!5m2S t,U2 ,
~11 l !n22

l D . ~54!

For U150, the linesnIII , nIV , andnV determine the phase
diagram of Sec. III A@Eqs.~47!–~49!#.49

One of the consequences of a nonzeroU1 is to push the
lower metallic phase of Fig. 3 to smaller densities, as sho
in Fig. 7 (M1). In addition to this phase, which spans a
values ofU1,U2, there are two other metallic regions (M2
andM3). And in between metallic phases, one finds insul
ing phases, one of which (I 1) is now stable forn,1, unlike
the case forU150. These insulating phases have eithernl

51, l51,2, or n152 ~see Table I!. Once again, there is a
‘‘division of labor’’ between the two types of subchain
while one is gapped~Mott! or completely filled~band!, being
responsible for the insulating behavior of the system,
other remains gapless and so does the system as a who

Figure 7~a! shows the phase diagram forU253t,Uc (Uc
is the same as for the caseU150). The HSL has a gap at th
densityn51 for U1.U* '2.145 608t; this n51 line sepa-
rates theI 1 ~i.e., n151, n2,1) and theI 2 (n1.1, n251)
gapless insulating phases. ForU1,U* one goes through a
sequence of MIT’s, in which all insulating phases are ga
less.

In Fig. 7~b!, we show the phase diagram forU254t
.Uc . As the overall density is increased from 1 in the i
terval Ua,U1,U* , where Ua'0.6433t and U*
'2.391 49t, the system goes through a sequence of MI
without ever being gapped. However, forU1,Ua , the inter-
mediateI 2 (n1.1, n251) and theI 3 (n152, n2.1) gap-
less insulating phases are separated by the dashed line a
densitync5(21 l )/(11 l ), where the system is fully gapped
Similarly, another gap appears at the densityn51 for U1
.U* , which again separates gapless insulating phaseI 1
(n151, n2,1) andI 2 (n1.1, n251).

For U2516t.Uc @Fig. 7~c!# and U* ,U1,Ua ~now
U* 53.015 09t and Ua512.1724t) the system is metallic

s.

TABLE I. This table lists the various metallic (M1 , M2, and
M3) and insulating phases (I 1 , I 2, and I 3) of Fig. 7 with the cor-
responding subchain densities. The last column shows the natu
the transition lines between the phases (nI –nV in Fig. 7!. LHB l
and UHBl respectively stand for lower Hubbard band and upp
Hubbard band in layerl51,2.

Subchain densities Transition line

M1 n1,1, n2,1
⇓ LHB 1 fills up (nI)
I 1 n151, n2,1
⇓ UHB 1 starts to fill (nII )
M2 n1.1, n2,1
⇓ LHB 2 fills up (nIII )
I 2 n1.1, n251
⇓ UHB 2 starts to fill (nIV)
M3 n1.1, n2.1
⇓ UHB 1 fills up (nV)
5-8
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only below lineI, which approachesn51 for largeU1; also,
gapped behavior is again observed at densitiesn51 andnc ,
with all other insulating phases being gapless. For each
the regionsU1,U* andU1.Ua , a ‘‘tipped’’ metallic phase
is observed.

The above discussion indicates that there are special
ues of U1 , U* , and Ua , which respectively represent th
‘‘tip’’ positions of the low- and high-density metallic phase
Their dependence onU2 can be extracted from the solution
of

m1~ t,U2!5m~ t,Ua ,n152!52t1Ua ~55!

and of

m1~ t,U* !5m1~ t,U2!, ~56!

and are shown in Fig. 8. It should be noted that these va
are independent of the aspect ratiol. As Fig. 8 reveals, one
should not be misled by the different horizontal scales in F
7: the low-density tip does not recede asU2 increases, since
U* actually increases monotonically withU2, saturating at
Uc as U2→`. On the other hand, Fig. 8 shows thatUa is
only defined above a certain threshold,U25Uc , reflecting
the fact that when the coupling in layer 2 is small, the si
ation n152, n251 is never realized; aboveUc , Ua in-
creases linearly withU2.

According to our previous analyses, these two cur
~which intersect atŪ256.252 61t) define regions in the
(U1 ,U2) plane characterized by the number of gaps in
subunits for appropriate fillings, as specified in Fig. 8.

Similarly to the caseU150, the gaps at the densitiesn
51 andn5nc are given, respectively, by

DS* 5m1~ t,U1!2m2~ t,U2!, ~57!

