
Random antiferromagnetic SU„N… spin chains

José Abel Hoyos* and E. Miranda†

Instituto de Física Gleb Wataghin, Unicamp, Caixa Postal 6165, 13083-970 Campinas, São Paulo, Brazil
(Received 9 September 2004; published 11 November 2004)

We analyze random isotropic antiferromagnetic SUsNd spin chains using the real-space renormalization
group. We find that they are governed at low energies by a universal infinite randomness fixed pointdifferent
from the one of random spin-1/2 chains. We determine analytically the important exponents: the energy-length
scale relation isV,exps−Lcd, where c=1/N, and the mean correlation function is given byCij

,s−1di−j / ui − j uf, wheref=4/N. Our analysis shows that the infinite-N limit is unable to capture the behavior
obtained at any finiteN.
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The identification of several universality classes of
disordered quantum systems in one dimension(1D) has
seen enormous progress in recent years. Prominent among
those is the case of random antiferromagnetic spin-1/2
chains, which have been shown to be controlled by an
infinite randomness fixed point(IRFP) at low energies.1,2

Many properties of this so-called random singlet phase have
been obtained, e.g., the spin susceptibilityx,1/T log2 T,
and the spin-correlation functionCij =kSi ·Sjl is such that
its mean valueCij ,s−1di−j / ui − j u2, while the typical one
uCij utyp,exps−Îui − j ud. Further studies of 1D spin systems
have uncovered a wide variety of behaviors such as various
Griffiths phases3–9 and large spin phases.9–11

It is the purpose of this paper to extend these analyses
by enlarging the symmetry group from SU(2) to SUsNd.
We have several motivations for this. The inclusion of
orbital degrees of freedom often leads to the enlargement
SUs2d→SUsNd. The strong spin-orbit interaction in rare-
earth elements locks spin and orbital moments into a large
multiplet with degeneracyN, whose description requires the
enlargement from SU(2) to SUsNd.12 Recently, a realization
of a self-conjugate SU(4) spin chain has been proposed in a
pillar array of semiconducting quantum dots, where the
symmetry-breaking effect of the intradot electron-electron
interaction is minimized due to the peculiarities of the dot
potential.13 Several other possible realizations of enlarged
symmetry have been considered in the literature(see, for
example, Ref. 14). In any of these cases, the effects of dis-
order are clearly of interest. Furthermore, the large-N limit of
SUsNd spin models is of considerable interest. In this limit,
many models can be solved by saddle-point methods and
1/N corrections can be obtained in a controlled manner.15

The hope behind this approach is that the physics ofN=2 is
at least qualitatively captured asN→`. The solution of a
sequence of modelsas a function of N, though rarely pos-
sible, can determine the validity of this idea. We will show
that the random antiferromagnetic SUsNd chain provides just
such a solution. Interestingly, the low-energy physics at finite
N is never captured at infiniteN. We will show, however, that
for any finiteN, the system is governed by anew universal
IRFP with characteristic exponents which we calculate and
depend only on the group rank.

We will focus on the following Hamiltonian:

H = o
i=1

L

JiGi · Gi+1, s1d

whereJi are positive independent random variables distrib-
uted according toP0sJd and the components ofGi, Gi

a sa
=1,… ,N2−1d are the generators of a representation of
SUsNd. We will confine our analysis to totally antisymmetric
irreducible representations. These correspond to Young
tableaux with one column andQi lines.16 They are conve-
niently expressed with the help of auxiliary fermionic
operatorscia sa=1,… ,Nd throughGi

a=cia
† Gab

a cib, whereGab
a

are the generator matrices of the fundamental representation
of SUsNd. The fermions obey the constraintoa=1

N cia
† cia=Qi.

We considered the cases where theQi’s are random and
Qi =Q=const.

