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Three-Body Bound States and the Development of Odd-Frequency Pairing
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We propose that the development of odd-frequency superconductivity is driven by the growth
anomalous three-body scattering amplitude. Using this as an ansatz we develop a mean-field
for odd-frequency pairing within the Kondo lattice model. The three-body bound-state formation l
to the formation of a gapless band of strongly paired quasiparticles whose spin and charge coh
factors vanish linearly with energy. Possible links with heavy fermion superconductors are discus
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Although three-body bound states are ubiquitous i
many branches of physics, little is known about thei
role in collective condensed matter behavior. Accordin
to current wisdom, quantum phase transitions are an e
clusive response to the growth of anomalous two-bod
scattering amplitudes. Here we discuss the possibili
of phase transitions driven by an instability in a three
fermion channel [1]. We are led to propose this as
mechanism for the development of odd-frequency supe
conductivity, where the gap function is an odd function o
frequencyDsv, kd ­ 2Ds2v, kd [2,3].

Our interest in this topic is physically motivated by
heavy fermion superconductors (HFSC) [4,5], where su
perconductivity is intimately associated with the compen
sation of local moments. In these dense local mome
systems, huge amounts of spin entropy are liberated
the condensation process: In UBe13, for example, the con-
densation entropyDS ­ CV sTc1d ­ 1 JyK mol is of order
0.2R ln2. To microscopically explain how the order pa-
rameter involves the local moment degrees of freedom
a major challenge.

A striking feature of these compounds if the failure
of a single quasiparticle density of states to reconcil
their thermodynamics and nuclear relaxation rates. Hea
fermion (HF) superconductors exhibit a universalT3

dependence in their NMR and NQR relaxation rate
1yT1 ~ T3, but exhibit no corresponding universality in
their specific heatCV . In superconducting UPt3, for
example,Cy ­ gsT 1 BT2, [6] yet in UPd2Al 3, Cy ­
gsT 1 BT3 [7] despite aT3 NMR or NQR relaxation
rate over three to four decades of the relaxation ra
[8,9]. This dichotomy appears to rule out the energ
dependence of the density of statesNsvd as a root cause
of the universal relaxation rates. Qualitatively, the NMR
or NQR relaxation rate at temperatureT scales as

sT1d21 , T fNsvdjkvjS6jvljg2
v,kBT , (1)

where

jkvjS6jvlj2 ­ jkkjS6jk0lj2dsv 2 Ekddsv 2 Ek0d (2)

is a momentum average of quasiparticle spin-matri
elements. AT3 NMR or NQR relaxation rate in the
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presence of a finite quasiparticle density of statesNs0d ,
gs leads us to speculate that in a HFSC, spin coherenc
factors must scale linearly with energy

jkvjS6jvlj , v . (3)

In a BCS superconductor, the quasiparticles take the form
ak ­ ukck 1 ykc

y
2k, where√ Ä

uk

Ä
2Ä

yk

Ä
2

!
­

1
2

"
1 6

1p
1 1 sDkyekd2

#
. (4)

Vanishing coherence factors occur when the magnitude
jukj2 and jykj2 are equal, i.e., whenDkyek ! `. At a
gap nodeDk ­ 0, uk and yk are either unity or zero,
so quasiparticles are unpaired and coherence factors a
unity. Coherence factors that vanish at low energie
thus require a fundamentally new type of theory where
gapless quasiparticles are strongly paired. In this Lette
we show how the development of an anomalous pole in
a three-fermion channel leads to a singular gap functio
Dksvd ~ 1yv, whose divergence at low energies enforces
a linear energy dependence of coherence factors.

