Formalismo de Dirac para a Mecânica Quântica Conjugação Hermiteana.

• Ação de um operador linear sobre um bra.

Antes, lembre que definimos na aula passada a ação de um operador linear sobre um ket, ou seja, se $|\psi\rangle$ é um ket e A um operador linear, $A|\psi\rangle$ também é um ket. Aplique um funcional linear $(\langle \phi|)$ nos $A|\psi\rangle$ para obter $\langle \phi|A|\psi\rangle$. Note que esse mesmo resultado seria obtido se aplicássemos a quantidade $\langle \phi|A$ em $|\psi\rangle$. O que nos faz concluir que $\langle \phi|A$ também é um funcional linear e \therefore na linguagem de

Cuidado: $\langle \phi | A \iff A | \phi \rangle$ um pode não vir do outro!

A relação que define $\langle \phi | A$ pode ser escrita por $(\langle \phi | A) | \psi \rangle = \langle \phi | (A | \psi \rangle)$.

Dirac, trata-se de um bra. Dizemos que $\langle \phi | A \in \mathcal{E}^*$, assim como $\langle \phi | \in \mathcal{E}^*$.

Que em palavras fica: O operador A associa a cada bra $\langle \phi |$ um novo bra $\langle \phi | A$ que quando aplicado em $|\psi\rangle$ resulta em $\langle \phi | (A|\psi\rangle)$. Será que essa relação é linear? Para ver isso, suponha $\langle \chi | = \lambda_1 \langle \phi_1 | + \lambda_2 \langle \phi_2 |$. Sabemos que $(\langle \chi | A) | \psi \rangle =$

$$= \langle \chi | (A|\psi) \rangle = (\lambda_1 \langle \phi_1 | + \lambda_2 \langle \phi_2 |) (A|\psi)) = \lambda_1 \langle \phi_1 | (A|\psi) \rangle + \lambda_2 \langle \phi_2 | (A|\psi)) =$$

$$= \lambda_1 (\langle \phi_1 | A) | \psi \rangle + \lambda_2 (\langle \phi_2 | A) | \psi \rangle = (\lambda_1 \langle \phi_1 | A + \lambda_2 \langle \phi_2 | A) | \psi \rangle$$

$$\therefore (\lambda_1 \langle \phi_1 | + \lambda_2 \langle \phi_2 |) A = \lambda_1 \langle \phi_1 | A + \lambda_2 \langle \phi_2 | A$$

F689 Aula 07

Formalismo de Dirac para a Mecânica Quântica

- Comentários:
 - (1) Como $(\langle \phi | A) | \psi \rangle = \langle \phi | (A | \psi \rangle)$, daqui para frente usaremos $\langle \phi | A | \psi \rangle$.
 - $\begin{cases} \langle \phi | A \to \text{ um bra, agindo} \\ \text{sobre um ket, dá um número} \end{cases}$ (2) Cuidado com a ordem $\langle \phi | A \neq A \langle \phi |$ onde $\langle A \rangle \langle \phi | \to \text{agindo sobre um ket},$ dá um operador. Até aqui sem sentido para nós.
- O operador adjunto A^{\dagger} de um operador A.

Até aqui temos
$$\begin{cases} |\psi\rangle \overset{A}{\Longrightarrow} \ |\psi'\rangle = A|\psi\rangle \\ \updownarrow \qquad \updownarrow \qquad \text{Chamaremos o operador que transforma} \\ |\langle\psi| \overset{?}{\Longrightarrow} \ |\psi'\rangle = |\psi\rangle? \end{cases}$$

 $\langle \psi |$ em $\langle \psi' |$ de A^{\dagger} = operador adjunto de A.