To treat the Hamiltonian(1), we generalize the real-space
renormalization group method introduced by Ma, Dasgupta,
and Hu.1 Our generalization is reminiscent of the treatment
of random ferromagnetic and antiferromagnetic spin
chains.10 We first find the largest bond energy of the system,
V=maxhDij. We defineDi as the energy difference between
the ground and first excited multiplets of theith bond. As
Ji .0, it can be shown that the ground-state multiplet is

represented by a vertical Young tableau withQ̃ lines, where

Q̃=Qi +Qi+1, if Qi +Qi+1øN, and Q̃=Qi +Qi+1−N, if
Qi +Qi+1.N. The energies of ground and excited multiplets
can be calculated from the Casimir’s with the usual trick
2Gi ·Gi+1=sGi +Gi+1d2−Gi

2−Gi+1
2 . The value of the Casimir’s

of the relevant tableaux is given in Ref. 17. We then
decimate that bond by keeping only the ground multiplet and
renormalizing the neighboring interactions in the following
fashion. If Qi +Qi+1=N, the bond ground state is a singlet
and is thus removed from the system. The new effective
coupling between the neighboring spinsGi−1 andGi+2 is, by
second-order perturbation theory,

J̃ =
2QiQi+1Ji−1Ji+1

N2sN − 1dJi
. s2d

Otherwise, the spin pairGi and Gi+1 is replaced by a new

effective spinG̃, which belongs to a totally antisymmetric

representation withQ̃ lines as given above. It connects to the
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spinsGi−1 andGi+2 through renormalized couplings given in
first-order perturbation theory by

J̃i−1 = jiJi−1, andJ̃i+1 = s1 − jidJi+1, s3d

respectively, whereji =Qi / sQi +Qi+1d, if Qi +Qi+1,N, and
ji =sN−Qid / s2N−Qi −Qi+1d, otherwise. We point out the
similarity with the case of the random chain with both ferro-
magnetic and antiferromagnetic interactions,10 where both
first and second-order decimations are generated. Unlike the
latter, however, here the active(i.e., not yet decimated) spin
clusters are always vertical tableaux and the procedure al-
ways maintains a totally antisymmetric spin chain. More-
over, the renormalized couplings are always smaller than the
original ones. Thus, at every decimation step, the energy
scaleV is lowered.

An important feature of the decimation procedure is that it
does not privilege any specific representation. When a spin
pair (Qi, Qi+1) is decimated out, the new effective spin is

never equal to any of the original ones(Q̃ÞQi, Q̃ÞQi+1).
Thus, after an initial transient, each one of theN−1 totally
antisymmetric representations is equally probable,even if we
start with Qi =Q=const.(except for some special fine-tuned
cases dealt with later). We have confirmed this numerically,
as will be shown later. We have also checked that the distri-
bution of representations becomes uncorrelated with the dis-
tribution of couplings. We thus focus on the flow of the cou-
pling distribution,PsJd; PsJ;Vd, as the highest scaleV is
decreased.1,2 We takeV=1 initially.

As will be shown later, similarly to the random spin-1/2
chain,PsJd always flows to an extremely broad distribution.
We are thus justified in neglecting the numerical prefactors
in Eqs. (2) and (3), which are always less than unity and
irrelevant asymptotically.2 Furthermore, there are a total of
sN−1d2 possible decimation processes, all of them equally
likely. Of these,N−1 are second-order, each with probability
p=1/sN−1d, and the others are first order, with probability
q=1−p. Thus, we can write a flow equation in the useful
logarithmic variablesG=−ln V andz=lnsV /Jd,2

]

] G
rsz;Gd =

]

] z
rsz;Gd + qrsz;Gdr0 + pr0r ^ r, s4d

where rsz ;Gddz=PsJ;VddJ, r0=rs0;Gd, and r ^ r
=edz1dz3rsz1;Gdrsz3;Gddsz−z1−z3d. The first term on the
right-hand side is due to the fact thatz changes whenG
increases. The second one, absent in the random spin-1/2
chain, is due to first order decimation steps and only ensures
the normalization ofr. The last one is due to second-order
steps, which strongly renormalizer broadening it.

If P0sJd is not extremely singular, the flow Eq.(4) has
only one stable fixed point solution,2

r*sz;Gd =
uszd
pG

e−z/spGd, s5ad

P*sJ;Vd =
a

V
SV

J
D1−a

usV − Jd, s5bd

with a=1/spGd=−sN−1d / ln V. The fixed point distribution
(5) broadens indefinitely in the limitV→0, rendering the
renormalization procedure increasingly more precise, and
asymptotically exact.2 The system is thus governed by an
IRFP.

