

Universidade Estadual de Campinas

Instituto de Física Gleb Wataghin Instrumentação para o Ensino F 809 **Relatório Final**

Thiago Carluccio Ra: 017450

Prof. Responsável: Dr. José L. Lunazzi Orientador: Prof. Dr. José Rubens Maiorino

Simulação da Detecção de Radiação Gama através do Método de Monte Carlo

1. Introdução

O método Monte Carlo é um método numérico de resolver problemas físicos e matemáticos através da amostragem aleatória. A invenção deste método é geralmente atribuída a Fermi, Von Neumann, Ulam, Metropolis e Richtmyer. O método só se tornou viável, como uma técnica numérica universal, com o advento dos computadores. A principal vantagem do método Monte Carlo é sua simplicidade. Aplicado a simulação do transporte de partículas num meio, o método não soluciona a equação de transporte, não é necessário nem mesmo conhecer tal equação, pois o método simula diretamente o transporte da partícula, utilizando uma grande quantidade de dados nucleares, como secções de choque dependendo da energia da partícula. A simulação consiste em seguir a "vida" de uma partícula (fóton), do momento de sua criação na fonte ou em alguma reação, até o momento de sua "morte", por absorção ou fuga do sistema. Cada evento individual é simulado seqüencialmente e as distribuições de probabilidade que governam estes eventos são amostradas estatisticamente. O comportamento médio das partículas no sistema é inferido da média do comportamento das partículas simuladas [1]. Pretende-se simular o espectro de deposição de energia de raios gama em detectores de NaI utilizando este método.

O método de detectar radiação através de cintilações é um dos mais antigos. Inicialmente, a técnica que se utilizava era a visual, com o auxílio de uma ocular. Com o aparecimento da radioatividade artificial este método se tornou impraticável (devido às altas atividades envolvidas) e foi substituído pelos detectores à gás. Entretanto, com o desenvolvimento das válvulas fotomultiplicadoras, a detecção pela cintilação se destacou, sendo muito utilizada atualmente [2,3].

Os detectores cintiladores são bastante versáteis e de grande aplicação na Física moderna. Em sua forma original, auxiliou Rutherford na descoberta do núcleo atômico. Com o advento das fotomultiplicadoras, estes passaram a integrar os aparatos de importantes experimentos físicos. Tais experimentos incluem a descoberta do pósitron e dos mésons μ , a espectroscopia gama, a tomografia por emissão de pósitron (PET) e o descobrimento de *bursts* de raios gama astronômicos [2].

Em particular, estamos interessados na espectroscopia gama. A emissão de raios gama é um mecanismo pelo qual a energia de excitação de um núcleo pode ser removida. Tais estados excitados podem acompanhar o decaimento de radioisótopos ou podem resultar de transmutações nucleares induzidas. Os raios gamas apresentam energias típicas que vão de alguns KeV até vários MeV [2]. Embora sejam conhecidos um grande número de mecanismos de interação dos raios gamas com a matéria, somente três são relevantes na medida da

radiação: absorção fotoelétrica, espalhamento Compton e produção de pares. Todos estes processos levam a uma parcial ou completa transferência de energia do fóton gama para o elétron. Isso resulta em uma mudança repentina na história do raio gama: ou ele desaparece ou ele é espalhado por ângulos significativos [3].

A absorção fotoelétrica é o efeito predominante para raios gama de baixa energia (algumas centenas de KeV) enquanto que a produção de pares predomina para gamas de alta energia (acima de 5-10 MeV). O efeito Compton é o processo mais provável na faixa de energia entre esses dois extremos. O número atômico do meio interagente influencia fortemente as probabilidades relativas dessas três interações. A mais impressionante dessas variações envolve a seção de choque para a absorção fotoelétrica, que varia aproximadamente com $Z^{4,5}$ [3]. Sendo assim, é desejável que os detectores utilizados em espectroscopia gama incorporem elementos de alto número atômico.

1.1. Mecanismos de Interação da Radiação Gama com a Matéria

1.1.1 Absorção Fotoelétrica

Absorção fotoelétrica é uma interação na qual o fóton incidente desaparece. Tal fóton, de energia hv, interage com o átomo como um todo. Sua energia é transferida a um elétron, normalmente pertencente à camada mais interna do átomo. Para energias típicas de raios gamas, um elétron da camada K é arremessado com uma energia cinética E_e , dada por:

$$E_e = hv - E_b$$

onde E_b é a energia de ligação do elétron orbital (da ordem de 1-10 KeV). Conservação de momento requer que o átomo recue neste processo, mas essa energia de recuo é muito pequena e normalmente é desprezada.

O buraco que é criado na camada eletrônica, como resultado da emissão do fotoelétron, é rapidamente preenchido através de um rearranjo eletrônico. Neste processo, a energia de ligação é liberada na forma de raios X característicos ou de elétrons de Auger. Entretanto, os elétrons de Auger são de baixa energia e seu alcance é extremamente pequeno [cullity, knoll]. Já os raios X característicos viajam uma certa distância (tipicamente 1 mm) antes de serem absorvidos através de interações fotoelétricas com camadas eletrônicas mais externas dos átomos absorvedores.

Como a energia de ligação é muito menor que a energia do fóton gama, se nada escapa do detector, a soma das energias cinéticas dos fotoelétrons deve ser igual a energia do fóton gama incidente. Dessa forma, a absorção fotoelétrica é um processo ideal par a determinação da energia do raio gama original.

1.1.2. Espalhamento Compton

No efeito Compton, o fóton incidente pode interagir com qualquer um dos elétrons orbitais. Os elétrons são considerados livres pelo fato de ser a energia do fóton incidente extremamente elevada comparada com a energia do elétron ligado. O resultado do espalhamento Compton é um elétron recuado e um fóton gama espalhado (com uma frequência menor que a do fóton incidente). A energia E_{γ} do fóton incidente é dividida entre o elétron recuado e o fóton espalhado. Essa divisão da energia depende do ângulo de espalhamento θ .

Impondo a conservação do momento e da energia-massa relativística, obtém-se a seguinte relação entre a energia E_{γ} do fóton antes da colisão e a energia $E_{\gamma'}$ do fóton depois da colisão [5,3]:

$$\frac{1}{E_{\gamma'}} - \frac{1}{E_{\gamma}} = \frac{(1 - \cos\theta)}{m_e c^2}$$

onde $m_e c^2$ é a chamada energia de repouso do elétron (511 KeV).

Um gama entra no cristal do detector e é espalhado por um elétron de maneira a deixar o detector. Então, a quantidade de energia detectada corresponde à energia cinética transferida ao elétron. A máxima energia do elétron, $E_{máx}$, resulta de uma colisão frontal com o gama, onde este é espalhado de um ângulo $\theta = \pi$ (backscattering):

$$E_{max} = E_{\gamma} - E_{\gamma'} = \frac{2E_{\gamma}^{2}}{2E + m_{e}c^{2}}$$
(1)

O degrau Compton representa esta energia máxima transferida ao elétron. O elétron também pode sofrer colisões não frontais e ter uma energia menor que a máxima depois da colisão. Esta é a origem da larga distribuição de eventos com energia menores que a do degrau Compton.

A situação contrária também pode acontecer: um gama é espalhado por um elétron externo ao detector (do material da blindagem, por exemplo) e ao entrar no detector, com uma energia menor que a do gama primário, ele é detectado através de efeito fotoelétrico. Somente entrarão no detector gamas cujo o ângulo de espalhamento for próximo de π . O fotopico obtido é chamado de pico retro-espalhamento (backscattering peak).

A conservação de energia requer que a energia do degrau Compton somada à energia do pico de retro-espalhamento seja igual à energia do gama original (fotopico).

