Existem sutilezas neste tópico que precisamos explorar.

Suponha
$$\begin{cases} \Delta t \equiv \text{tempo de evolução do sistema} \\ \Rightarrow \Delta t \Delta E \gtrsim h \end{cases}$$

$$\Delta E \equiv \text{imprecisão na energia}$$

- o Precisamos discutir o que significa evoluir e o que significa imprecisão na energia.
- Se o sistema está em um estado estacionário, o conhecimento sobre a energia E_n dele é preciso e podemos dizer que $\Delta E = 0$. Já vimos que ele não evolui (ganha apenas um fator, $e^{-iE_n(t-t_0)/\hbar}$, que não passa de um uma fase global) : $\Delta t = \infty$.
- Isto está de acordo com a relação apresentada $\Delta t \Delta E \gtrsim h \begin{cases} \text{se um é zero, o outro} \\ \text{precisa ser infinito.} \end{cases}$
- Suponha agora $|\psi(t_0)\rangle=c_1\underbrace{|\varphi_1\rangle}+c_2\underbrace{|\varphi_2\rangle}$. Sabemos que o sistema evolui de E_1 E_2

acordo com $|\psi(t)\rangle = c_1 e^{-iE_1(t-t_0)/\hbar} |\varphi_1\rangle + c_2 e^{-iE_2(t-t_0)/\hbar} |\varphi_2\rangle$. Em instante t, se medirmos a energia, podemos encontrar E_1 ou E_2 . Pode-se dizer que que a imprecisão na energia é $\Delta E \simeq |E_1 - E_2|$.

Considere B, tal que $[B, H] \neq 0$. Como a probabilidade de medir \mathcal{B} e encontrar b_m , um autovalor de B, muda com o tempo?

Ache b_m com $|\psi(t)\rangle = c_1 e^{-iE_1(t-t_0)/\hbar} |\varphi_1\rangle + c_2 e^{-iE_2(t-t_0)/\hbar} |\varphi_2\rangle$ (continuação)

Sabemos que $B|u_m\rangle = b_m|u_m\rangle$ e isso permite escrever $\mathcal{P}(b_m,t) = |\langle u_m|\psi(t)\rangle|^2$.

E como sabemos $|\psi(t)\rangle$, podemos escrever

$$\mathcal{P}(b_m,t) = |\langle u_m | \left(c_1 e^{-iE_1(t-t_0)/\hbar} | \varphi_1 \rangle + c_2 e^{-iE_2(t-t_0)/\hbar} | \varphi_2 \rangle \right)|^2 \text{ que pode ser rescrito}$$

$$\mathcal{P}(b_m,t) = |c_1|^2 |\langle u_m | \varphi_1 \rangle|^2 + |c_2|^2 |\langle u_m | \varphi_2 \rangle|^2 + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}_{+} + \underbrace{c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle}$$

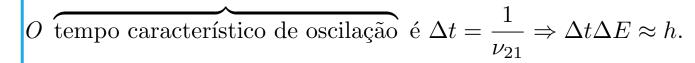
complexo conjugado um do outro

$$+ \overbrace{c_2 c_1^{\star} e^{-i(E_2 - E_1)(t - t_0)/\hbar} \langle u_m | \varphi_2 \rangle \langle \varphi_1 | u_m \rangle}$$

ou ainda

$$\mathcal{P}(b_m,t) = |c_1|^2 |\langle u_m | \varphi_1 \rangle|^2 + |c_2|^2 |\langle u_m | \varphi_2 \rangle|^2 + 2 \operatorname{Re} \{ c_2^{\star} c_1 e^{i(E_2 - E_1)(t - t_0)/\hbar} \langle \varphi_2 | u_m \rangle \langle u_m | \varphi_1 \rangle \}$$

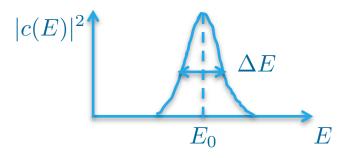
Este resultado mostra que $\mathcal{P}(b_m,t)$ oscila entre valores extremos com a frequência de Bohr $\nu_{21} = \frac{|E_2 - E_1|}{b}$



• Suponha agora que o espectro de H seja contínuo $\Rightarrow |\psi(t_0)\rangle = \int dE \ c(E)|\varphi_E\rangle$.

Nestas condições $|\psi(t)\rangle = \int dE \ c(E) e^{-iE(t-t_0)/\hbar} |\varphi_E\rangle$. Quanto vale $\mathcal{P}(b_m, t)$?

