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We investigate the effects of weak to moderate disorder on the T ¼ 0 Mott metal–insulator transition in

two dimensions. Our model calculations demonstrate that the electronic states close to the Fermi

energy become more spatially homogeneous in the critical region. Remarkably, the higher energy states

show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity

to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of

disordered Mott systems.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The observation of a metal–insulator transition in high-
mobility 2d electron systems at zero magnetic field has sparked
renewed interest in this type of transition [1]. In these systems,
electron–electron interactions represent the largest energy scale
in the problem [1]. Further evidence for the crucial role of
electronic correlations has come from complementary experi-
ments [2,3] reporting a substantial mass enhancement close to
the metal–insulator transition. Taken together, these experimen-
tal results stress the importance of the ill-understood effects of
disorder in strongly correlated electronic systems [4].

In one of the first studies of its kind, Tanasković et al. have
investigated the interplay of strong correlations and disorder
using a dynamical mean-field theory (DMFT) [5] approach [6]. The
DMFT approach to disordered systems treats correlations on a
local level by solving the embedded-atom strongly correlated
Anderson impurity problem in the self-consistently determined
fixed bath of the other electrons. One is thus forced to consider an
ensemble of single-impurity actions, one for each lattice site.
Remarkably, Tanasković et al. found that very strong site disorder
screening emerges precisely in the vicinity of the Mott metal–in-
sulator transition [7]. This effect can be traced back to the pinning
of the single-impurity Kondo resonances to the Fermi level, which
acts to suppress the effective randomness.
ll rights reserved.

vljević).
Motivated by this striking result, we extended their work to
finite dimensions. To treat both strong correlations and disorder in
a non-perturbative fashion at T ¼ 0, we use a generalization of the
DMFT, the statistical DMFT (statDMFT) [8], implemented using a
slave boson impurity solver [9]. This approach is equivalent to the
description of the effects of disorder through a Gutzwiller-type
wave function [10,11], which in the clean case realizes the
Brinkman–Rice scenario of the Mott transition [12]. The statDMFT
method retains the local treatment of electronic correlations.
However, in contrast to the infinite-dimensional DMFT approach,
here each strongly correlated site sees a different bath of electrons,
reflecting the strong spatial fluctuations of their immediate
environment. We find that, concomitant to a strong pinning
effect, additional effective disorder is also generated through an
increasingly broader distribution of quasi-particle weights. Their
interplay leads to a non-trivial landscape in energy space: the
proximity to the Mott transition acts to suppress density of states
fluctuations close to the Fermi level, while at the same time
enhancing them at higher energies.
2. Strongly correlated theory

We focus on the disordered Hubbard model

H ¼
X
i;s
eic
y

iscis � t
X
/ijS;s
ðcyiscjs þ h:c:Þ þ U

X
i

nimnik; ð1Þ

where cyisðcisÞ is the creation (annihilation) operator of electrons
with spin projection s on site i, is the nearest-neighbor hopping
amplitude, U is the on-site Hubbard repulsion, nis ¼ cyiscis is the
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number operator, and the site energies ei are uniformly dis-
tributed in the interval ½�W=2;W=2�, where W is the disorder
strength. We work at half filling (chemical potential m ¼ U=2) on
an L� L square lattice with periodic boundary conditions. All
energies will be expressed in units of the clean Fermi energy (the
half-bandwidth D) EF ¼ 4t.

We treat the Hamiltonian of Eq. (1) in its paramagnetic phase
within the statDMFT [8]. This theory is exact in the non-
interacting limit and reduces to the standard DMFT in the absence
of disorder. Unlike the DMFT, however, it incorporates Anderson
localization effects. We start by writing an effective action (in
imaginary time) for a given site i, with the simplification that we
neglect all non-quadratic terms in the local fermionic operators
except for the local U-term

SðiÞeff ¼
X
s

Z b

0
dtcyisðtÞð@t þ ei � mÞcisðtÞ

þ
X
s

Z b

0
dt
Z b

0
dt0cyisðtÞDiðt� t0Þcisðt0Þ

þ U

Z b

0
dtnimðtÞnikðtÞ: ð2Þ

The site i is connected with the rest of the lattice through the bath
(or ‘‘cavity’’) function DiðtÞ, which in statDMFT (but in contrast to
DMFT) varies from site to site and thus exhibits strong spatial
fluctuations.

The effective action in Eq. (2) is precisely the action of an
Anderson impurity model [13] embedded in a sea of conduction
electrons described by DiðtÞ. Therefore, this approach maps the
original Hubbard Hamiltonian in Eq. (1) onto an ensemble of
single-impurity Anderson Hamiltonians [14]. The local i-site
Green’s function, calculated under the dynamics dictated by the
effective action in Eq. (2), can be written as (io is a Matsubara
frequency)

Gloc
i ðioÞ ¼

1

ioþ m� ei � SiðioÞ � DiðioÞ
; ð3Þ

which also serves as a definition of SiðioÞ, the i-site self-energy. It
is important to point out that within statDMFT the electronic self-
energy SiðioÞ is still local, albeit site-dependent.

