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Abstract. We present a general model of disorder in Kondo alloys that, under certain
conditions, leads to non-Fermi-liquid behaviour. The central underlying idea is the presence
of a distribution of local Kondo temperature scales. If this distribution is broad enough, such
that there are sites with arbitrarily low Kondo temperatures, a non-Fermi-liquid phase is formed.
We analyse thermodynamics and transport in this approach and show it is consistent with a
number of Kondo alloys. We also compare the predictions of this model with the measured
dynamical magnetic response of these systems.

1. Introduction

Since its introduction by Landau in 1956, the Fermi-liquid paradigm has been the most
robust stepping-stone of the theory of metals [1]. Its central assumption is the existence of
a one-to-one correspondence between the excitations of a free Fermi gas and an interacting
fermionic system. Even though originally formulated to explain the behaviour of a neutral
Fermi system (3He), it has formed the basis of much of our understanding of what goes
on in metallic systems. It lies behind such successful theories as Migdal’s electron–phonon
theory and provides the background upon which instabilities such as superconductivity can
be understood. It has proved to be a valuable guide in the analysis of even very strongly
correlated systems, such as some of the heavy-fermion metals, where the theory seems to
survive the most extreme circumstances, with enormous renormalizations in the quasiparticle
effective mass.

The very idea of a correspondence between the low-lying excitations of an interacting
system and those of a reference one has proved more general than the original strict
application envisioned by Landau. Indeed, this principle of ‘adiabatic continuity’ [2] can
be found in very diverse situations with very different and sometimes non-trivial reference
systems. For example, in the so-called Fermi-liquid theory of the Kondo or Anderson
impurity problem, the reference system is a non-interacting scattering centre embedded in
a free Fermi sea [3, 4]. Other examples include superfluid3He [5], atomic nuclei [6]
and interacting disordered metals [7]. The corresponding reference systems, in these latter
cases, are the BCS model of pairing, a shell model of the nucleus and a model of diffusive
electrons in a random potential, respectively.
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Given this operational definition of a Fermi liquid, the question of whether a particular
system behaves as a Fermi liquid or not can be a rather delicate one. It is necessary first
to determine what is a natural reference system for a particular compound and then find
out whether the compound can fit a description which is adiabatically connected to the
reference one. We cannot overemphasize the fact that this is not always a straightforward
task. Daunting as the task may be, researchers have nonetheless developed rules of thumb
to classify various systems as non-Fermi liquids. One such commonly used criterion is a
resistivity which depends linearly on the temperature at low temperatures, a result certainly
inconsistent with a clean Fermi liquid. However, helpful as these empirical tests are, as
a matter of scientific rigour, we must stress that the classification of a certain system as
a non-Fermi liquid often involves careful cross-checking between experiment and theory.
This is particularly critical when the system is disordered. With these caveats in mind, we
can proceed to consider the question of non-Fermi-liquid behaviour.

In recent years, a growing number of metallic compounds have come to be known
as counter-examples to the old Fermi-liquid paradigm. This is usually taken to mean
that the adiabatic continuity hypothesis appears to break down,if one assumes the most
natural reference system for the system under study.This has been perhaps most strongly
emphasized in the case of the high-Tc cuprate superconductors [8], where Landau’s original
Fermi-liquid theory is unexpectedly violated in the normal state. In addition, some heavy-
fermion systems have also been discovered which do not seem to fit the general picture of
a Fermi liquid [9, 10]. The bulk of this evidence has in effect turned the study of non-
Fermi-liquid behaviour into an independent frontier area of research whose ramifications
can only be dimly glimpsed. The main goal is to determinethe possible routestowards
the breakdown of Fermi-liquid theory and to classify what new low-lying excitations are
present in these systems.

Among the non-Fermi-liquid candidates, some should be classified as belonging
to the heavy-fermion family. This is taken to mean, in this context, that for some
range of composition or for certain values of external parameters—such as pressure
or magnetic field—these compounds show typical heavy-fermion physics with high-
temperature incoherent Kondo behaviour accompanied by the formation of a low-
temperature heavy Fermi liquid, with or without magnetic or superconducting order [11].
However, for the more interesting values of these parameters, their behaviour is not that of
a Fermi liquid.

Some of the heavy-fermion non-Fermi-liquid metals have been convincingly associated
with the proximity to a quantum critical point. These are the alloy CeCu6−xAux [12] and
the compound CePd2Si2 [13]. Both systems show antiferromagnetism: CeCu6−xAux for
x > 0.1 and CePd2Si2 for pressuresP < 26 kbar. At the critical values of these parameters,
the Ńeel temperatureTN vanishes and the behaviour of the system appears to be governed
by the zero-temperature critical point. The anomalous non-Fermi-liquid behaviour of these
compounds is exemplified by the resistivity which is given byρ ≈ ρ0+AT in CeCu5.9Au0.1

and asρ ≈ ρ0 +BT 1.2 in CePd2Si2 at P = 26 kbar. In the latter case, the non-Fermi-liquid
behaviour is interrupted by what appears to be a phase transition into a superconducting
state atTc ≈ 0.4 K. The thermodynamic response of CeCu5.9Au0.1 is also anomalous with
the specific heatC/T ≈ a ln(T /T0) andχ ≈ χ0(1 − α

√
T ). In addition, external pressure

can suppressTN to zero in CeCu5.7Au0.3 and the anomalous behaviour associated with the
quantum critical point can be recovered. Though the non-Fermi-liquid behaviour can be
reasonably ascribed to the proximity of a quantum critical point, a complete theory does
not yet seem to exist [14].

In contrast to the latter compounds, a series of other alloys also seems to show
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characteristic non-Fermi-liquid behaviour which cannot be clearly associated with quantum
criticality. A partial list of these is given in table 1, together with their corresponding
resistivity, specific heat and magnetic susceptibility (see also references [9, 10]). All of
them show anomalous thermodynamic and transport properties incompatible with a Fermi-
liquid description.

Table 1. Heavy-fermion alloys which exhibit non-Fermi-liquid behaviour not obviously ascribed
to the proximity to a quantum critical point and their properties. Here,ρ(T ) is the DC resistivity,
C(T ) is the specific heat,χ(T ) is the magnetic susceptibility and 1/τ(ω) is the frequency-
dependent scattering rate. Below,A > 0 andω0 > 0.

Compounds ρ(T ) C(T )/T χ(T ) 1/τ(ω)(T = 0)

UCu5−xPdx [15, 16] ρ0 − AT a ln(T0/T ) a ln(T0/T ) (1/τ0)(1 − ω/ω0)

M1−xUxPd3 (M = Sc, Y) [17, 18] ρ0 − AT a ln(T0/T ) AT −0.3 (1/τ0)(1 − ω/ω0)

La1−xCexCu2.2Si2 [19] ρ0 − AT a ln(T0/T ) a ln(T0/T ) —
U1−xThxPd2Al 3 [9, 20] ρ0 − AT a ln(T0/T ) χ0 − A

√
T (1/τ0)(1 − ω/ω0)

Ce1−xThxRhSb [21] — a ln(T0/T ) — —
UxTh1−xM2Si2 (M = Ru, Pt, Pd) [22] ρ0 + A ln T a ln(T0/T ) a ln(T0/T ) —

There are a few scenarios that have been proposed to try to explain this anomalous
behaviour. Some rely on the existence of a critical point atT = 0 [14]. Though these
theories should be relevant to the cases of CeCu6−xAux and CePd2Si2 alluded to above, the
alloys in table 1 are not obviously close to a phase boundary.

On the other hand, other proposals have focused on a local approach to the non-
Fermi-liquid physics. These include exotic impurity models governed by a non-Fermi-
liquid fixed point such as the quadrupolar Kondo model and various multi-channel Kondo
models [23, 24]. These are largely based on the anomalous behaviour of a dilute system
of such impurities. The inclusion of lattice effects presents an additional challenge that
has only recently started to be addressed [25]. Another proposed route to non-Fermi-liquid
behaviour has been to consider the competition between local charge and spin fluctuations
[26]. It is quite possible, perhaps even likely, that the origin of the anomalous behaviour
is different for different systems. We mention, in particular, the case of the last entry of
table 1, UxTh1−xM2Si2 (M = Ru, Pt, Pd), whose description as a dilute system of magnetic
two-channel impurities [23] in reference [22] appears to be fairly good.

The fact that the systems in table 1 are all disordered alloys immediately poses the
question of the role of disorder in the formation of the non-Fermi-liquid state. Furthermore,
recalling our operational definition of a Fermi liquid, one must not neglect the fact that the
reference system in this case is almost certainlya disordered one.The behaviour of local
moments in disordered systems has been considered in past studies [27–29].

In this paper, we will focus on the first alloy of the table, UCu5−xPdx . The accumulated
experimental data on this system have suggested to us that a model of disorder in f-electron
systems is able to account for its anomalous behaviour. Of paramount importance to this
conclusion was the Cu NMR study of reference [30], which detected a large inhomogeneous
broadening of the NMR line, attributable to microscopic disorder. It is the goal of this paper
to present a scenario in which a non-Fermi-liquid state is generated as a consequence of
the interplay of disorder and strong correlations [31]. This theory provides a consistent
way of understanding the non-Fermi-liquid anomalies in both transport and thermodynamic
properties based on a single underlying mechanism. The central idea of this theory is that
moderate bare disorder in a lattice model of localized moments is magnified due to the
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strong local correlations between the moments and the conduction electrons. In particular,
a broad distribution of local energy scales (Kondo temperatures) is generated [29]. A few
local sites with very small Kondo temperatures areunquenchedat low temperatures and
dominate the thermodynamics and transport, forming a dilute gas of low-lying excitations
above the disordered metallic ground state. The presence of theseunquenchedmoments
leads to the formation of a non-Fermi-liquid phase. While we think that UCu5−xPdx (x = 1
and x = 1.5) provides the best candidate system to exhibit such a phase to this date, we
expect this type of behaviour to be seen in other Kondo alloys. Whether the other alloys
in table 1 can be understood in this framework is not clear at this moment.