A figura abaixo representa a distribuição de energias do pacote de ondas



$$\mathcal{P}(b_m, t) = |\langle u_m | \psi(t) \rangle|^2 = \left| \int dE \ c(E) \, e^{-iE(t - t_0)/\hbar} \langle u_m | \varphi_E \rangle \right|^2$$

Se $\langle u_m | \varphi_E \rangle$ não varia muito ao redor de E_0 e se ΔE é suficientemente fino, a variação de $\langle u_m | \varphi_E \rangle$ pode ser negligenciada no interior de c(E). Isso permite substitui-lo por $\langle u_m | \varphi_{E_0} \rangle$ e retira-lo da integral. Assim, temos

$$\mathcal{P}(b_m, t) = |\langle u_m | \psi(t) \rangle|^2 = |\langle u_m | \varphi_{E_0} \rangle|^2 \left| \int dE \ c(E) e^{-iE(t - t_0)/\hbar} \right|^2$$

Note que $\mathcal{P}(b_m, t)$ é proporcional ao quadrado do módulo da transformada de Fourier de c(E). Chame essa transformada de $\mathcal{T}(t)$ e perceba:

Transformadas de Fourier estão ligadas à relação de incerteza.

Lembre que
$$\begin{cases} \psi(x) = \int dp \ \bar{\psi}(p) e^{ipx/\hbar} \\ \bar{\psi}(p) = \int dx \ \psi(x) e^{-ipx/\hbar} \end{cases} \text{ gerou} \Rightarrow \Delta p \Delta x \geq \hbar/2$$

Agora temos
$$\begin{cases} c(E) = \int dt \ \mathcal{T}(t) e^{+iE(t-t_0)/\hbar} \\ \mathcal{T}(t) = \int dE \ c(E) e^{-iE(t-t_0)/\hbar} \end{cases}$$
 for necendo $\Rightarrow \Delta E \Delta t \geq \hbar/2$

- o Note que $\begin{cases} \Delta p \to \text{ largura de } |\bar{\psi}(p)|^2 \text{ e } p \text{ \'e autovalor do espectro cont\'inuo de } P. \\ \Delta x \to \text{ largura de } |\psi(x)|^2 \text{ e } x \text{ \'e autovalor do espectro cont\'inuo de } X. \end{cases}$
- $|\circ|$ Embora $\Delta E \to |argura de |c(E)|^2$ e E é autovalor do espectro contínuo de H,

$$\Delta t \to largura \ de \ |\mathcal{T}(t)|^2, \ mas \ t \ \'e \ apenas \ um \ par\^ametro, \not\exists \ operador \ associado.$$

$$\text{Note} \begin{cases} C(E) = \delta(E - E_0) \to \Delta E = 0 \to \mathcal{T}(t) = e^{-iE_0(t - t_0)/\hbar} \to \begin{cases} |\mathcal{T}(t)|^2 = 1 \\ \Delta t = \infty. \end{cases}$$

$$C(E) = 1 \ \forall \ E \to \Delta E = \infty \to \mathcal{T}(t) = \delta(t - t_0) \to \Delta t = 0$$

Mais um exemplo e superposição de estados

- Comentários exemplo usando um pacote unidimensional.
- \circ Associe à Δp um ΔE . Como?

Que tal tomando o diferencial $\Delta E = \frac{dE}{dn} \Delta p$.

$$\operatorname{Como} \begin{cases} E = \hbar \omega \\ p = \hbar k \end{cases} \Rightarrow \frac{dE}{dp} = \frac{d\omega}{dk} = v_g \text{ velocidade de grupo, lembra? } \therefore \Delta E = v_g \Delta p.$$

- Qual seria uma boa estimativa de Δt ? Que tal o tempo necessário para o pacote viajar com a velocidade v_g a sua extensão?
- Quanto vale sua extensão? $\Delta x \Rightarrow \Delta t = \frac{\Delta x}{v_a}$.

Assim, temos $\Delta E \Delta t = \Delta E \frac{\Delta x}{v_g} = v_g \Delta p \frac{\Delta x}{v_g} = \Delta p \Delta x \ge \hbar/2.$ $\therefore \Delta E \Delta t \geq \hbar/2$

Princípio da superposição e previsões físicas.

Temos falado em espaço vetorial e em equações lineares, agora daremos um significado mais preciso para isso. O postulado 1 diz que um sistema físico é definido por um ket $|\psi(t_0)\rangle \in \mathcal{E}$.

- Soma de kets é ket \rightarrow consequência imediata: efeitos de interferência.
- MAPLima \circ Precisamos entender \rightarrow o conceito de amplitude de probabilidade.

Superposição de estados

- Amplitudes de probabilidade e efeitos de interferência.

 Comecemos por explorar o significado físico da superposição linear de estados.

 Qual seria a diferença entre superposição linear e mistura estatística?
- o Para explorar esse assunto, considere $|\psi_1\rangle$ e $|\psi_2\rangle$, com $\begin{cases} \langle \psi_1|\psi_1\rangle = 1\\ \langle \psi_2|\psi_2\rangle = 1\\ \langle \psi_1|\psi_2\rangle = 0 \end{cases}$

Os kets $|\psi_1\rangle$ e $|\psi_2\rangle$ poderiam ser autokets de B com autovalores b_1 e b_2 .

