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We study how well-known effects of the long-ranged Friedel oscillations are affected by strong

electronic correlations. We first show that their range and amplitude are significantly suppressed in

strongly renormalized Fermi liquids. We then investigate the interplay of elastic and inelastic scattering in

the presence of these oscillations. In the singular case of two-dimensional systems, we show how the

anomalous ballistic scattering rate is confined to a very restricted temperature range even for moderate

correlations. In general, our analytical results indicate that a prominent role of Friedel oscillations is

relegated to weakly interacting systems.

DOI: 10.1103/PhysRevLett.104.236401 PACS numbers: 71.10.Fd, 71.27.+a, 71.30.+h, 72.15.Qm

Introduction.—Fermi liquid theory is known to success-
fully describe the leading low temperature behavior of
metals, even in instances of very strong correlations
(e.g., heavy fermions [1]). In the presence of perturbations
that break translational symmetry, such as impurities and
defects, the Fermi liquid readjusts itself, producing a spa-
tially inhomogeneous pseudopotential ‘‘seen’’ by quasipar-
ticles [2,3]. Here the wave nature of the electrons is
manifested by the formation of ‘‘ripples,’’ the Friedel
oscillations [4,5], surrounding the perturbation.
Scattering processes of quasiparticles off these ripples
then produce new corrections to the T dependence in
transport quantities [6].

How significant are these corrections? The answer, of
course, depends on how broad the dynamic range is, in
which such leading order nonanalyticities dominate. This
question, as usual, cannot be answered by Fermi liquid
theory itself. What is needed is a microscopic model
calculation that is not restricted to obtaining the form of
leading terms. A careful and precise model calculation
with such a goal is the central topic of this Letter.

We focus on single nonmagnetic impurity scattering in
an otherwise uniform, strongly interacting, paramagnetic
metal, where the analysis is most straightforward and
transparent, but this general issue is of key relevance also
for the diffusive regime. Our mostly analytical results
demonstrate that (i) for sufficiently weak correlations we
recover the results of the Hartree-Fock approximation, in
which the effective scattering potential generated by the
impurity is set by the long-ranged Friedel oscillations;
(ii) as we approach the Mott transition, however, these
oscillations are strongly suppressed as the charge screening
becomes more and more local, corresponding to a shorter
‘‘healing length’’; (iii) a combination of ‘‘healing’’ and
inelastic scattering strongly suppresses the Friedel oscilla-
tion effects even for moderate correlations.

Model and method.—We study the paramagnetic phase
of the disordered Hubbard model on a cubic lattice in d
dimensions,

H ¼ � X
hiji;�

tijc
y
i�cj� þX

i;�

"ini� þU
X
i

ni"ni#; (1)

where tij are the hopping matrix elements between nearest-

neighbor sites, cyi�ðci�Þ is the creation (annihilation) op-
erator of an electron with spin projection � at site i, U is

the on-site Hubbard repulsion, ni� ¼ cyi�ci� is the number
operator, and "i are the site energies. All energies will be
expressed in units of the clean half-bandwidth (Fermi
energy) D, and we approach the Mott metal-insulator
transition by increasingU at half filling (chemical potential
� ¼ U=2). To treat this model, we employ the slave boson
mean-field theory of Kotliar and Ruckenstein [7], which is
equivalent to the Gutzwiller variational approximation [8].
In this approach, the renormalized site energies vi and the
local quasiparticle weights Zi are variationally calculated
through the saddle-point solution of the corresponding
Kotliar-Ruckenstein slave boson functional [9]. This the-
ory is mathematically equivalent to a generalization of the
dynamical mean-field theory (DMFT) [10] to finite dimen-
sions, the statistical DMFT (statDMFT) [11] implemented
using a slave boson impurity solver [12].
At T ¼ 0 and in the uniform limit ("i ¼ 0), we have

v0 ¼ 0 and Z0 ¼ 1� u2, with u ¼ U=Uc [7]. The critical
interaction value Uc for which the Mott metal-insulator
transition occurs is characterized by the divergence of the
effective mass m? ¼ m=Z0, where m is the electron band
mass, indicating the transmutation of all electrons into
localized magnetic moments.
We consider first a generic weak disorder potential

