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Abstract

I propose that the phenomenon of “small moment magnetism” observed in some heavy fermion compounds is the
consequence of a weak admixture of ordered excited magnetic f-shell states in an essentially Kondo quenched ground state.
The magnitude of the dynamically generated admixture determines the size of the magnetization.

Heavy fermion materials continue to be an extraor-
dinarily rich source of puzzling collective behavior
in condensed matter physics {1]. Several of these
compounds exhibit magnetic order with two different
overall trends. In most materials, the transition into
the ordered state leads to the formation of an anti-
ferromagnetically ordered moment, whose magnitude
is comparable with the free ion value. However, in a
few other compounds the magnetic state is character-
ized by a minute value of the ordered moment: UPt;
(w = 0.02up) [2], URuSi; (u = 0.04up) [3],
CeRu,Si; (1 < 0.001up) [4], UPd3 (u ~ 0.01up)
[5], CeAl; (1 ~ 0.05ug) [6], for example.

This peculiar magnetic state shows some other
anomalous properties. In URu,Si;, application of
an external magnetic field strongly suppresses the
low temperature value of the moment while leaving
Ty largely unaffected [7]. Such behavior is rather
anomalous since, in a conventional magnet, these two
quantities are expected to scale with each other. In
all of the above cases, except URu;Sis, the transition
into the ordered state does not lead to noticeable ef-
fects on thermodynamic or transport properties. In the
case of URu;Si,, however, large jumps in the specific

heat [8], the nonlinear susceptibility [9] and resis-
tivity [ 10] are observed. It is not at all clear how the
appearance of such a small order parameter can lead
to these large jumps. Attempts to explain this behav-
ior have usually involved some multi-spin operator
as the principal order parameter [9,11]. However,
recent neutron scattering experiments in a magnetic
field seem to be inconsistent with a multi-spin order
parameter and instead point to a second order phase
transition into a state with magnetic dipolar order [7].

Since this is a trend found in a variety of com-
pounds, any microscopic theory should satisfy two
criteria: (1) It should explain the origin of the small
scale governing the size of the moments and (2) one
should not have to fine tune the bare parameters of the
model in order to generate this small scale. I suggest
that mixed valence is essential to the understanding
of the small moment enigma. Recently, Barzykin and
Gor’kov [12] have analyzed this possibility within a
macroscopic Landau functional description. I will de-
velop a microscopic description where it is essential
that the lowest f-multiplets of each valence state are
both degenerate. Most past studies of heavy-fermion
magnetism have focused on an Anderson lattice model
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description of valence fluctuations between a mag-
netic configuration and one or two nondegenerate ones
[ 13]. However, the physics of a Uranium ion is likely
to be better described by a model that includes fluc-
tuations between two magnetic configurations (most
likely, f2(J =4) = f3(J =9/2)). The case of Ce
is less clear. In the past, a model based on f'(J =
5/2) = f%(J = 0) fluctuations has been widely em-
ployed [ 14]. However, there is spectroscopic evidence
that contributions from f2(J = 4) states are also very
important [15].

A general model describing valence fluctuations be-
tween two Hund’s rule coupled magnetic configura-
tions can be written as [16,17]

H= Ze(k)ckacka + ZEI liJiMy) (G M|
iM

+ VY (@, Mi|My)cl,| i)y My) (jJaMs| + Hec.).

(1)

The first term describes a band of uncorrelated elec-
trons with angular momentum quantum numbers J,
and a. (J1, M) and (J2, M3) are the corresponding
quantum numbers of the f* and f**! valence states,
whose energies are E; and E; = 0, respectively.
The last term describes the valence fluctuation pro-
cesses at site j with amplitude V and (o, M||M,) =
(Jo, J1; @, M1]J2; M3) is a Clebsch-Gordan coeffi-
cient. The projection operators are actually Hubbard
operators in the restricted Hilbert space of definite J;
and J;. Such models have been studied before in the
context of Tm and other rare-earth and actinide ions
[16]. The behavior of its one-impurity version has
been clarified by an exact solution found for the case
Jo = 1/2 [17]. In this case, the ground state of the
system is always magnetic.