• Se A é uma observável e $|u_n\rangle$ é tal que $A|u_n\rangle = a_n|u_n\rangle$, podemos dizer que: $\int |\psi_1\rangle \Rightarrow \mathcal{P}_1(a_n) = |\langle u_n|\psi_1\rangle|^2$

para o estado
$$\begin{cases} |\psi_1\rangle \Rightarrow \mathcal{P}_1(a_n) = |\langle u_n|\psi_1\rangle|^2 \\ |\psi_2\rangle \Rightarrow \mathcal{P}_2(a_n) = |\langle u_n|\psi_2\rangle|^2 \end{cases}$$

- Considere o sistema no estado $|\psi\rangle = \lambda_1 |\psi_1\rangle + \lambda_2 |\psi_2\rangle$, tal que $|\lambda_1|^2 + |\lambda_2|^2 = 1$.
- \diamond Qual é a probabilidade de estando o sistema em $|\psi\rangle$ achar $|\psi_1\rangle$? $|\lambda_1|^2$.
- \diamond Qual é a probabilidade de estando o sistema em $|\psi\rangle$ achar b_1 ? $|\lambda_1|^2$.
- \star Qual é a probabilidade de estando o sistema em $|\psi\rangle$ achar $|\psi_2\rangle$? $|\lambda_2|^2$.
- * Qual é a probabilidade de estando o sistema em $|\psi\rangle$ achar b_2 ? $|\lambda_2|^2$.

 Tal interpretação pode nos levar, erroneamente, a pensar que $|\psi\rangle$ é uma mistura estatística de $|\psi_1\rangle$ e $|\psi_2\rangle$ com pesos $|\lambda_1|^2$ e $|\lambda_2|^2$, respectivamente.

Superposição de estados

- Ou seja, acreditar, erroneamente, que N sistemas no estado $|\psi\rangle$ equivalem à $N|\lambda_1|^2$ no estado $|\psi_1\rangle$ e $N|\lambda_2|^2$ no estado $|\psi_2\rangle$. Se tal interpretação fosse correta, a probabilidade de medir a_n , em um sistema no estado $|\psi\rangle$, seria $\mathcal{P}(a_n) \stackrel{?}{=} |\lambda_1|^2 \mathcal{P}_1(a_n) + |\lambda_2|^2 \mathcal{P}_2(a_n)$.
- De fato, sabemos o que esperar da medida de A para obter a_n : $\mathcal{P}(a_n) = |\langle u_n | \psi \rangle|^2 = |\lambda_1 \langle u_n | \psi_1 \rangle + \lambda_2 \langle u_n | \psi_2 \rangle|^2 = (\lambda_1 \langle u_n | \psi_1 \rangle + \lambda_2 \langle u_n | \psi_2 \rangle)^* \times$ $(\lambda_1\langle u_n|\psi_1\rangle + \lambda_2\langle u_n|\psi_2\rangle) = |\lambda_1|^2 |\langle u_n|\psi_1\rangle|^2 + |\lambda_2|^2 |\langle u_n|\psi_2\rangle|^2 + (\lambda_1\langle u_n|\psi_1\rangle)^* \lambda_2\langle u_n|\psi_2\rangle + |\lambda_1|^2 |\langle u_n|\psi_1\rangle|^2 + |\lambda_2|^2 |\langle u_n|\psi_2\rangle|^2 + |\lambda_2|^2 + |$ $\lambda_1 \langle u_n | \psi_1 \rangle (\lambda_2 \langle u_n | \psi_2 \rangle)^*$, ou seja

$$\mathcal{P}(a_n) = |\lambda_1|^2 \underbrace{|\langle u_n | \psi_1 \rangle|^2 + |\lambda_2|^2}_{\mathcal{P}_1(a_n)} \underbrace{|\langle u_n | \psi_2 \rangle|^2 + \underbrace{2 \operatorname{Re}\{\lambda_1 \lambda_2^* \langle u_n | \psi_1 \rangle \langle u_n | \psi_2 \rangle\}}_{\text{efeitos de interferência}}.$$

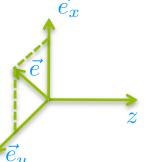
 $\mathcal{P}_{1}(a_{n}) \qquad \mathcal{P}_{2}(a_{n}) \qquad \text{efeitos de interferência}$ $\begin{array}{c} \mathcal{P}_{1}(a_{n}) \qquad \mathcal{P}_{2}(a_{n}) \qquad \text{efeitos de interferência} \\ \lambda'_{1} = e^{i\phi}\lambda_{1} \qquad \text{onde } \phi \text{ é uma fase global} \Rightarrow \mathcal{P}'(a_{n}) = \mathcal{P}(a_{n}) \\ \lambda'_{2} = e^{i\phi}\lambda_{2} \qquad \text{onde } \phi \text{ interference} \\ A \ expressão \ que \ contém \ os \ efeitos \ de \ interference} \\ realidade \ errorri. \end{array}$

mistura estatística não é correta.