1.1.3. Produção e Aniquilação de Pares

Este processo ocorre intensamente próximo aos prótons dos materiais absorvedores. Ele consiste no desaparecimento de um raio gama e na formação de um par elétron-pósitron em seu lugar. A energia mínima para tornar o processo possível é $2m_ec^2$. Se o gama incidente receber esta energia, o excesso será compartilhado como energia cinética pelo par.

Alguns isótopos radioativos, que possuem um excesso de prótons, reduzem seu número atômico através de decaimento β^+ . Após perder sua energia cinética o pósitron se recombina com um elétron do meio gerando dois fótons de energia m_ec^2 . O tempo necessário para o pósitron ser freado e se aniquilar é muito pequeno sendo praticamente instantânea a aniquilação do gama original e subseqüente emissão de dois gamas de m_ec^2 . Como estes dois gamas saem em direções opostas (conservação do momento linear), praticamente apenas um deles interage com o detector. O resultado desta interação é um fotopico de 511 KeV e um contínuo Compton [2].

Todos esses três processos atenuam um feixe de gamas incidentes, ora absorvendo ora espalhando alguns fótons. Isso é mostrado esquematicamente na figura 1a. O número de gamas removidos (- Δ N) do feixe incidente (N₀) é proporcional ao número de elétrons e núcleos ao longo do caminho percorrido através d material reagente. O número de elétrons e núcleos é proporcional à densidade atômica (ρ) do material . O caminho atravessado é (Δ x). Essa atenuação é representada por [2,4]

$$\Delta N = -N_0 (\rho \Delta x) \frac{\mu}{\rho} \, .$$

Assim,

$$N(x) = N_0 \exp\left(-\left(\rho x\right)\frac{\mu}{\rho}\right),\tag{2}$$

onde μ/ρ é o chamado coeficiente de absorção de massa. As seções de choque de cada processo dependem da energia [3] logo, este coeficiente também (figura 1b).

Finalmente, através da medida de intensidades relativas dos fotopicos é possível medir o coeficiente de atenuação do material absorvedor.

1.2 Aparato Experimental

O NaI é um cristal não condutor, o que implica em uma grande separação entre a banda de valência e de condução. Elétrons energéticos, produzidos por um gama, dissipam suas energias cinéticas na produção de par elétron-buraco. Estes pares são resultados da colisão de elétrons energéticos com elétrons do cristal. A recombinação destes pares pode resultar na emissão de luz por transições radioativas ou vibração na rede cristalina.[2]

A fração de energia depositada no cristal que é convertida em luz é denominada eficiência luminosa. A presença de Tálio eleva de maneira significativa a emissão de luz pelo cristal [1]. Como resultado o cristal dopado converte cerca de 11% da energia do gama incidente em energia cinética em fótons de energia média de 3 eV [2].

Esta luminescência pode ser convertida em um pulso de corrente mensurável através da utilização de materiais fotossensíveis e amplificadores eletrônicos, que fornecerão uma resposta proporcional à energia depositada no cristal pela radiação gama.[1,3] Segue um esquema de montagem do espectrômetro gama:

Fig. 2: Esquema simplificado de um contador de cintilação.

O Iodeto de Sódio é utilizado em detectores devido à sua alta densidade (3,67 g/cm³) e ao alto número atômico do Iodo, o que torna alta a secção de choque para a interação dos gamas com o cristal. Além disso, este material possui uma alta eficiência luminosa.

Esta luz é transmitida eficientemente para o fotocatodo da válvula fotomultiplicadora diretamente ou por reflexão. Essa luz causa a emissão de fotoelétrons do fotocatodo. Estes elétrons são, por sua vez, acelerados e focalizados nos dinodos da válvula, através do campo elétrico produzido por uma diferença de tensão aplicada à válvula fotomultiplicadora (Figura 3) [2,3]. Cada elétron arranca de 3 a 5 novos elétrons. Portanto, o ganho da corrente para uma fotomultiplicadora típica de 10 estágios é da ordem de 10^6 . Quando os elétrons chegam ao anodo, a corrente flui através de uma resistência e causa uma queda na tensão pelo equipamento, através de um capacitor é gerado um pulso que será posteriormente contado e discriminado. Este pulso negativo tem, em geral, uma amplitude de poucos milivolts até alguns volts.[apos]

O tempo de subida do pulso, isto é, o tempo para o pulso subir de 10 % a 90 % de sua máxima amplitude é determinado pela meia vida do estado excitado do cintilador que emite a luz e pelo tempo introduzido pela multiplicação dos elétrons.

Fig. 3: Válvula Fotomultiplicadora

O laboratório de Física Moderna, utilizado na disciplina F 740 conta com um detector de NaI (Tl) de 1,5 x 1,5 in, acoplado a um analisador multi-canal controlado digitalmente por um microcomputador.

Utilizando-se este equipamento, obteu-se o seguinte espectro para uma fonte cilíndrica de Na²²:

(a)

Fig. 6a: Canais de decaimento do ²²Na. Fig. 6b: Espectro do ²²Na

(b)

O ²²Na possui dois canais de decaimento e uma meia vida de 2,605 anos. Em um destes canais, o núcleo decai para um estado excitado do ²²Ne por um decaimento β^+ . Através da emissão de um gama de 1274,5 KeV, o estado fundamental do ²²Ne é alcançado. Já no outro canal, o núcleo absorve um elétron da camada K decaindo diretamente para o estado fundamental do ²²Ne (figura 6a). Esta femenologia pode ser observada no espectro do ²²Na (figura 6b).

2. O Método de Monte Carlo

2.1 Introdução

Os modernos computadores tornaram possível a simulação de complicados problemas matemáticos utilizando método Monte Carlo.

O método Monte Carlo é uma técnica de análise númerica que utiliza a amostragem estatistica para solução de problemas físicos ou matemáticos. Um modelo estocástico é amostrado de distribuições de probabilidade apropriadas que representam o sistema sendo simulado e estimando-se as respostas requeridas por intermédio de médias estatísticas.[1]

A emissão e o transporte de radiação através de meios materiais pode ser considerados eventos probabilísticos. Na emissão de radiação deve-se conhecer a probabilidade da radiação ser emitida com um determinado ângulo e energia, e o processo de transporte envolve o conceito de secção de choque, que nada mais é que a probabilidade que a radiação interaja de uma determinada maneira.

Conhecendo-se estas probabilidades pode se simular desde o processo de "nascimento" da radiação, a trajetória percorrida pela mesma, até sua "morte" ou fuga do sistema.

O seguinte diagrama de blocos ilustra o processo de simulação Monte Carlo em processos de transporte [1]:

2.2 Métodos de amostragem

Para a solução de problemas pelo método Monte Carlo é necessário fazer amostragens de distribuições de probabilidade adequadas. Quantidades aleatórias distribuídas uniformemente podem ser utilizadas para simular eventos que obedecem a qualquer distribuição[32].

A relação entre números aleatórios com uma dada distribuição e números aleatórios uniformemente distribuídos entre (0,1), está baseada no seguinte teorema:

Teorema: Seja η uma quantidade aleatória de distribuição f(x), então a distribuição da quantidade aleatória ξ dada por: $\xi = \int_{-\infty}^{\eta} f(x) dx$, é uniforme no intervalo (0,1). Assim, pode-se exprimir η como função apenas de ξ e de sua distribuição de probabilidade f(x).

Por exemplo, a probabilidade da partícula sofrer colisão entre x e x+dx é dada por:

 $f(x)dx = e^{-\Sigma_t x} \Sigma_t dx$, onde Σ_t é a secção de choque macroscópia total do meio. Seja,

$$\xi = F(L) = \int_{0}^{L} e^{-\Sigma_{t} x} \Sigma_{t} dx = 1 - e^{-\Sigma_{t} L}$$
(3)

temos então:

$$L = -\frac{1}{\Sigma_t} \ln(1 - \xi) = F^{-1}(\xi), \qquad (4)$$

como $(1-\xi)$ tem a mesma distribuição de ξ , obtém-se:

$$L = -\frac{1}{\Sigma_t} \ln(\xi) \tag{5}$$

Assim, o ponto em que a partícula interagiu será dado pela equação acima, a partir do "sorteio" da quantidade aleatória e uniforme entre $(0,1) \xi$.