DS,a5m1~ t,U2!22t2U1 , ~58!

and, again, they do not depend onl. The gapsDS* andDS,a ,
for U2516t, are shown in Fig. 9 as functions ofU1. The gap
at n51 @n5nc# increases@decreases# linearly with U1 and
vanishes forU1,U* @U1.Ua#.

For the Hubbard model with repulsive interactions w
have us<vF and ur.vF .54 For U254t and U152t, the
effective charge and spin velocities for thel 51 one-
dimensional Hubbard superlattice are shown in Fig. 10

FIG. 8. ParametersU* and Ua as functions ofU2. The two

curves meet atŪ256.252 61t.
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functions ofn. The effective charge velocity~full line in Fig.
10! vanishes upon approaching the insulating regions a
result of the vanishing charge velocities of the individu
subchainsul,r→0. Thuscr shows a re-entrant behavior as
function of n ~cf. Fig. 7!. As in the homogeneous case, th
effective spin velocity is always smaller than the Fermi v
locity and only vanishes in the upper insulating pha
~dashed line in Fig. 10!. The different behaviors ofcr andcs

can be traced back to the fact thatKr* is sensitive to the
superlattice structure, whileKs* 51, sinceK1s5K2s51 as a
result of the SU~2! symmetry being preserved.

The preservation of SU~2! symmetry also leads toK̄s

5Ks* 51. Thus, from Eqs.~26! and~29!, the density-density
and spin-spin correlation functions for the HSL are dom

nated by^O†O&;ux2yu212Kr* . These terms correspond t
2kF CDW and 2kF SDW in the homogeneous system. He
K2r,Kr* ,K1r and the density-density and spin-spin corr
lation functions for the HSL decay faster~slower! than for a
homogeneous system withU5U2 (U5U1). Similarly, pair-
ing correlation functions arêO†O&;ux2yu212K̄r. In spite
of the presence of effective exponentsKr* and K̄r , the con-
dition for superconducting quasi-long-range order is ag
Kr* .1, analogous to the homogeneous case; this condit
nonetheless, remains unsatisfied.

In Fig. 11, the correlation exponentKr* of the HSL is
shown as a function of band filling, for differentl 51 super-
lattices: HSL-1 withU254t and U152t; HSL-2 with U2
516t and U152t; HSL-3 with U2516t and U158t. For

FIG. 9. The Mott-Hubbard gapsDS* and DS,a at the densities
n51 and nc5(21 l )/(11 l ), respectively. Here,U2516t and l
51.

FIG. 10. The effective charge and spin velocitiescr ~full line!
andcs ~dashed line! for a Hubbard superlattice as a function ofn
for U152t, U254t and l 51.
5-9
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SILVA-VALENCIA, MIRANDA, AND DOS SANTOS PHYSICAL REVIEW B 65 115115
any l, all metallic phases are characterized by 1/2,Kr* ,1.
We note that HSL-1 has three metallic phases, HSL-2
two metallic phases, and HSL-3 has only one metallic pha
On the low-density side,Kr* approaches 1/2 in contrast to th
caseU150 ~Sec. III A!, in which Kr* remains between 1/2
and 1. From Eq.~27! one sees thatKr* interpolates mono-
tonically betweenK1r and K2r as l is varied from 0 to`,
highlighting the possibility of a continuous ‘‘modulation’’ o
a physical parameter through the tuning of the superlat
structure.

C. Two different hoppings: t2Ðt1 and UlÄUÌ0

We now consider two Hubbard chains arranged perio
cally with the same couplingUl5U.0, but different hop-

FIG. 12. Phase diagram for a Hubbard superlattice with differ
hoppingst1 andt2, in terms of fillingn and hopping ratiot2 /t1; the
on-site coupling is homogeneous and set toU54t1 in ~a! and U
58t1 in ~b!. There are three metallic~M! and four insulating~I!
phases@ l 51 and nc5(21 l )/(11 l )#. In ~a!, r * 51.948 47, r c

52.269 84 and r i54.4227 and in ~b!, r * 53.818 576, r c

51.577 35, andr i56.023 22. Besides, the values ofn* are~see text
for definition! ~a! n* 50.670 511 and~b! n* 50.594 067.

FIG. 11. The correlation exponentKr* as a function of the band
filling n for l 51 and several values of the coupling constants.
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pings t2.t1 @Fig. 2~b!#.48 Initially, the charge tends to accu
mulate in the layer with larger hopping~layer 2!, because its
chemical potential is the smallest. Eventually, their chemi
potentials become equal at the special densityn* , deter-
mined bym(tl ,U,n* )50. Then, forn.n* , the charge flow
is reversed and proceeds from layer 2 to layer 1.n* is inde-
pendent ofr 5t2 /t1 and l, and decreases withU ~see Fig.
12!.