Ou seja,
$$\begin{cases} |\psi\rangle \xrightarrow{A} |\psi'\rangle = A|\psi\rangle \\ \updownarrow & \updownarrow \\ \langle\psi| \xrightarrow{A^{\dagger}} |\psi'\rangle = \langle\psi|A^{\dagger} \end{cases} \implies \text{pode-se dizer que \'e a definição de } A^{\dagger}.$$

Aula 07

F689

Formalismo de Dirac para a Mecânica Quântica

Será que esse operador A^{\dagger} é linear? Para verificar isso, calcularemos

$$(\lambda_1 \langle \psi_1 | + \lambda_2 \langle \psi_2 |) A^{\dagger}$$

Para tanto defina $\lambda_1 \langle \psi_1 | + \lambda_2 \langle \psi_2 | = \langle \chi | \text{ e note que } \langle \chi | A^{\dagger} \iff A | \chi \rangle \text{ (definição)}.$ Quanto vale $|\chi\rangle$? Lembre da aula 4, slide 13, onde aprendemos que a passagem

Quanto vale
$$|\chi\rangle$$
? Lembre da aula 4, slide 13, onde aprendemos que a passagem $|\chi\rangle \iff \langle \chi|$ é antilinear, e escreva: $|\chi\rangle = \lambda_1^{\star} |\psi_1\rangle + \lambda_2^{\star} |\psi_2\rangle$. Como A é linear, podemos escrever $A|\chi\rangle = \lambda_1^{\star} A|\psi_1\rangle + \lambda_2^{\star} A|\psi_2\rangle = \lambda_1^{\star} |\psi_1'\rangle + \lambda_2^{\star} |\psi_2'\rangle$, onde
$$\begin{cases} A|\psi_1\rangle = |\psi_1'\rangle \\ A|\psi_2\rangle = |\psi_2'\rangle \end{cases}$$

Esse ket corresponde ao bra $\lambda_1 \langle \psi_1' | + \lambda_2 \langle \psi_2' | = \lambda_1 \langle \psi_1 | A^{\dagger} + \lambda_2 \langle \psi_2 | A^{\dagger}$ que mostra que A^{\dagger} é linear. Note que usamos $\begin{cases} A|\psi_1\rangle = |\psi_1'\rangle \iff \langle \psi_1|A^{\dagger} = \langle \psi_1'| \\ A|\psi_2\rangle = |\psi_2'\rangle \iff \langle \psi_2|A^{\dagger} = \langle \psi_2'| \end{cases}$

combinado com $\langle \psi' | \varphi \rangle = \langle \varphi | \psi' \rangle^*$, é $\langle \psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \psi \rangle^*$.

 $\therefore \langle \psi' | = \langle \psi | B \leftrightarrow | \psi' \rangle = B^{\dagger} | \psi \rangle = (A^{\dagger})^{\dagger} | \psi \rangle \therefore (A^{\dagger})^{\dagger} = A.$

Tudo se passa como se $|\psi'\rangle = A|\psi\rangle = |A\psi\rangle \in \mathcal{E} \iff \langle \psi'| = \langle A\psi| = \langle \psi|A^{\dagger} \in \mathcal{E}^{\star}.$

Uma propriedade importante, consequência de $A|\psi\rangle = |\psi'\rangle \iff \langle \psi|A^{\dagger} = \langle \psi'|$,

Quanto vale $(A^{\dagger})^{\dagger}$? Considere $B=A^{\dagger}$ com $|\psi'\rangle=A|\psi\rangle\leftrightarrow\langle\psi'|=\langle\psi|A^{\dagger}$

• Quanto vale $(\lambda A)^{\dagger}$?

Para calcular isso, considere

$$\langle \psi | (\lambda A)^{\dagger} | \varphi \rangle = \langle \varphi | \lambda A | \psi \rangle^{\star} = \lambda^{\star} \langle \varphi | A | \psi \rangle^{\star} = \lambda^{\star} \langle \psi | A^{\dagger} | \varphi \rangle = \langle \psi | \lambda^{\star} A^{\dagger} | \varphi \rangle.$$

Como vale para $\forall |\varphi\rangle$ e $\forall |\psi\rangle$, temos que necessariamente $(\lambda A)^{\dagger} = \lambda^{\star} A^{\dagger}$.

$$\left(\lambda A\right)^{\dagger} = \lambda^{\star} A^{\dagger}.$$

• Quanto vale $(A+B)^{\dagger}$?

