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Nonuniform phases in metals with local moments

Angsula Ghosh?* and E. Mirand&"
linstituto de Fisica Gleb Wataghin, Unicamp, Caixa Postal 6165, Campinas SP 13083-970, Brazil
’Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
(Received 24 June 2004; revised manuscript received 24 August 2004; published 20 Decemper 2004

The two-dimensional Kondo lattice model with both nearest and next-nearest neighbor exchange interactions
is studied within a mean-field approach and its phase diagram is determined. In particular, we allow for lattice
translation symmetry breaking. We observe that the usual uniform intersite order parameter is never realized,
being unstable towards other more complex types of order. When the nearest neighbor eXghsarigeo-
magnetic the flux phase is always the most stable state, irrespective of the value of the next-nearest-neighbor
interactionJ,. For antiferromagnetid; , however, either a columnar or a flux phase is realized, depending on
conduction electron filling and the value &f.
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The nature of the various magnetic phases of heavy felKondo effect and the other connected to nonlocal intersite
mion compounds has been the focus of attention over theorrelations. If the intersite correlations break spin(3U
years. Most of the analysis is based on the celebrated paraymmetry, there is a competition between Kondo singlet for-
digm of Doniach, who conjectured a phase diagram consistnation and magnetic ordering of some tyge&®* Alterna-
ing of two possible phases, one paramagnetic and anothérely, the tendency for Kondo compensation can be ana-
exhibiting long range antiferromagnetic ordefhe driving  lyzed in a scaling approadi-?’ On the other hand, if the
mechanism behind this phase diagram is the competition bentersite correlations do not break spin @Y symmetry,
tween the Kondo effectwhich favors paramagnetism and is there may be the formation of some kind of spin liquid
dominant at strong exchange coupling, and the Rudermanstate?®-3 Fluctuations beyond mean field have also been
Kittel-Kasuya—YosidaRKKY)) interaction®> which domi-  considered in connection with the quantum critical behavior
nates at weak coupling and can lead to antiferromagnetisnof the systent!32 In this study, we have allowed for the
Particularly interesting is the quantum phase transition whickemergence of broken lattice translational symmetry in the
separates the two phases at zero temperature and which caonlocal correlations, without a broken &)Y symmetry. We
be accessed by tuning the exchange interaction between lodahve studied the effects of conduction electron filling and
moments and conduction electrons through external oboth nearest- and next-nearest-neighbor exchange interac-
chemical pressure. This quantum critical behavior has beetions on the possible phases of the Kondo lattice model in
intensively studied experimentafhy? but a complete theoret- two dimensions. The inclusion of further-neighbor interac-
ical description is still lacking** tions is intended to partially incorporate the long-ranged na-

Despite the appealing simplicity of the Doniach phaseture of the RKKY interaction between localized moments.
diagram, the possibility of the existence of other kinds ofWe have found that the usually assumed uniform state is
phases remains. Among these we should mention inhomogemnstable throughout the phase diagram towards either colum-
neous magnetic ordé?, orbital antiferromagnetisti and  nar or flux phase ordéf:** We have also studied the tem-
dimerization” The last possibility has been given strong nu-perature dependence of the order parameters. They do not
merical support in the one-dimensional case at quarter corseem to differ much from the uniform ca¥e.
duction electron filling’ It was ultimately ascribed to the ~ The Kondo lattice Hamiltonian is given by
long-ranged RKKY interaction between localized spihs. B + +
Although dimerization is an oft-encountered instability in HK_% (Ek_")ck“c"”Jr‘]Kj%gSj CaOapCipr (D)
one dimension, its presence in higher dimensions is less fre- '
quent. There is somgontroversial evidence in favor of its wheree is the band dispersion is the chemical potential,
existence in the frustrated two-dimensional Heisenberg;, andc, are conduction electron annihilation operators in
model with both nearest- and next-nearest-neighboreal (Wanniey and reciprocal spaces, respectivedy,is a
interactionst8-21 However, the long-ranged nature of the localized spin-}¥2 operator, andr,; are Pauli matrices. In
RKKY interaction makes its appearance more likely in me-addition to the above terms we also include Heisenberg-like
tallic systems with local moments. Motivated by this, the aiminteractions between nearest neighbor and next-nearest
of the present study is to look for dimerization in particular neighbor localized spins in an attempt to partially capture the
and other forms of order with broken lattice translationallong-ranged nature of the RKKY interaction. Hence, the full
symmetry in general in higher dimensional models of heavyHamiltonian can now be written d@$=Hy+Hy, where
fermion materials.