The outline of this paper is as follows. In section 2, we discuss the experimental work on
the UCu5−xPdx alloys which served as the motivation for this study, emphasizing the most
important underlying physical ideas. In section 3, we present the model and our dynamical
mean-field-theory approach to its solution. In section 4, we show the nature of the ground
state of the model in the clean as well as in the disordered limits. In section 5, we explain
the origin of the linear dependence on the temperature of the resistivity. In section 6, we
apply this disorder model to the description of the dynamical susceptibility and compare
the results with experiments on UCu5−xPdx . Finally, we conclude with a discussion of the
limitations of our approach in section 7. In order to lighten the line of argument, a few
derivations are left to the appendices.

2. The experimental basis for the disorder model

The major reason for considering disorder as the possible origin of the anomalous behaviour
of the alloys of table 1 was the Cu NMR study reported in reference [30]. In this paper,
the Cu NMR field-swept powder pattern spectra of UCu5−xPdx for x = 1 andx = 1.5 were
shown to exhibit strong inhomogeneous broadening that could only be explained by invoking
the presence of short-range disorder. A simple disorder model was then used to describe
both the broadening of the NMR line and the spin susceptibility and specific heat measured
in these samples. The model consisted of a collection of independent spins, mimicking
the uranium ions, each coupled to the conduction electron bath by a dimensionless Kondo
coupling constantλ ≡ ρ0J , which was allowed to be randomly distributed in the samples.
These were supposed to mimic the local disorder induced by the Pd substitution in the
Cu ligand sites of the parent UCu5 compound and, for simplicity, were assumed to be
distributed according to a Gaussian. Assuming that the spins were completely uncorrelated,
the thermodynamic response was then calculated by taking an average over the response of a
single Kondo spin with the distribution of coupling constants. Since the physics of a single
Kondo spin is characterized by a single energy scale [3]—the Kondo temperature—the
important quantity in the averaging procedure is the distribution of Kondo temperatures.

The Kondo temperature is defined as

TK ≡ De−1/λ. (2.1)

Because of the exponential dependence on the coupling constantλ, the corresponding
distribution of Kondo temperatures is skewed and considerably broadened. Figure 1 shows
the experimentally determined distributions of Kondo temperatures for both alloys (x = 1
andx = 1.5). We first note that, due to the Jacobian in the definition ofP(TK), it actually
diverges weakly asTK → 0:

P(TK) = P [λ(TK)]

(
dλ

dTK

)
= P [λ(TK)]

TK(ln(D/TK))2
. (2.2)
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Figure 1. Experimentally determined distributions of Kondo temperatures of the alloys
UCu5−xPdx with x = 1 (— — —) and 1.5 (– – –) (from reference [30]). The shaded area
belowT represents the low-TK spins which remain unquenched at that temperature. The upturn
at very lowTKs is not shown (see the text for a discussion).

However, for the distributions determined experimentally for UCu5−xPdx (x = 1 and
x = 1.5) and shown in figure 1, the point at whichP(TK) shows an upturn and starts to
diverge occurs at very low temperatures:TK ≈ 2.4 K (x = 1) andTK ≈ 0.8 K (x = 1.5),
which can hardly be distinguished on the scale of figure 1. None of the conclusions derived
from the use of the fullP(TK) below depends on this small diverging tail,as long as one
does not probe into the low-temperature region below the upturn point scale. Instead, as will
be shown below, the response of the system is dominated by the part ofP(TK) above the
upturn, which appears to be tending to a constant value asTK → 0. This means that there
are a finite number of spins with arbitrarily lowTKs in the sample, a feature that will be at
the root of the non-Fermi-liquid features. We have, therefore, chosen to depictP(TK) only
above the upturn point and will confine the analysis below to a distribution which tends to a
constant asTK → 0. It remains an interesting possibility whether the effects of the low-TK

divergence ofP(TK) can be actually observed. On the other hand, it is also conceivable
that there is a physical infrared cut-offλc to P(λ) (λc . 0.11 for both distributions). In
the absence of any experimental evidence for either possibility, we will focus on the more
relevant effect of the distribution of Kondo temperatures above the upturn.

From the solution of the single-impurity Kondo problem it is known that thermodynamic
quantities like the impurity spin susceptibilityχ(T ) increase with decreasing temperature
in a Curie fashion, with logarithmic corrections [3]. However, at very low temperatures,
the Curie-like divergence is cut off and the susceptibility saturates to a constant value
proportional to the inverse Kondo temperature. The scale that separates the high-temperature
from the low-temperature region is the Kondo temperature. The impurity specific heat
divided by the temperatureCV (T )/T has a somewhat similar behaviour. The saturation at
the lowest temperatures is a consequence of the ‘disappearance’ of the free-spin response,
through the formation of a singlet ground state with the conduction electron bath, a process
generally known as ‘quenching’.

If we are measuring the thermodynamic properties at a certain finite temperatureT , there
will always be uranium ions withTK < T , which remain unquenched and whose contribution
dominates the overall response (the shaded area in figure 1). As the temperature is lowered,
the number of such spins decreases, as more and more of them become quenched. The
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thermodynamic behaviour of the disordered system is, therefore, dominated by the tails of
the distribution of Kondo temperatures, rather than by the average, a situation commonly
known as a Griffiths phase [32].

Since bothχ(T ) andCV (T )/T scale as the inverse Kondo temperature atT = 0, the
fact thatP(TK = 0) 6= 0 immediately implies that the leading behaviour of the averaged
quantity is a logarithmic divergence. Indeed, consider, for example, the susceptibility

χ(T ) ∝ 1

TK

f

(
T

TK

)
(2.3)

where the asymptotic forms off (x) are known [3]:

f (x) ≈


α − βx2 x � 1

γ

x

(
1 − 1

ln x

)
x � 1

(2.4)

whereα, β andγ are universal numbers. To find the leading low-temperature behaviour it
is sufficient to use the first term inP(TK) = P0 + P1TK + · · ·. Therefore, if〈· · ·〉av denotes
the average over the distribution of Kondo temperatures,

〈χ(T )〉av ∝
∫ ∞

0

dTK

TK

P (TK)f

(
T

TK

)
≈

∫ 0/T

0

dy

y
P0f (1/y) (2.5)

where we cut off the integral by an arbitrary scale0 which sets the region of validity of
the approximate form forP(TK). From (2.4), it is clear that the lower limit of the integral
in (2.5) gives a regular contribution whereas the upper limit dominates:

〈χ(T )〉av ≈
∫ 0/T dy

y
αP0 ∼ αP0 ln

(
0

T

)
. (2.6)

A similar analysis holds forCV (T )/T , with a similar divergence.
A caveat about the experimental situation is in order here. In the literature, one often

finds different power laws fitted to thermodynamic and transport properties of this and
other compounds. In the particular case of UCu5−xPdx , one can findχ(T ) = χ0T

−η, with
η = 0.27 ± 0.03 [15], η = 0.25 [9] andη = 1/3 [24, 33]. It is not always clear what
temperature range was used in the fits. In the case of reference [24], theη = 1/3 power
law is argued to be valid in an intermediate range of temperatures (between 20 and 300 K).
Besides, there is a small sample dependence to these quantities and, in the case of the
susceptibility, the magnetic field strength used in the measurement can have an important
effect [30]. We feel that all these aspects should be carefully considered when trying to
determine the temperature dependence.

It is important to notice that the distribution of Kondo temperatures reported in
reference [30], which is nearly featureless at lowTK , gives a logarithmic divergence
in χ(T ) and CV (T )/T as theleading low-temperature behaviour. In the fits shown in
reference [30], there are clear deviations from this leading behaviour at intermediate and
higher temperatures. We point out that power-law behaviour could be inferred from the
analysis of a narrow window of temperatures. What gives us particular confidence in the
disorder model is the fact that a full theoretical curve, with the added complication of a
finite magnetic field, can be well fitted to the experiments. On the other hand, it is not clear
how changes in the specific form of the distribution function used would affect the quality
of the fit in the intermediate and high-temperature regions.

Finally, for completeness, we have plotted in figure 2 the Wilson ratio
(RW ≡ T χ(T )/CV (T )) prediction in the disorder model as a function of temperature.
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Figure 2. The Wilson ratio as a function of temperature as predicted by the disorder model for
the cases whereP(TK = 0) 6= 0 (——) andP(TK = 0) = 0 (– – –). Note how the latter tends
to the universal zero-temperature value of 2.

WhenP(0) = 0, the Wilson ratio tends to its universal value of 2 whenT → 0, which is
consistent with the Fermi-liquid prediction. WhenP(0) 6= 0, the Wilson ratio appears to
tend to a different value for a wide range of temperatures. This can be understood from
(2.6). Because the scale0, which enters this equation, depends on the details of the full
scaling curve, it is going to be, in general, different forχ(T ) as compared toCV (T )/T .
Though the scale is asymptotically irrelevant whenT � 0, because of the slow logarithmic
dependence, it takes a temperature that is too low for one to be able to observe the asymptotic
behaviour.