The situation in real materials is complicated by
crystal field effects which lift the degeneracy of these
configurations. In this case, one can choose to work
within the lowest-lying multiplets of each configura-
tion in order to describe the low-energy processes. 1
will assume that the configurations f* and f"*! and
the conduction electron states have all been split into
doublets and will confine the analysis to these low-
energy manifolds. Appropriate point-group coupling
coefficients should then be used. It is essential for the
description given in this paper that both configura-

tions be degenerate. One ground doublet is guaranteed
by Kramers theorem and I will assume that the other
crystal field ground multiplet is also a doublet. These
assumptions are consistent with the point-group struc-
ture of the known small moment magnets. This model
should be regarded as the minimal model capable of
describing valence fluctuations between two degener-
ate configurations. This doublet-doublet model can be
written explicitly as

H= Ze(k)c}:acka + ZEI lio){jel

ka o
+VZ(CJT|JT 4+l G — [ +He),
(2)

where Jused My — o=T|=t and M; - M = +.

To make further progress, it is convenient to em-
ploy a modified version of the slave boson formal-
ism previously used to study the infinite-U Ander-
son model [ 18]. In the present case, additional boson
fields have to be introduced in order to describe the
degenerate f"+!-configuration. The valence changing
Hubbard operators can be written as

oy (M| — flbiy (3)

and an additional constraint has to be imposed on the
auxiliary f- and b-fields, guaranteeing the occupation
of each site by one and only one particle. This is most
easily achieved in a Lagrangian language [18]

L=Y cldrci,+d fLofie+ > blydrbyy +H
ka Jo M

+Zu\ () (Z fﬂ,+Zbe,M )

(4)
where
H= Ze(k)c;mc,m + ZElf;Uij'
+VZ( a, 0'|M> Cja 10b1M+H'C') (5)

and A(7) is a Lagrange multiplier field.
The Lagrangian of Eq. (4) is invariant under the
local gauge transformation
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bjM — Cw’(T)bjM,
fja - Ciej(f)fja,
/\j—>)lj—8,0j(r). (6)

Although an overall phase of the b-fields can be
gauged away by Eq. (6), phase differences between
its different components are physical and cannot be
eliminated. Such phases do affect, for example, the
total f-spin operator.

To investigate possible magnetic states of the sys-
tem described by the Lagrangian of Eq. (4), I look
for mean field solutions with a spontaneous staggered
magnetization. These arise from a condensation of the
bosonic fields b;,

(bm) =V Y _(a,a|M)(fioCia). (7

A finite value of the above quantity measures the am-
plitude for admixture of the states within the f"*!
multiplet into the coherent ground state. It also acts
as a renormalization factor of the hybridization ma-
trix element V in Eq. (5), leading to the formation
of a lattice of spin dependent resonant scattering cen-
ters for the itinerant fermionic degrees of freedom. As
usual, a bona fide condensation of the quantities in
Eq. (7) is not possible, since it would violate a lo-
cal gauge symmetry, which cannot be spontaneously
broken [19]. However, symmetry does not preclude
the expectation value of the absolute value of the b-
fields (|bju,|) to be different from zero, since these
operators do not carry the gauge charge. Treatments
of magnetic states of this kind are very reminiscent
of previous Schwinger boson descriptions of quantum
magnetism [20].

I have investigated the stability of solutions which
exhibit a commensurate antiferromagnetic moment
and have found the following solution to be the only
stable one (I assume a bi-partite lattice structure and
Q= (mmm)): i(A) =€;— E; and

(bju) = 1r(1 + MeQR), (8)

The energy of the fermionic modes is givenby w = €
and by the roots of

(0 —€p)[(w—€])?— ()] —4VH(w—€]) =0,
(9)
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Fig. 1. Spectrum of the fermionic excitations of the dou-
blet-doublet model at the mean field level. The solid lines are the
three dispersive branches and the dashed one is the dispersionless
branch at €;.

where €7(k) = %[e(k) +7e(k+ Q)] and V= %Vr.
There is a dispersionless mode with energy e, corre-
sponding to one f-fermion that is left unhybridized at
each site. Fig. 1 shows the spectrum of fermions in the
magnetic Brillouin zone. Note that gaps are opened up
at the zone boundaries as in conventional spin density
wave spectra.

Assuming nesting in the conduction band €(k +
Q) = —e(k) and a constant density of states, one can
solve the mean field equations analytically. One finds
that, as 7 — 0 and for D > |E|| > poV?

€(T — 0) ~ 2777, (10a)
V(T =0) ~ De~|El/o0V" (10b)

where D is the half bandwidth and pp = 1/2D is the
density of states. Numerical solutions for 7 > 0 can
be easily obtained. The variational quantities 7 and €
vanish at a temperature T, = (2e‘//7r)‘~/(T =0).