MAPLima

Um exemplo com fótons polarizados e um sobre fases relativas

• Considere fótons propagando na direção Oz. Suponha $\vec{e} = \frac{1}{\sqrt{2}} (\vec{e}_x + \vec{e}_y)$



Em analogia $\begin{cases} \text{seria errado imaginar que } N \text{ fótons} \\ \text{polarizados fossem equivalentes à} \\ N \times |\frac{1}{\sqrt{2}}|^2 \text{ na direção } \vec{e}_x + N \times |\frac{1}{\sqrt{2}}|^2 \text{ na direção } \vec{e}_y \end{cases}$

- Por que sabemos que são diferentes? Coloque um analisador \perp à \vec{e} . Quantos passam? Olhando para \vec{e} , sabemos que nenhum. No entanto, com a interpretação errônea $N \times |\frac{1}{\sqrt{2}}|^2$ na direção $\vec{e}_x + N \times |\frac{1}{\sqrt{2}}|^2$ na direção \vec{e}_y , metade dos fótons passam.
- A importância das fases relativas. Considere $\vec{e} = \frac{1}{\sqrt{2}}(\vec{e}_x + e^{i\phi}\vec{e}_y)$. Note que $\phi = 0$: $\vec{e}_1 = \frac{1}{\sqrt{2}}(\vec{e}_x + \vec{e}_y)$ linear; $\phi = \pi$: $\vec{e}_2 = \frac{1}{\sqrt{2}}(\vec{e}_x - \vec{e}_y)$ linear;

$$\phi = \frac{\pi}{2} : \vec{e}_3 = \frac{1}{\sqrt{2}} (\vec{e}_x + i\vec{e}_y) \begin{cases} \text{circular} \\ \text{direita;} \end{cases} \quad \phi = -\frac{\pi}{2} : \vec{e}_4 = \frac{1}{\sqrt{2}} (\vec{e}_x - i\vec{e}_y)) \begin{cases} \text{circular} \\ \text{esquerda.} \end{cases}$$

Esses quatro estados são fisicamente bastante diferentes!

Soma sobre estados intermediários

Previsões de resultados experimentais em dois experimentos simples.

Experimento 1:

o Suponha que a observável A tenha sido medida e você tenha obtido o valor a não degenerado. Se $A|u_a\rangle=a|u_a\rangle$, qual é o novo estado do sistema imediatamente após a medida? Sabemos que ele colapsa para $|u_a\rangle$. Antes dele ter tempo de evoluir, meça C, tal que $[C,A] \neq 0$, qual é a probabilidade de se obter c?

$$\mathcal{P}_a(c) = |\langle v_c | u_a \rangle|^2.$$

Experimento 2:

Agora meça rapidamente A, B, e C, respectivamente (A, B, e C não comutam) entre si). Seja $\mathcal{P}_a(b, c) = \text{probabilidade}$ de se obter a, b, e c, respectivamente. Quanto vale essa probabilidade? Pelo que estudamos seria $\mathcal{P}_a(b, c) = \mathcal{P}_a(b)\mathcal{P}_b(c)$.

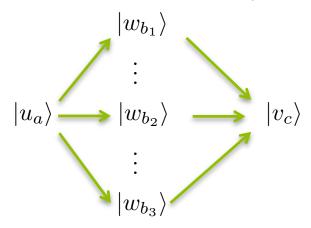
Se
$$\begin{cases} A|u_a\rangle = a|u_a\rangle \\ B|w_b\rangle = b|w_b\rangle \implies \mathcal{P}_a(b,c) = |\langle w_b|u_a\rangle|^2|\langle v_c|w_b\rangle|^2 \\ C|v_c\rangle = c|v_c\rangle \end{cases}$$

• Quais seriam as diferenças fundamentais entre esses experimentos?

Em ambos $\begin{cases} \text{ap\'os } \underbrace{\text{medir } A} \text{ tem-se } |u_n\rangle \\ \text{fixa o estado inicial} \\ \text{o estado final \'e } |v_c\rangle. \end{cases} \Longrightarrow \begin{cases} \text{Pod\'iamos pensar que em ambos,} \\ \text{antes de se atingir } |v_c\rangle, \text{ o sistema passou para } |w_b\rangle. \end{cases}$

Soma sobre estados intermediários

Analisaremos, considerando que $\begin{cases} 1o. \text{ experimento não tentamos medir } B \\ 2o. \text{ experimento medimos } B \end{cases}$

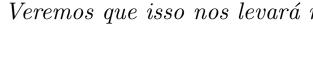


Poderíamos ficar tentados a acreditar que as duas experiências são equivalentes se somarmos os caminhos possíveis do experimento 2, isto é

$$\mathcal{P}_a(c) \stackrel{?}{=} \sum_b \mathcal{P}_a(b,c)$$

Nós sabemos calcular a relação correta entre $\mathcal{P}_a(c)$ e $\mathcal{P}_a(b,c)$. Comece com o cálculo de $\langle v_c|u_a\rangle$, sabendo que $\sum_b |w_b\rangle\langle w_b| = 1$, e obtenha $\mathcal{P}_a(c) = |\langle v_c|u_a\rangle|^2$

Veremos que isso nos levará novamente à um termo de interferência!