The bath function DiðioÞ can be viewed as the Weiss field of
this mean-field theory, here elevated to a full function of
frequency or time. It is determined through a self-consistency
condition that demands that the Green’s function Gloc

i ðioÞ
obtained from the effective action in Eq. (2) be equal to the
diagonal (local) part of the full lattice Green’s function

GiiðioÞ ¼
1

io� e�H0 �RðioÞ

� �
ii

; ð4Þ

where RðioÞ and e are site-diagonal matrices ½RðioÞ�ij ¼ SiðioÞdij,
½e�ij ¼ eidij and H0 is the clean (W ¼ 0) and non-interacting (U ¼ 0)
lattice Hamiltonian. In general, this step involves the inversion of
the frequency-dependent matrix within brackets in Eq. (4).

It is worthwhile to point out that the statDMFT approach
requires a massive numerical effort since it is necessary to
solve a single-impurity problem for every lattice site as well to
perform the inversion implied by the self-consistency condition.
On the other hand, it provides access to entire distribution
functions and accounts for spatial correlations between local
quantities.

To find SiðioÞ, we need to solve the auxiliary single impurity
problems for a given set of DiðioÞ. For this task, we have used the
four-boson mean-field theory of Kotliar and Ruckenstein [9] at
T ¼ 0, which is equivalent to the well-known Gutzwiller varia-
tional approximation. In practice, we need to solve a pair of non-
linear equations for the site-dependent Kotliar–Ruckenstein slave
boson amplitudes ei and di [9,6]

2

Z 1
�1

do
2p

Gloc
i ðioÞ ¼ Zið1� e2

i þ d2
i Þ; ð5Þ

Z 1
�1

do
2p DiðioÞGloc

i ðioÞ ¼
Zieiðei � Zivi � mÞ

@Zi=@ei
; ð6Þ

where

Zi ¼
2ðei þ diÞ

2
ð1� e2

i � d2
i Þ

1� ðe2
i � d2

i Þ
2

; ð7Þ

and

Zivi ¼ ei � mþ
Udi

@Zi

@ei
di þ

@Zi

@di
ei

� � @Zi

@ei
: ð8Þ

Eqs. (5)–(6) involve the local i-site Green’s function Gloc
i ðioÞ. In

the Kotliar–Ruckenstein theory, the i-site self-energy SiðioÞ is
given by

SiðioÞ ¼ ð1� Z�1
i Þioþ vi � ei þ m; ð9Þ

which, when plugged into Eq. (3) yields

Gloc
i ðioÞ ¼

Zi

io� Zivi � ZiDiðioÞ
: ð10Þ

It is clear that Zi has the physical interpretation of a quasi-particle
weight (wave function renormalization). It also renormalizes the
hybridization function, thus setting the local Kondo temperature
[15–17]. Furthermore, from Eq. (9) we see that vi can be viewed as
a renormalized on-site disorder potential

vi ¼ ei þSið0Þ � m: ð11Þ

We numerically solved the disordered Hubbard model with
statDMFT, using the Kotliar–Ruckenstein theory as the impurity
solver, for several lattice sizes up to L ¼ 50. For every ðU;WÞ pair
we typically generated around forty realizations of disorder. We
carefully verified that for such large lattices, all our results are
robust and essentially independent of the system size (see, e.g.,
the inset of Fig. 3).
3. The disordered Mott transition

According to the scaling theory of localization, any amount of
disorder drives a system with dimension equal to or smaller than
two to an insulating phase [18]. However, this result was obtained
in the absence of electron–electron interactions. ln the last few
years, strong numerical evidence has been obtained indicating
that interactions can act to enhance the conducting properties of
2d electronic systems [19–21]. Moreover, the stability of a 2d
metal with respect to weak-localization corrections has been
investigated by Punnoose and Finkelstein [22] in very careful
recent work. These authors have demonstrated that any 2d metal
remains stable with respect to sufficiently weak disorder due to
additional (anti-localizing) interaction corrections. Note, however,
that both the weak-localization and the corresponding interaction
corrections are manifested only through a very weak, logarithmic
dependence on the system size. Such subtle finite size effects are
not visible for the very weak (renormalized) disorder we deal with
in this work. Nevertheless, based on the very convincing
considerations of Punnoose and Finkelstein, the stability of a 2d
metal is beyond immediate doubt and these issues are not of
relevance for the questions we focus on in this paper.