The co-existence of magnetic intersite correlations and HH_Jl% S 'Sk+‘]2<<|2m>>s' Smy &)
the Kondo effect has been investigated before using mean .
field calculations. Usually, two order parameters are considwhere (jk) and ({Im)) denote nearest-neighbor and next-
ered: one describing the local correlations generated by theearest neighbor sites, respectively. In this work, we consider
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both ferromagnetic and antiferromagnetic exchange interac:
tions. The spin operators can be expressed in the usual Abri
kosov pseudo-fermionic representation

S = 2f1a0aﬁfjﬁ'

where a constraint of singleelectron occupancy is implied.
The mean-field Hamiltonian can be written by expressing the

spin fields in terms of the aboviefermionic operators and (a) (b)
defining the following three order parameters

B0 = 3ot * uCia 3 1THHHHB

Xijko = 2<f fk0'+f ko jo’>’ (4) 1 1 1 1

X|,mU'E l<f|0' m0'+ f:”laf|0'>' (5) : : : : :
wherej andk are nearest neighbor sites andnd m denote — H H H
next-nearest neighbors. We will focus on @Y invariant old L4 1LJ Ll @

states, hence none of the order parameters will depeng on
(bjo=Dj» Xjke=Xijk» Xime=Xim)- We can write down the mean
field Hamiltonian as

FIG. 1. Schematic picture illustrating the various possible
phases(a) uniform phase(b) dimer phaséc) columnar phase, and
(d) flux phase.

Hue = ChoCio+ Eo 2 1 fjp— 23 (cf
e = 2 (6~ wC 0o+ o Tl fio = 20 ¢4(¢], ;0 the x-axis, the columnar phase and the flux ph&Esé.In all

k,o o j,o
! : cases,¢; and y;,, are taken to be uniform. The four phases

+H.c) =3 2 (xif] o fo+ H.C) are described as followsee Fig. J:

(ikho (a) Uniform: All y’s are real and equal. Lattice translation
_ roet 12 symmetry is not broken.

Jz«,mz»’g (Ximfiofmo + H.C) +4JK$ i (b) Dimers: x is zero for bonds along thg-direction
whereas for bonds along thedirection we have
+2312 [l + 232 2 il (6)
(k) (Im))

X .
. . . o . Xjk=§[1+(‘ .
We will focus on a two-dimensional tight-binding dispersion

relation for the conduction band This phase has broken lattice translational and rotational

D symmetries. Another state with theand y-directions inter-
€=~ E(coskxa+ cosk,a), (7) changed is degenerate and equivalent to this one.
(c) Columnar:y is uniform and equal tg for bonds along

whereD is the half bandwidth and is the lattice parameter. the y-direction whereas for bonds along tkedirection we
The chemical potential is determined by the conduction elecbave

tron densityn through(1/N)Ek(,<cﬁgck,,>=n (N is the num-

ber of lattice sitesand E, is a Lagrange multiplier used to Xk = )—([1 +(- 1)1]_

impose thef-electron single occupancy constraint on the av- 2
erage(l/N)EkU(fEUfkg>:1. The free energy can be written

as This phase also has broken lattice translational and rotational

symmetries. By interchanging-and y-directions we once
again get another degenerate and equivalent state.