Para calcular isso, considere

$$\langle \psi | (A+B)^{\dagger} \rightarrow (A+B) | \psi \rangle = A | \psi \rangle + B | \psi \rangle \rightarrow \langle \psi | A^{\dagger} + \langle \psi | B^{\dagger} = \langle \psi | (A^{\dagger} + B^{\dagger}).$$

O que permite concluir que $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$.

• Quanto vale $(AB)^{\dagger}$?

Para calcular isso, considere

$$|\varphi\rangle = AB|\psi\rangle = A(B|\psi\rangle) = A|\chi\rangle \text{ com } |\chi\rangle = B|\psi\rangle.$$

O bra correspondente ao ket $|\varphi\rangle$ é $\langle\varphi| = \langle\psi|(AB)^{\dagger} = \langle\chi|A^{\dagger}$.

Usando que $\langle \chi | = \langle \psi | B^{\dagger}$, obtemos $\langle \varphi | = \langle \psi | B^{\dagger} A^{\dagger}$ e concluímos que

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}.$$

• Conjugação Hermiteana

Resumo da notação de Dirac $\begin{cases} A^{\dagger} \text{ \'e dito conjugado Hermiteano de } A. \\ \langle \psi | \text{ \'e dito conjugado Hermiteano de } | \psi \rangle. \\ \lambda^{\star} \text{ \'e dito conjugado Hermiteano de } \lambda. \end{cases}$

É importante notar que a conjugação Hermiteana muda a ordem dos "objetos" do qual ela está aplicada. Por exemplo:

$$(1) \left(A|\psi\rangle \right)^{\dagger} = \langle \psi|A^{\dagger}$$

$$(2) \left(AB\right)^{\dagger} = B^{\dagger}A^{\dagger}$$

(3) O que você esperaria de $(|u\rangle\langle v|)^{\dagger}$?

Lembre que $\langle \psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \psi \rangle^{\star}$ e substitua A por $(|u\rangle\langle v|)$, para obter $\langle \psi | (|u\rangle\langle v|)^{\dagger} | \varphi \rangle = [\langle \varphi | (|u\rangle\langle v|) | \psi \rangle]^{\star} = \langle u | \varphi \rangle \langle \psi | v \rangle = \langle \psi | v \rangle \langle u | \varphi \rangle = \langle \psi | (|v\rangle\langle u|) | \varphi \rangle$

O que permite concluir que vale $(|u\rangle\langle v|)^{\dagger} = |v\rangle\langle u|$.

• Regra: Para se obter o conjugado Hermiteano (ou o adjunto) de qualquer expressão composta de constantes, kets, bras, e operadores, precisamos:

$$trocar: \begin{cases} \lambda \to \lambda^*; A \to A^{\dagger} \\ |\psi\rangle \to \langle\psi| \\ |\psi\rangle & \Rightarrow \end{cases} \begin{cases} e \text{ reverter a ordem dos fatores. Note que a} \\ posição das constantes \'e irrelevante. \end{cases}$$

Exemplo: Qual é conjugado Hermiteano de $\lambda \langle u|A|v\rangle |\omega\rangle \langle \psi|$?

A aplicação direta da regra fornece: $(\lambda \langle u|A|v\rangle|\omega\rangle\langle\psi|)^{\dagger} = |\psi\rangle\langle\omega|\langle v|A^{\dagger}|u\rangle\lambda^{\star}$ e isso é igual à $\lambda^{\star}\langle v|A^{\dagger}|u\rangle|\psi\rangle\langle\omega|$, com $\langle v|A^{\dagger}|u\rangle = \langle u|A|v\rangle^{\star}$.