Soma sobre estados intermediários

o Diferenças entre os experimentos $\mathcal{P}_a(c) \stackrel{?}{=} \sum_b \mathcal{P}_a(b,c)$ (continuação).

$$\mathcal{P}_a(c) = |\langle v_c | \left(\sum_b |w_b\rangle\langle w_b| \right) |u_a\rangle|^2 = \left(\sum_{b'} \langle v_c | w_{b'}\rangle\langle w_{b'} | u_a\rangle \right)^* \left(\sum_b \langle v_c | w_b\rangle\langle w_b | u_a\rangle \right)$$

$$\mathcal{P}_a(c) = \sum_{b'} \sum_b (\langle v_c | w_{b'} \rangle \langle w_{b'} | u_a \rangle)^* \langle v_c | w_b \rangle \langle w_b | u_a \rangle. \text{ Divida essas somas em dois}$$

grupos, um com b' = b e outro com $b' \neq b$, e escreva

$$\mathcal{P}_{a}(c) = \underbrace{\sum_{b} |\langle v_{c} | w_{b} \rangle|^{2} |\langle w_{b} | u_{a} \rangle|^{2}}_{\sum_{b} + \underbrace{\sum_{b' \neq b} \sum_{b} \langle v_{c} | w_{b'} \rangle^{*} \langle w_{b'} | u_{a} \rangle^{*} \langle v_{c} | w_{b} \rangle \langle w_{b} | u_{a} \rangle}_{\text{interferencia!}}$$

- Quando os estados intermediários do sistema não são determinados experimentalmente, são as amplitudes de probabilidade e não as probabilidades que deve ser somadas.
- \circ No 2o. experimento cada vez que mediamos B perturbávamos o sistema (reduzindo o pacote de onda) e destruíamos a interferência.

Soma sobre estados intermediários

- Comentários sobre $\mathcal{P}_a(c) \neq \sum_b \mathcal{P}_a(b,c)$ (continuação).
 - $1^{\underline{0}}$ No 1
o. experimento o sistema não passa por um dos $|w_b\rangle$, mas sim por todos.
 - $2^{\underline{0}}$ Na experiência de fótons com duas fendas, lembre: somamos $\vec{E}'s$ e não $|E|^{2'}s$.
 - $3^{\underline{0}}$ A hipótese de medidas rápidas pode ser relaxada, se soubermos H.

Conclusão: $\begin{cases} vimos \ que \ a \ f\'ormula \ correta \ \'e \ do \ tipo \ o \ "quadrado \ da \ soma" \\ e \ n\~ao \ a \ "soma \ dos \ quadrados". \end{cases}$

- As previsões probabilísticas da teoria quântica são sempre obtidas a partir do quadrado do módulo da amplitude de probabilidade.
- Se não medimos estados intermediários, nunca pense em termos dos resultados que você poderia ter obtido se tivesse medido e sim em termos das amplitudes.
- Os estados devem ser linearmente superpostos,
 - : a amplitude de probabilidade = soma das amplitudes parciais.

- Soma sobre estados finais ortogonais

 Aula 16 Caso em que muitos estados podem ser associados com o mesmo resultado de medida, $\mathcal{P}(a_n) = \sum |\langle u_n^i | \psi_{\text{inicial}} \rangle|^2 \to \text{ note que isso \'e uma soma de quadrados!}$
 - o Primeiro, observe que, havendo degenerescência, e dependendo da escolha de $|\psi\rangle$, muitos estados finais são possíveis. Considere $A|u_n^i\rangle=a_n|u_n^i\rangle,\ i=1...g_n.$ Já aprendemos nesse curso que a realização da medida da quantidade física ${\mathcal A}$ não é suficiente para especificarmos o estado final (se ela não forma um CCOC por si só). Qualquer combinação de kets do subespaço \mathcal{E}_n dos kets $\{|u_n^i\rangle\}$ têm autovalor a_n , ou seja, uma infinidade de estados finais estão associados com o mesmo autovalor e a seleção de um deles depende do estado $|\psi_{\text{inicial}}\rangle$. Isso pode ser visto pelo colapso do estado $|\psi_{\text{inicial}}\rangle$, por meio da medida de \mathcal{A} , quando a_n é obtido. Como já discutimos o novo estado é: $|\psi_{\text{final}}\rangle = \frac{\sum_{i=1}^{g_n} |u_n^i\rangle\langle u_n^i|\psi_{\text{inicial}}\rangle}{\sqrt{\langle\psi_{\text{inicial}}|P_n|\psi_{\text{inicial}}\rangle}}.$

Está claro que dependendo do estado inicial teremos um estado final diferente.

Já havíamos visto que $\mathcal{P}(a_n) = \sum_i |\langle u_n^i | \psi_{\text{inicial}} \rangle|^2 = \sum_i |\langle v_n^j | \psi_{\text{inicial}} \rangle|^2$ onde $\{|v_n^j\rangle\}$

é outra base de autokets de A em \mathcal{E}_n . As somas são iguais, mas as probabilidades $|\langle v_n^j | \psi_{\text{inicial}} \rangle|^2$ podem ser diferentes das $|\langle u_n^i | \psi_{\text{inicial}} \rangle|^2$.

