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We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of
a dimerized phase and a nonzero charge gap had been reported by Xavier et al. �Phys. Rev. Lett. 90, 247204
�2003��. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge
gap. In the interest of clarifying this important issue, we show that these objections are based on results
obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible
dimerized phase of the Majumdar-Ghosh point of the J1−J2 Heisenberg model as a paradigm with which to
illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-
group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.
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I. INTRODUCTION

The Kondo lattice model plays an important role in the
discussion of the physical properties of heavy fermion
materials.1 Therefore, an accurate determination of its prop-
erties and phase diagram is an important task. In this respect,
even the one-dimensional case is of interest. Even though the
Kondo lattice chain �KLC� has been extensively analyzed
and much is known about its properties2 �see also Ref. 3�, a
few controversies still remain.

A few years ago we and our collaborators presented
mostly numerical evidence that the KLC has an insulating
dimerized phase at quarter filling.4,5 Our analysis was mainly
based on numerical density-matrix renormalization-group
�DMRG� calculations with open boundary conditions �OBC�.
More recently, Hotta and Shibata6,7 �HS� raised objections to
our conclusions and suggested that the KLC at quarter filling
is neither dimerized nor exhibits a charge gap. They ascribed
the putative errors to a lack of numerical precision and to a
misinterpretation of the data. Their analysis is mainly based
on modifications of the boundary conditions as compared to
ours, either by using an odd number of lattice sites and/or by
imposing a shift on the conduction-electron site energies at
the borders or by working with periodic boundary conditions
�PBC� and antiperiodic boundary conditions �APBC�. Given
these uncertainties and in view of the importance of this
question, it is our hope to shed some light on the origin of
these differences, while at the same time highlighting the
intrinsic difficulties in a numerical determination of the pres-
ence of dimerization.

As we will show below, if we use an odd number of sites,
a very careful interpretation of the data is necessary. We
believe the discrepancy between our results and those from
HS stems from this fact. In order to show this, we analyze a
model with an incontrovertible dimerized phase, namely, the
J1−J2 Heisenberg model at the Majumdar-Ghosh �MG� point
and by reanalyzing the KLC at quarter filling in light of the
latter results. Finally, we will also show extremely accurate
DMRG data confirming the existence of a charge gap.

Before presenting our results, let us first discuss briefly
the difficulties of determining numerically the presence of

long-range order. Strictly speaking, a spontaneously broken
symmetry can only be realized in the thermodynamic limit.
Only in this limit is the order parameter nonzero. No con-
tinuous symmetry can be spontaneously broken at finite tem-
perature in one and two dimensions with short-ranged inter-
actions, as shown by the Mermin-Wagner-Hohenberg
theorem.8 At zero temperature, true long-range order is still
possible for continuous symmetry in two dimensions, while
in one dimension only quasi-long-range order can appear,
i.e., the two point correlation function of the order parameter
decays as a power law. However, a discrete symmetry can be
broken at zero temperature even in one dimension. Such is
the case of a dimerized phase, which can be characterized by
a broken discrete lattice translational symmetry. Although the
ordered phase is realized only in the thermodynamic limit, its
signature can be observed in finite systems. One possibility
is a finite-size scaling analysis of the order-parameter corre-
lation function. For example, the Fourier transform of the
spin-spin correlation function at the ordering wave vector
S�q��� can be studied as a function of system size in order to
detect long-range magnetic order. If S�q��� �appropriately nor-
malized� tends to a constant as the system size grows, this
signals the presence of long-range magnetic order. The ana-
log in the case of dimerization would be the dimer-dimer
correlation function. Another possibility is to measure the
order parameter directly after the application of a small �in-
finitesimal� symmetry-breaking field. If the order parameter
remains nonzero as the system grows, this is a sign of true
long-range order.