- Operadores Hermiteanos $\begin{cases} \tilde{\text{sao}} \text{ operadores que respeitam } A^{\dagger} = A \\ \tilde{\text{sao}} \text{ fundamentais na Mecânica Quântica} \end{cases}$
 - Isso implica em $\langle \psi | A | \varphi \rangle = \langle \psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \psi \rangle^{\star}, \ \forall \ | \varphi \rangle \in | \psi \rangle.$

 - Exemplos:
 - (1) Será que $P = |\psi\rangle\langle\psi|$ é Hermiteano? $P_{\psi}^{\dagger} = (|\psi\rangle\langle\psi|)^{\dagger} = |\psi\rangle\langle\psi| = P_{\psi}$
 - (2) Será que o produto de dois operadores Hermiteanos é Hermiteano?

Dados
$$\begin{cases} A^{\dagger} = A \\ B^{\dagger} = B \end{cases}$$
 \Rightarrow calcule $(AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA$ e conclua:

O produto de dois operadores Hermiteanos é Hermiteano, somente se eles comutarem, isto é [A,B]=AB-BA=0

- Representações no Espaço de Estados
 - Definição $\begin{cases} \text{Escolher uma representação \'e escolher uma base ortonormal de} \\ \mathcal{E} \text{ que pode ser discreta ou contínua (e, em alguns casos, ambas).} \end{cases}$
 - Os kets, bras e operadores serão representados nesta base por números. Com
 - a designação: $\begin{cases} (1) \text{ componentes de um vetor coluna para kets,} \\ (2) \text{ componentes de um vetor linha para bras e} \\ (3) \text{ componentes de matrizes quadradas para operadores.} \end{cases}$
 - Benvindo ao mundo da álgebra linear e dos cálculos matriciais!
- Para tanto, revisemos, na notação de Dirac, os conceitos de $\begin{cases} \text{base discreta,} \\ \text{base contínua,} \\ \text{ortonormalidade,} \\ \text{e completeza.} \end{cases}$
- o Bases discretas e contínuas.
 - A base é um conjunto de kets $\begin{cases} \{|u_i\rangle\} \to \begin{cases} \text{indice } i \text{ discreto} \\ \text{e enumerável.} \end{cases} \\ \{|w_{\alpha}\rangle\} \to \begin{cases} \text{indice } \alpha \text{ contínuo} \\ \text{e incontável.} \end{cases}$

o Relação de ortonormalidade. A base é definida de tal forma que seus kets

$$\begin{cases} \langle u_i|u_j\rangle = \delta_{ij} \to \text{no caso discreto} \\ \\ \langle w_\alpha|w_{\alpha'}\rangle = \delta(\alpha-\alpha') \to \text{no caso contínuo} \\ \\ \\ \langle u_i|w_\alpha\rangle = \langle w_\alpha|u_i\rangle = 0 \to \text{na mistura discreto/contínuo} \end{cases}$$

 \circ Relação de Completeza. A base ser completa significa que para \forall ket $|\psi\rangle$,

é sempre possível escrever:
$$\begin{cases} |\psi\rangle = \sum_i c_i |u_i\rangle \to \text{no caso discreto} \\ |\psi\rangle = \int d\alpha \ c(\alpha) |w_\alpha\rangle \to \text{no caso contínuo} \\ |\psi\rangle = \sum_i c_i |u_i\rangle + \int d\alpha \ c(\alpha) |w_\alpha\rangle \to \text{na mistura} \end{cases}$$

onde $\begin{cases} c_i = \langle u_i | \psi \rangle \\ \rightarrow \text{Substituindo isso nas equações acima, obtemos a chamada} \\ c(\alpha) = \langle w_\alpha | \psi \rangle \end{cases}$

$$(c(\alpha) = \langle w_{\alpha} | \psi \rangle)$$

$$|\psi\rangle = \sum_{i} c_{i} |u_{i}\rangle = \sum_{i} \langle u_{i} | \psi \rangle |u_{i}\rangle = (\sum_{i} |u_{i}\rangle \langle u_{i}|) |\psi\rangle = \mathbb{1} |\psi\rangle$$

$$|\psi\rangle = \int d\alpha \ c(\alpha) |w_{\alpha}\rangle = (\int d\alpha \ |w_{\alpha}\rangle \langle w_{\alpha}|) |\psi\rangle = \mathbb{1} |\psi\rangle$$
PLima