We point out that one feature which distinguishes the alloy UCu5−xPdx from the other
alloys in table 1 is the nature of the doping. In the former case, the f sublattice remains
unchanged and substitutions are introduced in the ligand sites. In the other cases, the doping
is performed directly in the f sites. It is apparent that ligand site substitution will affect the
hybridization matrix elementV of an Anderson model description and that will probably be
the primary effect (see section 3 for a discussion of the disordered Anderson lattice model).
It is less certain what kind of effect such substitution will have on the f-site energyEf .
Moreover, lattice microstrains should also be reflected in the hybridization amplitudeV .
This is probably what happens in UCu4Pd, which could be stoichiometric and indeed appears
to be so according the x-rays, but whose broad NMR lines give unequivocal evidence of
disorder. On the other hand, f-site replacements can be mimicked by a different f-site
energyEf (Ef → +∞, when the substitutional ion is a non-magnetic ‘Kondo hole’) and,
presumably, a different hybridizationV . In the interest of generality, and in the absence
of a better understanding of the nature of the disorder, we will consider in this paperboth
Ef - andV -disorder. What should be emphasized, however, is the fact that,whatever the
microscopic origin of the disorder, its observable consequences will always depend only
on the distribution of Kondo temperaturesP(TK), for it is these scales which govern the
measured responses. In other words, almost all of the information that can be obtained
experimentally about the disorder will be filtered throughP(TK).

Therefore, the main conclusion of reference [30] was that a simple model of Kondo
disorder is able to account for the NMR line broadening as well as the anomalous
thermodynamic response of the alloys studied. This simple model relied on the assumption
that the correlations between the Kondo spins could be neglected, though they form
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a concentrated lattice in these alloys. Past studies of heavy-fermion systems, both
experimental [34] and theoretical [35], give us confidence that this may not be a bad
approximation for thermodynamic quantities (see also the appendix C). However, it is well
known that transport isvery different in dilute Kondo systems as opposed to concentrated
Kondo lattices. The so-called onset of coherence in the clean, concentrated case is
the most dramatic example. It is characterized by rather large resistivities at high and
intermediate temperatures, a consequence of strong incoherent Kondo scattering off the
localized moments, which is then followed by a precipitous fall by some orders of magnitude
at the lowest temperatures. At very low temperatures, the system can then be characterized as
a good metal. This low-temperature coherence is a consequence of translational invariance
and Bloch’s theorem in the ordered lattice system. We will, therefore, address the question
of whether a single unifying approach to the disorder problem, sensitive enough to the
formation of a coherent state in the clean limit, is able to be formulated. We will answer
the latter question in the affirmative and will thereby show that the same mechanism that
leads to diverging thermodynamic properties at lowT —the presence of spins with arbitrarily
low TKs—will also predict a resistivity which islinear in T , as observed in many non-
Fermi-liquid heavy-fermion alloys.

3. The disordered Anderson lattice model and the dynamical mean-field-theory
equations

In order to consider the interplay of disorder and local moment behaviour we will focus our
attention on a model of disordered Anderson lattices. We will be guided by the series of
alloys listed in table 1. In the spirit of previous works on heavy-fermion systems we will
assume that the f-electron sites can be described by simplified non-degenerate Anderson
impurities hybridized with a single broad uncorrelated band of conduction electrons:

H =
∑
kσ

ε(k)c
†
kσ ckσ +

∑
jσ

E
f

j f
†

jσ fjσ +
∑
jσ

(Vj c
†
jσ fjσ + HC) + U

∑
j

nfj↑nfj↓ (3.1)

where,ckσ destroys a conduction electron with momentumk and spinσ from a band with
dispersionε(k) and half-bandwidthD, andfjσ destroys an f electron at sitej with spinσ .
SinceU is generally the largest energy scale in typical f-shell parameters it will be taken
to infinity in this paper.

The important thing to notice in (3.1) is that, unlike in the usual periodic Anderson
model, the local f-shell parametersEf

j and Vj are taken here to be random numbers
distributed, in general, according to two different distributionsP1(E

f ) and P2(V ). As
explained before, in the absence of a more detailed understanding of the microscopic nature
of the disorder in these systems, one should takeP1(E

f ) andP2(V ) to be, in principle, of
the most general form. Note, however, that we willnot assume the disorder widths to be
too large. For instance, the NMR study of reference [30] suggests bare distribution widths
to be around 20% of their average values. However, as we will see, correlation effects will
themselves generate largeeffectivedisorder. In practice, we have considered Gaussian and
uniform distributions. Disorder in the conduction electron band, though certainly present in
these alloys, is not subject to these correlation-induced renormalizations and has therefore
been neglected in our treatment. Despite these simplifications, we believe that the model in
(3.1) captures the essential ingredients relevant to the study of disorder in Kondo alloys.

Some previous studies of disordered Anderson or Kondo lattices have been reported
in the literature. We mention, in particular, the early work of Tešanovíc, who employed a
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slave-boson approach [36]. More recently, other studies of the effect of disorder in these
model systems have appeared [37, 38].

In order to make progress, we have applied the dynamical mean-field theory of
correlations and disorder to the Hamiltonian of (3.1) [39–41]. The derivation of the
dynamical mean-field theory is most easily accomplished on a Bethe lattice and we will
focus on this class of models. In this case, the conduction electron density of states acquires
a simple semicircular form. The solution of the full lattice problem then reduces to the
solution of anensembleof impurity problems supplemented by a self-consistency condition
on the conduction electron Green’s function [41]. More precisely, the impurity problem
action for a random sitej is given, on the Matsubara frequency axis, by

S
imp
j = T

∑
ωnσ

[f †
jσ (iωn)(−iωn + E

f

j + V 2
j 1(iωn))fjσ (iωn)] (3.2)

where the infinite-U constraint is implied and

1(iωn) = 1

iωn + µ − t2Gc(iωn)
. (3.3)

Here, t is the conduction electron hopping matrix element andGc(ω) is the disorder-
averaged local conduction electron Green’s function. Note that1(iωn) is the hybridization
function of the conduction electrons which is ‘seen’ by each local f site. Therefore, it
corresponds to the local conduction electron Green’s function with one f site removed. This
is the so-called ‘cavity’ Green’s function [41].

The self-consistency condition determinesGc(ω) through

Gc(iωn) =
〈

1

iωn + µ − t2Gc(iωn) − 8j(iωn)

〉av

(3.4)

where

8j(iωn) = V 2
j

iωn − E
f

j − 6
imp
fj (iωn)

. (3.5)

Here,〈. . .〉av denotes the average over disorder defined by the distribution functionsP1(E
f )

and P2(V ). 6
imp
fj (iωn) is the f-electron self-energy derived from the impurity model of

(3.2). This is explicitly defined by

6
imp
fj (iωn) = iωn − E

f

j − V 2
j 1(iωn) − G

imp
fj (iωn) (3.6)

where the f-electron Green’s function is given by

G
imp
fj (τ ) = −〈Tfj (τ )f

†
j (0)〉imp

j

G
imp
fj (iωn) =

∫ β

0
dτ G

imp
fj (τ )eiωnτ .

(3.7)

Here, we have used〈. . .〉imp
j to denote the quantum mechanical/thermal average under the

action of (3.2).
Once the problem defined by (3.2)–(3.7) has been solved, the conduction electron self-

energy6c(iωn) is obtained from

Gc(iωn) =
∫ 2t

−2t

dε
ρ0(ε)

iωn + µ − ε − 6c(iωn)
ρ0(ε) = 1

πt

√
1 − (ε/2t)2. (3.8)
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This self-energy is the important object for the calculation of the conductivity, which, in
the infinite-coordination limit, involves no vertex corrections [42]:

σ(ω) = (2te)2

h̄πa

∫ +∞

−∞
dν

∫ +∞

−∞
dε

f (ν) − f (ν + ω)

ω
ρ0(ε)A(ε, ν)A(ε, ν + ω) (3.9)

wheref (ν) is the Fermi function and we have introduced a lattice parametera and the
correct dimensional factors appropriate for three dimensions. In (3.9),A(ε, ω) is the
conduction electron one-particle spectral density

A(ε, ω) = Im Gc(ε, ω) ≡ Im

(
1

ω + µ − ε − 6c(ω)

)
. (3.10)

The DC conductivity is then given by

σDC = (2te)2

h̄πa

∫ +∞

−∞
dν

(
−∂f

∂ν

) ∫ +∞

−∞
dε ρ0(ε)A

2(ε, ν). (3.11)

This expression can be further simplified as shown in appendix A. To make contact with
the usual Drude formula for the DC conductivity it is useful to define the scattering time

τ ≡ 1

πρ0(µ)

∫ +∞

−∞
dν

(
−∂f

∂ν

) ∫ +∞

−∞
dε ρ0(ε)A

2(ε, ν) (3.12)

which reduces to the usual case whenτ � 1/D:

τ −→ 1

2 Im6c(0)
(τ � 1/D). (3.13)

In appendix B, a formula which expresses the conduction electron self-energy in terms of
the disorder-averaged impurityT -matrix is derived. This formula will be useful in section 5,
when we analyse the temperature dependence of the resistivity.

Thermodynamic properties within this approach are not drastically different from the
predictions of the simple disorder model of reference [30], discussed in section 2. Though
the self-consistently determined conduction electron density of states ‘seen’ by the f sites
(1(ω)) can be substantially modified as compared to its free value, these modifications
only lead to a renormalized density of states, which is the quantity that ultimately enters
into the Kondo temperature expression. Once the renormalized density of states is given,
the prediction of the dynamical mean-field theory is essentially the same as that of the
simple disorder model of reference [30], the difference being negligible. We discuss the
thermodynamics properties in the dynamical mean-field theory in appendix C.