Our previous calculations followed the second route
above. Since we were interested in a possible broken lattice
translation symmetry, we used the open borders as small
symmetry-breaking fields. However, it is essential in this
case that the lattice structure itself does not suppress the
possible dimer order, e.g., by working with a lattice with an
odd number of unit cells, which is unable to accommodate
the two-site substructure of the dimer order. Other modifica-
tions of the boundaries can also be detrimental to the obser-
vation of dimerization. As we will show, this accounts for the
discrepancies between ours and the results of HS. Further-
more, even when HS followed the first route, their results
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will be shown not to be incompatible with the presence of
dimerization.

It should be stressed that the numerical determination of
long-range order is often quite difficult as one is never sure
whether a larger lattice size will eventually show that an
apparent order is actually destroyed at longer length scales.
However, it is very important to work in such conditions as
to allow the investigated order to at least be possible. As we
argue below, in the case of a dimerized phase, extra care
must taken not to frustrate the order from the start by work-
ing with an odd number of sites or by artificially altering the
boundary conditions.

Given these uncertainties, we chose to show results for a
system in which the dimer order is well established, namely,
the J1−J2 Heisenberg model for J2�0.24J1. By showing the
pitfalls of a numerical determination of dimerization in this
system, we hope to both shed light on the previous works on
the Kondo chain and to bring to a more general audience
what should be avoided in the investigation of broken lattice
translational symmetry with numerical methods.

We investigated the models above with DMRG �Refs. 9
and 10� under OBCs. For the J1−J2 Heisenberg model we
used typically m=400 states per block. This number of states
kept in the truncation process is enough to give very precise
results, the discarded weight being typically about 10−10.
However, for the KLC we used a much larger number of
states in order to obtain precise results �up to m=3500�. We
have done �10–26 sweeps and the discarded weight was
typically 10−6–10−10 in the final sweep. The dimension of
the superblock in the last sweep can reach up to 27�106.
This large dimension is due to the fact that the center blocks
in our DMRG procedure are composed of eight states. As a
consequence, keeping m=3500 states per block in the KLC
is analogous to keeping m�=4�3500 states in the J1−J2
Heisenberg model.

This paper is organized as follows. In Sec. II, we will use
the MG point of the J1−J2 Heisenberg model as a paradigm
of a dimerized phase and important insight will be gained as
to the effect of the use of an odd number of lattice sites. In
Sec. III, we will analyze the KLC for both odd and even
numbers of sites and will show that indeed our numerical
results point to the existence of a true long-ranged dimerized
phase at quarter filling. In Sec. IV, through extremely accu-
rate DMRG calculations we will show that the charge gap is
indeed larger than zero in the dimerized phase. Finally, we
will present our conclusions.

II. MAJUMDAR-GOSH POINT

One of the best established examples of a dimerized phase
occurs in the Heisenberg model with nearest-�J1� and next-
nearest-neighbor �J2� interactions,

H = �
j=1

L−1

�J1s j · s j+1 + J2s j · s j+2� ,

where s j is a spin-1/2 operator at site j. This model is known
to show dimerization for J2 /J1����c�0.24.11–14 A par-
ticularly simple point of the dimerized phase is the MG point

�=0.5. The ground state of the infinite system can be shown
to be composed of independent singlets formed out of neigh-
boring pairs of spins.15–17 This much simpler structure, as
compared to ��0.5, corresponds to a correlation length of
one lattice spacing for the connected dimer-dimer correlation
function. Evidently, there are two equivalent ways of realiz-
ing the broken translational-symmetry ground state by
choosing the dimers to lie on pairs which are one lattice
spacing apart. The exact ground-state energy follows trivially
from this structure and is given by E0 /L=−3 /8J1.