Existem algumas outras técnicas de amostragem dentro do método Monte Carlo, como a Técnica de Rejeição e Amostragem por Importância, que não serão abordados nesse trabalho, mas que são muito utilizadas. O procedimento ilustrado nas equações acima é a essência do método.

Além de se calcular valores médios, espera-se que a variância destes valores seja pequena, existem várias técnicas de redução de variância que não serão discutidos neste trabalho, como Roleta Russa e fracionamento [1].

3. Idealizações e Aproximações para construção do Modelo de Simulação

Para construir o modelo de simulação, foi neglicênciado o efeito da radiação de fundo, assim como da interação da radiação com materias ao redor do detector, como blindagens e encapsulamento do cristal. Tal hipotése é equivalente à dizer que o detector e a fonte estão num vácuo infinito. As diferenças observadas devido a essa hipotése são mais relevante para baixas energias e pequeno número de contagem, com essas aproximações não será observado nos espectros simulados o efeito de retroespalhamento.

Assume-se também que a radiação gama é não polarizada e interage com o detecto somente por efeito fotoeletrico, espalhamento Compton e produção de pares. Estas aproximações são suficientemente válidas na região do espectro trabalhada.

Considera-se também que os eletrons só perde energia por ionização e excitação, o que se mostrou razoavelmente válido em[41].

Para uma maior eficiência computacional se utiliza as seguintes reduções de variância:

1. O raio gama atinge o detector;

2. O raio gama interage dentro do detector;

3. O raio gama é obrigado a "sobreviver" através do efeito Compton.

Para cada condição acima é calculado os pesos apropriados utilizando príncipios físicos e geométricos.

As secções de choque utilizadas foram retiradas da literatura, citadas em [1] e ajustadas por polinômios de grau 3.

O alargamento do espectro é assumido como sendo gaussiano e o desvio padrão utilizado é

obtido empiricamente, sabendo-se a largura à meia altura è $2,35\sigma[1]$.

4. Atividades Realizadas durante o projeto

Como parte da disciplina F 740 realizou-se a espectroscopia gama utilizando o detector que se deseja simular, estudando o funcionamento do mesmo. Muitos dos espectros que se pretende simular foram obtidos e estudados.

Estudou-se as seguintes secções de [1]:

- O Método Monte Carlo
- -Números Aleatórios
- -Métodos de Amostragem
- -Análise dos Resultados
- Cálculo de Eficiências e Levantamento do Espectro
- -Idealizações e Aproximações para a Construção do Modelo de Simulação

-Considerações Gerais Sobre o Modelo de Cálculo

- -Determinação do Ângulo Sólido
- -Cálculo dos Cossenos Diretores Iniciais
- -Determinação dos Coeficientes de Atenuação
- -Determinação da Probabilidade de Interação
- -Determinação da Nova Energia após o Espalhamento
- -Levantamento do Espectro
- Descrição do Programa
- Problemas Amostra

Este estudo possibilitou um entendimento da rotina que será implementada. Estudou-se a linguagem FORTRAN para se entender o código fonte da simulação realizada em [1]. Este estudo baseou-se nos livros [8] e [9]. A implementação da rotina está em andamento. A rotina foi desenvolvida por Vieira [1] em 1982, em FORTRAN IV, num IBM /370/155. A rotina estava impressa com baixa qualidade, bastante comprometida pelo tempo, o que causou alguns erros quanto a nomes de variáveis. Foi necessário corrigir a sintaxe de algumas linhas do código para que a rotina fosse compatível com os compiladores modernos, como o g77 do

Linux. Foi implementada uma entrada de dados mais amigável, onde são perguntados ao usuário (na tela) os parâmetros da simulação, a entrada de dados de [1] era feita por cartão perfurado.

A compatibilização do código fonte com os compiladores atuais consumiu grande parte do tempo.

Os erros obtidos durante a etapa de depuração do código foram maiores que o previsto. Desde final do semestre passado até começo de dezembro corrigiram-se muitos destes erros. Na presente data o programa funciona razoavelmente bem. O programa roda bem rápido e alcança-se uma solução convergente com aproximadamente 2000 estórias por linha de emissão.

Foi utilizado o compilador PGF95 6.0 no Linux e o Lahey® Fortran 95 para Windows®. Em ambos é possível obter executáveis satisfatórios. Não garanto que seja possível utilizar outro compilador com o código fonte atual.

Foram necessárias **60 horas de programação,** cerca de 3 por semana, desde a prévia da apresentação deste trabalho no semestre passado até que o mesmo chegasse ao estado atual. Durante este semestre foi estudado softwares Monte Carlo comerciais como o MCNP-X

5. Resultados e Discussões

Embora este trabalho não tenha grande compromisso com a precisão, mas sim com a ilustração do método Monte Carlo e com a possibilidade do código ser utilizado para fins didáticos, os resultados encontrados após duro trabalho de programação são bastantes satisfatórios, conforme pode ser visto nos espectros simulados abaixo:

Note que o espectro calculado do ²²Na é muito próximo do experimental da figura 6a, exceto pelo pico soma, que acontece quando o detector não consegue resolver temporalmente a entrada de dois fótons no detector. Pode-se observar claramente as reações mais prováveis de acontecerem na interação dos raios gama com o cristal, a absorção fotoelétrica (foto-pico) e o efeito Compton (contínuo e borda Compton).

Existem na literatura [6,7] trabalhos muito mais precisos que estes, assim como existem pacotes que permitem uma grande facilidade de modelagem da fonte radioativa e dos materiais presentes num dado laboratório (foto-multiplicadora, blindagem, etc...), com

secções de choque muito mais completas, atuais e precisas das que foram utilizadas neste trabalho. Possuem também reações que foram ignoradas neste trabalho, tal como a formação de raios-x secundários, provenientes da absorção fotoelétrica de um elétron de caroço e seguinte transição de elétrons de níveis superiores para o buraco deixado. Tais refinamentos fogem do escopo do trabalho e foram deixados de lado.

A interface criada, embora seja em modo texto, é bastante intuitiva. Como resultado da simulação é gerado um arquivo de texto que pode ser facilmente exportado para um software que faça gráficos.

6. Conclusões

Acredito que poderá ser uma ferramenta para os alunos que realizarem espectroscopia gama no laboratório de Física Moderna.

O trabalho é muito importante para mim, pois além de disponibilizar uma ferramenta para o ensino de Física, me permitiu aprender um pouco sobre o método Monte Carlo. Este conhecimento será muito útil nas atividades de pesquisa, onde estou utilizando o programa Monte Carlo MCNP-X para implementar uma metodologia de cálculos neutrônicos em reatores avançados (ADS), tal trabalho terá continuidade na pós-graduação.

6. Referências

[1] Vieira, W. J., Simulação do Espectro de Deposição de Energia de Raios Gama em Detectores de NaI Utilizando o Método de Monte Carlo, Dissertação de mestrado, IPEN, São Paulo, 1982.

[2] Peterson, R. S., Experimental γ Ray Spectroscopy and Investigations on Environmental Radioactivity, University of the south Sewanee, Tennessee, 1994.

[3] Knoll, G. F., Radiation Detection and Measurement, John Willey, New York, 2000.

[4] Cullity, B. D., Elements of X-Ray Diffraction, Addison-Wesley, 1968.

[5] Eisberg, R.; Resnik, R., Física Quântica, Editora Campos, 1921.

