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Random antiferromagnetic SUN) spin chains
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We analyze random isotropic antiferromagnetic(8)Jspin chains using the real-space renormalization
group. We find that they are governed at low energies by a universal infinite randomness fixediffevart
from the one of random spin-1/2 chains. We determine analytically the important exponents: the energy-length
scale relation isQ~exp(-LY), where ¢=1/N, and the mean correlation function is given If;
~(=1)71/]i-j|*, where$=4/N. Our analysis shows that the infinikedimit is unable to capture the behavior
obtained at any finité\.
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The identification of several universality classes of L
disordered quantum systems in one dimensi@D) has H=> 3L T, (1)
seen enormous progress in recent years. Prominent among i=1

those is the case of random antiferromagnetic spin-1/2 L . o
chains, which have been shown to be controlled by at%/vhere\]i are positive independent random variables distrib-

infinite randomness fixed poirdRFP) at low energied?  Uted acczordmg tPo(J) and the components df, I'T (a
Many properties of this so-called random singlet phase havgl.---.N°~1) are the generators of a representation of
been obtained, e.g., the spin susceptibility- 1/T log? T, SU(N). We will confine our analysis to totally antisymmetric
and the spin-correlation functio@;=(S;-S;) is such that irreducible_representations. The;se correspond to Young
its mean valueC;; ~(-1)"7J/[i-j|?, while the typical one ta_lbleaux with one col_umn an@; lines® The_y are conve-
ICiliyp~exp—Ji~j]. Further studies of 1D spin systems Nienty expressed with the help of auxiiary fermionic
have uncovered a wide variety of behaviors such as variou@Peratorsi, (a=1,...,N) throughIi'=c; I';sCig, Wherel',s
Griffiths phase¥? and large spin phasési! are the generator matrices of the fundamental ;epresentatlon
It is the purpose of this paper to extend these analyse@f SUNN). The fermions obey the constrailf,_;cf,ci,=Q:.
by enlarging the symmetry group from S@) to SUN). We considered the cases where gs are random and
We have several motivations for this. The inclusion of Qi=Q=const. o _
orbital degrees of freedom often leads to the enlargement TO treat the Hamiltoniaxl), we generalize the real-space
SU(2)—SU(N). The strong spin-orbit interaction in rare- renormalization group method introduced by Ma, Dasgupta,
earth elements locks spin and orbital moments into a larg8Nd Hu" Our generalization is reminiscent of the treatment
multiplet with degeneracil, whose description requires the ©f 'rar11(<):iom ferromagnetic and  antiferromagnetic  spin
enlargement from S@2) to SUN).12 Recently, a realization chains:® We first fmql the largest bond energy of the system,
of a self-conjugate S\g4) spin chain has been proposed in a {}=MaXA;}. We defined; as the energy difference between
pillar array of semiconducting quantum dots, where theff€ ground and first excited multiplets of thia bond. As
symmetry-breaking effect of the intradot electron-electrondi= 0. it can be shown that the ground-state multiplet is
interaction is minimized due to the peculiarities of the dotrepresented by a vertical Young tableau w@Hines, where
potential’® Several other possible realizations of enlargedQ=Q,+Q.,;, if Q+Q.;<N, and Q=Q+Q.;-N, if
symmetry have been considered in the literat(see, for Q+Q,,;>N. The energies of ground and excited multiplets
example, Ref. 14 In any of these cases, the effects of dis-can be calculated from the Casimir's with the usual trick
order are clearly of interest. Furthermore, the lakglmit of  21,.T;,,=(I';+T;,,)?>~T'?-T%,. The value of the Casimir’s
SU(N) spin models is of considerable interest. In this limit, of the relevant tableaux is given in Ref. 17. We then
many models can be solved by saddle-point methods angecimate that bond by keeping only the ground multiplet and
1/N corrections can be obtained in a controlled marifer. renormalizing the neighboring interactions in the following
The hope behind this approach is that the physici®® is  fashion. If Q;+Q;,;=N, the bond ground state is a singlet
at least qualitatively captured &— . The solution of a and is thus removed from the system. The new effective