Due to the presence of the € ; mode, the mean field
solution exhibits a zero point entropy Sy ~ 2In2.
This mode is expected to acquire dispersion and to
broaden into a fermionic band as fluctuation effects are
included, thus spreading the zero temperature entropy
over a finite temperature interval. This is natural since
fluctuations bring in inter-site correlations which are
not included in the mean field picture. The entropy
involved in the transition is small, of the order of r2.
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This is a consequence of the fact that most of the spin
entropy is contained in the dispersionless mode which
resides at €y = O at T = 0. This small transition entropy
is consistent with the behavior of all “small moment”
magnets except URu;Sis. I will comment on the latter
case below.

There are contributions to the staggered magneti-
zation of the system from both f-valence states and
the antiferromagnetically polarized conduction sea. At
T=0

(Spe) ~ [(3m/2) poVS) + $2172, (11)
(Sez) ~ (/2) poVS.r™. (12)

Here §i, 5> and S; are, respectively, the spin projec-
tions of the f", f"*!-configurations and of the con-
duction electrons along the z-axis of staggered mag-
netization, in the crystal field doublets. Because of the
factor poV in the S; and S, terms, the largest contri-
bution to the total staggered moment comes from the
f™*!-configuration. The latter is proportional to r?,
a measure of the degree of admixture of the excited
f™*1-configuration in the ground state. This is the cen-
tral result of this paper. The exponentially small, dy-
namically generated scale given by r? (Eq. (10b))
sets the size of the moment. This is the charge fluctu-
ation scale also present in the conventional Anderson
model. The fermionic excitations, on the other hand,
form an almost quenched Fermi sea and their contri-
bution is governed by the much smaller spin fluctua-
tion scale V. Note that the distinction between these
two different scales is rigorous and can be proved by
scaling ! .

It is unclear whether one should identify 7, with
the Néel temperature 7. A similar phase transition
occurs in the slave boson description of the infinite-
U Anderson model, where it is known to be spurious
[18]. The inclusion of fluctuation effects may cause
the phase transition to occur at a point where r still has
a finite albeit small value. In this case, the transition
would be induced by the usual thermal disordering of
the local spins.

To consider the effect of an applied magnetic field,
I assumed §; = S = 1/2 and S; = 1 and all the g-
factors to be equal to 1. It is now necessary to allow for

! For a thorough discussion of the distinction between these two
scales, see the second paper of Ref. [16].
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Fig. 2. Staggered magnetization of the doublet-doublet model ver-
sus temperature for different applied magnetic fields: h = upH =0
(solid line), # =5 x 10~3 (short-dashed line) and h =9 x 10~3
(long-dashed line). Model parameters are D = 2, pgV? = 0.25
and E 1= -1,

different values of the variational parameter r on the
different sub-lattices A and B (r; =rs and r_; =rp)

(bjm) = ru(1 + M2 Ry, (13)

Physically, this means that the coherent occupation of
the f**!-configuration at each site varies according to
whether it belongs to sub-lattice A or B. In contrast,
in a conventional antiferromagnet, the occupation of
the sites remains unaltered. Fig. 2 shows the behavior
of the staggered magnetization versus T, for different
applied magnetic fields # = ugH. The applied field
suppresses the staggered moment, especially at lower
temperatures, while the transition temperature is not
significantly affected. This is not the typical mean-
field behavior and is a consequence of the appearance
of the small scale €;. This anomalous behavior is in
good qualitative agreement with the results of Mason
et al. [7]. However, this has only been measured in
URu;Si,, which is precisely the compound with the
anomalous jump at the transition.

I would now like to comment on the effect of fluc-
tuations around the mean field theory. First, there are
fluctuations of the Lagrange multiplier field A(7).
These are responsible for enforcing the constraint of
one pseudo-particle per site at every point in time.
They are soft modes which are a consequence of the
gauge invariance introduced in the model by the slave
boson substitution of Eq. (3). They have a major role
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in lifting the degeneracy of the €; mode. Once rein-
stated, these fluctuations tend to cancel out most of
the zero point entropy of the € ; mode. This has the ef-
fect of turning the linear in 7 term in the free energy,
which originates from the zero point entropy, into a
quadratic one, further stabilizing the magnetic solu-
tion. Secondly, there are fluctuations in the by,-fields.
The fluctuations in the absolute value of the b-fields
are gapped, since the mean field theory is stable, and
are not expected to be essential at the lowest tem-
peratures. The remaining fluctuations are the internal
phase differences between the two components of by,
which are related to the spin orientation of the f™*1-
configuration. They therefore contribute to the disor-
dering of the staggered magnetization. In the present
doublet—-doublet model they are gapped, because rota-
tional symmetry is explicitly broken by the spin-orbit
interaction and crystal field effects. In a more realistic
treatment, the gap is given by the crystal-field excita-
tion energies which serve as a cutoff for these phase
fluctuations. As was discussed before, it is possible
that these quantum and thermal disordering effects will
drive the transition before the variational parameter r
vanishes.