Mostre que no caso de uma base mista (discreta e contínua), teríamos

$$|\psi\rangle = (\sum_{i} |v_{i}\rangle\langle v_{i}| + \int d\alpha |q_{\alpha}\rangle\langle q_{\alpha}|)|\psi\rangle = \mathbb{1}|\psi\rangle$$

 $1 \rightarrow$ operador unidade ou operador identidade em \mathcal{E} .

$$\begin{cases} P_{\{|u_i\rangle\}} = \sum_i |u_i\rangle\langle u_i| = 1 \\ \\ P_{\{|w_\alpha\rangle\}} = \int d\alpha \ |w_\alpha\rangle\langle w_\alpha| = 1 \\ \\ P_{\{|v_i\rangle,|q_\alpha\rangle\}} = \sum_i |v_i\rangle\langle v_i| + \int d\alpha \ |q_\alpha\rangle\langle q_\alpha| = 1 \end{cases}$$

$$(P_{\{|v_i\rangle,|q_\alpha\rangle\}} = \sum_i |v_i\rangle\langle v_i| + \int d\alpha |q_\alpha\rangle\langle q_\alpha| = 1$$

$$\circ \text{ Se } \{|u_i\rangle\} \text{ ou } \{|w_\alpha\rangle\} \text{ formam uma base, } \sum_i |u_i\rangle\langle u_i| = 1 \text{ e } \int d\alpha |w_\alpha\rangle\langle w_\alpha| = 1.$$

E o caminho inverso?
$$\begin{cases} |\psi\rangle = \mathbb{1}|\psi\rangle = \sum_{i} |u_{i}\rangle\langle u_{i}|\psi\rangle = \sum_{i} c_{i}|u_{i}\rangle \\ |\psi\rangle = \mathbb{1}|\psi\rangle = \int d\alpha \ |w_{\alpha}\rangle\langle w_{\alpha}|\psi\rangle = \int d\alpha \ c(\alpha)|w_{\alpha}\rangle \end{cases}$$

Logo mais veremos que
$$\begin{cases} \int d\alpha \ |w_{\alpha}\rangle\langle w_{\alpha}| = 1 \to \int d\alpha \ w_{\alpha}(x)w_{\alpha}^{\star}(x') = \delta(x - x') \\ \sum_{i} |u_{i}\rangle\langle u_{i}| = 1 \to \sum_{i} u_{i}(x)u_{i}^{\star}(x') = \delta(x - x') \end{cases}$$

Interpretação geométrica
$$\begin{cases} P_{\{|u_i\rangle\}} = \sum_i |u_i\rangle\langle u_i| \text{ \'e um projetor.} \\ |u_i\rangle\langle u_i| \text{ projeta } |\psi\rangle \text{ na direção } |u_i\rangle. \end{cases}$$

Comentários

- (a) Se a soma em i for parcial, o espaço projetado \mathcal{E}' é um subespaço de \mathcal{E} .
- (b) Se a soma for completa $\mathcal{E}' = \mathcal{E}$.
- (c) Relação com $\Re^3: \vec{e}_1, \vec{e}_2, \vec{e}_3$

No espaço
$$\Re^3$$
 temos
$$\begin{cases} P_1 \text{ projeta em } \vec{e_1} \\ P_2 \text{ projeta em } \vec{e_2} \text{ e \'e razo\'avel que } P_1 + P_2 + P_3 = 1 \end{cases},$$
$$P_3 \text{ projeta em } \vec{e_3}$$

ou ainda, se
$$\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3$$
, temos
$$\begin{cases} P_1 \vec{v} = v_1 \vec{e}_1 \\ P_2 \vec{v} = v_2 \vec{e}_2 \\ P_3 \vec{v} = v_3 \vec{e}_3 \end{cases}$$