Our discussion hinges on a generalization of the con
cept of field contractions to three-body bound states. T
illustrate this idea, consider the example of a3He atom: a
bound state between a spin-1

2 nucleus and two electrons.
In a many-body description, the3He atom is a bound-state
pole in a three-fermion channel. Low-energy correlation
functions of the bound fermions are determined by thei
factorization into three-body contractions

ĉ"s1dĉ#s2dNss3d ­
Z

Ls1, 2, 3; xdF̂ssxddx , (5)

where Fysxd creates the3He fermion at center of mass
x, c represents the electron fields,N the nucleus, and
L is the atomic wave function. The key observation is
that a new Fermi fieldFssxd is dynamically generated
by the development of a bound-state pole. The atomi
wave functionL is a three-body amplitudethat scatters
incoming fermions into the bound state.

With this picture in mind, we are led to generalize
the concept of three-body contractions to embrace th
© 1995 The American Physical Society 1653
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possibility of symmetry-breaking three-body amplitude
that act as collective order parameters. Consider
hypothetical bound triad of two electrons and a hole o
a lattice [10]:

cy
as1dcbs2dcgs3d ­

X
j

Labgs1, 2, 3; jdf̂j . (6)

Suppose the three-body amplitudeLabg is complexand
carries the charge and spin of the bound state, transfo
ing like the electron fieldc under gauge transformations
In this case, the residual fermionic pole at sitej carries no
phase and must be represented by a “real” fermion

fj ­ f
y
j . (7)

A fermion of this type is a “Majorana fermion.” Unlike
a conventional fermion, its square is a pure numb
f

2
j ­

1
2 hfj, fjj ­

1
2 ; its bare Feynman propagator is

proportional to the inverse frequency

kfjsvdfj0s2vdl ­ djj0

1
v

, (8)

and it is represented by a line without an arrow. A simp
consequence is that electrons scattering into the thr
body channel acquire an anomalous self-energy with
singular, odd-frequency poleDksvd ~ 1yv (Fig. 1).

To make a link with heavy fermions consider the cas
where the three-body amplitude is symmetric in positio
2 and 3, so thatLabg ­ 2Lagb. By contracting the spin
indices, we find

fSs1d ? sabgCbs2d ­
X

j

Aas1, 1, 2; jdf̂j , (9)

where S ­
1
2 cysc is the spin density andAa ­

1
3 eahebgLhbg is a two-component spinor. This type o
three-body bound state thus describes a collective bind
of spins to electrons that is of particular interest in th
contest of HFSC.

Though a three-fermion state cannot condense [1
the development of an anomalous three-body amplitu
does imply off-diagonal long-range order. The squa
of Eq. (9) is a complex number, thanks to the Majoran
character of the pole. When we square the left-hand s

FIG. 1. Odd frequency pairing. Illustrating (a) anomalou
amplitude for three-particle bound state and (b) anomalo
pairing amplitude that scales as1yv in this picture [12].
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of this expression we may cast it as the expectation valu
of a compositeoperator

kSs1dfsc2ss2dcss3dg l ­
X

j

ÃT
j s1, 2dis2s Ãjs1, 3d , (10)

whereÃjs1, 2d ; As1, 1, 2; jd. Composite off-diagonal or-
der of this type between spin and singlet pair density ha
been discussed in connection with odd-frequency pairin
[3,12,13].

We illustrate how this idea of three-body bound state
leads naturally to odd-frequency pairing within the Kondo
lattice Hamiltonian,

H ­
X
k

ekc
y
k ck 1

X
j

Hintf jg , (11)

wherec
y
k is a conduction electron spinor, coupled to an

array ofS ­
1
2 local momentsSj via an antiferromagnetic

exchange interaction

Hintf jg ­ Jscy
j scjd ? Sj . (12)

Herecj denotes the conduction electron in a tight-binding
representation. This Hamiltonian provides a toy mode
for heavy fermion metals.