Soma sobre estados finais ortogonais

- Note que um determinado estado $|\psi_{\text{inicial}}\rangle$ carrega as probabilidades de cada componente $|u_n^i\rangle$ associada à a_n ser encontrada. A soma destas probabilidades (sobre todo o subespaço \mathcal{E}_n) é a chance de encontrar a_n .
- Note, entretanto, que se o estado inicial for uma combinação de estados, seria preciso somar amplitudes e depois quadrar, isto é, se $|\psi_{\text{inicial}}\rangle = \lambda_1 |\psi_1\rangle + \lambda_2 |\psi_2\rangle$, use $\langle u_n^i | \psi_{\text{inicial}} \rangle = \lambda_1 \langle u_n^i | \psi_1 \rangle + \lambda_2 \langle u_n^i | \psi_2 \rangle$ em $\mathcal{P}(a_n) = \sum_i |\langle u_n^i | \psi_{\text{inicial}} \rangle|^2$.
- Aparelhos de medida insuficientemente (pobremente) seletiva.

 Do que se trata? Nosso aparelho tem, por definição, as seguintes características:
- o Duas respostas: SIM ou NÃO (é fácil generalizar depois).
- \circ Se o sistema está em um dado autoestado de A, cujo autovalor está incluído em um dado intervalo $\Delta \to o$ aparelho responde SIM (isso também vale para combinações de autoestados cujos autovalores estão em Δ). Vamos definir melhor o significado dessa combinação.
 - Se o sistema está em um dado autoestado (ou combinação de autoestados) de A, cujo(s) autovalor(es) está(ão) fora do intervalo $\Delta \to$ o aparelho responde NÃO.

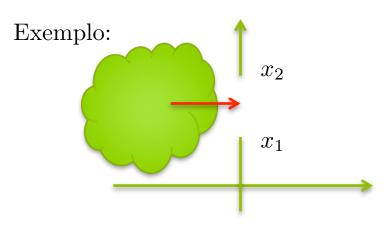
Aparelhos de medida

Se em Δ existe apenas um a_n dizemos que o aparelho tem resolução infinita. Neste caso, a probabilidade de achar a_n é igual a probabilidade de se obter SIM. Qual seria a probabilidade de se obter NÃO? $\mathcal{P}(NÃO) = 1 - \mathcal{P}(SIM)$.

 \circ Se no intervalo Δ existem vários autovalores a_n de A, dizemos que o aparelho é insuficientemente seletivo.

o Digamos que existe um pacote de ondas chegando no nosso aparelho. O que esperar da função de onda depois que o pacote passa pelo aparelho? Que tal:

Transmite os autoestados de A associados aos autovalores incluídos em Δ e bloqueia o resto (filtro perfeito).



só passam $x_1 < x < x_2$

Aparelho insuficientemente seletivo

 $\text{Descrição quântica} \begin{cases} \text{Para um aparelho insuficientemente} \\ \text{seletivo, diversos estados finais são} \\ \text{possíveis (os estados associados com} \\ \text{os autovalores do intervalo } \Delta). \end{cases}$

• O problema físico interessante está relacionado com "o que acontece com o pacote depois que ele entra no aparelho". Faremos um tratamento semelhante ao que foi dado aos estados degenerados. Para tanto, defina:

$$P_{\Delta} = \sum_{a_n \in \Delta} \sum_{i=1}^{g_n} |u_n^i\rangle\langle u_n^i|$$

degenerescência do a_n

• Quais são os autovetores de P_{Δ} ? Já vimos que projetores são observáveis e : seus autokets descrevem qualquer estado $|\psi\rangle = P_{\Delta}|\psi\rangle + (1 - P_{\Delta})|\psi\rangle$, onde:

os autokets de P_{Δ} $\begin{cases} \text{os que } \in \mathcal{E}_{\Delta}, \text{ tem autovalor } 1 \to P_{\Delta}(\underline{P_{\Delta}|\psi\rangle}) = +1(\underline{P_{\Delta}|\psi\rangle}) \\ \text{os que } \notin \mathcal{E}_{\Delta}, \text{ tem autovalor } 0 \to P_{\Delta}((1-P_{\Delta})|\psi\rangle) = 0 \end{cases}$

 $\circ \text{ Note que } \begin{cases} \text{autoautovalor } 1 \to \text{SIM} \\ \text{autoautovalor } 0 \to \text{N\~AO} \end{cases} \Rightarrow \begin{cases} \text{Nosso aparelho est\'a de fato} \\ \text{medindo } P_\Delta \text{ e n\~ao } A. \end{cases}$

Aparelho insuficientemente seletivo

- Como ficariam os postulados sobre probabilidade de se obter um resultado e sobre o novo estado após a medida?
- Sobre as probabilidades:

$$\mathcal{P}(\text{SIM}) = \sum_{a_n \in \Delta} \sum_{i=1}^{g_n} \left| \langle u_n^i | \psi \rangle \right|^2 \begin{cases} A \text{ properties probability} \\ \text{probability} \end{cases}$$