- _ —E/T
F=-2T X In[1+e™ 1+ (Eg = pn) NHUKE |¢J (d) Flux phase: Ally’s are equal in magnitude but may

o=t have imaginary phases. The specific choice of these phases is
+23, [xil? + 232 > il (8)  notgauge invariant* However, the flux through a plaquette
(jk) (Imy) is a gauge-invariant quantity. It is given by the phase of the

_ . _ _oriented plaquette produdT=X12X23x34X41.34 We consider
whereT is the temperature and are the non-interacting ne case depicted in Fig(d), in which 1=+, staggered be-
bands of the mean field Hamiltonia6) tween adjacent plaquettes, corresponding to fluxes mf +

In this work, we have chosen energy and length units suChs choice can be realized by the following gauge choice:
that bothD anda are equal to 1. When translational invari-

ance is not brokenp;= ¢, x;«=x andy;,=x’, which we will
henceforth call the uniform state. In addition to the uniform
case, we also consider the dimerized state with dimers alonfgr bonds along the-axis and

Xjk:|X|
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FIG. 2. Phase diagram of the Kondo—Heisenberg moddl at
=0 as a function of the nearest-neighbor exchahgand the con-
duction electron fillingn. The next-nearest-neighbor couplidg
=0 and the Kondo couplingx=0.5.

Xjk = (= Dlifx]

for bonds along the-axis. The bonds now being complex
have a definite direction which is shown in Figdy

We first study the phase diagram of the modeT a0 by
varyingJ; andn while keepingJ,=0. The Kondo coupling is

PHYSICAL REVIEW B70, 214420(2004

n=0.4, J,=0.5
10 T T M T M M T M T
051 Flux Phase Columnar
L 0.0
=
05+ Flux Phase Columnar -
-1.0 1 1 N 1 N 1

-0.6 -04 -0.2 0.0 0.2 0.4 0.6
J

;
FIG. 4. Phase diagram of the Kondo-Heisenberg model at
=0 with nearest—neighbor and next-nearest neighbor exchange at

n=0.4 andJx=0.5.

=0.4(Figs. 3 and 4, respectivelyWe have allowed for both
antiferromagnetic and ferromagnetic couplings between
next-nearest neighbors. For ferromagnéticthe flux phase

is dominant irrespective of the value & For antiferromag-
neticJ;, columnar and flux phases share the parameter space.
ForJ;=<0.24, only the columnar phase is realized. For higher
values ofJ,, a flux phase can appear if the conduction elec-

kept atJx=0.5. This is shown in Fig. 2. We consider both (., filing is large enough, as shown in Fig. 3. &0.4, on

ferromagnetic and antiferromagnetic valuesJef The first

thing to notice is the instability of the uniform state, which is
usually assumed, towards other forms of order. For antifer
romagnetic coupling between the local moments the colum

the other hand, the most stable ground state is determined
solely by the sign o8, irrespective of the value @k. In this
case, a ferromagnetig; favors the flux phase, whereas an
antiferromagnetic); leads to a columnar phase. Again, the

nar and flux phases are the most stable, the latter occurrir‘tgnase boundary between flux and columnar phases is a first

only for sufficiently largeJ;. However, whenl; <0 (ferro-

magnetic coupling the flux phase is the most stable, irre-

spective of the filling and the value af. The transition
between flux and columnar phase is first order.

We now proceed to investigate the influence of the next

nearest-neighbor coupling, between the local moments,
still at T=0. We studied the phase diagramnat0.9 andn

n=0.9, J,=0.5
1.5 T T T T
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FIG. 3. Phase diagram of the Kondo—-Heisenberg moddl at

order line.