The relation between energy and length scales can be
determined by finding the fraction of active spin clusters
nG at the energy scaleG.2 If G is increased bydG, a fraction
dnG=s2p+qdnGrs0;GddG of active spin clusters is
decimated. Thus, close to the fixed point, where
rs0;Gd<r*s0;Gd,2

LG , nG
−1 , G1/c = flns1/Vdg1/c, s6d

wherec=p/ sp+1d=1/N. This type of “activated” dynamical
scaling, corresponding to a dynamical exponentz→`, arises
here with an unexpected exponentc. WhenN=2, we recover
the usual form found in the random spin-1/2 chains.2,3

In order to check the validity of the approximations lead-
ing up to Eq.(4), we have numerically implemented the full
procedure. The data were generated by decimating chains
with lengths up to 107, averaging over 100 realizations of
disorder. All the initial spins belong to the fundamental rep-
resentation(Qi =1, ∀i). We analyzed several initial distribu-
tions P0sJd. ChainsA, B, andC had uniform distributions in
the intervalxøJø1, with x=0.9, 0.5, and 0, respectively. In
chainsD, E, andF we used initial power-law distributions
P0,J−b, with b=0.3, 0.6, and 0.9, respectively. In Fig. 1,
we show the fraction of first order decimation steps as a
function of the energy scaleV, for the symmetry groups
SU (3) and SU(4). As anticipated, it tends asymptotically to
q=sN−2d / sN−1d. The figure also shows the fraction of
Q=1 spins in the two cases, and the fraction of self-
conjugatesQ=2d spins in the SU(4) chain. They all tend
asymptotically to 1/sN−1d, as expected.

FIG. 1. (Color online) The fractions of first-order decimation
steps, of spins in the fundamentalsQ=1d, and in the self-conjugate
[Q=2, only for SU(4)] representations, all as a function ofV. For
clarity, we only show data for chainsA (solid lines) andE (dashed
lines) (see text). The filled (open) symbols refer to the SU(3) [SU
(4)] chains. The data error is about the size of the symbol.
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In Fig. 2, we plotnG as a function ofG for SU (3) and SU
(4). By fitting the asymptotic behavior, we confirm the uni-
versality of the exponentc=1/N, as predicted by Eq.(6).
We point out thatc converges in a logarithmic manner, thus
a more precise determination ofc demands the decimation
of longer chains than the ones studied here. We see that asN
increases, so does the number of decimations needed for a
given decrease in energy scale. This “delayed scaling” can be
understood by realizing that only second-order processes are
effective in lowering the energy scale, and these become less
frequent asN increases.

There are other IRFP’s in addition to the one analyzed
above. For example, the self-conjugate SUs2kd spin chain
(with integer k.1) flows towards an IRFP withc=1/2,
sinceQi =k, ∀i, and only second-order decimation steps oc-
cur, like in the random spin-1/2 chain. Although these
chains are gapful,18 they are unstable against the introduction
of weak disorder, due to the topological nature of their
ground state, as explained for the randomJ1−J2 Heisenberg
chain in Ref. 5. More importantly, thisc=1/2 IRFP is un-
stable against the introduction ofQÞk spins. For a small
concentrationni of such spins, the system will initially
be governed by thec=1/2 IRFP, until the energy scale
G,ni

−1/2 is reached. Below that scale, the renormalization
flow veers towards the IRFP of Eq.(5), with the character-
istic exponentc=1/2k. Similar IRFP’s exist for other SUsNd
chains, but they are equally unstable with respect to the in-
troduction of “defect” spins.

We can easily calculate the asymptotic behavior of ther-
modynamic quantities using Eq.(6).2 Since PsJd becomes
very broad at low energies, the active spins are approxi-
mately free at a low temperatureT=V, whereas the deci-
mated ones do not contribute, since they are frozen in singlet
states with excitation energies much greater thanT. Hence,
we find that the entropy densitys,nG,s−ln Td−1/c and the
specific heatc,s−ln Td−sc+1d/c. Furthermore, it can be easily
shown that the magnetic susceptibility of a single SUsNd spin
is Curie-like, from which it follows that for the whole system
xsTd,nG /T=1/fTs−ln Td1/cg.