We would like to emphasize at this point what processes are included and what processes
are left out of this approach. When the interactionU is turned off, the treatment of
the disorder problem that is obtained is equivalent to the well-known coherent-potential
approximation (CPA) [43]. This approximation is known to give reliable results as long as
localization effects are negligible, since the conduction electron density-of-states fluctuations
are treated on average. This seems to be a safe approximation in the case of the alloys
of interest, where estimates based on the zero-temperature DC resistivity givekF l ≈ 3–10.
However, the interplay of disorder fluctuations and correlations on the f sites is fully kept
in our treatment and, indeed, is at heart of the physics that will emerge. This is evident
from the fact that one needs to correctly solve anensembleof interacting impurity problems
in order to close the equations. Each member of theensembleof impurity problems has
an associated characteristic Kondo temperatureTK , thus generating a distribution of local
Kondo scales [29]. The fluctuations associated with this distribution of Kondo temperatures
will be responsible for the anomalous low-temperature behaviour in the non-Fermi-liquid
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regime. Other processes which are left out of this essentially local approach are related
to the RKKY interaction between f sites mediated by the exchange of conduction electron
spin fluctuations. We will comment on the possible limitations of this approximation in
section 7.

4. The zero-temperature state

The most difficult part of solving (3.2)–(3.7) is solving the impurity problem. Let us consider
initially the clean case. Then, there is only one impurity model to be solved. Equations
(3.4) and (3.8) are then trivially solved and yield6c(ω) = 8(ω). At low temperatures,
the impurity problem is governed by a Fermi-liquid fixed point [3, 4] and6

imp
f (ω) can be

parametrized at low temperatures and energies as [44]

6
imp
f (ω) ≈ a + bω + ic(ω2 + π2T 2) (4.1)

where,a, b andc are constants. From this, it follows that

6c(ω) ≈ zV 2

ω − ε̃f − izc(ω2 + π2T 2)
(4.2)

where we have redefineda andb in terms of a renormalized f-level energyε̃f and a wave-
function renormalization factorz. The first thing to notice in this expression is that at
T = 0, 6c(0) is real, leading to a purely real conduction electron self-energy in the pure
case. This is the hallmark of the low-temperature coherent transport of the clean system, a
consequence of translational invariance and a feature naturally incorporated in the dynamical
mean-field theory. Furthermore, the Fermi-liquid form of the impurity problem self-energy
ultimately leads to the Fermi-liquid behaviour of the conduction electron lattice self-energy.
In particular, the resistivity derived from (4.2) will exhibit a characteristicT 2-law.

Let us now move on to the disordered case at zero temperature. We have employed
the slave-boson mean-field theory to solve theensembleof impurity problems atT = 0
[35]. This theory is known to provide a good description of the infinite-U Anderson
impurity model at temperaturesT � TK . It will also serve as a good starting point for
the understanding of the complete solution of our dynamical mean-field equations at an
arbitrary temperature. Details of the slave-boson treatment of the impurity problem are
given in appendix D. These solutions to theensembleof impurity problems were then used
in an iteration scheme to solve the full set (3.2)–(3.7).

Figure 3 shows the self-consistent solution toGc(ω) in the clean case and figure 4
shows the corresponding ‘cavity’ Green’s function1(ω). The only modification introduced
by the lattice of f sites to the conduction electron density of states is the appearance of a gap
centred around the renormalized f-level positionεf . This is familiar from the slave-boson
large-N solution of the infinite-U Anderson lattice [35]. The scale of the gap is given by
≈r2V 2/D, which is the Kondo temperature scale. The important feature of the imaginary
part of the ‘cavity’ Green’s function1(ω) is the appearance of a delta function at the centre
of the gapεf , which corresponds to the removal of one f site.

The presence of disorder introduces important changes in these structures at the scales
given by the range of Kondo temperatures produced as a consequence of the distribution of
local f parameters. These are defined here as

TKj ≡
√

(ε
f

j − 1̃′
j (0))2 + (1̃′′

j (0))2 (4.3)



9882 E Miranda et al

Figure 3. (a) Imaginary and (b) real parts of the conduction electron local Green’s function
as a function of frequency atT = 0. The parameters used were:D = 1, V = 0.1, µ = 0,
Ef = −0.05, and there is no disorder.

Figure 4. (a) Imaginary and (b) real parts of the conduction electron ‘cavity’ Green’s function
1(ω) (see (3.3)) as a function of frequency atT = 0. The parameters used were:D = 1,
V = 0.1, µ = 0, Ef = −0.05, and there is no disorder.

where 1̃j (ω) ≡ r2
j V 2

j 1(ω) and we are denoting real and imaginary parts by single and
double primes, respectively. In the Kondo limit, they acquire the familiar form

TKj → D exp(E
f

j /(2ρ0V
2

j )) (4.4)

whereρ0 = 1′′(0)/π . Figure 5 shows a typical distribution of Kondo temperatures from
a fully self-consistent solution of the zero-temperature problem. For comparison, we have
also plotted theP(TK) used in the fit to the susceptibility of UCu4Pd in reference [30]. The
self-consistent distribution has a structure very similar to the experimentally determined
one.

These modifications are illustrated in figures 6, 7 and 8, which show the influence
of various amounts of disorder on the gap structure ofGc(ω) and 1(ω). Only the low-
energy region is shown since that is the only region that is strongly influenced by the
introduction of disorder. It is clear from figure 6 that sufficient disorder can close the gap
in the conduction electron density of states. Qualitatively, a distribution of Kondo energy
scales for theensembleof impurity problems will be reflected in a distribution of energy
gaps. Their sizes and positions are essentially determined by theTKj s andε

f

j s, respectively,
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Figure 5. A typical distribution of Kondo temperatures obtained in the fully self-consistent
solution of the dynamical mean-field theory (——) and the distribution appropriate for UCu4Pd
from reference [30] (– – –). The distribution was a Gaussian and the parameters used were:
D = 1, µ = 0, Ef = −1, 〈V 2〉 = 0.17, WV 2 = 0.032. The upturn at very lowTKs is not
shown.

Figure 6. The imaginary part of the conduction electron
Green’s function as a function of frequency atT = 0 for
different amounts of disorder in theEf -parameter. A
uniform distribution was used with widthsW = 0.001
(——), W = 0.05 (– – –) andW = 0.15 (— — —).
The parameters used were:D = 1, V = 0.1, µ = 0,
〈Ef 〉 = −0.05.

Figure 7. The real part of the conduction electron
Green’s function as a function of frequency atT = 0 for
different amounts of disorder in theEf -parameter. A
uniform distribution was used with widthsW = 0.001
(——), W = 0.05 (– – –) andW = 0.15 (— — —).
The same parameters were used as in figure 3.

and sufficient disorder in their distributions will lead to an ultimate closing of the gap. In
the metallic regime being considered here, the disappearance of the gap does not lead to
dramatic effects, since the chemical potential lies away from the gap region. However, there
might be important consequences in the Kondo insulator or Anderson insulator regimes.
Corresponding modifications are also present in the real parts ofGc(ω) and1(ω), as seen
in figures 7 and 8. The result is similar in the case whereEf is uniform andVj is distributed,
since the relevant scales are the Kondo temperatures (4.4). However, due to the different
dependences ofTKj on E

f

j and Vj , their distributions will be quantitatively different and
will reflect differently on theTKj -distribution and consequently on the transport properties.
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Figure 8. The real part of the conduction electron ‘cavity’ Green’s function1(ω) as a function
of frequency atT = 0 for different amounts of disorder in theEf -parameter. A uniform
distribution was used with widthsW = 0.001 (——), W = 0.05 (– – –) andW = 0.15
(— — —). The same parameters were used as in figure 3.

The central aspect of the interplay between disorder and correlations is anenhancement
of the bare disorder by the local Kondo physics of the impurityensemble. This can be quite
easily understood by an examination of the qualitative aspects of the solution atT = 0.
At zero temperature, only8j(0) enters into the calculation of6c(0) or Gc(0), either of
which, in turn, is enough for the calculation of the DC conductivity (see (3.11) or (A.3)).
As was emphasized before, given a certain distribution of the quantities8j , equation (3.4)
corresponds to a CPA treatment of disorder in the conduction band, where the8j s play the
role of scattering potential strengths. Interactions are important in determining the value
that these latter quantities acquire, given a self-averaged conduction electron bath through
1(ω).

Figure 9. The variation of the effective local scattering potential strength8(0) as a function of
V 2 andEf . Notice how8(0) varies on the scale of conduction electron parameters (D) not on
the scale of local f parameters. The distributions used were Gaussian and the parameters were
D = 1, µ = 0, (a) Ef = −1, 〈V 2〉 = 0.17, WV 2 = 0.032, (b)V = 0.1, 〈Ef 〉 = −0.055 and
WEf = 0.027.
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From the Fermi-liquid analysis, the zero-temperature, zero-energy form of8j(0) is real
and given by

8j(0) = − V 2
j

E
f

j + 6
imp
j (0)

. (4.5)

In the slave-boson mean-field theory, it is given by (see (D.11))

8j(0) = − r2
j V 2

j

ε
f

j

. (4.6)

Now, in the Kondo limit|Ef

j | � ρ0V
2

j (Ef

j < 0), it is easy to show from the mean-field
equations (D.7) and (D.8) that

8j(0) −→ 1

1′(0)
(|Ef

j | � ρ0V
2

j , E
f

j < 0). (4.7)

The important point here is the fact that the impurity problem parameters have disappeared
from the local effective scattering potential strength and its scale is now given by the
conduction electron band scale. As can be seen from figure 8, the real part of the ‘cavity’
Green’s function that enters (4.7) spans a wide range of values in the region close to the
chemical potential (here set to zero). Because of the distribution of local parametersε

f

j

and rj , this whole region close toµ will be probed by the different f sites and8j(0) will
also vary. However, its variation will be on the conduction electron scale. Indeed, we have
plotted in figure 9 the variation of8j(0) for a given strength of disorder, in both cases of
randomE

f

j s and randomVj s. It is clear that its distribution range isnot on the same scale
as the variation of local f parameters, which is very narrow, but rather, on the scale ofD.
Therefore, the effective disorder seen by the conduction electrons is considerably enhanced
due to the local f-shell correlation effects.