If the model is now analyzed on a finite lattice with an
even number of sites and OBC, one of the two equivalent
ground states can be easily accommodated, the other becom-
ing now an excited state. However, for an odd number of
sites and OBC, none of the above ground states can be real-
ized, as the two-site substructure cannot be accommodated in
an odd-sized lattice. In other words, the additional site frus-
trates the dimerization. This is not specific to the MG point
but applies to any dimerized phase. The energies at the MG
point can no longer be obtained exactly when L is odd, al-
though some variational estimates can be made.18 Below we
show some energies obtained numerically for odd L. We note
that for PBC �for which there is not explicit broken transla-
tional symmetry� and finite even L, the ground state is, in
general, a superposition of the two equivalent broken-
symmetry states and does not show spontaneously broken
translational invariance. This is to be expected since symme-
tries can only be spontaneously broken in the thermody-
namic limit. Note that for OBC the average nearest-neighbor
spin-spin correlation D�j�= 	s j ·s j+1
 is not a constant �de-
pends on j� for a finite system since translational symmetry is
explicitly broken by the chain ends, which act effectively like
small symmetry-breaking fields as L→�.

Let us define the dimer order parameter as �Oj�= �D�j�
−D�j+1��. For OBC, the signature of a true long-range dimer
order should be detected by plotting �OL/2� versus 1 /L. The
dimer order exists if limL→��OL/2��0 since the boundary-
generated symmetry-breaking field becomes infinitesimal
and the thermodynamic limit is enforced.

Let us first consider the J1−J2 Heisenberg model with an
even number of sites. In Fig. 1�a�, D�j� is shown for the J1
−J2 Heisenberg model with OBC for some values of � and
L=180 �note that there are L−1 data points for D�j� in an
L-site lattice�. As we mentioned before, with OBC D�j� os-
cillates. In particular, for the MG point ��=0.5� D�j� is 0 for
even j and −3 /4 for odd j, as expected. The fact that D�j�
exhibits a robust oscillation in the middle of the system sug-
gests that a dimer order may exist. In order to establish the
dimer phase, we now have to plot �OL/2� as a function of 1 /L.
This is shown in Fig. 1�b�, where we clearly see that the
order parameter tends to a nonzero value only for ��0.2.
Though not intended to determine the critical value �c
�0.24, this plot shows that it is possible to numerically de-
termine the presence or the absence of long-ranged dimer
order using the second route mentioned before.

Now, let us investigate the same model with an odd num-
ber of sites. In Fig. 2�a�, we present the average nearest-
neighbor spin-spin correlation D�j� at the MG point ��
=0.5� and at �=0.4 as a function of j for odd system sizes
with OBC. As expected, D�j� oscillates. However, we clearly
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see that this oscillation seems to vanish in the middle of the
lattice. At first sight, this seems to suggest that in the ther-
modynamic limit D�j� does not oscillate, indicating the ab-
sence of a dimerized phase in both cases. In order to check
this, we present in Fig. 2�b� �O�L−1�/2� versus 1 /L for odd L
�only for the MG point�. As can be seen, �Oj� indeed tends to
zero in the thermodynamic limit, indicating, at first thought,
the absence of a dimerized phase. This result is in contradic-
tion with the well-known dimerized phase of this model both
at the MG point and at �=0.4. How is it possible? The ex-
planation lies in the frustration of translational-symmetry
breaking induced by the last site of an odd-sized lattice, as
explained above. In fact, the ground state at the MG point
�and at �=0.4� with an odd number of sites has a solitonic
spin-1/2 excitation, which is delocalized and acts to suppress
the dimer order.18,19 An estimate of the ground-state energy
at the MG point can be obtained assuming that the wave
function for odd L is given by a free solitonic excitation.18 In
fact, numerical data support this picture.19

In Fig. 2�c�, the ground-state energy per site, for odd and
even L, is presented as a function of 1 /L �only at the MG
point�. Clearly, the energy per site for odd L is larger than
that for even L. This is due to the fact that there is a gap for
the creation of the solitonic excitation. In Fig. 2�d�, we show
	Sz�i�
 at the MG point and at �=0.4 for a system size of
L=181 �similar results were obtained in Ref. 19 for L=101�.

The delocalization of the soliton is clear in both cases and its
envelope can be modeled as a free quantum particle in a box
of size L.19 The soliton has a finite extent for ��0.5, due to
the larger dimer correlation length, and this picture becomes
less accurate.19 As we argue in Sec. III, the frustration of the
dimer order in an odd-sized lattice is the origin of the dis-
crepancy between ours and HS’s work.