 $\mathcal{P}(\text{SIM}) = \sum_{a_n \in \Delta} \sum_{i=1}^{g_n} \left| \langle u_n^i | \psi \rangle \right|^2 \begin{cases} \text{resposta SIM \'e igual a} \\ \text{probabilidade de se encontrar o} \\ \text{autovalor } + 1 \text{ da observ\'avel } P_{\Delta}. \end{cases}$ 'A probabilidade de se obter a

 $\mathcal{P}(\tilde{NAO}) = 1 - \mathcal{P}(\tilde{SIM})$ sendo que podemos escrever $\mathcal{P}(\tilde{SIM}) = \langle \psi | P_{\Delta} | \psi \rangle$

 \circ Sobre o colapso de $|\psi\rangle$ em $|\psi'\rangle$.

Imediatamente após a medida de P_{Δ} temos: $|\psi'\rangle = \frac{P_{\Delta}|\psi\rangle}{\sqrt{\langle\psi|P_{\Delta}|\psi\rangle}}$, ou melhor:

$$|\psi'\rangle = \sum_{a_n \in \Delta} \sum_{i=1}^{g_n} |u_n^i\rangle \langle u_n^i | \psi \rangle / \sqrt{\sum_{a_n \in \Delta} \sum_{i=1}^{g_n} |\langle u_n^i | \psi \rangle|^2}$$

Afinal de contas, devemos somar amplitudes ou as probabilidades?

Somar amplitudes ou somar probabilidades?

Inspiração para uma regra geral: a experiência de Young de fenda dupla.

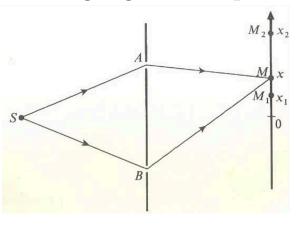


Fig. 8, Cap. 3, Livro texto

Suponha que você queira medir a probabilidade de um fóton bater entre x_1 e x_2 .

 \circ Quanto seria a intensidade da luz total que bate entre x_1 e x_2 ?

Neste caso faríamos $\int_{x_1}^{x_2} I(x) dx$ com $I(x) \propto |\vec{E}(x)|^2 \to \text{uma soma de quadrados!}$

 \circ Quanto seria a intensidade da luz total em x?

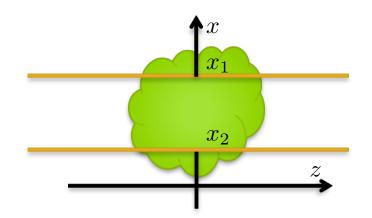
Neste caso faríamos $I(x) \propto |\vec{E}_A(x) + \vec{E}_B(x)|^2 \to \text{somaríamos amplitudes antes}$ de quadrar!

• Regra geral:

Adicione amplitudes correspondendo ao mesmo estado final e depois as probabilidades correspondendo à estados finais ortogonais.

Aparelho insuficientemente seletivo

- Aplicação para o tratamento de espectro contínuo.
- Quando a observável que queremos medir tem um espectro contínuo o "poder de resolução infinito é impossível". Isso é o mesmo que dizer:
 - \acute{E} impossível imaginar um aparato experimental que possa isolar um único autovalor pertencente à um conjunto contínuo de possibilidades.
- Aparelhos insuficientemente seletivos podem nos ajudar nesse assunto. Comece perguntando, se $\psi(\vec{r}) = \langle \vec{r} | \psi \rangle$ é a função de onda de uma partícula, qual é a probabilidade de encontrar essa partícula dentro do intervalo $[x_1, x_2]$ do eixo x? Que tal responder: onde houver função de onda entre os planos laranjas, representados por retas na figura. Esses planos entram e saem perpendicularmente ao slide na direção do eixo y. Ou seja, onde a função de onda for diferente de zero na região entre os planos paralelos ao plano yz.



Qual é o subespaço \mathcal{E}_{Δ} associado com esse resultado de medida?

que tal?
$$\begin{cases} os \ kets \ |\vec{r}\rangle = |x,y,z\rangle \\ com \\ x_1 < x < x_2; \forall y; \forall z. \end{cases}$$

F689

Aparelho insuficientemente seletivo

- Aplicação para o tratamento de espectro contínuo (continuação).
- Um vez que os kets $|x,y,z\rangle$ são ortonormais (no sentido extendido) devemos simplesmente aplicar a regra que diz que basta adicionar as probabilidades correspondendo à estados finais ortogonais. Isto é:

$$\mathcal{P}(x_{1} < x < x_{2}) = \int_{x_{1}}^{x_{2}} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} |\langle x, y, z | \psi \rangle|^{2} = \int_{x_{1}}^{x_{2}} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} |\psi(\vec{r})|^{2}$$

Note que trata-se da fórmula já estudada $\mathcal{P}(SIM) = \langle \psi | P_{\Delta} | \psi \rangle$ com

$$P_{\Delta} = \int_{x_1}^{x_2} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} dz |x, y, z\rangle \langle x, y, z|$$

 \circ Como seria $|\psi'\rangle$, o estado obtido com o colapso de $|\psi\rangle$, devido à medida?

$$|\psi'\rangle = \frac{P_{\Delta}|\psi\rangle}{N}$$
, com $N = \sqrt{\langle\psi|P_{\Delta}|\psi\rangle}$, obtido pela condição $\langle\psi'|\psi'\rangle = 1$.