Figure 10. The scattering rate as a function of the width of the uniformEf -distribution. The
strong correlations in the f shell produce an enhanced effective disorder. The parameters used
were: D = 1, µ = 0, V = 0.1, 〈Ef 〉 = −0.05.

As a result of this enhancement effect, large resistivities can be generated even though
the range of variation of the f-shell parameters is very narrow. This is illustrated in
figure 10, where the scattering rate 1/τ , as given from (3.12), is plotted as a function
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of the width of the uniformEf -distribution. It is clear that modest amounts of disorder
in Ef produce rather substantial scattering rates. Thus, although the clean system exhibits
coherent transport at lowT , the introduction of a small amount of f-site disorder leads
to the destruction of these coherence effects.Qualitatively, once the lattice effects of
coherence are destroyed by sufficient disorder, the resistivity as a function of temperature
will then resemble the independent Kondo impurity results, with its characteristic decreasing
resistivity with increasing temperature. This point was nicely illustrated in a recent study
[38] of binary alloy disorder in the Anderson lattice, which relies on a similar treatment
of correlations and disorder. Furthermore, several doping studies of heavy-fermion systems
seem to bear out the above picture [34].

We summarize now the two major results of the study of disorder discussed in this
section.

• Due to the local Kondo physics at each f site, theeffectivedisorder generated from a
bare distribution of local f-shell parameters is strongly renormalized up to scales of the
order of the conduction electron bandwidth.

• Although the clean system has low resistivities due to the onset of coherence at lowT ,
moderate amounts of f-shell disorder are capable of destroying this low-T coherence,
leading to characteristic incoherent Kondo scattering behaviour.

5. The linear temperature dependence of the resistivity

Having established the incoherent nature of the transport with sufficient disorder strength,
we now focus on the temperature dependence of the resistivity in this strongly correlated
disordered state. We will rely on appendix B, which relates the conduction electron self-
energy 6c(ω) to the averaged impurity modelT -matrix T

imp
j (ω) (equation (B.4)). At

sufficiently high temperatures, compared to the highestTK in the distribution, the averaged
T -matrix at low energies becomes very small, reflecting the weak-coupling nature of the
impurity response at high temperatures. Therefore, there will be only a small contribution to
the conduction electron self-energy and consequently to the resistivity. At zero temperature,
as discussed in section 4, sufficient disorder will kill all coherence in the transport properties
and the system will exhibit a rather large resistivity. What happens at low temperatures?

For that, it is convenient to analyse the average impurityT -matrix. We have therefore
plotted in figure 11 the imaginary part of the impurityT -matrix, using the distribution of
Kondo temperatures derived from the fit to the thermodynamic properties of UCu5−xPdx

[30]. It is clear that the leading temperature dependence is linear. This leads to a linear
conduction electron self-energy and to a linear resistivity through (3.11), consistent with
the behaviour observed in several of the alloys in table 1. At higher temperatures, there
are clear deviations from the leading linear behaviour as can be seen in the inset. Can we
understand what conditions are necessary for this anomalous non-Fermi-liquid behaviour?

The essential condition for the linear temperature dependence of the resistivity, like
the thermodynamic response discussed in section 2, is that the distribution of Kondo
temperatures be such thatP(TK = 0) 6= 0. In other words, there must be a finite fraction
of f sites with arbitrarily small Kondo temperatures. This can be made more apparent by
an analysis similar to the one in section 2. However, one has to be careful of how one
understands the averaging process. This is because, unlike the thermodynamic responses,
transport propertiescannot be averaged over single-impurity results.This is made evident in
the analysis of the zero-temperature state of section 4. The single-impurity result amounts to
a strong, almost unitary scattering centre atT = 0, with a correspondingly large resistivity.
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Figure 11. The temperature dependence of the imaginary part of the single-impurityT -
matrix averaged over the disorder distribution appropriate for UCu3.5Pd1.5, as determined
experimentally in reference [30]. The inset shows the same quantity over a wider temperature
range.

Any attempt to simply average this result would lead to a large resistivity. However,
due to translational invariance, it is clear that the clean sample can only have a vanishing
resistivity, a result which encounters a natural description in the dynamical mean-field
theory, as was explained. Even in the disordered case, only the CPA-like averaging process
embodied in (3.4) has any sense. However, given a disordered ground state,deviations
from zero temperaturecan still be analysed in a fashion that resembles the averaging of
thermodynamic quantities. This is because, at low temperatures, a few low-TK spins are
unquenched and cease to contribute significantly to the scattering. Since they form adilute
system of subtracted scattering centres, their contribution is additive and can therefore be
averaged.

With these caveats in mind, we can proceed to analyse the conduction electron self-
energy. If the temperature is raised from 0 toT , there will be corresponding variations in
all quantities. From (B.3),

δ6c(ω) = 1 − t2G2
c(ω)

G2
c(ω)

∣∣∣∣
T =0

δGc(ω) (5.1)

andδGc(ω) can be obtained from (B.2):{
t2 + [

ω − t2Gc(ω)
] [

ω − 3t2Gc(ω)
]}∣∣

T =0 δGc(ω) = δ〈T imp
j (ω)〉av. (5.2)

At this point it is useful to remember the definition of theT -matrix (see (B.1) and (3.6)):

T
imp

j (ω) = V 2
j

ω − E
f

j − V 2
j /

[
ω − t2Gc(ω)

] − 6
imp
fj [ω, T , Gc]

. (5.3)

In (5.3) we have highlighted the fact that6
imp
fj is a functional ofGc(ω) as well as a function

of ω and T . Therefore, it is clear that theT -matrix depends on the temperature through
6

imp
fj . However, sinceGc(ω) changes with temperature, we also need to take into account

this additional contribution, both explicitly and implicitly through6 imp
fj . We therefore,
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separate three different contributions:

δT
imp

j (ω) = δ1T
imp

j (ω) + δ2T
imp

j (ω) + δ3T
imp

j (ω) (5.4)

δ1T
imp

j (ω) = t2(T
imp

j (ω))2[
ω − t2Gc(ω)

]2

∣∣∣∣∣
T =0

δGc(ω) (5.5)

δ2T
imp

j (ω) = δT T
imp

j (ω)

∣∣∣
G0

c

(5.6)

δ3T
imp

j (ω) = (T
imp

j (ω))2

V 2
j

∫
dω′ δ6

imp
fj (ω)

δGc(ω′)

∣∣∣∣∣
T =0

δGc(ω
′). (5.7)

In (5.6), we have usedδT to denote the variation withT which isnot implicit throughGc(ω),
andG0

c is used as a reminder that the variation is calculated with a fixed zero-temperature
bath. Equation (5.7) involves the functional derivative of the f self-energy with respect to
the bath Green’s function. Equations (5.4)–(5.7) can now be substituted into (5.2) to yield{

t2 + [
ω − t2Gc(ω)

] [
ω − 3t2Gc(ω)

] − t2〈(T imp
j (ω))2〉av[

ω − t2Gc(ω)
]2

}∣∣∣∣∣
T =0

δGc(ω)

−
∫

dω′
〈

(T
imp

j (ω))2

V 2
j

δ6
imp
fj (ω)

δGc(ω′)

〉av∣∣∣∣∣
T =0

δGc(ω
′) = 〈δT T

imp
j (ω)〉av

∣∣∣
G0

c

.

(5.8)

This is an integral equation forδGc(ω) whose source term is given by the averaged
variation of theT -matrix with the temperature. Without the last term on its left-hand
side, equation (5.8) is actually a simple algebraic equation. The last term describes the
feedback effect that the change in the self-consistent conduction electron bath generates on
the ensembleof local impurity actions. Since raising the temperature by a small amount
leads to the unquenching ofa few dilutespins, we do not expect this feedback effect to be
large and will thus neglect the last term on the left-hand side of (5.8).

We now analyse the source term on the right-hand side of (5.8). At zero frequency, the
imaginary part of theT -matrix can be written as

Im T
imp

j (T ) = sin2 δ0j

πρ0
t

(
T

TKj

)
(5.9)

where δ0j is the phase shift atT = 0. We can write down the asymptotic limits of the
scaling functiont (x)

t (x) ≈ 1 − αx2 (x � 1)

t (x) ≈ β

(ln(x))2
(x � 1)

(5.10)

whereα andβ are universal numbers. Therefore,

δT Im T
imp

j (T ) = −sin2 δ0j

πρ0

[
1 − t

(
T

TKj

)]
≡ −sin2 δ0j

πρ0
F(T /TKj ) (5.11)

which defines the functionF(x). This function will be averaged over with the distribution
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Figure 12. The experimentally determined distribution of Kondo temperatures of the alloys
UCu5−xPdx with x = 1 (— — —) and 1.5 (– – –) (from reference [30]) and the function
F(TK, T ) (——) defined in the text. The upturn at very lowTKs is not shown. The function
F(TK, T ) only probes theTK = 0 value of the distributions at lowT .

of Kondo temperatures. Therefore,keepingT fixed and as as function ofTK

F(T /TKj ) ≈ αT 2

T 2
Kj

(TKj � T )

F (T /TKj ) ≈ 1 − β

(ln(T /TKj ))2
(TKj � T ).