sequence of modelas a function of Nthough rarely pos-  coupling between the neighboring spifis; andT',, is, by
sible, can determine the validity of this idea. We will show second-order perturbation theory,

that the random antiferromagnetic 80 chain provides just

such a solution. Interestingly, the low-energy physics at finite = 2QiQi+1di-1di+1 )
N is never captured at infinitd. We will show, however, that NA(N-1)J,

for any finite N, the system is governed byreew universal . . .
IRFP with characteristic exponents which we calculate andOther_W'se’ th spin paif; and I'y.y is replaced .by anew
depend only on the group rank. effective spinI’, which belongs to a totally antisymmetric

We will focus on the following Hamiltonian: representation Witﬁ) lines as given above. It connects to the
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spinsT’j_; andI';,, through renormalized couplings given in 0.8
first-order perturbation theory by 2
N B 0.6 f
Jio1=§Ji-1, andJi = (1 - )i, (3 g __
ol
. . 04+t / 1
respectively, where=Q;/(Q;+Q;;1), if Q+Q;:1<N, and L = N - L
&=(N-Q)/(2N-Q;-Q;;1), otherwise. We point out the g
similarity with the case of the random chain with both ferro- Bz [ DSUETS! ot siepe 1
magnetic and antiferromagnetic interactidfsyhere both | Do-PsUidenis  WSULS) Tstorder steps
first and second-order decimations are generated. Unlike the AQ=1SU4)spins  AQ=1SU(3) spins

latter, however, here the actiyee., not yet decimatedspin
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clusters are always vertical tableaux and the procedure al-
ways maintains a totally antisymmetric spin chain. More-
over, the renormalized couplings are always smaller than the g1 1. (color onling The fractions of first-order decimation

original ones. Thus, at every decimation step, the energyieps, of spins in the fundament&)=1), and in the self-conjugate
scale() is lowered. [Q=2, only for SU(4)] representations, all as a function @f For
An important feature of the decimation procedure is that itclarity, we only show data for chains (solid lines andE (dashed
does not privilege any specific representation. When a spifines) (see text The filled (open symbols refer to the SIB) [SU
pair (Q;, Qi;+1) is decimated out, the new eﬁegtive Spin is (4)] chains. The data error is about the size of the symbol.
never equal to any of the original oné® # Q;, Q# Q;.1).
Thus, after an initial transient, each one of tie 1 totally
antisymmetric representations is equally probablen if we
start with Q=Q=const.(except for some special fine-tuned
cases dealt with latgr\We have confirmed this numerically, with a=1/(pI')==(N-1)/In Q. The fixed point distribution
as will be shown later. We have also checked that the distri¢5) broadens indefinitely in the limif)— 0, rendering the
bution of representations becomes uncorrelated with the disenormalization procedure increasingly more precise, and
tribution of couplings. We thus focus on the flow of the cou-asymptotically exact. The system is thus governed by an
pling distribution, P(J)=P(J;()), as the highest scal@ is  |IRFP.
decreased? We takeQ =1 initially. The relation between energy and length scales can be
As will be shown later, similarly to the random spin¥2  determined by finding the fraction of active spin clusters
chain, P(J) always flows to an extremely broad distribution. ny- at the energy scalE.? If T is increased by, a fraction
We are thus justified in neglecting the numerical prefactorgn-=(2p+q)np(0;I")dl’ of active spin clusters is

—log,, Q

1-a
P*(J;Q):%(%) a0 -J), (5b)

in Egs. (2) and (3), which are always less than unity and decimated. Thus, close to the fixed point, where
irrelevant asymptotically. Furthermore, there are a total of p(0:I')=~p"(0;I),2

(N-1)? possible decimation processes, all of them equally a1 y N

likely. Of these N—1 are second-order, each with probability Lr~np ~ T =[In(L/Q) 1, (6)

p=1/(N-1), and the other's are first order: Wit.h probability wherey=p/(p+1)=1/N. This type of “activated” dynamical
q=1-p. Thus, we can write a flow equauo;r; in the useful s¢4jing, corresponding to a dynamical exporente, arises
logarithmic variabled’=-In Q) and{=In(1/J), here with an unexpected exponghtWhenN=2, we recover
the usual form found in the random spin-2 chains>®