[6] Silva J. C., Simulação Monte Carlo dos sistemas de detecção de perfilagem nuclear, Rev. Bras.Geof. vol.19 no.3 São Paulo Sept./Dec. 2001.

[7] Shi HX, Chen BX., Li TZ, Yun D, Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector, Appl Radiat Isot. 2002 Oct;57(4):517-24.

[8] Grillo, M. C. A., Programação Estruturada com FORTRAN e WATFIV, LTC, Rio de Janeiro,1985.

[9] Grossberg, A. B., FORTRAN for Engineering Physics - Mechanics, Data Analysis, and Heat, McGraw-Hill, 1971.

[10] Dos Reis, M. A., Vitiello, S. A. S., Simulação Monte Carlo aplicado ao oscilador harmônico quântico 1D, Relatório Final de F809, IFGW, UNICAMP, Campinas, 2004. [11] http://fortran.com

[12]H. Tawara, S. Sasaki, K. Saito, E. Shibamura and M. Miyajima, KEK Proceedings 200-20, (2000).

[13] <u>http://mcnpx.lanl.gov</u>

ANEXO 1: Código Fonte

```
!
           PROGRAMA MCGAMA
1
           THIAGO CARLUCCIO
1
1
1
           SIMULAÇÃO DO ESPECTRO GAMA EM DETECTORES DE NaI
1
           UTILIZANDO O MÉTODO MONTE CARLO
1
1
           PROJETO DE INSTRUMENTACAO PARA ENSINO F 808 20 SEMESTRE 2005
I
I
           SUBROTINAS UTILIZADAS
!
                BOIING, TATA, SUSY, ERRSET (IBM), LILI,
1
                MICA, FOFA, BIA E FLO.
1
1
1
!
     IMPLICIT REAL*8 (A-H,O-Z)
     COMMON IU
     DIMENSION CONT(144), E(144), FINAL(144)
     DIMENSION ENERG(30), PROB(30)
     DATA PI/3.1415926/
     WRITE (*,*) 'ESTE PROGRAMA TENTA SIMULAR POR MONTE CARLO',/
     WRITE (*,*) 'A INTERACAO DA RADIAÇÃO GAMA COM UM CRISTAL DE Nai.',/
     WRITE (*,*) 'SEU PRINCIPAL OBJTIVO EH ILUSTRAR ESTE IMPORTANTE,/
     WRITE (*,*) 'METODO DE CALCULO'
     WRITE(*,*) 'Raio da Fonte (cm)(1):'
     RF=1.0
1
     READ(*,*) RF
     WRITE(*,*) 'Raio do Detector (cm): (2)'
      RD=3.32
1
     READ(*,*) RD
     WRITE(*,*) 'Altura do Detector (cm)(10):'
      AD=7.62
!
     READ(*,*) AD
     WRITE(*,*) 'Distancia da fonte Pontual ao Eixo do Detector:(0)'
1
      P=0.0
     READ(*, *) P
     WRITE(*,*) 'Distancia da Fonte ao topo do Detector (cm)(10):'
1
      HO=10.0
     READ(*,*) HO
      WRITE(*,*) 'Fonte tipo feixe paralelo Sim=0 Nao=1:'
!
     FP=0
     READ(*,*) FP
!
     WRITE(*,*) 'Parametro de Espalhamento do Histograma:(0.07)'
     READ(*,*) U
     WRITE(*,*) 'Numero de Historias:'
     READ(*, *) N
     WRITE(*,*) 'Numero de Linhas:'
     READ(*,*) IZ
     WRITE(*,*) 'Fator de Normalizacao:'
     FNORM=1.0
T
     READ(*,*) FNORM
     DO 2 I=1, IZ
     WRITE(*,*) 'ENERGIA DA LINHA:'
     READ(*,*) ENERG(I)
     WRITE(*,*) 'PROBABILIDADE RELATIVA DA LINHA:'
     READ(*,*) PROB(I)
   2 CONTINUE
     IU=123456789
```

```
DO 556 I=1, 144
      CONT(I) = 0.D0
     FINAL(I) = 0.D0
  556 CONTINUE
      SUM1=0.D0
      SUM2=0.D0
      SUM3=0.D0
      SUM4=0.D0
      SUM5=0.D0
      SUM6=0.D0
     HELP=0
1
      WRITE(*,*) N
1
      DO 1 I=1, N
      WRITE(*,*) 'HISTORIA'
!
      WRITE(*,*) I
!
!
! SELECAO DA ENERGIA INICIAL
!
      CALL FLO (IZ, ENERG, PROB, HELP, EFMAX, EFC, EF)
      HELP=1
1
      SELECAO DO PONTO DA PRIMEIRA INTERACAO
1
     CALL TATA (RF, RD, AD, P, HO, FP, WP, XE, YE, ZE, DE, ACOSS,
     *BCOSS, CCOSS, IFONTE)
     X = RANDO(0)
      EO=EF
     WZ=0.D0
     WY=0.D0
      WP1=0.D0
      PROD=1.D0
      CALL SUSY (EO, SIGMAC, SIGMAF, SIGMAP, SIGMAT)
      ELI=-1.D0/SIGMAT*(DLOG(1.D0-X*(1.D0-DEXP(-1.0*SIGMAT*DE))))
      XN=ELI*ACOSS+XE
      YN=ELI*BCOSS+YE
      ZN=ELI*CCOSS+ZE
     WT=1.D0-EXP(-SIGMAT*DE)
     WV=WT*(SIGMAF/SIGMAT)
     DELTAE=EFMAX/128.0
     EA=EF
     DO 55 K=1,128
     E(K)=DELTAE*K
      IF((EA-E(K)).LT.1.E-5) GO TO 54
      IF(EA-E(K)) 54,54,55
   54 CONT(K)=CONT(K)+WV
      GO TO 56
   55 CONTINUE
   56 WU=WT
      IF(EF.LT.1.1) GO TO 223
      WPP=WT*SIGMAP/SIGMAT
      CALL LILI (XN, YN, ZN, AD, EF, RC, EA)
      IF(EA-EF) 197,198,197
 198 WP1=WPP
  197 DO 6777 K=1,128
      E(K) = DELTAE * K
      IF((EA-E(K)).LT.1.E-5) GO TO 5777
      IF (EA-E(K)) 5777,5777,6777
 5777 CONT(K) = CONT(K) + WPP
      GO TO 223
 6777 CONTINUE
```

```
!
! TESTE PARA TERMINO DA HISTORIA
1
  223 WX=WT*(SIGMAC/SIGMAT)
      IF (PROD.LE.1.0E-8) GO TO 401
     PROD=PROD*WX
!
1
! SELECAO DO ANGULO DE ESPALHAMENTO E ENERGIA DO FOTON ESPALHADO
1
      CALL BOIING (EO,ES)
      TETA=ACOS(1.0+0.511/EO-0.511/ES)
      EO=ES
1
1
! TESTE PARA TERMINO DA HISTORIA
!
      IF(EO.LT.1.E-2) GO TO 401
      X=RANDO(0)
      FI=2.0*PI*X
      CT=DCOS (TETA)
      ST=DSIN(TETA)
      CF=DCOS(FI)
      SF=DSIN(FI)
!
! COSSENOS DIRETORES EMERGENTES
T
      DENOM=SORT(0.1D1-CCOSS)
      IF(DENOM.LE.0.D-4) GO TO 26
      ACOSSI=ACOSS*CT+(CCOSS*ACOSS*ST*CF-BCOSS*ST*SF)/DENOM
      BCOSSI=BCOSS*CT+(CCOSS*BCOSS*ST*CF+ACOSS*ST*SF)/DENOM
      GCOSSI=CCOSS*CT-DENOM*ST*CF