(5.12)

It can be seen thatF(T /TKj ) has a peak atTKj = 0 with width T , decaying rapidly to zero
as 1/T 2

Kj for largeTKj (figure 12). For low temperatures compared with the typical scale
of the distribution functionP(TK) one can write

δT Im Timp ≈ −a sin2 δ0j

πρ0
T δ(TKj ) (5.13)

where a = ∫
dx F(1/x). A similar analysis can be carried out for the real part of the

T -matrix. Therefore, after averaging overTK one gets

〈δT Im T
imp

j (ω)〉av ≈ −aP0 sin2 δ0

πρ0
T (5.14)

consistent with figure 11. It is clear that, as long as the distribution of Kondo temperatures
has finite weight atTK = 0, the averageT -matrix will show a linear temperature dependence.
If P(0) = 0 or negligible, then Fermi-liquid behaviour is recovered, with the characteristic
T 2-law. The result of (5.14) should be plugged into (5.8) and then into (5.1) for the final
expression of the conduction electron self-energy.

As our analysis above has shown, the same physical mechanism underlies the anomalous
non-Fermi-liquid behaviour of the resistivity as in the case of the thermodynamic properties.
It is the presence of low-TK spins, unquenched even at low temperatures, which gives rise
to anomalous scattering. Though the zero-temperature transport is a reflection of the full
structure of the distribution function, the leading low-temperature behaviour is much simpler,
corresponding to the gradual decrease of the number of effective scattering centres. Since
the number of released spins is small at low temperatures, their effect is additive and an



9890 E Miranda et al

average over their subtractedT -matrices is well justified. Finally, we add that an immediate
consequence of the physical origin of the anomalous scattering in this disorder model is
a negativemagnetoresistance at low temperatures. Much like the temperature, a magnetic
field acts to destroy the low-TK Kondo singlets and thus to suppress their effectiveness as
sources of disorder.

6. The dynamic susceptibility

The dynamic susceptibility of UCu5−xPdx (x = 1 andx = 1.5) has been measured with
inelastic neutron scattering and reported in reference [33]. The first important result was
that the q-dependence of the magnetic response could be completely accounted for by
the q-dependence of the uranium-ion form factor, suggesting that the spin dynamics is
completely local. Furthermore, as expected, the frequency and temperature dependences of
the imaginary part of the dynamic susceptibility are anomalous. There was no significant
difference between the magnetic behaviours of thex = 1 and thex = 1.5 alloys. These
results provide a useful testing ground for the disorder model. Indeed, one can use the
distribution of Kondo temperatures deduced from the fits to the thermodynamic data to
determine the dynamic response and compare with the experimental data. Like the static
magnetic susceptibility, the dynamic response will be dominated by a few unquenched spins.
Therefore, it is a reasonable assumption to take the overall dynamic lattice response to be
essentially given by an average over the single-impurity results. Moreover, the local nature
of the measured dynamic susceptibility is consistent with this assumption.

There is currently no complete description of the dynamic susceptibility of a single
Kondo impurity for the full range of temperatures and frequencies, though the methods
to carry out this task certainly are available. Among the existing results, we cite the
unpublished work of Costi and Hewson for the dynamic susceptibility of the Anderson
model, quoted in reference [45]. Besides, the non-crossing approximation (NCA) and an
extension of it have also been used to determine this response [46]. Quite often, the dynamic
susceptibility of a Kondo impurity is fitted to a relaxational form [47]

χ ′′(ω, T ) = χ(T )0(T )ω

ω2 + 02(T )
(6.1)

where χ(T ) is the impurity spin susceptibility and the linewidth0(T ) is a function of
temperature only. Note that this form automatically satisfies the Kramers–Kronig relation

χ(T ) = 1

π

∫ +∞

−∞

χ ′′(ω, T )

ω
dω. (6.2)

The high-temperature behaviour of0(T ) is given the Korringa law with logarithmic
corrections [48]:

0(T ) ≈ 4π(ρ0J )2T [1 − 4(ρ0J )ln T ] . (6.3)

At zero temperature, one can use the so-called Shiba relation to determine0(0) [49]:

lim
ω→∞

χ ′′(ω, 0)

πω
= 2χ2(0)

(gµB)2
H⇒ 0(0) = 2TK

wπ
(6.4)

wherew ≈ 0.4107 is the so-called Wilson number. In the absence of a better description,
we have employed a crude approximation that interpolates between these two limits

0(T ) =


2TK

wπ
for T < TK

4π(ρ0J )2T + α for T > TK

(6.5)
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whereα is such that0(T ) is continuous. We stress the crudeness of the approximation and
regard it as a rough description of the actual behaviour.

Figure 13. A comparison between the measured dynamic magnetic susceptibility from
reference [33] and the prediction of the disorder model. Here, we have used the distribution
function appropriate forx = 3.5 according to reference [30].

Once the behaviour of the dynamic susceptibility for a Kondo impurity is assumed to
be the one given by equations (6.1) and (6.5), one can then easily perform the averaging
with the distribution of coupling constants determined experimentally in reference [30]. We
have done so and the results are shown in figure 13 (x = 3.5) and figure 14 (x = 4). We
stress that, once the distribution of f-shell parameters is determined from the fits to the
static magnetic susceptibility,no additional fitting is performed.As can be seen from the
figures, the agreement between the experiment and the predictions of the disorder model is
rather good, considering the range of frequencies and temperatures and the crudeness of our
assumptions. The agreement is slightly better when one uses the distribution of thex = 3.5
alloy. Though a more accurate description should be endeavoured, we believe the disorder
model cannot be ruled out by the neutron scattering data.

7. Discussion and conclusions

We would like to now pause and consider the overall picture that emerges from the
disorder model as well as the drawbacks of our current treatment of the problem. We
have emphasized throughout that the important ingredient at the base of all the non-Fermi-
liquid features in this approach is the presence of f sites with arbitrarily low local Kondo
temperatures. More precisely,P(TK = 0) 6= 0. As the temperature is raised, these low-TK

spins are gradually unquenched and it is this very release process that gives rise to the
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Figure 14. A comparison between the measured dynamic magnetic susceptibility from
reference [33] and the prediction of the disorder model. Here, we have used the distribution
function appropriate forx = 4 according to reference [30].

anomalous thermodynamic as well as transport properties.
One of the practical difficulties that one faces in applying the dynamical field theory is

the fact that, due to the very nature of the physics involved, one needs to be able to solve
the ensembleof impurity models over the whole range of temperatures fromT � TKj

to T � TKj . This is a notoriously difficult task as is evident from the long history that
led to the final solution of the Kondo problem. The conventional approach of Wilson’s
numerical renormalization group, as it is currently formulated, relies on a special ‘energy-
shell’ decimation procedure, which is not obviously adapted to the present case of a general
conduction electron density of states. Therefore, in the non-trivial case of the resistivity,
we are not yet able to reliably predict the value of the coefficient of the linear term, which
might be checked against experiments.

The dynamical mean-field theory does not take into account the RKKY interaction
between f sites. These have been studied most extensively in the context of the two-
impurity Kondo problem [50]. From these studies it is known that, if the RKKY scale is
large enough compared toTK , the two impurity spins develop strong correlations which tend
to lock them into a singlet state, whereby the Kondo effect is killed. Since we rely on the
presence of certain sites with very low Kondo temperatures, one might wonder whether the
inclusion of RKKY interactions would not effectively provide a low-energy cut-off below
which P(TK) would be essentially negligible. Although we cannot give a rigorous answer
to this question, some very general arguments indicate that the possibility of having low-TK

spins is more robust than one might expect.
We have already emphasized that, if the distribution functionP(TK) is broad enough,

at low temperatures compared to its overall width, the fraction of spins which remain
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unquenched is rather small. Therefore, in general, they form adilute system of spins of
densitynlow, the average distance between them being proportional to(nlow)−1/3. Since the
average distance will be large, this will render the RKKY interaction less effective, since
its strength decays asR−3. Furthermore, we will argue that the effectiveness of the RKKY
interaction in suppressing the Kondo effect is actually a higher-order effect in the dilution
nlow.

Indeed, consider two low-TK spins chosen at random in the sample. In general, as
argued above, they will be far apart. Now, unlike the usual two-impurity Kondo problem,
these two spins will havedifferentcoupling constantsJ1 andJ2 and, therefore, two different
Kondo scalesTK1 andTK2. The RKKY scaleTRKKY ∝ J1J2/D, apart from the dependence
on the distance between the spins. Now, in the conventional two-impurity Kondo problem,
where TK1 = TK2, one has, qualitatively, two independent Kondo screening processes,
one at each spin, whenTK1 = TK2 � TRKKY , whereas the effect will be suppressed
whenTK1 = TK2 � TRKKY . In our disordered case, RKKY interaction dominates if, say,
TK1 < TK2 � TRKKY . However, in the intermediate case whenTK1 � TRKKY � TK2,
two independent Kondo effects will survive, even thoughTRKKY is still larger than one of
the Kondo temperatures. Indeed, as one comes down in energy scale, by the time one hits
TRKKY , spin 2 has already undergone quenching and is no longer available to correlate into
a singlet-like composite with spin 1. Therefore, the RKKY effectiveness depends on the
random selection of two spins, both of which must have low enough Kondo temperatures.
We would thus expect it to be of ordern2

low. Naturally, the transitions between different
regimes are all crossovers (in the absence of special unphysical symmetries) and there
will be no sharp distinctions between the different cases and hence no sharp cut-off to the
distribution functionP(TK).