It is interesting to plot a phase diagram in terms of t
density and the ratio between the two hopping amplitud
r[t2 /t1. We then identify seven different phases, three m
tallic (M1 , M2, andM3) and four insulating (I 1 , I 2 , I 3, and
I 4), as shown in Fig. 12 forU54t1 andU58t1 with l 51
and listed in Table II. The value ofn* lies within the M1
phase. We mention that several different insulating and m
tallic phases were also found in ap-merized Hubbard chain
in a magnetic field.48

Following the same reasonings as before, the lines in
phase diagram in Fig. 12 are given by line I:

m~ t1 ,U,n150!5mS t2 ,U,
nI8~11 l !

l D , ~59!

line II:

m2~ t1 ,U !5mS t2 ,U,
nII8 ~11 l !21

l D , ~60!

line III:

m1~ t1 ,U !5mS t2 ,U,
nIII8 ~11 l !21

l D , ~61!

line IV:

m@ t1 ,U,nIV8 ~11 l !2 l #5m2~ t2 ,U !, ~62!

t

TABLE II. This table lists the various metallic (M1 , M2, and
M3) and insulating phases (I 1 , I 2 , I 3, and I 4) of Fig. 12 with the
corresponding subchain densities. The last column shows the n
of the transition lines between the phases (nI8–nVI8 in Fig. 12!. LHB
l and UHBl respectively stand for lower Hubbard band and upp
Hubbard band in layerl51,2.

Subchain densities Transition line

I 1 n150, n2,1
⇓ LHB 1 starts to fill (nI8)
M1 n1,1, n2,1
⇓ LHB 1 fills up (nII8 )
I 2 n151, n2,1
⇓ UHB 1 starts to fill (nIII8 )
M2 n1.1, n2,1
⇓ LHB 2 fills up (nIV8 )
I 3 n1.1, n251
⇓ UHB 2 starts to fill (nV8 )
M3 n1.1, n2.1
⇓ UHB 1 fills up (nVI8 )
I 4 n152, n2.1
5-10
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line V:

m@ t1 ,U,nV8 ~11 l !2 l #5m1~ t2 ,U !, ~63!

line VI:

m~ t1 ,U,n152!5mS t2 ,U,
nVI8 ~11 l !22

l D . ~64!

Again, the topology of the phase diagrams in Fig. 12 is
same for anyl.

At small densities (I 1 phase!, charge accumulates in laye
2 while layer 1 is empty (n150); the system is therefore
gapless insulator. As the density increases, layer 1 only s
being filled atn5nI8(r ), determined by Eq.~59!, which lo-
cates a transition to a metallic state (M1); see Fig. 12. Fur-
ther increase in the overall density leads to an increas
both n1 and n2. When layer 1 becomes half filled, whic
occurs atn5nII8 (r ) as determined from Eq.~60!, the system
re-enters a gapless insulating state (I 2). If r ,r * , where

r * 5
m1~ t1 ,U !

m2~ t2 ,U !
, ~65!

upon increasing the density the system goes throug
gapped phase atn51. The dependences ofr * with U, and of
the gap atn51,

D r* 5m1~ t1 ,U !2m2~ t2 ,U !, ~66!

with r, are shown in Figs. 13 and 14, respectively; note t
r * (U54t1)51.948 47 and r * (U58t1)53.818 576. By

FIG. 13. Parametersr * , r c , andr i as functions ofU/t1. Here,

Ū54.4191t1.

FIG. 14. The Mott-Hubbard gapsD r* and Dc,r at densitiesn
51 andnc5(21 l )/(11 l ), respectively. Here,U58t1 and l 51.
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contrast, ifr .r * , the system enters a metallic phase (M2)
bounded bynIII8 (r ), and nIV8 , given by Eqs.~61! and ~62!.
When increasing the density above half filling, the seque
of phases depends crucially on whetherr * is smaller or
larger than

r c5
m~ t1 ,U,n152!

m1~ t2 ,U !
, ~67!

which, according to Fig. 13, occurs whenU,Ū'4.4191t1

or whenU.Ū, respectively.
Let us first considerU,Ū, which is the situation of Fig.