In order to check the validity of the approximations lead-
ing up to Eq.(4), we have numerically implemented the full
procedure. The data were generated by decimating chains
with lengths up to 1Q averaging over 100 realizations of
disorder. All the initial spins belong to the fundamental rep-
=[d,dEsp(L1;D)p(L3;T) (- L1 - E5). The first term on the resentationQ;=1, Ui). We analyzed several initial distribu-
right-hand side is due to the fact thatchanges whed” tions PO(J) ChainsA, B, andC had uniform distributions in
increases. The second one, absent in the random s'fjmq_]_ the intervalx<J=<1, withx=0.9, 0.5, and 0, respectively. In
chain, is due to first order decimation steps and only ensureghainsD, E, andF we used initial power-law distributions
the normalization of. The last one is due to second-order Po~J?, with 3=0.3, 0.6, and 0.9, respectively. In Fig. 1,
steps, which strongly renormalizebroadening it. we show the fraction of first order decimation steps as a

If Po(J) is not extremely singular, the flow E@4) has function of the energy scal€), for the symmetry groups
0n|y one stable fixed point So|uti&n' SuU (3) and SU(4) As antiCipated, it tends asymptotically to
g=(N-2)/(N-1). The figure also shows the fraction of
Q=1 spins in the two cases, and the fraction of self-
conjugate(Q=2) spins in the SU4) chain. They all tend
asymptotically to 1(N-1), as expected.

d J
—pPED) = [?—gp(z;l“) +qp(;D)p°+ppPp @ p,  (4)

where p(;T)d{=PJ;2)dJ, p°=p(0;I), and p®p

o (1) = X aon,

o (52
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FIG. 2. Fraction of active spins; as a function of the energy |G- 3. Mean correlation function for groups S@), SU (3),

scaler, for the SU(3) (main) and SU(4) (inse) chainsA to F. The and SU(4). The power-law dependence is evident. 'I_'he expope_nts

data error is smaller than the symbol size. ¢=1.9910.03, 1.3110.0:_3, and 1.01+0.03 are ob_talned by flt_tlng
the regionr > 10, and are in excellent agreement with the analytical

In Fig. 2, we plotn; as a function of” for SU (3) and SU  value ¢=4/N [see Eq(8)].

(4). By fitting the asymptotic behavior, we confirm the uni-

versality of the exponengy=1/N, as predicted by Eq6).  correlation functionC;j=(I';-T';).? Spins belonging to the

We point out thaty converges in a logarithmic manner, thus same cluster develo@(1) correlations; otherwise, they are

a more precise determination gfdemands the decimation \yeakly correlated. Therefore, such spins dominate the mean

of longer chains than the ones studied here. We see tht ascorrelation function. To findC;;, we need the probability that

increases, so does the number of decimations needed forggy two well-separated spidg andT are rigidly locked in

given decrease in energy scale. This “delayed scaling” can bt%e same spin clustdr when|i—j|~n;1. First, we need to

understood by realizing that only second-order processes are - g ) -

effective in lowering the energy scale, and these become leddd P(t;np), the probability to find a spin clustdr com-

frequent aN increases. posed oft original spins at scaley. After many decimations,
There are other IRFP’s in addition to the one analyzed®ny spatial correlations betwe&is and J's have vanished

above. For example, the self-conjugate (3k) spin chain and any remaining bond_ls equally likely to be decimated.