An electron scattering at sitej couples directly to the
three-body spinorjja ­ sSj ? sabdcjb . To examine the
possibility of anomalous bound-state formation in this
channel, we use the resultsS ? s d2 ­

3
4 2 S ? s to cast

the interaction in the form

Hintf jg ­ 2Jsjy
j jjd . (13)

We apply our bound-state ansatz tojj by writing

2Jjjstd ­ 2Vjf̂jstd 2 Jdjjstd , (14)

where Vj is a two component spinor representing the
anomalous three-body amplitude, anddjj represents fluc-
tuations that are neglected in the mean-field theory. Ne
we substitute (14) into (13) so that

P
j Hintf jg ! H̃ 1

Osdjydjd, where

H̃ ­
X

j

2

24n
c

y
j ss ? Sjdf̂jVj 1 H.c.

o
1

V
y
j Vj

J

35 . (15)

A remarkable result permits us to solve this mean-fiel
theory, despite the trilinear combination of field operators
Consider the combination

hj ­ 2Sjfj . (16)

Sincefj commutes with the spin operator, it follows that
these operators are realhj ­ h

y
j and satisfy a canoni-

cal anticommutation algebra,hha
j , h

b
k j ­ dabdjk. In other

words, the fusion offj with each spin-12 operator trans-
mutes it into a fermion [14]. We can thus rewriteH̃ as a
bilinear Hamiltonian

H̃ ­
X

j

h
c

y
j ss ? hjdVj 1 H.c.

i
1

2V
y
j Vj

J
. (17)
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This type of Hamiltonian was previously derived b
starting from a Majorana spin representation [12]. Th
current discussion enables us to link the appearance
fermionic spin modes and vanishing coherence facto
with the development of bound states. For convenien
consider a cubic lattice. Here the mean-field free ener
is minimized in staggered configurations, whereVj ­
eiQ?Rjy2V , Q ­ sp, p, pd [12]. The staggered phase ma
be absorbed by a gauge transformation of the electro
ck ! ck1Qy2, which leads to the following mean-field
Hamiltonian:

HMFT ­
X
k

ẽkc
y
k ck 1

X
k

h
c

y
k ss ? hkdV 1 H.c.

i
1 Ns

2V yV
J

,

where Ns is the number of sites and̃ek ­ ek2Qy2. If
we represent the propagator of the Majorana fermio
by a dashed line without an arrow then the effect of th
anomalous three-body scattering amplitude is to introdu
vertices of the form

b a

! n ­
£
Vy ? s a

§
b

a a

n! ­ fs a ? V ga .
(18)

The main effect of these vertices is to introduce a singu
pairing self-energy into the electron propagators

b 1yv a

√n n! ­ f Dsvdgab .

If we write V ­ sV0y
p

2dz0, wherez0 is a unit spinor, then
the anomalous self-energy takes the form

Dsvd ­ 2Dsvdf z 0 ≠ zT
0g , (19)

where Dsvd ­ V 2
0 y2v. By decomposingck into four

Majorana componentsck ­ s1y
p

2d fc0
k 1 ick ? s g z we

find that only the vector components hybridize wit
the spin fermions:H̃ ­ sVy2d

P
kf2i

These components develop a gapDg , V 2
0 yD, while the

scalars remain gapless. DiagonalizingHMFT, choosing
z

y
0 ­ s1, 0d, the explicit form of the gapless quasiparticle

is

ak ­
p

Zkfukck" 1 ykc
y
2k"g 1

p
1 2 Zkh3

k . (20)

Here√
u2

k

y
2
k

!
­

1
2

"
1 6

1p
1 1 fDsvdymkg2

#
v­Ek

, (21)

where mk is the symmetric part of ẽk, Zk ­
f1 1 m

2
kyV2g21 and Ek is the quasiparticle energy.

Unlike a Cooper-paired superconductor, the divergen
of the gap function at low frequencies leads to an equ
weight of particle and hole at the Fermi energy. Th
coherence factorkvjS6jvl , u2svd 2 y2svd grows like
Dsvd21 and is hence linear in energy.