12~a!. If r ,r * ,r c , one goes through two transitions asn
increases:I 3→M3 at nV8 @see Eq.~63!#, andM3→I 4 at nVI8
@Eq. ~64!#. If r * ,r ,r c , the sequence isM2-I 3-M3-I 4, until
the lattice is completely filled. Another regime is determin
by

r i5
m~ t1 ,U,n152!

m2~ t2 ,U !
, ~68!

whose dependence onU/t1 is also shown in Fig. 13. Ifr c
,r ,r i , the system goes from a metallic (M2) to a gapless
insulating phase (I 3), and then, atn5nc , another Mott-
Hubbard gap opens, which is given by

Dc,r5m1~ t2 ,U !2m~ t1 ,U,n152!. ~69!

For a fixed ratioU/t1 , Dc,r behaves as shown in Fig. 14
Above nc , the gapless insulating stateI 4 is again stabilized.
It should also be noted that both gaps (D r* andDc,r) display
universal behavior in the sense that they do not depend ol.
Note also that Eqs.~65!, ~67!, and~68! do not depend onl, so
that Ū is also universal.

We now considerU.Ū, an example of which is shown in
Fig. 12~b!. For r ,r c,r * , one finds the same sequen
I 3-M3-I 4, with all insulating phases being gapless. Ifr c,r
,r * , a gapped insulating phase is crossed atn5nc . Simi-
larly, for r .r * one goes from a metallic to a gapless ins
lating phase (M2→I 3), and again crossing the Mott-Hubbar
phase atnc .

The effective charge and spin velocities are given by

cn5
u1,n~11 l !

A11Dnlru 1,n /u2,n1~rlu 1,n /u2,n!2
, ~70!

which vanish forn,n* and are smaller than the velocities
the homogeneous system (cn,un). Furthermore,cr displays
re-entrant behavior as a function ofn.

Finally, the effective interaction parameterKr* is

Kr* 5
A11Dnlru 1,n /u2,n1~rlu 1,n /u2,n!2

1

K1,n
1 l

1

K2,n
r

u1,n

u2,n

. ~71!

In Fig. 15,Kr* is shown as a function of band filling, fo
different couplings in superlattices withl 51: HSL-A with
U54t1 and r 52; HSL-B with U58t1 and r 52; HSL-C
with U54t1 andr 54. Note that 1/2,Kr* ,1 for anyl in the
5-11
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metallic phases. The various cases depicted in Fig. 15 s
three (A), one (B), and two~C! metallic phases. In the ho
mogeneous Hubbard chain, the density-density and spin-
correlation functions decay faster when the hopping
creases, sinceKr increases with the ratiot/U. The effective
correlation exponent of HSL-C is larger than in HSL-A ~see
Fig. 15!, because of the larger hopping amplitude of su
chain 2 in HSL-C and the ‘‘averaging’’ nature ofKr* .

We should stress that in the homogeneous system,
Luttinger liquid description breaks down at half filling, whe
a gap opens in the charge~though not in the spin! sector. In
the superlattice, this breakdown occurs in the insulat
phases, as a result either of umklapp processes~Mott gap,
lower phase of Fig. 3, phasesI 1 and I 2 of Fig. 7 and phases
I 2 and I 3 of Fig. 12!, or of a band in one of the sublattice
becoming completely full or empty~upper phase of Fig. 3
phaseI 3 of Fig. 7 and phasesI 1 and I 4 of Fig. 12!,

IV. CONCLUSIONS

We have discussed in full generality the properties of L
tinger liquid superlattices. We have seen how most featu
of a conventional Luttinger liquid description survive in th
superlattice structure. In particular, a few effective para
eters, the spin and charge velocities (cr and cs) and the
stiffnesses (Kn* and K̄n), are all that is required for a com
plete description of the low-energy sector. These turn ou
be combinations of the LL parameters of the superlat
subunits combined in proportion to their spatial extent.
we have stressed in the Introduction, this opens the way
possible ‘‘engineering’’ of Luttinger liquids.

This framework was applied to the study of the gene
phase diagram of Hubbard superlattices. It was then il
trated how one can tune between different phases by an
propriate choice of superlattice modulation. It was found t
the superlattice displays a variety of metallic and insulat
phases, the most prominent feature being the appearan
gapless insulating phases, as a result of the one-dimens
character of the system; gapped insulating phases were
found at some special densities.