(with integer k>1) flows towards an IRFP withy=1/2, ~ The fraction of c!uste_rs with spins at scal@y is npP(t; n).

sinceQ;=k, i, and only second-order decimation steps oc-When dNg. decimations are performedy.- decreases by

cur, like in the random spin-A2 chain. Although these dnr=-(2p+q)dNgeand

chains are gapfuf they are unstable against the introduction

of weak disorder, due to the topological nature of their ~ dlNrP(t)]= [— 2P(t) +q 2 P(tl)P(t2)511+t2,t:|deeca

ground state, as explained for the randdm J, Heisenberg fat2

chain in Ref. 5. More importantly, thig=1/2 IRFP is un-  where the two terms on the right-hand side give the fraction
stable against the introduction Q?ﬁk spins. For a small of decimated and added clusters Wtﬂ$p|ns and we sup-

concentrationn; of such spins, the system will initially pressed then; dependence ofP to lighten the notation.
be governed by they=1/2 IRFP, until the energy scale Hence,

I'~n Y2 is reached. Below that scale, the renormalization

flow veers towards the IRFP of E¢), with the character- dP(t) _1-p

istic exponeniy=1/2k. Similar IRFP’s exist for other SUN) - o 1_+p[7)(t) N Etl Plty)P(t- tl)]' (7)
chains, but they are equally unstable with respect to the in-

troduction of “defect” spins. whose solution isP(t;np) ~ng exp(—-tny) in the limit

We can easily calculate the asymptotic behavior of thernr— 0, with y=(1-p)/(1+p)=1-2/N. Finally, the prob-
modynamic quantities using Eg6).2 Since P(J) becomes  ability thatT; andI’; are active in the same cluster is equal to
very broad at low energies, the active spins are approxi(fnr)2~(nll~"’)2, yielding
mately free at a low temperature=(), whereas the deci- -
mated ones do not contribute, since they are frozen in singlet C ~ -1 ®)
states with excitation energies much greater tliaience, U=l
we find that the entropy density~np~ (—=In T)™% and the ) ) ) ) )
specific heat~ (~In T)~#*V%, Furthermore, it can be easily with ¢;4/N. The typl_cal correlation function, hpvx{ever, is
shown that the magnetic susceptibility of a single(S)spin very different. Eollov'vmg Ref. 2, We note that it involves
is Curie-like, from which it follows that for the whole system many factors ofl decimated at various scales'. The scal-
x(T)~np/T=1/[T(~-In T)¥¥]. ing behavior is dominated by the smallest faatte i1,

We can also obtain the asymptotic behavior of the spirwherek~ O(1) yielding typical correlations
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|Cij|typ~ eXF(_ k|i - J |'//) (9)
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explanation has not appeared before. However, we should
stress that the asymptotic region governed by the IRFP is

Figure 3 shows numerical results for the mean correlationeached at energy scales which decrease with the increase of
functionC;; for groups SU2), SU(3), and SU(4), averaged N since the second-order processes become increasingly
over 200 realizations of disorder for chain lengths up tOrare Therefore, in the infinitslimit the universal behavior

L=10° and open boundary conditions. The numerical proceyescribed above disappears and a direct infiNipproach
dure consists of completely decimating a chain, and countingyjjs to capture the physics at any finie

the fraction of spin pairs that become strongly correlated at

the distancdi—j|.” Excellent agreement with the analytical

Interestingly, some multicritical points of random antifer-
romagnetic spirs chains have been shown to exhibit a struc-

pr_e_dicti_on of ¢ is obtained. No significant_de_pendence_ ONyre that is very similar to the generic V) IRFP described
initial disorder strength was observed, confirming the univer4p 5620 | particular, the energy-length scale exponent is the

sal behavior.
In the largeN limit, the mean correlation function

decays extremely slowly. In this limit, the fraction of second-

same. In that casé\ is the number of phases meeting at the
multicritical point.
In conclusion, we have identified in random antiferromag-

order processes is very small and the mean number of Spifgyic SUN) chains an infinite randomness fixed point with

in a cluster diverges at low energies, all of them being

strongly correlated. A IN expansion of Eq(8) leads to
ICij| ~ 1/In(li—j[). Incidentally, this is the same behavior ob-

served numerically in random ferromagnetic and antiferro

magnetic spin chain®. This is no surprise, since both sys-
tems are dominated by similar first-order decimatiomose
clustering rules are the same asw. Therefore, they are
both described by Eq.7) with p=0, hence the logarithmic

exponents different than the ones previously found in spin-
1/2 chains. An important question which we leave for future
study is the stability of this phase against the introduction of
nisotropy.
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