Ou ainda
$$|\psi'\rangle = \frac{1}{N} \int_{x_1}^{x_2} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} dz |x,y,z\rangle \langle x,y,z|\psi\rangle$$
 que na representação

das coordenadas fica:
$$\psi'(\vec{r}) = \langle \vec{r} | \psi' \rangle = \frac{1}{N} \int_{x_1}^{x_2} dx' \int_{-\infty}^{+\infty} dz' \langle \vec{r} | \vec{r}' \rangle \psi(\vec{r}')$$

$$\stackrel{\text{local}}{\underset{\text{def}}{\text{local}}} \circ \text{Como } \langle \vec{r} | \vec{r}' \rangle = \delta(\vec{r} - r') = \delta(x - x') \delta(y - y') \delta(z - z'), \text{ temos:}$$

Como
$$\langle \vec{r} | \vec{r}' \rangle = \delta(\vec{r} - r') = \delta(x - x')\delta(y - y')\delta(z - z')$$
, temos

$$\psi'(\vec{r}) = \frac{1}{N} \int_{x_1}^{x_2} dx' \delta(x - x') \psi(x', y, z) = \begin{cases} \frac{1}{N} \psi(x, y, z) & \text{se } x_1 < x < x_2 \\ 0 & \text{se } x > x_1 \text{ ou } x > x_2 \end{cases}$$

Aparelho insuficientemente seletivo

- Aplicação para o tratamento de espectro contínuo (continuação).
- \circ A parte de $\psi(\vec{r})$ correspondente ao intervalo aceito pelo aparato de medida persiste inalterada imediatamente após a medida (o fator $\frac{1}{N}$ aparece só para normalizar $\psi'(x,y,z)$. Note entretanto que o restante de $\psi(x,y,z)$ é suprimido pelo experimento.

Comentários.

1º Chamaremos isso de redução do pacote de onda.

2º Se um número grande de partículas é enviado para o aparato, o resultado será: \square SIM para algumas \rightarrow as partículas continuam, começando no estado $|\psi'\rangle$. \square NÃO para outras \rightarrow absorvidas pela tela.

 $3^{\underline{o}}$ Lembre que $\begin{cases} \text{SIM tem probabilidade } \mathcal{P}(\text{SIM}) \text{ de ocorrer.} \\ \text{N\~AO tem probabilidade } \mathcal{P}(\text{N\~AO}) \text{ de ocorrer.} \end{cases}$

Vamos reescrever o postulado 4 (colapso da função de onda), caso espectro continuo, chamando-o de:

Aparelho insuficientemente seletivo

Postulado de redução de pacotes de onda de um espectro contínuo. Se a medida de \mathcal{A} sobre um sistema em um estado $|\psi\rangle$ deu um resultado α_0 dentro de $\Delta\alpha$ ($\forall \alpha \to \alpha_0 - \frac{\Delta\alpha}{2} < \alpha < \alpha_0 + \frac{\Delta\alpha}{2}$), o sistema imediatamente após a medida é descrito por

$$|\psi'\rangle = \frac{P_{\Delta\alpha}(\alpha_0)|\psi\rangle}{\sqrt{\langle\psi|P_{\Delta\alpha}(\alpha_0)|\psi\rangle}} \text{ onde } P_{\Delta\alpha}(\alpha_0) = \int_{\alpha_0 - \frac{\Delta\alpha}{2}}^{\alpha_0 + \frac{\Delta\alpha}{2}} d\alpha |v_\alpha\rangle\langle v_\alpha|$$

- o Note que $\lim_{\Delta\alpha\to 0} P_{\Delta\alpha}(\alpha_0) = d\alpha |v_{\alpha}\rangle\langle v_{\alpha}|$ e $d\mathcal{P}(\alpha) = \langle \psi|P_{\Delta\alpha}(\alpha_0)|\psi\rangle = d\alpha |\langle v_{\alpha}|\psi\rangle|^2$ e recuperamos o postulado 4 original.
- \circ As figuras mostram a redução do pacote. Na prática $\lim_{\Delta\alpha\to 0}$ não é possível!

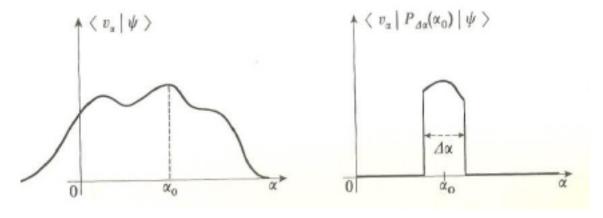


Fig. 9, Cap. 3 do livro texto