      ACOSS=ACOSSI
     BCOSS=BCOSSI
      GCOSS=GCOSSI
      GO TO 27
   26 ACOSS=ST*CF
     BCOSS=ST*SF
      GCOSS=GCOSS*CF
1
! SELECAO DA NOVA DISTANCIA A PERCORRER NO CRISTAL
!
   27 A=ACOSS*ACOSS+BCOSS*BCOSS
     B=2.D0*(XN*ACOSS+YN*BCOSS)
      C=XN*XN+YN*YN-RD*RD
      D=B*B-4*A*C
     DE = (-B + SQRT(D)) / (2.D0 * A)
      ZR=DE*GCOSS+ZN
      IF(ZR) 111,111,211
 211 IF(ZR-AD) 40, 411, 411
  111 DE=-ZN/GCOSS
      GO TO 40
 411 DE=(AD-ZN)/GCOSS
!
!
   SELECAO DE NOVO PONTO DE INTERACAO
!
1
   40 X=RANDO (0)
      CALL SUSY (EO, SIGMAC, SIGMAF, SIGMAP, SIGMAT)
      ELI=-1.D0/SIGMAT*(DLOG(1.D0-X*(1.D0-DEXP(-SIGMAT*DE))))
      XN=ELI*ACOSS+XN
```

```
YN=ELI*BCOSS+YN
      ZN=ELI*GCOSS+ZN
      WT=1.D0-EXP(-SIGMAT*DE)
      IF(EF.LT.1.1) GO TO 312
      WK=WT*(SIGMAP/SIGMAT)
1
1
   PERCA DE ENERGIA DEVIDO AO EFEITO DE PRODUCAO DE PARES
!
1
      CALL LILI (XN, YN, ZN, AD, EF, RD, EA)
      IF(EA-EF) 9,8,9
    8 WY=WY+WK*PROD
    9 DO 677 K=1,128
     E(K)=DELTAE*K
      IF((EA-E(K)).LT.1.D-5) GO TO 98
      IF(EA-E(K)) 98,98,677
   98 CONT(K)=CONT(K)+WK*PROD
      GO TO 312
  677 CONTINUE
!
!
   PERCA DE ENERGIA DEVIDO AO EFEITO FOTOELETRICO
!
 312 WF=WT* (SIGMAF/SIGMAT)
     EA=EF
      DO 75 K=1,128
      E(K) = DELTAE * K
      IF((EA-E(K)).LT.1.E-5) GO TO 74
      IF(EA-E(K)) 74,74,75
   74 CONT(K) = CONT(K) + WF*PROD
      WZ=WZ+WF*PROD
      GO TO 77
  75 CONTINUE
!
    PERCA DE ENERGIA DEVIDA A FUGA DO FOTON
!
1
  77 EA=EF-EO
       DO 67 K=1,128
      E(K) = DELTAE * K
      IF(EA-E(K)) 101,101,67
  101 CONT(K) = CONT(K) + PROD*(1.0-WT)
     GO TO 223
!
   67 CONTINUE
!
!
!
    FIM DA HISTORIA
!
1
 401 SUM1=SUM1+WU*WP
      SUM2=SUM2+WP
      SUM3=SUM3+WU*WU*WP*WP
      SUM4=SUM4+WP*WP
      SS=WP*(WV+WZ+WP1+WY)
      SUM5=SUM5+SS
      SUM6=SUM6+SS**2.D0
!
   1 CONTINUE
      WRITE(*,*) 'FIM DAS HISTORIAS'
1
        CALCULO DO FATOR GEOMETRICO
1
1
```

```
WRITE(*,*) 'SUM2'
      WRITE(*,*) SUM2
      WRITE(*,*) 'N'
      WRITE(*,*) N
      OMEGA=SUM2/N
      WRITE(*,*) 'OMEGA'
      WRITE(*,*) OMEGA
      S2=(1./(N-1.))*(SUM4-(SUM2)**2/N)/N
      WRITE(*,*) 'S2'
      WRITE(*,*) S2
      SIGOME=SQRT(S2)
1
     CALCULO DA EFICIENCIA INTRINSICA TOTAL (EIT)
1
1
      EIT=(1.0/N)*SUM1/OMEGA
      WRITE(*,*) 'OMEGA'
      WRITE(*,*) OMEGA
      WRITE(*,*) 'EIT'
      WRITE(*,*) EIT
      WRITE(*,*) 'THIAGO'
      O2=OMEGA*OMEGA
      S=(1./(N-1.))*(SUM3/O2-SUM1*SUM1/N/O2)/N
      SIGE=SORT(ABS(S))
!
!
     CALCULO DA EFICIENCIA DO FOTOPICO (EFP)
!
      EFP=(1.0/N) *SUM5/OMEGA
      WRITE(*,*) 'SUM5'
      WRITE(*,*) SUM5
      S1=(1./(N-1.))*(SUM6/O2-(SUM5)*2/N/O2)/N
      SIGEFP=SORT(ABS(S1))
1
!
     CALCULO DA RAZAO PICO/TOTAL (R)
!
     R=EFP/EIT
     SIGR=(EFP/EIT) *SQRT((S1/EFP*EFP+S/(EIT*EIT)))
1
1
     CALCULO DA EFICIENCIA INTRINSICA DA FONTE (ETG)
1
      ETG=OMEGA*EIT
      S3=OMEGA*OMEGA*S2+EIT*EIT*S
     SIGETG=SQRT(S3)
!
!
     CALCULO DA EFICIENCIA DE FOTOPICO DA FONTE (EFG)
!
     EFG=OMEGA*EFP
!
      S4=OMEGA*OMEGA*S2+EFP*EFP*S1
     SIGEFG=SORT(S4)
!
     ESPALHAMENTO DO HISTOGRAMA
1
!
      CALL MICA (EFMAX, U, CONT, FINAL, FNORM)
!
        IMPRESSAO DE RESULTADOS
!
!
1
     CALL BIA (RF, RD, AD, P, HO, EFC, CONT, FINAL, FNORM, U, N,
     *EIT, EFP, OMEGA, R, IFONTE, SIGOME, SIGE, SIGEFP, SIGR, DELTAE)
      WRITE (*,*) 'IMPRESSAO DOS RESULTADOS'
      READ(*,*) THIAGO
```

```
1
     GRAFICO DO ESPECTRO
1
1
      CALL FOFA (FINAL)
1
      GO TO 1001
1
      WRITE(*,*) 'FIM DO PROGRAMA'
      READ(*,*) THIAGO
2000 STOP
  22 END
!
1
1
      SUBROUTINE FLO (IZ, ENERG, PROB, HELP, EFMAX, EFC, EF)
1
!
      ESTA SUBROTINA FORNECE A ENERGIA MAXIMA DO NUCLIDEO
!
      A ENERGIA CARACTERISTICA E AMOSTRA UMA ENERGIA QUALQUER
!
      PARA UTILIZACAO NO DESENVOLVIMENTO DOS CALCULOS
!
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON IU
      DIMENSION ENERG(30), PROB(30)
      IF(HELP==1) GO TO 30
      DEN=0.0
      DO 1 I=1, IZ
      DEN=DEN+PROB(I)
    1 CONTINUE
      DO 2 I=1, IZ
      PROB(I)=PROB(I)/DEN
    2 CONTINUE
      IF(IZ.LE.1) GO TO 4
      IZ1=IZ-1
      DO 3 I=1,IZ1
      PROB(I+1) = PROB(I) + PROB(I+1)
    3 CONTINUE
      EFC=ENERG(1)
      EF=EFC
      DO 20 I=2,IZ
      IF(EF-ENERG(I)) 10,10,20
   10 EF=ENERG(I)
   20 CONTINUE
      EFMAX=EF
      GO TO 30
    4 EFMAX=ENERG(1)
      EFC=EFMAX
      EF=EFC
   30 X = RANDO(0)
      DO 5 I=1,IZ
      IF(X.GT.PROB(I)) GO TO 5
      EF=ENERG(I)
      GO TO 40
    5 CONTINUE
   40 RETURN
      END
!
!
1
      SUBROUTINE BIA (RF, RD, AD, P, HO, EFC, CONT, FINAL, FNORM, U, N,
     *EIT, EFP, OMEGA, R, IFONTE, SIGOME, SIGE, SIGEFP, SIGR, DELTAE)
1
      SUBROTINA PARA IMPRESSÃO DE RESULTADOS
1
```