III. DIMERIZATION IN THE QUARTER-FILLED KONDO
LATTICE CHAIN

Having obtained some insight into the ground-state wave
function at the MG point with an odd number of sites, we
consider now the KLC with OBC given by

H = − �
i=1,�

L−1

�ci,�
† ci+1� + H.c.� + J�

j=1

L

S j · s j ,

where cj� annihilates a conduction electron in site j with spin
projection �, S j is a localized spin-1/2 operator,
s j =

1
2��	cj,�

† ��	cj,	 is the conduction electron-spin-density
operator, and ��	 are Pauli matrices. Here, J�0 is the
Kondo coupling constant between the conduction electrons
and the local moments and the hopping amplitude was set to
unity to fix the energy scale.

In our previous work,4 we showed that the KLC at quarter
filling is dimerized from limL→��D�L /2���0 for even L.
Note that for the KLC, D�j� oscillates in sign and, for this
reason, we can use D�j� as the dimer order parameter. In
analogy to the MG point, we can destroy the dimerization by
breaking the two-site substructure of the dimers. For ex-
ample, we can add or remove just one site. In this case,
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FIG. 1. �Color online� �a� The nearest-neighbor spin-spin corre-
lation D�j� versus distance from the lattice boundary for the
J1−J2 Heisenberg model with L=180 and some values of �. �b�
The dimer order parameter at the chain center �OL/2� as a function of
1 /L for lattices with even numbers of sites for the same model.
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keeping the electronic density as close as possible to quarter
filling, the electronic densities are n= 1

2 

1

2L . For odd L the
ground-state total spin is not zero. If the number of conduc-
tion electrons Ne is even, it is 1/2. On the other hand, for odd
Ne the total spin of the ground state is 1�2� if L=2Ne−1 �L
=2Ne+1�. It is interesting that if we keep the lattice size
even and add or remove just one electron in the conduction
band, we may also destroy the dimerization, as will be dis-
cussed below.

In Fig. 3�a�, the order parameter D�j� is shown as a func-
tion of the distance to the boundary for the KLC with J
=0.5 and Ne= L+1

2 . As in the case of the MG point, the order
parameter seems to decrease away from the boundary. This
result suggests that the dimerization does not exist in the
thermodynamic limit for the KLC with odd L. Indeed, as
shown in Fig. 3�b�, the dimer order parameter measured at
the center of the lattice tends to zero as we increase the
system size. We also show in Fig. 3�c� 	Sz�j�
 as a function of
the lattice site. Note the similarity with the MG point �Fig.
2�d��. These results suggest that the ground state of KLC
with odd L also possesses a solitonic excitation, as at the MG
point with odd L. If L is odd and Ne= L−1

2 the dimer order
parameter decays much faster away from the edges, as can
be seen in Fig. 3�d� for a representative set of data. Although
the energy converges quite rapidly in this case, the conver-
gence of the correlations is slower, and for this reason we
restrict our results to “small” lattice sizes.

For even L and odd Ne the total spin of the ground state is
3/2. For even L and Ne= L

2 +1, the dimerization also seems to
decay away from the boundary, although it does so in an
oscillatory fashion, as seen in Fig. 4�a�. One would perhaps
naively think that also for Ne= L

2 −1 and even L the dimer-
ization might not exist. However, as shown in Fig. 4�b�, the
order is robust in this case. It is likely that the solitons are

localized at the boundaries in the case of Ne= L
2 −1.

IV. CHARGE GAP IN THE KONDO LATTICE CHAIN

Finally, we investigate the charge gap of the KLC at quar-
ter filling. We define the charge gap as �=E�N+2�+E�N
−2�−2E�N�, where E�M� is the ground-state energy for M
conduction electrons. In our previous work4 we presented
numerical results with DMRG keeping m=800 indicating
that there exists a finite charge gap at quarter filling in the
thermodynamic limit. We also used bosonization arguments
to show that if the KLC has a dimerized ground state at
quarter filling, then a charge gap could exist. However, Hotta
and Shibata7 raised objections to our previous results arguing
for a lack of precision in our numerical data for the coupling
value J=0.5. It should be stressed that these authors only
showed results for J=1 �and m=1100�. Here, we present
new DMRG results, keeping up to m=3500 states, showing
that their objections are unfounded.