(j"ij � D) and expand the resulting mean-field equations,
Eqs. (5) and (6) from [12], around the uniform solution. For
particle-hole symmetry Zi ¼ Z0 þOð"2i Þ and up to first
order in "i, the renormalized disorder potential, which is
the effective potential seen by the quasiparticles at the
Fermi level, reads (summation over repeated indices im-
plied throughout)

vi ¼ ½1� u2��1f"i � ½M�1ðuÞ�ij"jg: (2)

PRL 104, 236401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

0031-9007=10=104(23)=236401(4) 236401-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.236401


The matrix MðuÞ is the lattice Fourier transform of

MqðuÞ ¼ 1� 2gðuÞ½Uc�
ð0Þ
q ��1; (3)

where �ð0Þ
q is the usual static Lindhard polarization func-

tion [13] of the clean, noninteracting system, and

gðuÞ ¼ ð1þ uÞð1� uÞ2½2uþ u2ð1� uÞ��1: (4)

Charges rearrange themselves to screen the impurity
potential, and the local electronic density is given by ni ¼
1þ �ni, where

�ni ¼ �4gðuÞ½Ucð1� u2Þ��1½M�1ðuÞ�ij"j; (5)

with the same spatial structure as vi in Eq. (2).
We particularize now to a single impurity with energy "o

placed at the site o such that "i ¼ �i;o"o. Although ob-

tained for weak scattering, our analytical theory does
capture the qualitative trends even when the scattering is
not weak, as we show numerically; see Fig. 1.

Weak and strong coupling limits.—In the weak coupling
regime (u ! 0) there is no mass renormalization and
Eqs. (2) and (5) agree with the Hartree-Fock solution of
the Hubbard model, with a local (static) self-energy given

by �i ¼ Un0i , where n
0
i ¼ 1þ 2�ð0Þ

ij "j is the noninteract-

ing electronic density and �ð0Þ
ij is the lattice Fourier trans-

form of�ð0Þ
q . Even though the bare impurity potential "i is

localized in space, the density deviation �n0i displays long-

ranged Friedel oscillations encoded in �ð0Þ
ij . For example,

in a free electron gas we have �nðrÞ � cosð2kFrÞ=rd,
where r is the distance to the impurity and kF is the

Fermi momentum. Slowly decaying Friedel oscillations
are a direct consequence of the gapless nature of Fermi
liquid excitations. The renormalized disorder potential

reads vi ’ "i þU�ð0Þ
ij "j, implying that the electrons scat-

ter not only off the local bare impurity, but also off the
long-ranged potential generated by the Friedel oscillations.
As we approach the critical region (u ! 1), however, the

density deviation in Eq. (5) becomes

�ni ¼ � 2ð1� uÞ
Uc

�
"i þ 2

Uc

ð1� uÞ2½�ð0Þ��1
ij "j

�
; (6)

showing a suppression of the Friedel oscillations: the non-
local part of �ni is a factor ð1� uÞ2 smaller than the local
one. Therefore, the electronic density is significantly dis-
turbed only in the vicinity of the impurities, implying a
much shorter healing length; see Fig. 1(a). The suppression
of the slow spatial decay in �ni reflects the fundamental
tendency of quasiparticles to become localized as the
system approaches the Mott insulator.
The renormalized disorder potential, Eq. (2), is

vi ¼ �ð1� uÞU�1
c ½�ð0Þ��1

ij "j; (7)

and the screened impurity potential is just as nonlocal as
for small u, except for a reduction of the overall amplitude
scale. Therefore, we should not be guided by density
fluctuations alone, which are indeed healed very effec-
tively. However, we notice that vi goes to zero linearly at
all lattice sites at the transition, signaling a complete
suppression of disorder by interactions [14].
To obtain the leading energy correction of Zi, we have to