!

```
IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION VETOR(144), CONT(144), FINAL(144)
      INTEGER IERROR, K
      WRITE(*,*) 'ANTES DE ABRIR O ARQUIVO'
      OPEN(20, FILE='MCGAMA.OUT', STATUS='REPLACE', ACTION='WRITE',
     *IOSTAT=IERROR)
      WRITE(*,*) 'IERROR'
      WRITE(*,*) IERROR
      WRITE(*,*) 'HISTOGRAMA'
      WRITE(20,*) 'IMPRESSAO DOS RESULTADOS MCGAMA.OUT'
!
      WRITE(20,230) RF
  230 FORMAT('RF = ', ES14.4, /)
1
      WRITE(20,231) RD
1
  231 FORMAT('RD = ', ES14.4, /)
1
      WRITE(20,232) AD
1
  232 FORMAT('AD = ', ES14.4,/)
!
      WRITE(20,233) P
!
!
  233 FORMAT('P = ', ES14.4, /)
      WRITE(20,234) HO
!
!
  234 FORMAT('HO = ', ES14.4, /)
      WRITE(20,235) EFC
1
1
  235 FORMAT('EFC = ', ES14.4, /)
1
      WRITE(20,236) FNORM
1
  236 FORMAT('FNORM = ', ES14.4, /)
!
      WRITE(20,237) U
!
  237 FORMAT('U = ', ES14.4,/)
!
      WRITE(20,238) N
!
  238 FORMAT('N = ', I4, /)
      WRITE(20,239) EIT
1
! 239 FORMAT('EIT = ', ES14.4,/)
      WRITE(20,240) EFP
1
! 240 FORMAT('EFP = ', ES14.4, /)
      WRITE(20,241) OMEGA
1
! 241 FORMAT('OMEGA = ', ES14.4, /)
1
      WRITE(20,242) R
! 242 FORMAT('R = ', ES14.4,/)
1
      WRITE(20,243) IFONTE
! 243 FORMAT('IFONTE = ', I4, /)
      WRITE(20,244) SIGOME
1
! 244 FORMAT('SIGOME = ', ES14.4, /)
1
      WRITE(20,245) SIGE
! 245 FORMAT('SIGE = ', ES14.4, /)
!
      WRITE(20,246) SIGEFP
! 246 FORMAT('SIGEFP = ', ES14.4, /)
      WRITE(20,247) SIGR
!
! 247 FORMAT('SIGR = ', ES14.4, /)
      WRITE(20,248) DELTAE
1
! 248 FORMAT('DELTAE = ', ES14.4,/)
      WRITE(20,249) EFMAX
1
  249 FORMAT('EFMAX = ', ES14.4, /)
1
      WRITE(20,*) ' K
                                        CONT(K) FINAL(K)
                          VETOR(K)
      DO K = 1, 144
      VETOR(K) = DELTAE*K*1.D0
      WRITE(20,200) K, VETOR(K), CONT(K), FINAL(K)
  200 FORMAT(I3.3,1X,ES14.3,1X,ES14.3,1X,ES14.3)
      END DO
      WRITE(*,*) THIAGO
      READ(*,*) THIAGO
      END
1
      SUBROUTINE MICA (EFMAX, U, CONT, FINAL, FNORM)
```

```
ESTA SUBROUTINA ESPALHA O HISTOGRAMA POR GAUSSIANAS COM
1
      DESVIOS PADROES CALCULADOS EMPIRICAMENTE
1
1
      IMPLICIT REAL*8 (A-H,O-Z)
     DIMENSION CONT(144), FINAL(144)
      PI=3.1415926
      DELTAE=EFMAX/128.
      DO 3367 J=1, 144
      E1=DELTAE*J
     DO 3366 K=1, 128
     E2=DELTAE*K
      SIGMA=U*E2**(2./3.)/2.35
      SIGMA2=SIGMA*SIGMA
     DIV=1.D0/SQRT(2.D0*PI*SIGMA2)
     F=(E2-E1)/SIGMA
     F=F*F*0.5D0
      IF (K-1) 3,3,4
    3 W=0.5
      GO TO 6
    4 W=1.D0
    6 IF (F-10.0) 3365,3366,3366
 3365 FINAL(J)=CONT(K)*DIV*DEXP(-1.0*F)*DELTAE*W+FINAL(J)
 3366 CONTINUE
 3367 CONTINUE
      CONST=FINAL(1)
      DO 1 I=1, 144
      IF(CONST-FINAL(I)) 2,2,1
    2 CONST=FINAL(I)
    1 CONTINUE
      DO 3368 M=1,144
      FINAL(M) = (FINAL(M) / CONST) * FNORM
3368 CONTINUE
     RETURN
      END
!
1
      SUBROUTINE LILI (XN, YN, ZN, AD, EF, RD, EA)
1
     ESTA SUBROTINA FORNECE A ENERGIA ABSORVIDA
1
     NO EFEITO DE FORMACAO DE PARES
1
!
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON IU
      PI=3.1415926
      X = RANDO(0)
      TETA=ACOS(.2D1 \times X - 0.1D1)
      CT=COS (TETA)
      ST=SIN(TETA)
      X=RANDO(0)
     FI=2.*PI*X
      CF=COS(FI)
     SF=SIN(FI)
!
     COSSENOS DIRETORES
!
T
      CDA=ST*CF
      CDB=ST*SF
      CDG=CT
1
      PRIMEIRA FOTON DE ANIQUILAMENTO
1
```