The present results are consistent with the small
thermodynamic signature observed in all “small mo-
ment” transitions except that of URu;Si,. It is tempt-
ing to speculate that, unlike in the other compounds,
the transition in URu,Si, is accompanied by a sig-
nificant change in the occupation of the f-level. Such
a transition would be beyond the scope of a conven-
tional Landau treatment of magnetism, as the forma-
tion of the order parameter would occur together with
the concomitant localization of some of the carriers.
This localization process would certainly make a large
amount of spin entropy available for the state below
the transition. The latter would be unavailable above
T since its itinerant character and the Pauli principle
would make its entropy very small. This is reminiscent
of a Mott-Hubbard localization transition, and would
correspond to the transfer of degrees of freedom from
the itinerant subsystem to the localized one. Additional
Coulomb interactions are needed to describe this tran-
sition and it remains to be determined whether it can
be a second order one.

In conclusion, I have proposed that the phenomenon
of small moment magnetism is due to the small ad-
mixture of magnetically ordered orbitals in the ground

state. In this description, the major factor determin-
ing the size of the ordered moment is the dynamically
generated charge fluctuation scale that sets the magni-
tude of the admixture of these orbitals. The behavior
of the staggered magnetization in a magnetic field is
consistent with the anomalous behavior observed in
URUQSiz.

I acknowledge useful discussions with W.J.L. Buy-
ers, P. Coleman, L.P. Gor’kov and J.R. Schrieffer. This
work was supported by the National High Magnetic
Field Laboratory at Florida State University.

References

[1]) PA. Lee et al., Comm. Cond. Matt. Phys. 12 (1986) 99.
[2] G. Aeppli et al., Phys. Rev. Lett. 60 (1988) 615.
[3] C. Broholm et al., Phys. Rev. B 43 (1991) 12809.
[4] A. Amato et al., Phys. Rev. B 50 (1994) 619.
[5] K.A. McEwen, U. Steigenberger and J.L. Martinez, Physica
B 186-188 (1993) 670.
[6] S. Barth et al., Phys. Rev. Lett. 59 (1987) 2991.
[7] T.E. Mason et al., J. Phys. Condens. Matter 7 (1995) 5089.
[8] T.T.M. Palstra et al., Phys. Rev. Lett. 55 (1985) 2727.
[9] A.P. Ramirez et al., Phys. Rev. Lett. 68 (1992) 2680.
[10] W. Schlabitz et al., Z. Phys. B 62 (1986) 171.
[11] V. Barzykin, L.P. Gor’kov and A.V. Sokol, Europhys. Lett.
15 (1991) 869;
P. Chandra and P. Coleman, Phys. Rev. Lett. 66 (1991) 100;
V. Barzykin and L.P. Gor’kov, Phys. Rev. Lett. 70 (1993)
2479;
P. Santini and G. Amoretti, Phys. Rev. Lett. 73 (1994) 1027.
[12] V. Barzykin and L.P. Gor’kov, Phys. Rev. Lett. 74 (1995)
4301.
[13] S. Doniach, Physica B 91 (1977) 231;
P. Fazekas and E. Miiller-Hartmann, Z. Phys. B 85 (1991)
285;
Y. Kuramoto and K. Miyake, J. Phys. Soc. Japan 59 (1990)
2831.
[14] B. Cogblin and J.R. Schrieffer, Phys. Rev. 185 (1969) 847.
[15] J.W. Allen, Physica B 171 (1991) 175.
[16] Y. Yafet, C.M. Varma and B. Jones, Phys. Rev. B 32 (1985)
360;
N. Read et al,, J. Phys. C 19 (1986) 1597;
M. Balifia and A.A. Aligia, Physica B 171 (1991) 109.
[17] P. Schlottmann, Z. Phys. B 59 (1985) 391;
A.A. Aligia, C.A. Balseiro and C.R. Proetto, Phys. Rev. B
33 (1986) 6476.
[18] P. Coleman, Phys. Rev. B 29 (1984) 303S;
N. Read and D.M. Newns, J. Phys. C 16 (1983) 3273,
L1055.
[19] N. Read, J. Phys. C 18 (1985) 2651;
P. Coleman, Phys. Rev. B 35 (1987) 5072.
[20] D.P. Arovas and A. Auerbach, Phys. Rev. B 38 (1988) 316.