We have emphasized throughout our analysis the importance of the structure of the
distribution of Kondo temperatures, in particular, whether it has an intercept with the vertical
axis atTK = 0 or not. Due to the exponential dependence ofTK on the f parameters, very
small modifications in the width of the bare distribution lead to rather large changes in the
distribution of Kondo temperatures. If the bare width is too small,P(TK) will be negligible
at low TK , whereas, if it is too large,P(TK) will be divergent. Therefore, the situation
whereP(TK) can be taken as approximately constant whenTK → 0 only holds in a narrow
window of bare disorder widths, in our current approach. In a more speculative vein, one is
tempted to think that the RKKY interaction, which is left out of the current approach, might
intervene to impose an upper bound on the density of low-TK spins which are allowed to
exist in such a state. It would do so by effectively eliminating them through the formation
of random singlets [27].

Finally, by treating the disorder seen by the conduction electrons in a mean-field CPA-
like fashion, we have neglected the effects of fluctuations in the conduction electron density
of states. It is natural to expect that these effects might act to further renormalize the
distribution of Kondo temperatures. It would be interesting to study whether, like in many
other treatments of disordered systems [27], these effects lead to a flow towards a universal
form of the distribution function.

In conclusion, we have presented a complete picture of the possible origin of the non-
Fermi-liquid behaviour in Kondo alloys. Our study has shown the important effect that
correlations have on the role of disorder in f-electron systems, considerably enhancing the
bare f-shell disorder strength. The interplay between disorder and correlations leads to the
idea of a distribution of Kondo temperatures, whose structure determines whether a Fermi-
liquid description is possible. In the particular case whenP(0) 6= 0, both thermodynamic
and transport properties are anomalous and incompatible with a Fermi-liquid picture.
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Appendix A. A simplified expression for the conductivity

In the case of a semicircular density of states, a simplification of the expression (3.11) can
be achieved. Indeed [38],

I =
∫

dε ρ0(ε)A
2(ε, ω) =

∫
dε ρ0(ε)

1

2
Re

[
Gc(ε, ω)G∗

c (ε, ω) − G2
c(ε, ω)

]
= 1

2

{
Re

[
∂Gl(z)

∂z

]
− Im Gl(z)

Im z

}
(A.1)

wherez ≡ ω + µ − 6c(ω) and

Gl(z) ≡
∫

dε
ρ0(ε)

z − ε
. (A.2)

Using the identityz = G−1
l (z) + t2Gl(z), which follows from (3.8), we get

σDC = 2e2

h̄πa

∫ +∞

−∞
dω

(
− ∂f

∂ω

) {
Re

[
1

(t2Gl(z))2 − 1

]
+ 1

1 − |t2Gl(z)|2
}

. (A.3)

Appendix B. The conduction electron self-energy and the impurity modelT -matrix

The expression for the conduction electron self-energy6c(ω) can be recast in a more
illuminating form by employing theT -matrix associated with the impurity problem, which
is defined by

T
imp

j (ω) ≡ V 2
j G

imp
fj (ω). (B.1)

Inserting this definition into (3.6), then into (3.5) and (3.4), we can write after some
manipulations

Gc(ω) = 1

ω + µ − t2Gc(ω)
+ 〈T imp

j (ω)〉av

(ω + µ − t2Gc(ω))2
. (B.2)

Now, equation (3.8) can be explicitly solved for a semicircular density of states giving

6c(ω) = ω + µ − 1

Gc(ω)
− t2Gc(ω). (B.3)

Combining (B.2) and (B.3) we finally get

6c(ω) = 〈T imp
j (ω)〉av

Gc(ω)(ω + µ − t2Gc(ω))
. (B.4)
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Appendix C. Thermodynamic properties

In this appendix, we will investigate whether the assumptions of the simple disorder
model of reference [30] (hereafter, the SDM) are justified within the framework of the
dynamical mean-field theory. Let us recapitulate what the assumptions of the SDM are.
Essentially, the model assumes a collection of independent Anderson or Kondo impurities,
each of which hybridizes with the same, featureless conduction bath. The parameters
of this collection of impurities are distributed according to some assumed distribution
function(s). In the particular case of reference [30], which assumed Kondo spins, the
dimensionless Kondo coupling constantλ ≡ ρ0J was assumed to be distributed according
to a Gaussian. Thermodynamic properties are then calculated by taking the average over
the single-impurity results with the appropriate distribution functions, as if the impurity
responses were completely uncorrelated.

It is clear that the dynamical mean-field theory retains much of the flavour of the SDM,
with the ensembleof impurity problems playing the role of the uncorrelated collection of
spins. The question that we would like to answer is that of whether the equivalence can
be shown within the framework of the dynamical mean-field theory and, more importantly,
what are the conditions for the validity of the equivalence. We will confine our analysis to
the total energy, which is enough for the calculation of specific heat. The same conclusions
apply to the susceptibility, which, however, requires consideration of the free energy.

Let us first write down the total energy in the framework of the dynamical mean-field
theory. We have

EDMF = 〈H 〉 =
∑
ijσ

−tij (〈c†
iσ cjσ 〉 + HC) +

∑
jσ

E
f

j 〈f †
jσ fjσ 〉

+
∑
jσ

Vj (〈c†
jσ fjσ 〉 + HC) + U

∑
j

〈nfj↑nfj↓〉. (C.1)

We can write

〈c†
iσ cjσ 〉 = T

∑
iωn

Gij
cσ (iωn). (C.2)

Now, when the coordination numberz goes to infinity and for the case of a Bethe lattice
(in the absence of symmetry breaking) one can prove that [41]

Gij
cσ (iωn) = −tijG

2
c(iωn) (C.3)

from which it follows that∑
ijσ

−tij (〈c†
iσ cjσ 〉 + HC) = 2T

∑
iωn

∑
ij

t2
ijG

2
c(iωn) = 2NT t2

∑
iωn

G
2
c(iωn) (C.4)

where N is the number of lattice sites and, consistent with the correct rescaling of the
hopping in the infinite-coordination limit,t2 ≡ zt2

ij . Plugging (C.4) into (C.1), one then has
the total energy completely expressed in terms of local quantities. This is the quantity that
we want to compare with the prediction of the SDM.

In order to do that, one needs to define what precisely one means by the SDM. In the
dynamical mean-field theory, we have theensembleof impurity models defined by (3.2).
We, therefore,definethe total energy in the SDM by the sum of the energies of the various
impurities:

ESDM =
∑

j

E imp{Ef

j , Vj }. (C.5)
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To define the energy of one impurity, we first write the Hamiltonian corresponding to (3.2):

H imp
{
Ef , V

} =
∑
kσ

Eka
†
kσ akσ +

∑
σ

Ef f †
σ fσ + V

∑
kσ

(a
†
kσ fσ + HC) + U

∑
j

nf ↑nf ↓

(C.6)

where we introduced fictitious fermionic operatorsakσ to mimic the self-consistent
conduction electron bath through the ‘cavity’ Green’s function of (3.3),

1(ω) ≡
∑

k

1

ω − Ek
. (C.7)

We then define the appropriate single-impurity energy by

E imp{Ef

j , Vj } ≡ 〈
H imp

{
Ef , V

}〉 − ∑
kσ

Ek〈a†
kσ akσ 〉

∣∣∣
V =0

(C.8)

where we subtracted the total energy of the fictitious conduction electron bath evaluated at
V = 0. Now, the fictitious conduction electron Green’s function is

Ga(k, k′, ω) = δkk′G0
a(k, ω) + G0

a(k, ω)V 2Gf (ω)G0
a(k

′, ω). (C.9)

Using

〈a†
kσ akσ 〉 = T

∑
iωn

Ga(k, k, iωn) (C.10)

we have

〈a†
kσ akσ 〉 − 〈a†

kσ akσ 〉
∣∣∣
V =0

= T V 2
∑
iωn

Gf (iωn)
[
G0

a(k, iωn)
]2

. (C.11)

Thus∑
kσ

Ek

[
〈a†

kσ akσ 〉 − 〈a†
kσ akσ 〉

∣∣∣
V =0

]
= 2T V 2

∑
iωn

Gf (iωn)
∑

k

Ek

(iωn − Ek)2

= −2T V 2
∑
iωn

Gf (iωn)

[
1(iωn) + iωn

∂1(iωn)

∂(iωn)

]
. (C.12)

In the last equality we used (C.7).
We can now use equations (C.1), (C.5), (C.6) and (C.8) to write the difference in energy

between the SDM and the dynamical mean-field theory:

1E ≡ EDMF − ESDM =
∑
kσ

{
Ek

[
〈a†

kσ akσ 〉
∣∣∣
V =0

− 〈a†
kσ akσ 〉

]
+ (εk − µ)〈c†

kσ ckσ 〉
}

.