expand the mean-field equations up to second order in "i.
At intermediate values of the interaction, deviations in the
quasiparticle weights �Zi ¼ Zi � Z0 also show Friedel-
like oscillations. Close to the Mott transition, �Zi displays
a leading exponential decay from the impurity site, since
all additional terms describing its long-range oscillations
are of higher order in ð1� uÞ; see Fig. 1(b) and Eq. (8)
below (the details of the calculation will be presented
elsewhere). A finite impurity potential tends to push the
site occupation away from half filling, thus reducing the
tendency to form a local moment and rendering the given
site locally more metallic by increasing Zi. As spatial
correlations grow, this ‘‘metallization’’ of the correlated
metal tends to spread out away from the impurity, thus
creating metallic ‘‘puddles’’ [round darker region around
the peak in Fig. 1(b)] in an almost-localized host. A some-
what similar result emerges in the t-t0-J model, in which an
impurity induces a local staggered magnetization in its
vicinity [15,16] whose spatial extent also increases with
correlations. The critical behavior of �Zi is captured by our
analytical expressions, and we can show that, for d � 2
and rio=� � 1,

�Zi � 1� u

U2
c

�
�ð1�dÞ=2

2ð1þdÞ=2�ðd�3Þ=2 e
�rio=� � 4ð1� uÞ3

� ½�ð0Þ��1
io

�
"2o; (8)

FIG. 1 (color online). (a) Electronic density deviations �ni ¼
ni � 1 (see text) displaying characteristic Friedel oscillations.
From top to bottom we havem=m? ¼ 1:00 and 0.30. The Friedel
oscillations appear here as crosses because of the underlying
Fermi surface anisotropy [26]. As we enter the strongly corre-
lated regime, these oscillations are suppressed, similar to the
healing effect found in Ref. [25]. (b) Quasiparticle weight
deviations �Zi ¼ Zi � Z0. From top to bottom we have
m=m? ¼ 0:85 and 0.08. While for moderate values of interac-
tions �Zi also displays Friedel oscillations, it has a leading
exponential decay close to the Mott transition. Here, we have
used a 30� 30 square lattice with periodic boundary conditions
and "o ¼ �D. The color scales encode only the positive values
of both �ni and �Zi.
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where rio ¼ jri � roj, z is the coordination number, and

� ¼ ½2zð1� uÞ��1=2 plays the role of a correlation length.
This correlation length diverges at the transition with a
mean-field exponent 1=2. Previous studies on the interface
of a strongly correlated metal and a Mott insulator [17,18],
which use techniques similar to ours, also find an analo-
gous leading exponential decay of the quasiparticle weight
upon entering the Mott insulator from the metal. In those
studies, however, the oscillating terms of Eq. (8) seem to
have been overlooked.

Leading finite T corrections for transport and inelastic
cutoffs.—Wewould now like to go beyond T ¼ 0 and study
the behavior of the leading temperature corrections to the
resistivity �ðTÞ as a function of the correlations. We focus
henceforth only on 2D systems, since, in the weakly corre-
lated regime, electron scattering by Friedel oscillations
leads to a non-Fermi-liquid linear temperature correction
to �ðTÞ [6,19] in the ballistic regime.

The transport scattering rate is given by

��1
tr ð"Þ ¼ nimpm

Z 2�

0

d�

2�
jTqj2ð1� cos�Þ; (9)

where nimp is the impurity concentration, Tq is the Fourier

transform of the T matrix, q ¼ 2k sin�=2 is the transferred
momentum, and � is the scattering angle. To perform the
calculation analytically, we assume henceforth a free elec-
tron dispersion " ¼ k2=2m, since we do not expect quali-
tative changes if a different dispersion is used [20]. Up to
first order in the impurity potential "o, the T matrix is
simply given by the renormalized disorder potential vi