We can also obtain the asymptotic behavior of the spin

correlation functionCij ;kGi ·G jl.2 Spins belonging to the
same cluster developOs1d correlations; otherwise, they are
weakly correlated. Therefore, such spins dominate the mean
correlation function. To findCij , we need the probability that
any two well-separated spinsGi andG j are rigidly locked in

the same spin clusterG̃ when ui − j u,nG
−1. First, we need to

find Pst ;nGd, the probability to find a spin clusterG̃ com-
posed oft original spins at scalenG. After many decimations,
any spatial correlations betweenQ’s and J’s have vanished
and any remaining bond is equally likely to be decimated.
The fraction of clusters witht spins at scalenG is nGPst ;nGd.
When dNdec decimations are performed,nG decreases by
dnG=−s2p+qddNdec and

dfnGPstdg = F− 2Pstd + qo
t1,t2

Pst1dPst2ddt1+t2,tGdNdec,

where the two terms on the right-hand side give the fraction
of decimated and added clusters witht spins and we sup-
pressed thenG dependence ofP to lighten the notation.
Hence,

nG

] Pstd
] nG

=
1 − p

1 + pfPstd − ot1
Pst1dPst − t1dg , s7d

whose solution is Pst ;nGd,nG
g exps−tnG

gd in the limit
nG→0, with g=s1−pd / s1+pd=1−2/N. Finally, the prob-
ability thatGi andG j are active in the same cluster is equal to
stnGd2,snG

1−gd2, yielding

Cij ,
s− 1di−j

ui − j uf
, s8d

with f=4/N. The typical correlation function, however, is
very different. Following Ref. 2, we note that it involves

many factors ofJ̃ decimated at various scalese−G. The scal-
ing behavior is dominated by the smallest factorOse−kui − j ucd,
wherek,Os1d yielding typical correlations

FIG. 3. Mean correlation function for groups SU(2), SU (3),
and SU(4). The power-law dependence is evident. The exponents
f=1.99±0.03, 1.31±0.03, and 1.01±0.03 are obtained by fitting
the regionr .10, and are in excellent agreement with the analytical
valuef=4/N [see Eq.(8)].

FIG. 2. Fraction of active spinsnG as a function of the energy
scaleG, for the SU(3) (main) and SU(4) (inset) chainsA to F. The
data error is smaller than the symbol size.
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uCij utyp , exps− kui − j ucd . s9d

Figure 3 shows numerical results for the mean correlation
functionCij for groups SU(2), SU (3), and SU(4), averaged
over 200 realizations of disorder for chain lengths up to
L=105 and open boundary conditions. The numerical proce-
dure consists of completely decimating a chain, and counting
the fraction of spin pairs that become strongly correlated at
the distanceui − j u.7 Excellent agreement with the analytical
prediction of f is obtained. No significant dependence on
initial disorder strength was observed, confirming the univer-
sal behavior.

In the large-N limit, the mean correlation function
decays extremely slowly. In this limit, the fraction of second-
order processes is very small and the mean number of spins
in a cluster diverges at low energies, all of them being
strongly correlated. A 1/N expansion of Eq.(8) leads to
uCij u,1/ lnsui − j ud. Incidentally, this is the same behavior ob-
served numerically in random ferromagnetic and antiferro-
magnetic spin chains.19 This is no surprise, since both sys-
tems are dominated by similar first-order decimationswhose
clustering rules are the same as N→`. Therefore, they are
both described by Eq.(7) with p=0, hence the logarithmic
dependence of the mean correlation function. This analytical

explanation has not appeared before. However, we should
stress that the asymptotic region governed by the IRFP is
reached at energy scales which decrease with the increase of
N, since the second-order processes become increasingly
rare. Therefore, in the infinite-N limit the universal behavior
described above disappears and a direct infinite-N approach
fails to capture the physics at any finiteN.

Interestingly, some multicritical points of random antifer-
romagnetic spinSchains have been shown to exhibit a struc-
ture that is very similar to the generic SUsNd IRFP described
above.20 In particular, the energy-length scale exponent is the
same. In that case,N is the number of phases meeting at the
multicritical point.

In conclusion, we have identified in random antiferromag-
netic SUsNd chains an infinite randomness fixed point with
exponents different than the ones previously found in spin-
1/2 chains. An important question which we leave for future
study is the stability of this phase against the introduction of
anisotropy.
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