!

```
!
  680 EO=0.511
     EA=EF
     CDA1=-CDA
      CDB1=-CDB
     CDG1=-CDG
     XP=XN
      YP=YN
      ZP=ZN
      XA=XN
      YA=YN
      ZA=ZN
      IAJUDA=1
      GO TO 332
!
      SEGUNDO FOTON DE ANIQUILAMENTO
!
!
329 CDA=CDA1
      EO=0.511
      CDB=CDB1
      CDG=CDG1
      XP=XA
      YP=YA
      ZP=ZA
      IAJUDA=2
!
!
     CALCULO DA DISTANCIA A PERCORRER
!
 332 A=CDA*CDA+CDB*CDB
     B=2.*(XP*CDA+YP*CDB)
     C=XP*XP+YP*YP-RD*RD
     D=B*B-4*A*C
     D=SQRT(D)
     DE=(-B+D) / (2.*A)
      ZR=DE*CDG+ZP
      IF(ZR) 81,81,82
   82 IF(ZR-AD) 80,83,83
   81 DE=-ZP/CDG
     GO TO 80
  83 DE=(AD-ZP)/CDG
!
!
     SIMULACAO DO TIPO E LOCAL DE INTERACAO
!
   80 X=RANDO(0)
      CALL SUSY (EO, SIGMAC, SIGMAF, SIGMAP, SIGMAT)
      ELI=-1./SIGMAT*LOG(X)
      IF(ELI.GT.DE) GO TO 504
      AUX=SIGMAC/SIGMAT
     X=RANDO(0)
      IF (X.LT.AUX) GO TO 503
     EA=EA
      IF (IAJUDA.EQ.1) GO TO 329
      GO TO 1
  504 EA=EA-EO
      IF (IAJUDA.EQ.1) GO TO 329
      GO TO 1
  503 XP=ELI*CDA+XP
      YP=ELI*CDB+YP
      ZP=ELI*CDG+ZP
      CALL BOIING (EO, ES)
      TETA=ACOS(1.0+0.511/EO-0.511/ES)
```

```
EO=ES
      CT=COS (TETA)
      ST=SIN(TETA)
      X=RANDO(0)
      FI=2.*PI*X
      CF=COS(FI)
      SF=SIN(FI)
I
T
     COSSENOS DIRETORES EMERGENTES
      DENOM=SQRT(1.D0-CDG*CDG)
      IF(DENOM.LE.1.D-04) GO TO 331
      CDA2=CDA*CT+(CDG*CDA*ST*CF-CDB*ST*SF)/DENOM
      CDB2=CDB*CT+(CDG*CDB*ST*CF+CDA*ST*SF)/DENOM
      CDG2=CDG*CT-DENOM*ST*CF
      CDA=CDA2
      CDB=CDB2
      CDG=CDG2
      GO TO 332
    1 RETURN
  331 END
!
      SUBROUTINE BOIING (EO, ES)
1
!
     ESTA ROTINA AMOSTRA UMA ENERGIA PARA O FOTON
!
      ESPALHADO DADA PELA FORMULA DE KLEIN-NISHIDA
!
     UTILIZANDO A TECNICA DE REJEICAO.
!
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON IU
      A=EO/0.511
    2 R = RANDO(0)
      X = (1 + R^{2} + R^{2}) / (1 + 2 + R^{2})
      CT=1.+1./A-1./(A*X)
      P=(2.*A*(1.+A))/((1.+2.*A)**2)
      Q = (1.-2./A-2/(A*A))*LOG(1.+2.*A)
      T=4./A
      G=P+Q+T
      FX = (X+1./X+CT-1.)/G
      R=RANDO(0)
      TEST=R*((1./(1.+2.*A)+1.+2.*A))/G
      IF(TEST-FX) 1,1,2
    1 ES=EO*X
     RETURN
      END
!
      SUBROUTINE TATA (RF, RD, AD, P, HO, FP, WP, XE, YE, ZE,
     *DE, ACOSS, BCOSS, GCOSS, IFONTE)
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON IU
!
     ESTA SUBROTINA CALCULA O PESO GEOMETRICO, AS
!
      COORDENADAS DE ENTRADA DO FOTON, AS POSSIVEIS COOR-
T
     DENAS DE SAIDA, A DISTANCIA DE PERCURSO PROVAVEL DEN-
I
     TRO DO DETECTOR E OS COSSENOS DIRETORES UTI
I
     LIZANDO O METODO DE MONTE CARLO.
1
1
     SELECAO DO TIPO DE FONTE
1
1
     PI=3.1415936
```

```
!
     IF (FP) 8,8,41
1
   8 IF (HO) 90,90,9
1
   9 IF (RF) 13,13,60
   13 IFONTE=2
!
   10 IF (P-RD) 20,30,30
!
     SELECAO DA DIRECAO INICIAL
!
1
     FONTE NA REGIAO CILINDRICA ACIMA DA FACE CIRCULAR DO
1
     DETECTOR
1
1
   20 TETA7=ATAN((RD+P)/HO)
      TETA0=ATAN((RD-P)/HO)
      TETA4=0.0
      X=RANDO(0)
      TETA=ACOS(1-X*(1-COS(TETA7)))
      W1=0.5*(COS(TETA4)-COS(TETA7))
      IF (TETA-TETA0) 11,11,12
   11 X=RANDO(0)
      ALFA=2*PI*X
      W2=1.0
      WP=W1*W2
      SEGOA=P*COS(ALFA)+SORT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
      GO TO 14
   12 TTETA=DTAN (TETA)
      ALFA7=ACOS((P*P+HO*HO*TTETA*TTETA-RD*RD)/(2.*HO*P*TTETA))
1
     X = RANDO(0)
     ALFA=ALFA7*(2*X-1)
      SEGOA=P*COS(ALFA)+SQRT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
     W2=ALFA7/PI
     WP=W1*W2
     GO TO 14
1
     FONTE FORA DA REGIAO CILINDRICA E COM HO.GT.0.0
1
1
   30 ALFA7=ASIN(RD/P)
     X = RANDO(0)
      ALFA=ALFA7*(2*X-1)
      W2=ALFA7/PI
      SEGOA=P*COS(ALFA)+SQRT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
      TETA7=ATAN(SEGOA/HO)
      SEGOB=P*COS(ALFA) -SQRT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
      TETA0=ATAN(SEGOA/HO)
      TETA4=ATAN(SEGOB/(HO+AD))
1
     X = RANDO(0)
!
      TETA=ACOS (COS (TETA4) -X* (COS (TETA4) -COS (TETA7)))
      W1=0.5*(COS(TETA4)-COS(TETA7))
     WP=W1*W2
   17 G=SEGOB/TAN(TETA)
      ZE=HO+AD-G
      IF(AD-ZE) 14,14,19
1
     O FOTON ENTROU PELO LADO DO DETECTOR
1
```

```
19 XE=SEGOB*SIN(ALFA)
     YE=SEGOB*COS(ALFA)-P
      GG=SEGOA/TAN(TETA)
      ZS=HO+AD-SEGOA/TAN(TETA)
      IF (ZS) 22,22,23
1
!
     O FOTON SE DIRIGE AO FUNDO DO DETECTOR
!
  22 ZS=0.0
     SEGOG=(HO+AD) *TAN(TETA)
      XS=SEGOG*SIN(ALFA)
      YS=SEGOG*COS(ALFA)-P
      DE=ZE/COS(TETA)
!
     GO TO 220
!
     O FOTON SE DIRIGE AO LADO DO DETECTOR
!
   23 XS=SEGOA*SIN(ALFA)
      YS=SEGOA*COS(ALFA)-P
      SAB=SEGOA-SEGOB
     DE=SAB/SIN(TETA)
!
     GO TO 220
1
!
     O FOTON ENTROU POR CIMA DO DETECTOR
!
   14 EA=SEGOA-HO*TAN(TETA)
      ZS=AD-EA/TAN(TETA)
      IF (ZS) 15,16,16
1
     O FOTON SE DIRIGE AO FUNDO DO DETECTOR
1
1
   15 SOE=HO*TAN(TETA)
     XE=SOE*COS(ALFA)
     YE=SOE*COS(ALFA)-P
      ZE=AD
     SEGOG=(HO+AD) *TAN(TETA)
     XS=SEGOG*SIN(ALFA)
     YS=SEGOG*COS(ALFA)-P
     ZS=0.0
     DE=AD/COS(TETA)
!
     GO TO 220
!
!
     O FOTON SE DIRIGE AO LADO DO DETECTOR
!