[Eq. (2)]. The scattering time is given by the average �tr ¼R
d"�trð"Þf0ð"Þ, where f0ð"Þ is the derivative of the Fermi

distribution function.
In our slave boson mean-field theory, the electronic self-

energy is purely real [7] and describes only the elastic
scattering of the electrons off a temperature-dependent
screened impurity potential. However, this scheme should
really be regarded as a variational calculation of the qua-
siparticle parameters within our statDMFT procedure. In a
fuller treatment, there is also an imaginary part in the self-
energy, reflecting inelastic effects. For the purposes of
examining the leading perturbative effects of impurity
scattering, the imaginary part can be computed in the
uniform system, where it emerges naturally in the context
of local Fermi liquid theories like DMFT [10,21] and is
given by

	ðTÞ ¼ �ðuÞTFðT=TFÞ2; (10)

where TF is the Fermi temperature and the function �ðuÞ
has the following limits:�ðuÞ � u2 for small u and�ðuÞ �
ð1� uÞ�2 � ðm?=mÞ2 close to the Mott transition. These
limits can be understood from the fact that in the weakly
correlated regime inelastic scattering effects are perturba-
tive, whereas in the strongly correlated regime we recover
the well-known Kadowaki-Woods relation [21], observed

in several strongly correlated systems, and which holds
within the DMFT picture we use.
There are two leading contributions from inelastic scat-

tering. The first is a bulk one, present even in the clean
limit, given by ��1

in ðTÞ ¼ 
	ðTÞ, where 
 is a geometrical

factor depending on the band structure used in the DMFT
calculation [22]. ��1

in ðTÞ simply adds to ��1
tr ðTÞ in Eq. (9)

through Matthiessen’s rule, since we consider very dilute
impurities. In addition to this, a finite imaginary part also
cuts off the leading nonanalyticities of the elastic scattering
off Friedel oscillations [6,24]. This is taken into account in

the calculation of�ð0Þ
q , considering that the electron energy

now has an imaginary part given by 	ðTÞ. The calculation
of �ð0Þ

q in the presence of inelastic broadening is carefully
discussed in Ref. [24] for the 2D electron gas, and we use

the analytical form of �ð0Þ
q as obtained there.

The final form of ��1
tr ðTÞ, valid for T � TF, reads

��1
tr ðTÞ ¼ ��1

0 A2ðuÞ
�
1þ 2

T

TF

�ðuÞwðT; 	ðTÞÞ
�
þ 
	ðTÞ;

(11)

where

wðT; 	Þ ¼
Z þ1

�1
dx

4
sech2

�
x

2

�
Re

�
ln�

�
2�

�þ 	ðTÞ
T þ ix

��

þ 1

2
lnð2�Þ þ 	ðTÞ

2�T
ln

�
TF

2�T

�
; (12)

AðuÞ ¼ gðuÞfð1� u2Þ½�ð"FÞUc þ gðuÞ�g�1; (13)

�ðuÞ ¼ 2�ð"FÞUc½�ð"FÞUc þ gðuÞ��1; (14)

��1
0 is the zero-temperature impurity scattering rate, �ð"FÞ

is the clean electronic density of states at the Fermi level,
and �ðzÞ is the Gamma function. The function AðuÞ con-
trols the amplitude of the scattering rate from the screened
impurity potential. In the weakly interacting regime
AðuÞ � 1, whereas in the critical region AðuÞ � ð1� uÞ
due to a vanishing vi at U ¼ Uc, Eq. (7). The function
�ðuÞ gives the strength of the leading temperature correc-
tion. It goes as U for weak correlations, indicating that the
temperature corrections only arise in the presence of
electron-electron repulsion, and saturates to 2 close to the
Mott transition. The function wðT; 	Þ encodes the depen-
dence of the leading temperature correction on 	ðTÞ.
For 	ðTÞ ¼ 0, only elastic scattering is present and we

obtain wðT; 0Þ ¼ 0:5. Plugging this into Eq. (11), we see
that the linear in T correction occurs for all u > 0 [6] and is
limited only by the overall amplitude AðuÞ, which is in
accordance with Eq. (7).
However, for a finite 	ðTÞ, the linear region of �ðTÞ