The low energy behavior on the metallic side of the transition
is characterized by the distribution of the local quasi-particle
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Fig. 1. Strength of the renormalized site energy disorder, as given by the standard

deviation sðvÞ of PðvÞ, normalized by its non-interacting value (see text for

definition of v). Close to the Mott transition, the disorder screening remains strong

even for moderate values of disorder. Results are shown for L ¼ 20. In the inset we

show the typical (Ztyp) and average (Zav) values of the local quasi-particle weight Zi

as functions of the interaction U. The Mott transition is identified by the vanishing

of Ztyp . We note that Zav is finite at Uc indicating that a fraction of the sites remains

nearly empty or doubly occupied. Results are shown for L ¼ 20 and W ¼ 2:25.
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weight Zi. Following previous studies of the disordered Mott
transition [8,6,23], we choose the typical value of Zi, here defined
through the geometrical average Ztyp ¼ expf/lnZiSg, as the order
parameter of the transition. This quantity vanishes linearly at a
critical value of interaction Uc � UcðWÞ at which the Mott
transition takes place, marking the transmutation of most
itinerant electrons into local magnetic moments (see the inset
of Fig. 1). Because random site energies tend to push the local
occupation away from half filling, UcðWÞ is an increasing function
of the disorder strength W. A more complete discussion of the
phase diagram can be found in Ref. [24]. We also stress that the
average value of the quasi-particle weight Zav is small yet finite at
the Mott transition (inset of Fig. 1), indicating that some sites
remain either empty (ei ¼ 1) or doubly occupied (di ¼ 1) and do
not give rise to localized magnetic moments.
v

Fig. 3. Probability distribution function PðvÞ of the renormalized site energy v. As

we move towards the Mott transition, disorder screening takes place and PðvÞ

becomes increasingly narrower. Results are shown for L ¼ 50 and W ¼ 2:25. The

inset illustrates how for such large lattices our results for PðvÞ are essentially

independent of the system size: results are shown for L ¼ 20, full line, and L ¼ 50,

dashed line at W ¼ 2:25 and U=Uc ¼ 0:93.
4. Particle–hole symmetry and strong disorder screening

Using the fact that in the current statDMFT approach the lattice
problem is mapped onto an ensemble of auxiliary Anderson
impurity problems, we can characterize the approach to the Mott
transition by a steady decrease of the local Kondo temperature Ti

K

(Ti
KpZiÞ. Moreover, the renormalized disorder potential vi can be

thought of as the position of the local Kondo resonance energy.
In the DMFT limit ðd-1Þ, each site has many neighbors and

thus is embedded in the same (self-averaged) environment
described by DavðoÞ. In this regime, as long as DavðoÞ is
particle–hole symmetric, we find perfect disorder screening close
to the Mott transition [6]. This happens because, as we increase U

towards UcðWÞ, we approach the Kondo limit, Zi-0, causing vi

(the Kondo resonance) to be ‘‘pinned’’ to the Fermi energy [25].
However, within the statDMFT approach, DiðoÞ fluctuates

strongly from site-to-site and is not locally particle–hole sym-
metric (see Fig. 2). For this reason, we expect that vi will also have
a contribution which is proportional to Re½Dið0Þ�. Therefore, we
have no guarantee that a similar mechanism of disorder screening
will persist close to the critical point in 2d. Surprisingly, for small
and moderate disorder ðWtUcÞ, we do get a very strong disorder
screening close to the Mott metal–insulator transition (see Figs. 1
and 3).
5. Mott droplets

The site-to-site fluctuations in the hybridization function
encode spatial correlations between the physical quantities,
implying, for example, that the value of the local quasi-particle
weight at a given site depends on the quasi-particle weight values
at the neighboring sites. Therefore, due to rare disorder config-
urations, it is possible to find regions containing sites in which
Zi5Ztyp (red regions in Fig. 4). Since the approach to the Mott
insulator corresponds to Z-0, such regions with Zi5Ztyp should
be recognized as ‘‘almost localized’’ Mott droplets (consisting of
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Fig. 4. Spatial distribution of the of the local susceptibility wi�Z�1
i normalized by

its typical value wtyp. From bottom to the top we have U=Uc ¼ 0:73; 0:87; 0:96. The

color scale is logarithmic in order to stress that, as we approach the critical point,

we have the formation of regions in which wibwtyp (localized magnetic moments)

and wi5wtyp (Anderson insulator droplets). Results are shown for W ¼ 2:25 and

L ¼ 50.
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Fig. 5. Distribution of the quasi-particle weight divided by its typical value for

W ¼ 2:25 and UcðWÞC3:7. As we approach the critical point, PðZ=ZtypÞ becomes

increasingly broader, even though the bare disorder strength W is kept fixed.