Single-wall metallic carbon nanotubes~SWMN’s! seem to
provide a promising route towards realizing these LLSL
Indeed, notwithstanding the fact that SWMN’s are, in ge
eral, described by a less simplistic model~possibly even with
more branches24,58!, the LL coupling constant depends on i
~true! aspect ratio through24

FIG. 15. The effective correlation exponentKr* ( l 51) as a
function of the band fillingn for different values ofU/t1 and r.
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Kr5H 11
8e2

pk\vF
ln

L

2pRJ 21/2

, ~72!

wherek is the dielectric constant, andL andR are, respec-
tively, the nanotube length and radius; typically one hasKr

.0.2–0.3. More recently, the growth of intramolecular jun
tions of SWMN’s with different radii has been achieved wi
the introduction of a pentagon and a heptagon into the h
agonal carbon lattice,23,39–44so that the fabrication of a su
perlattice made up of SWMN’s with different coupling con
stants has become a concrete possibility.

We therefore expect the phase diagram of this ‘‘nanotu
array’’ to share several features with the general Hubb
superlattice. This is because the only ingredients that e
into the phase determination are the thermodynamic equ
rium condition and charge conservation. In the case o
Luttinger liquid these can be easily written down if on
knows how the LL parameters depend on the density

dm5
p

2L

vr

Kr
dN.

Thus the sequence of insulating and metallic phases tha
have found in Hubbard superlattices should be presen
other systems as well,as they will reflect the phase diagram
of the subunits. We hope this rich variety of behaviors wi
stimulate further experimental work along the lines of ca
fully controlled nanotube arrays.
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APPENDIX: WEAK-COUPLING BOSONIZATION OF A
HUBBARD SUPERLATTICE

Here we consider a Hubbard superlattice in weak c
pling and show that it is possible to describe the low-ene
properties in terms of a Luttinger liquid superlattice. T
Hamiltonian of a Hubbard superlattice is

H52t(
j ,s

~C j ,s
† C j 11,s1H.c.!1(

j
U jnj ,↑nj ,↓

2m(
j ,s

C j ,s
† C j ,s . ~A1!

We focus on the low-energy modes near the Fermi surfa
so that each fermion is written as16

C j ,s'e2 ikF jaC2, j ,s1eikF jaC1, j ,s , ~A2!

wherea is the lattice parameter, and the subscripts1 and
2, respectively, denote right and left movers. The kine
energy part is then linearized as in the homogeneous ca
5-12
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H052t(
j ,s

~C j ,s
† C j 11,s1H.c.!2m(

j ,s
C j ,s

† C j ,s

'vF(
s

E dx@C2,s
† ~x!]xC2,s~x!

2C1,s
† ~x!]xC1,s~x!#. ~A3!

The Fermionic fields are given in terms of the Bosonic on
F6,s , as16

C6,s~x!5
1

A2pa
U6,s

† e72iApF6,s.

Here a is a cutoff parameter andU6,s is the Klein
factor.15,16 Thus we get

H05
vF

2p (
n5r,s

E dx@~]xQn!21~]xFn!2#, ~A4!

whereFn5(F↑6F↓)/A2 and

Qn5
1

A2
@~F1,↑2F2,↑!6~F1,↓2F2,↓!#. ~A5!

We now work out the low-energy part of the on-site Hu
bard interaction. Again, we use Eq.~A2! to get

Hint5(
j

U j :nj ,↑ ::nj ,↓ :'(
j

U j@~J1, j ,↑1J2, j ,↑!~J1, j ,↑

1J2, j ,↑!1~C1, j ,↑
† C2, j ,↑C2, j ,↓

† C1, j ,↓1H.c.!#,

~A6!
.

t

,

tt

11511
s,

-

where :•••: denotes normal ordering,16 J6, j ,s

5:C6, j ,s
† C6, j ,sª(1/Ap)]xF6,s , and the umklapp terms

have been neglected. Then

Hint'aE dxU~x!
1

p
~]xF↑!~]xF↓!1aE dxU~x!

3F 1

~2pa!2
e2iAp(F↑2F↓)1H.c.G , ~A7!

where H.c. stands for Hermitian conjugate. In terms
charge (r) and spin (s) fields we have

Hint'aE dx

p
U~x!@~]xFr!21~]xFs!2#

1aE dxU~x!
1

2~pa!2
cos~A8pFs!, ~A8!

the last term corresponding to the spin backscattering in
action, which is irrelevant in the RG sense. Finally, the lo
energy Hamiltonian for the Hubbard superlattice is

H5
vFa

2p E dxH ~]xQr!21F11
U~x!

pvF
G~]xFr!2J

1
vFa

2p E dxH ~]xQs!21F12
U~x!

pvF
G~]xFs!2J .

~A9!

This has the same form as Eq.~7!, which describes the Lut
tinger liquid superlattice.
,
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