considerably narrows as we enter the correlated regime. As
there are two leading contributions from inelastic scatter-
ing, we analyze their individual effects separately by defin-
ing two threshold temperatures bounding the non-Fermi-
liquid region from above. They are obtained by comparing
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the purely elastic ��1
tr ðTÞ [	ðTÞ ! 0 in Eq. (11)] with two

other scattering rates: one in which we let 
 ! 0 (T?
imp)

and the other in which we set wðT; 	Þ ! wðT; 0Þ (T?
bulk) in

Eq. (11). We interpolate the function �ðuÞ using DMFT
with both quantum Monte Carlo and iterated perturbation
theory [23] as impurity solvers. We use 
 ¼ 10, a value
also in agreement with DMFT calculations [23]. As we can
see from Fig. 2, T?

bulk is strictly smaller than T?
imp. This is

because T?
bulk is not only proportional to the infinitesimal

impurity concentration nimp [or, equivalently, to ð�0"FÞ�1]

but, in the critical region, T?
bulk � ðm=m?Þ4, whereas

T?
imp � ðm=m?Þ2. Thus, for any degree of correlations, it

is T?
bulk which sets the upper bound on the linear in T region

of �ðTÞ. From Fig. 2 we see that, even for very moderate
correlations, e.g., form=m? � 0:9, T?

bulk � 10�2TF, and for

m=m? � 0:6, already T?
bulk � 10�4TF. Thus, the non-

Fermi-liquid region is limited to very low temperatures.
Ultimately, as the linear in T regime is also bounded from
below by a crossover to the diffusive regime, the ballistic T
interval in which these elastic corrections dominate may
not be present at all.

Conclusions.—We presented a detailed, mostly analyti-
cal, model calculation of the effects of a single nonmag-
netic impurity placed in a correlated host. We found that
strong correlations tend to reduce the effects of the long-
range part of the Friedel oscillations, and our work pro-
vides clear analytical insight into how this happens. It
should be possible to directly test our quantitative predic-
tions by means of current generation scanning tunneling
microscopy methods, shedding new light on the behavior
near the Mott metal-insulator transition. It is noteworthy
that impurities placed in d-wave superconductors also
produce slowly decaying perturbations in real space, re-
flecting their gapless nature, through a mechanism closely

related to Friedel oscillations in normal metals. Recent
work by Garg et al. [25] shows, by using a theoretical
approach very similar to ours, that in this system strong
correlations also lead to spatial healing. We believe that
both phenomena have a closely related origin, and our
results strongly suggest that the healing effect is a more
general property of correlated metals close to the Mott
transition, not an effect specific to cuprates or the super-
conducting state.
This work was supported by FAPESP through Grants

No. 04/12098-6 (E. C. A.) and No. 07/57630-5 (E.M.),
CAPES through Grant No. 1455/07-9 (E. C. A.), CNPq
through Grant No. 305227/2007-6 (E.M.), and by NSF
through Grant No. DMR-0542026 (V.D.).

[1] G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).
[2] P. A. Lee et al., Rev. Mod. Phys. 57, 287 (1985).
[3] E. Miranda et al., Rep. Prog. Phys. 68, 2337 (2005).
[4] J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
[5] M. F. Crommie et al., Nature (London) 363, 524 (1993).
[6] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B

64, 214204 (2001).
[7] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57,

1362 (1986).
[8] W. F. Brinkman et al., Phys. Rev. B 2, 4302 (1970).
[9] E. C. Andrade et al., Phys. Rev. Lett. 102, 206403 (2009).
[10] A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).
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FIG. 2 (color online). Limiting temperatures to the linear in T
regime of the resistivity of a 2D electron liquid on a log-log
scale, calculated under two different assumptions (see text) for
two values of the parameter �ð"FÞUc [27]. T?

imp is almost

independent of �ð"FÞUc and only one curve is shown here.
T?
bulk is the dominating cutoff above which the linear behavior

is lost. Here, we have used �0"F ¼ 10, corresponding to a weak
impurity potential.
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