Results are shown for L ¼ 20.
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localized magnetic moments [26–28]) inside the strongly
correlated metallic host. Within our Brinkman–Rice picture,
each local region provides [8,12] a contribution wi�gi�Z�1

i to
the spin susceptibility or the Sommerfeld coefficient, respectively.
The local regions with the smallest Zi thus dominate the
thermodynamic response and will ultimately give rise to an
Electronic Griffiths Phase in the vicinity of the disordered Mott
metal–insulator transition [24,29,30].
The Mott droplets have a direct influence on the probability
distribution function PðZ=ZtypÞ, since they give rise to a low-Z tail,
contributing to the fact that PðZ=ZtypÞ actually broadens as we
approach the Mott metal–insulator transition for a fixed W, as
shown in Figs. 4 and 5.

Surely, there is also a contribution to the broadening of
PðZ=ZtypÞ coming from the high-Z tail originating from those sites
with ZibZtyp. Such sites retain a finite Zi at the transition and are
nearly empty or doubly occupied, giving rise to Anderson
insulating regions (blue regions in Fig. 4). The coexistence of
localized magnetic moments, and nearly empty or doubly
occupied sites close to the critical point is characteristic of a
two-fluid behavior, as discussed in Ref. [23]. Nevertheless, this
interesting phenomenon is not relevant for the present analysis,
since the major contribution to the energy-resolved inhomogene-
ities, discussed in the next section, as well as to the thermo-
dynamic response, comes from the Mott droplets.
6. Energy-resolved inhomogeneities

From the above discussion, it is clear that the behaviors of PðvÞ

and PðZ=ZtypÞ near the Mott metal–insulator transition are quite
distinct. While the former exhibits strong disorder screening
(Fig. 3), the latter suggests that the disorder is actually increasing
(Fig. 5). This dichotomy gives rise to an energy-dependent effective

disorder, which manifests itself, for example, in the spatial
structure of the local density of states. The local density of states
is defined as riðoÞ ¼ ð1=pÞIm½Giiðo� i0þÞ�, where the lattice
Green’s function was given in Eq. (4), and has the following
expression within our Brinkman–Rice picture

GiiðoÞ ¼
1

Z�1o� v�H0

� �
ii

; ð12Þ

where Z and v are site-diagonal matrices such that ½Z�ij ¼ Zidij,
½v�ij ¼ vidij. Therefore, the frequency-dependent effective disorder
potential ‘‘seen’’ by the quasi-particles at energy o can be defined
as

eeff
i ðoÞ ¼ vi �

o
Zi
: ð13Þ

In our Brinkman–Rice scenario of the Mott transition, the
quasi-particle bandwidth is reduced by Ztyp as U-Uc . To monitor
the behavior within the quasi-particle band, we therefore
introduce a rescaled frequency o� ¼ o=Ztyp, which we will keep
constant as we approach the transition. In Fig. 6, we show
topographic maps of the local density of states for one specific
realization of disorder. Because of strong disorder screening, vi �

0 close to the critical point. Thus, if the system is examined at the
Fermi energy (o ¼ 0), it becomes more and more homogeneous as
the transition is approached. At higher energies (o�a0), however,
the fluctuations in Ztyp=Zi come into play. Since they are very
pronounced close to the Mott transition, we instead find a strong
enhancement of the spatial inhomogeneity.

This result is surprisingly reminiscent of recent spectroscopic
images on doped cuprates [31]. Our theory, which focuses on local
(Kondo-like) effects of strong correlations (while neglecting inter-
site magnetic correlations) and does not include any physics
associated with superconducting pairing, strongly suggests that
such energy-resolved inhomogeneity is a robust and general
feature of disordered Mott systems. Indeed, recent results
corroborate this picture of an energy-resolved strong-correlation
driven disorder screening [32].
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Fig. 6. Spatial distribution of the local density of states normalized by its clean and non-interacting value for one given realization of disorder and two distinct values of

interaction: (a) U=Uc ¼ 0:87 and (b) U=Uc ¼ 0:96, where UcC3:7. We have o ¼ 0 in the bottom figures and o=Ztyp ¼ 0:1 in the top ones. At the Fermi energy, the local

density of states distribution becomes homogeneous as we approach the Mott transition. Conversely, if we move even slightly away from the Fermi energy, the distribution

becomes in fact more inhomogeneous close to Uc . Results are shown for L ¼ 50 and W ¼ 2:25.
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7. Conclusions

We have discussed the results of a Brinkman–Rice approach to
the disordered Mott transition. A striking feature that is apparent
in this scenario is the different behaviors of the effective site
disorder and the quasi-particle weights as the transition is
approached. Whereas randomness in the former is suppressed,
the latter becomes extremely singular and broad on the way to the
Mott insulator. The end result of this dichotomy is a non-trivial
energy-space landscape, which is signaled by an energy-depen-
dent inhomogeneity.
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