(C.13)

To simplify things further, we can use equations (C.4) and (C.12) to get

1E = 2T
∑
iωn

{
N t2G

2
c(iωn) +

∑
j

V 2
j G

f

j (iωn)

[
1(iωn) + iωn

∂1(iωn)

∂(iωn)

]}
. (C.14)

We then use (B.2) and the definition (3.3) to arrive at our final expression for the difference
in energy between the dynamical mean-field theory and the SDM:

1E

N = 2T
∑
iωn

{
t2G

2
c(iωn) +

[
Gc(iωn)

1(iωn)
− 1

] [
1 + ∂ ln 1(iωn)

∂ ln(iωn)

]}
. (C.15)

We are now in a position to determine whether the SDM is accurate enough to give the
thermodynamic properties of the system within the dynamical mean-field-theory framework.
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For this, it is enough to consider (C.13). All of the quantities in this equation are related
to conduction electron kinetic properties. The corresponding densities of states are given
by the imaginary parts of eitherGc(ω) or the ‘cavity’ Green’s function1(ω). As can
be clearly seen from figures 3 and 4, these quantities are weakly renormalized. Their
contributions to, say, the specific heat coefficientγ = CV (T )/T are of the order of 1/D
and are completely negligible when compared to the contribution from the impurity part,
which is of order 1/TK � 1/D. Therefore, as far as thermodynamic properties such asγ

andχ are concerned, the approximation of averaging over single-impurity results is perfectly
consistent with the solution of the full dynamical mean-field theory. This is true of both
the clean and the dirty systems, since nothing in this argument relied on the presence of
disorder. However, we stress the fact that theensembleof impurity problems must be solved
in the fully self-consistent conduction electron bath. Though the renormalizations of this
bath are small, they affect the impurity properties through the conduction electron density
of statesρ0. The latter quantity appears in the argument of the exponential in the expression
for the Kondo temperature and can, therefore, lead to rather substantial renormalizations
of the total energy. To fully describe these changes, one needs to solve the full dynamical
mean-field theory equations.

Appendix D. The slave-boson mean-field theory of the impurity models

The slave-boson description of the infinite-U Anderson model starts with the replacement
of the non-holonomic constraintnf < 1 imposed by theU → ∞ condition by a new set of
slave-boson operatorsbj together with a holonomic constraint [35]:

fjσ −→ b
†
j fjσ (D.1)

nfjσ −→ nfjσ (D.2)∑
σ

(nfjσ ) < 1 −→
∑

σ

(nfjσ ) + b
†
j bj = 1. (D.3)

The constraint is then imposed by introducing a Lagrange multiplier term in the Lagrangian:

L0 −→ L0 + i
∫ β

0
dτ λj (τ )

[∑
σ

f
†

fjσ (τ )ffjσ (τ ) + b
†
j (τ )bj (τ ) − 1

]
(D.4)

whereλj (τ ) is an additional bosonic field variable. The transformed action corresponding
to the impurity action (3.2) is then

S
imp
j = S

imp
1j + S

imp
2j

S
imp
1j =

∫ β

0
dτ

[∑
σ

f
†

jσ (τ )
[
∂τ + E

f

j + iλj (τ )
]
fjσ (τ )

+ b
†
j (τ )

[
∂τ + iλj (τ )

]
bj (τ ) − iλj (τ )

]

S
imp
2j =

∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

f
†

jσ (τ )bj (τ )V 2
j 1(τ − τ ′)fjσ (τ ′)b†

j (τ
′) (D.5)

where1(τ) is the Matsubara–Fourier transform of (3.3). Note that the second part of the
impurity action, which corresponds to hybridization processes between the f site and the
effective conduction electron bath, has been modified by the introduction of the slave-boson
field bj (τ ), which deals with the bookkeeping of the occupation of the f site.
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At the mean-field level, the bosonic fieldsbj (τ ) andλj (τ ) acquire a time-independent
expectation value and behave asc-numbers [35]. The resulting effective action is quadratic
in the pseudo-f electrons and can be exactly solved. Following the convention of writing
i〈λj 〉 = ε

f

j − E
f

j and〈bj 〉 = rj , it reads

Seff
j = T

∑
ωnσ

[
f

†
jσ (iωn)(−iωn + ε

f

j + r2
j V 2

j 1(iωn))fjσ (iωn)
]

+ (ε
f

j − E
f

j )(r2
j − 1). (D.6)

The mean-field parametersrj andε
f

j are determined by a saddle-point extremization of the
free energy corresponding to (D.6). The mean-field equations then read

2

π

∫ ∞

−∞
dω

f (ω)1̃′′
j (ω)

(ω − ε
f

j − 1̃′
j (ω))2 + (1̃′′

j (ω))2
+ r2

j − 1 = 0 (D.7)

2

π

∫ ∞

−∞
dω

f (ω)1̃′′
j (ω)(ω − ε

f

j )

(ω − ε
f

j − 1̃′
j (ω))2 + (1̃′′

j (ω))2
+ r2

j (ε
f

j − E
f

j ) = 0 (D.8)

where f (ω) is the Fermi function,1̃j (ω) = r2
j V 2

j 1(ω), and single and double primes
denote real and imaginary parts, respectively. We note that, given the hybridization function
1(iωn), each value of the bare parametersE

f

j andVj will define a different impurity problem

with its own corresponding values ofrj andε
f

j . Thus, a distribution of mean-field parameters
is also generated.

The mean-field treatment that we have described gives the following expression for the
f-electron Green’s function:

Gfj (iωn) = r2
j

iωn − ε
f

j − r2
j V 2

j 1(iωn)
. (D.9)

Note that the numerator in (D.9) is crucial. It is a consequence of the slave-boson
prescription (D.1) and distinguishes the pseudo-f-electron Green’s function, from which
it is absent, from the real-f-electron Green’s function. Finally, using the definition (3.6),
one can write the mean-field expression for the f-electron self-energy:

6fj (iωn) = iωn − E
f

j − (iωn − ε
f

j )

r2
j

(D.10)

which yields

8j(iωn) = r2
j V 2

j

iωn − ε
f

j

. (D.11)

This can then be inserted into (3.4), thus closing the self-consistency loop. Note that, in the
pure case,

6c(ω) = 8(ω) = r2V 2

ω − ε
f

j

(D.12)

which is consistent with the low-energy Fermi-liquid parametrization of (4.2).

References

[1] Landau L D 1956Sov. Phys.–JETP3 920; 1957Sov. Phys.–JETP5 101; 1959Sov. Phys.–JETP8 70
[2] Anderson P W 1984Basic Notions of Condensed Matter Physics(Menlo Park, CA: Benjamin/Cummings)

ch 3, p 70



Kondo disorder: non-Fermi-liquid behaviour 9899

[3] Wilson K G 1979Rev. Mod. Phys.47 773
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Bogenberger B and von Löhneysen H 1995Phys. Rev. Lett.74 1016

[13] Julian S R, Mathur N D, Grosche F M and Lonzarich G G 1996 Non-Fermi liquid to superconducting
transition in CePd2Si2 at high pressuresPreprint

Grosche F M, Julian S R, Mathur N D and Lonzarich G G 1996PhysicaB 223+22450
[14] Continentino M A 1993 Phys. Rev.B 47 11 587

Milli s A J 1993Phys. Rev.B 48 7183
Tsvelik A M and Reizer M 1993Phys. Rev.B 48 9887

[15] Andraka B and Stewart G R 1993Phys. Rev.B 47 3208
[16] Degiorgi L and Ott H R 1996J. Phys.: Condens. Matter8 9901
[17] Seaman C L, Maple M B, Lee B W, Ghamaty S, Torikachvili M S, Kang J-S, Liu L Z, Allen J W and Cox

D L 1991 Phys. Rev. Lett.67 2882
Andraka B and Tsvelik A M 1991 Phys. Rev. Lett.67 2886

[18] Degiorgi L, Ott H R and Hulliger F 1995Phys. Rev.B 52 42
[19] Andraka B 1994Phys. Rev.B 49 3589
[20] Degiorgi L, Wachter P, Maple M B, de Andrade M C and Herrmann J 1996Phys. Rev.B 54 6065
[21] Andraka B 1994Phys. Rev.B 49 348
[22] Amitsuka H and Sakakibara T 1994J. Phys. Soc. Japan63 736

Amitsuka H, Hidano T, Sakakibara T, Suzuki T, Akazawa T and Fujita T 1995J. Magn. Magn. Mater.
140+1441403

Amitsuka H, Shimamoto T, Honma T and Sakakibara T 1995PhysicaB 206+207461
[23] Nozières P and Blandin A 1980J. Physique41 193

Cox D L 1987Phys. Rev. Lett.59 1240
Kim T-S and Cox D L 1995Phys. Rev. Lett.75 1622
Cox D L 1993PhysicaB 186+188312
Kim T-S and Cox D L 1996Phys. Rev.B 54 6494
Kim T-S, Oliveira L N and Cox D L 1996Preprint cond-mat/9606095

[24] Aronson M C, Maple M B, de Sa P, Tsvelik A M and Osborn R 1996 Non-Fermi liquid scaling in the
uranium alloys UCu5−xPdx : a phenomenological descriptionPreprint

[25] Cox D L 1996 PhysicaB 223+224453
Jarrell M, Pang H, Cox D L and Luk K H 1996Phys. Rev. Lett.77 1612

[26] Si Q and Kotliar G 1993Phys. Rev. Lett.70 3143; 1993Phys. Rev.B 48 13 881
Kotliar G and Si Q 1996Phys. Rev.B 53 12 373

[27] Bhatt R N and Lee P A 1982Phys. Rev. Lett.48 344
[28] Sachdev S 1989Phys. Rev.B 39 5297
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