In a conventional superconductor, the spectral weig
of the electrons that develop a gap is transferred
y
e
of
rs

ce,
gy

y
ns

ns
e
ce

lar

h

s

ce
al
e

ht
to

the condensate. Here, the consistency of this mod
requires that the gapped electrons combine to produce
low-energy three-body fermion. The original model is
invariant under sign changes of the Majorana fermion
fj ! 2fj shj ! 2hjd. This symmetry is broken by the
mean-field theory, which then allows for the possibility
of “kinks” in time, when theVj changes sign (Fig. 2).
These topological objects give rise to gapless fermion
zero modes which we are able to identify as the three
body bound states [15].

The operatorPj that effects theZ2 transformation
PjhjP

y
j ­ 2hj is

Pj ­ 24Fjh1
j h2

j h3
j , (22)

whereFj is an independent Majorana fermion introduced
to makePj a bosonic rather than fermionic operator. We
can sum over all tunneling processes by assuming th
the duration of a kink is extremely brief in comparison
with the delay between kinks, permitting us to associat
a fixed tunneling amplitudeG with a kink. A kink at
site k, time tjk s j ­ 1, nkd, may be introduced into the
partition function by applying the operatorPj to the
time evolution operator. The contribution to the partition
function associated with a set of kinks is

Ahtjkj ­ Tr
h
T

Y
j,k

GPjstjkde2
R

b

0
HMFT dt

i
,

where the trace contains the trace over theF field.
Contributions from paths with oddnk are zero. The
complete partition function is obtained by summing ove
all such paths

Z ­
X
hnk j

Y
k

0@ 1
nk!

Y
j­1,nk

Z b

0
dtjk

1AAhtjkj .

This expression is recognized as the expansion of a simp
exponential,Z ­ Trfe2bsHMFT 1Hintdg, where

Hint ­ 22G
X

j

Fjh1
j h2

j h3
j . (23)

FIG. 2. Kink configuration. Configuration with four kinks in
the order parameterV at a given site.
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Thus by taking account of kinks, we reveal the three
body bound state, represented here by the Majora
fermion Fj . This particle couples to the triplet of
gapped “vector” quasiparticles. Below the three-fermio
threshold3Dg, Fj propagates via the virtual excitation of
quasiparticles above the gap, forming a sharp three-bo
band of width,G2yDg.

In essence, we have followed the consequences
linear coherence factors to their logical conclusion
Should these ideas prove relevant to HFSC, then there
several interesting consequences. Vanishing coheren
factors should lead to the development of a quadrac
temperature or frequency dependence in a wide variety
response functions [transverse ultrasound attenuation,
depletion of the superfluid densityDrs, and the quasipar-
ticle conductivityssvd], despite a linear specific heat and
an essentially isotropic thermal conductivity. In addition
a superconductor with vanishing coherence factors w
exhibit a much larger Andreev reflection current than
gapless BCS superconductor. Furthermore, the abso
tion of an incoming electron into a three-body bound sta
within the condensate should result in the reflection of
particle and hole, creating adiffuse Andreev scattering
backgroundbelow Tc. Finally, it is worth noting that
recent measurements on UPt3 have observed a very large
low-temperature specific heat anomaly [7]. Conserv
tively, this anomaly is a Pt nuclear ordering transition
however, it could conceivably be a signature of a narro
band of three-body bound states. In this speculativ
scenario, the large specific heat anomaly would occ
without an NMR signature, but would coincide with a
corresponding anomaly in the thermal conductivity.

We have attempted to elucidate the physics of od
frequency superconductivity with the proposal that it i
driven by the development of an anomalous three-bo
amplitude. Unlike a Cooper-paired superconductor, th
type of superconductor involves the cooperative pairin
of electrons and spins, and leads to the unique featu
of gapless paired quasiparticles with vanishing coheren
factors. We have speculated that this picture may pro
useful in developing our understanding of heavy fermio
superconductors.
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