In Fig. 5, we show the filling dependence of the order
parametersp and y at T=0, for J;=0.2,J,=0, andJx=0.5.
In this case, the system is always in a columnar pliase

Fig. 2). There is a clear competition between the two types of

order, the Kondo effect¢) becoming more predominant as
the system approaches half-filling. Of course, this competi-
tion is analogous to the one predicted by Doniach between a

0.5 T v T T T T T

0.4

0.2

0.2 0.4 0.6 0.8 1.0

FIG. 5. Filling dependence of the order paramet#rand y at

=0 with nearest-neighbor and next-nearest neighbor exchange @t=0 in the Kondo—Heisenberg model with nearest-neighbor ex-

n=0.9 andJx=0.5.

change only(J;=0.2 andJx=0.5.
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FIG. 6. Temperature dependence of the order parametarsd FIG. 7. Temperature dependence of the order paramétersl

y (columnar phaseatn=0.8 in the Kondo—Heisenberg model with X (columnar phaseatn=0.4 in the Kondo-Heisenberg model with
nearest-neighbor exchange ori{=0.2) andJc=0.5. nearest-neighbor exchange orill{=0.2) andJx=0.5.

) couplings between localized spins. Their treatment of the
tendency to form to local singletsp) and another one t0 kg effect, however, is confined to a scaling analysis,

lock localized spins into some kind of order. Our mean field\ynich breaks down below the Kondo scale. Our self-
ansatz is able to capture this competition. The predominancgynsistent treatment of the Kondo effect, by contrast, is able
of the Kondo effect as the system approaches half-filling ig reach deep into the Kondo singlet formation regime and
due to an enhanced density of states in that region providing, s offers a better treatment below the Kondo scale. Finally,
more conduction electron states to quench the local MOy, comparison has been attempted with the mean field free
ments. By_ contrast, note that, for the same parameters of F'%nergies of phases with conventional long-range magnetic
5, the uniform order parameter.has a much more reduceg,qer?2-24 This would determine the region of stability of
value and does not compete with the Kondo effect at thgnese nonuniform phases. We leave this for future studies.
mean field leve(see Fig. 3 of Ref. 30 In conclusion we have studied the mean field phase dia-
In addition, we have also studied the temperature depen;ram of the two-dimensional Kondo—Heisenberg model with
dence of the order parameters f8y=0.2, J,=0, andJc  poth nearest- and next-nearest-neighbor exchange interac-
=0.5. The temperature dependence has been plotted forijons for various values of doping, temperature and coupling
=0.8in Fig. 6 anch=0.4 in Fig. 7. In both cases, the colum- ¢onstants. We have observed that the uniform state solution
nar phase is the most stable frofr0 up to the transition s ynstable towards lattice translational symmetry breaking
temperature. Although the two dependences are differenfo; any value of the exchange constants. Depending on the
both order parametes and y disappear at the same critical y4jyes ofJ;, J, and filling n, the system realizes either a
temperature. This same simultaneous disappearance of ordeflymnar or a flux phase. The flux phase is always stabilized
had been observed in previous studies of the uniform phas@y a nearest-neighbor ferromagnetic exchange between lo-
for similar values of the exchange couplingslthough the  3jized spins. When this coupling constant changes sign,
finite temperature phase transition triggered ogould be  o\ever, both columnar and flux phases can occur, the latter

realized in _real systems, the vanishinggis an artifact of being favored at largd; andn and the former appearing at
the mean field treatmen. small J; and low fillings.

Let us now pause to compare our results with previous
studies. A mean field ansatz of the form considered here has One of us(A. G.) would like to thank Dr. A. P. Vieira for
been investigated befof&;3° without allowance for broken helpful discussions. The authors would like to thank the fi-
lattice translation symmetry. An important conclusion of ournancial support of the Brazilian Agencies FAPESP, through
results is that the uniform state considered in these referenc&rant Nos 01/00719-8E. M.) and 02/03799-%A. G.), and
is never stable. References 25-27, on the other hand, doNPq, though Grant No. 301222/97%. M.) and the Indian
consider the effects of both nearest and next-nearest neighbAgency CSIR(A. G.).
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