   16 SOE=HO*TAN(TETA)
     XE=SOE*SIN(ALFA)
     YE=SOE*COS(ALFA)-P
      ZE=AD
     YS=SEGOA*COS(ALFA)-P
     XS=SEGOA*SIN(ALFA)
     DE=EA/SIN(TETA)
!
     GO TO 220
!
     FONTE FORA DA REGIAO CILINDRICA E COM HO.LE.0.0
1
1
   90 RSP=RD/P
     ALFA7=ASIN(RSP)
     X = RANDO(0)
```

```
ALFA=ALFA7*(2.D0*X-1)
      W2=ALFA7/PI
      SEGOA=P*COS(ALFA)+SQRT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
      SEGOB=P*COS(ALFA)-SQRT(RD*RD-P*P*SIN(ALFA)*SIN(ALFA))
      TETA7=PI/2.D0+ATAN(ABS(HO)/SEGOB)
      TETA4=ATAN(SEGOB/(AD-ABS(HO)))
      X = RANDO(0)
      \texttt{TETA=ACOS}(\texttt{COS}(\texttt{TETA4-X}*(\texttt{COS}(\texttt{TETA4})-\texttt{COS}(\texttt{TETA7})))))
      W1=0.5*(COS(TETA4)-COS(TETA7))
      WP=W1*W2
      IFONTE=2
1
!
      O FOTON TEM DIRECAO INICIAL DESCENDENTE
1
   18 IF(TETA-PI/2.0) 118,119,119
  118 G=SEGOB/TAN(TETA)
      ZE=HO-AD-G
      YE=SEGOB*COS(ALFA)-P
      XE=SEGOB*SIN(ALFA)
      GG=SEGOA/TAN(TETA)
      ZS=HO+AD-GG
      IF (ZS) 22,22,23
!
!
      O FOTON TEM DIRECO INICIAL ASCENDENTE
!
  119 G=SEGOB*TAN(TETA-PI/2.0)
      ZE=HO+AD+G
      YE=SEGOB*COS(ALFA)-P
      XE=SEGOB*SIN(ALFA)
      GG=SEGOA*TAN(TETA-PI/2)
      ZS=HO+AD+GG
      IF (ZS-AD) 23,24,24
!
!
      O FOTON SE DIRIGE A SUPERFICIE CIRCULAR SUPERIOR DO DETECTOR
!
   24 ZS=AD
      SEGOG=ABS(HO)/TAN(TETA-PI/2.D0)
      XS=SEGOG*SIN(ALFA)
      YS=SEGOG*COS(ALFA)-P
      DE=ZE/COS(TETA)
1
      GO TO 220
!
!
      FONTE TIPO FEIXE PARALELO
!
   41 X=RANDO(0)
      P=RF*SQRT(X)
      XE=0.D0
      YE=P
      ZE=AD
      XS=0.D0
      YS=P
      ZS=0.D0
      DE=AD
      ACOSS=0.0
      BCOSS=0.D0
      GCOSS=-1.D0
      WP=1.D0
      IFONTE=1
1
      GO TO 21
```

```
!
1
     FONTE EM DISCO
1
   60 X = RANDO(0)
     P=RF*SQRT(X)
     IFONTE=3
!
     GO TO 10
!
!
     COSSENOS DIRETORES
I
1
 220 ACOSS=(XS-XE)/DE
     BCOSS=(YS-YE)/DE
      GCOSS=(ZS-ZE)/DE
!
   21 RETURN
     END
!
      SUBROUTINE SUSY (EO, SIGMAC, SIGMAF, SIGMAP, SIGMAT)
      IMPLICIT REAL*8 (A-H,O-Z)
1
1
     ESTA SUBROUTINA FORNECE AS SECCOES DE CHOQUE PARA
1
     IODETO DE SODIO PARA ENERGIAS ATE 10 MEV
I
     SIGMAC=SECCAO CHOQUE PARA EFEITO COMPTOM
1
     SIGMAF=SECCAO CHOQUE PARA EFEITO FOTOELETRICO
I
     SIGMAP=SECCAO CHOOUE PARA FORMACAO DE PARES
1
     SIGMAT=SECCAO CHOQUE TOTAL
1
1
     OBS.
1
     OS COEFICIENTES DOS POLINOMIOS PARA EFEITO COMPTON
1
      E DE FORMACAO DE PARES FORAM RETIRADOS DA PUBLICA-
1
     CAO DE F. T. AVIGNONE E J. A. JEFFREYS EM NUCL. INSTR. AND
1
     METH. 179(1981)159, E OS COEFICIENTES PARA O EFEITO FOTO
1
     ELETRICO FORAM CALCULADOS POR UM AJUSTE POR MINIMOS
1
1
     QUADRADOS DOS DADOS OBTIDOS POR E. STORM E H. I. ISRAEL, LA-3753
1
     SECCAO DE CHOQUE COMPTON
1
1
     IF(EO.GT.0.04) GO TO 1
     SIGMAC=0.63-2.46*EO+9.94*EO*EO
     GO TO 2222
    1 IF (EO.GT.0.15) GO TO 2
      SIGMAC=0.608-1.74*EO+3.2*EO*EO
     GO TO 2222
    2 IF (EO.GT.0.7) GO TO 3
      SIGMAC=0.51-0.731*EO+0.507*EO*EO
      GO TO 2222
    3 IF (EO.GT.3.5) GO TO 4
      SIGMAC=0.355-0.222*EO+0.0772*EO*EO
      GO TO 2222
    4 SIGMAC=0.167-0.028*EO+0.193E-2*EO*EO-0.52E-4*EO*EO*EO
T
Т
     SECCAO DE CHOOUE PARA EFEITO FOTO ELETRICO
2222 IF (EO.GT.0.01) GO TO 21
     SIGMAF=600.
      GO TO 3333
  21 IF (EO.GT.0.02) GO TO 22
      SIGMAF=1.9678E+3-1.96196E+5*EO+5.0792E+6*EO*EO
```

```
GO TO 3333
  22 IF(EO.GT.0.03316) GO TO 23
      SIGMAF=3.287E+2-1.764686E+4*EO+2.49437E+5*EO*EO
      GO TO 3333
   23 IF(EO.GT.0.05) GO TO 24
     SIGMAF=5.9192E+2-2.11774E+4*EO+2.0146E+5*EO*EO
      GO TO 3333
   24 IF(EO.GT.0.15) GO TO 25
      SIGMAF=4.8158E+1-6.6484E+2*EO+2.3685E+3*EO*EO
      GO TO 3333
   25 IF (EO.GT.0.3) GO TO 26
      SIGMAF=1.8023-5.1597*EO-0.10345*EO*EO
      GO TO 3333
   26 IF (EO.GT.0.5) GO TO 27
      SIGMAF=1.1126-4.0767*EO+3.963*EO*EO
      GO TO 3333
   27 IF (EO.GT.0.8) GO TO 28
      SIGMAF=0.3155-0.7227*EO+0.44337*EO*EO
      GO TO 3333
   28 IF(EO.GT.1.5) GO TO 29
      SIGMAF=0.080928-0.10334*EO+0.0357007*EO*EO
      GO TO 3333
   29 IF (EO.GT.3.0) GO TO 30
      SIGMAF=0.0196932-0.01206*EO+0.00206*EO*EO
      GO TO 3333
   30 IF(EO.GT.5.0) GO TO 31
      SIGMAF=0.006437-0.0020123*EO+0.000185*EO*EO
      GO TO 3333
   31 SIGMAF=0.00295-0.000538*E0+2.997E-5*E0*E0
1
     SECCAO DE CHOQUE PARA FORMACAO DE PARES
1
3333 IF(EO.GT.1.022) GO TO 301
      SIGMAP=0.0
      GO TO 4444
  301 IF (EO.GT.1.28) GO TO 302
      SIGMAP=-0.215E-3+0.209E-3*E0
      GO TO 4444
  302 IF (EO.GT.3.0) GO TO 303
      SIGMAP=-0.0133*0.907E-2*EO+0.107E-2*EO*EO
      GO TO 4444
  303 IF(EO.GT.4.0) GO TO 304
      SIGMAP=-0.0245+0.0184*EO-0.8E-3*EO*EO
      GO TO 4444
  304 IF(EO.GT.8.0) GO TO 305
      SIGMAP=-0.0197+0.0166*EO-0.633E-3*EO*EO
      GO TO 4444
 305 SIGMAP=0.0312+0.526E-2*E0
     SECCAO DE CHOQUE TOTAL
4444 SIGMAT=SIGMAF+SIGMAC+SIGMAP
     RETURN
     END
     FUNCTION RANDO (X)
      IMPLICIT REAL*8 (A-H,O-Z)
     COMMON TU
     IU=IU*65539.e0
     IF (IU) 5,6,6
    5 IU=IU+2147483647+1
```

1

!

1 1

I

```
6 YFZ=IU
RANDO=YFZ*0.4656613e-9
RETURN
END
```

! ! !

! !