In Fig. 5�a�, the charge gaps for coupling constants J
=0.6 and J=0.5 are shown as functions of 1 /L for two dif-
ferent values of m. As can be observed, there is very little
difference between the charge gaps �L�m=3500� and �L�m
=2000�. We also show a fit of our data with m=3500 with
the function �L=��+a0 /L+a1 /L2. The charge gaps clearly
tend to a nonzero value. Our fit gives ��=0.070 and ��

=0.072 for J=0.6 and J=0.5, respectively. However, HS did
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not present results for J=0.5 or J=0.6 where the charge gaps
are expected to be larger than for J=1 since the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction which we argued
induces the dimerization4 is expected to dominate the
“Kondo effect” for small J. Indeed, this is what we obtain
�see Fig. 5�b��. The results of Hotta and Shibata7 are confined
to J=1, where the charge gap is quite small as we see in Fig.
5�b�. Finally, the extrapolations for densities away from half-
filling presented in our previous papers give ���0.002,
which are much smaller than the charge gaps found for quar-
ter filling and beyond our precision.

V. CONCLUSIONS

In the above, we have shown how an uncritical finite-size
analysis can lead to wrong conclusions in the incontrovert-
ibly dimerized phase of the MG point. A very similar situa-
tion was found in the case of the quarter-filled KLC, where
very different results are obtained for even and odd numbers
of lattice sites. This shows how care must be taken in a

numerical determination of dimerization, especially with the
number of sites and the boundary conditions.

In their work, HS used different boundary conditions
�OBC and APBC�, odd and even numbers of sites, and even
modified the site energies at the edges of the chain.6,7 As
argued above, any of these ad hoc changes can severely af-
fect the dimer order and in many cases suppress it to zero.
The use of OBC with an even number of sites, thus commen-
surate with a possible dimerized substructure, is an unbiased
way of probing the long-range nature of the broken lattice
translational symmetry in the thermodynamic limit.

Another unbiased strategy is the investigation of the long-
distance behavior of the dimer-dimer correlation function
C�i− j��	�Si ·Si+1��S j ·S j+1�
 with PBC and even L. This
procedure is much less convenient in a DMRG calculation
since the DMRG is much less efficient under PBC or APBC
and one is thus confined to small system sizes. HS showed
also results under APBC. Although we are not certain
whether the additional phase introduced under APBC sup-
presses dimerization or not, it is clear that their results are
fully compatible with a dimerized ground state. Indeed, for
J=1 and L=120 our calculations give a dimer order param-
eter �	d�j�
�= �	S j ·S j+1
��0.128. This corresponds to �	oj
�
��	d�j�−d�j+1�
��0.256 and to lim�i−j�→��	oioj
�= �	oi
�2
�0.066. It can be seen from the data reported by HS �Refs.
6 and 7� that the asymptotic behavior of their dimer-dimer
correlation function seems to be just converging to about this
value for L=32 and APBC. Thus, although it is hard to say
whether they have reached the asymptotic bulk value, their
results for APBC are certainly not incompatible with true
long-ranged dimer order. It would be interesting to investi-
gate this question under PBC and larger system sizes in order
to have a complete picture. Unfortunately, with the DMRG
this may well turn out to be impossible with currently avail-
able computer power.

Finally, we have also shown that even the most accurate
DMRG calculations �m=3500� point to the existence of a
nonzero charge gap at quarter filling. HS confined their re-
sults to the J=1 case �and m=1100�, where this gap is very
tiny �also from the m=3500 results�, which makes the analy-
sis more difficult. By working at smaller coupling-constant
values, we were able to accurately extrapolate to the thermo-
dynamic limit and found that the charge gap indeed tends to
a nonzero value.
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