Resumo

$$\{|u_{i}\rangle\} \qquad \{|w_{\alpha}\rangle\}$$

$$\langle u_{i}|u_{j}\rangle = \delta_{ij} \qquad \langle w_{\alpha}|w_{\alpha'}\rangle = \delta(\alpha - \alpha')$$

$$\sum_{i} |u_{i}\rangle\langle u_{i}| = \mathbb{1} \qquad \int d\alpha |w_{\alpha}\rangle\langle w_{\alpha}| = \mathbb{1}$$

Resumo da notação de Dirac (até aqui)

Definimos:

- kets: $|\psi\rangle \rightarrow \text{vetor estado}$.
- bras: $\langle \varphi | \to \text{funcional linear.}$
- bracket: $\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^* \to \text{produto escalar.}$
- Operador: $A \to A|\psi\rangle = |\psi'\rangle$.
- Elemento de matriz: $\langle \varphi | A | \psi \rangle \rightarrow \langle \varphi | (A | \psi \rangle)$.
- Operador sobre um bra: $\langle \varphi | A$ também é um bra, definido por $(\langle \varphi | A) | \psi \rangle = \langle \varphi | (A | \psi \rangle) = \langle \varphi | A | \psi \rangle$.
- O bra associado ao ket $A|\psi\rangle$ é definido por $\langle\psi|A^{\dagger}$. O operador A^{\dagger} é dito o adjunto de $A\Longrightarrow A|\psi\rangle=|A\psi\rangle \leftrightarrow \langle\psi|A^{\dagger}=\langle A\psi|$.
- Vale a relação $\langle \varphi | A^{\dagger} | \psi \rangle = \langle A \varphi | \psi \rangle = \langle \psi | A \varphi \rangle^{\star} = \langle \psi | A | \varphi \rangle^{\star}$.
- Se $A^{\dagger} = A \to A$ é Hermiteano. Neste caso $\langle \varphi | A | \psi \rangle = \langle \psi | A | \varphi \rangle^{*}$.

Temos o suficiente para introduzir o conceito de representação de um estado físico qualquer em um espaço de estados conhecidos (uma base conhecida).

Representações no espaço de estados

• A representação de kets.

Considere uma base conhecida $\{|u_i\rangle\}$. Vimos que um ket de sua escolha arbitrária poderia ser escrito com a ajuda do operador unidade por:

$$|\psi\rangle = \mathbb{1}|\psi\rangle = \sum_{i} |u_{i}\rangle\langle u_{i}|\psi\rangle = \sum_{i} c_{i}|u_{i}\rangle \Rightarrow \begin{cases} \text{O conjunto de números} \\ \text{complexos } c_{i} \text{ descreve o ket.} \end{cases}$$

Representaremos o ket nessa base por uma matriz coluna, dada por:

$$|\psi\rangle \doteq \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle u_1 | \psi \rangle \\ \langle u_2 | \psi \rangle \\ \vdots \\ \langle u_i | \psi \rangle \\ \vdots \end{pmatrix} \text{ se base continua } |\psi\rangle \doteq \begin{pmatrix} \vdots \\ c(\alpha) \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \langle w_\alpha | \psi \rangle \\ \vdots \end{pmatrix}$$

Note que os números mudariam de acordo com a escolha da base. Nas próximas aulas aprenderemos como mudar de uma base para outra.

MAPLima

Representações no espaço de estados

• A representação de bras.

Considere uma base conhecida $\{|u_i\rangle\}$. Vimos que um bra de sua escolha arbitrária poderia ser escrito com a ajuda do operador unidade por:

$$\langle \psi | = \langle \psi | \mathbb{1} = \sum_{i} \langle \psi | u_i \rangle \langle u_i | = \sum_{i} c_i^* \langle u_i | \Rightarrow \begin{cases} \text{O conjunto de números} \\ \text{complexos } c_i^* \text{ descreve o bra.} \end{cases}$$

Representaremos o bra nessa base por uma matriz linha, dada por:

$$\langle \psi | \doteq (c_1^{\star} c_2^{\star} \dots c_i^{\star} \dots) = (\langle \psi | u_1 \rangle \langle \psi | u_2 \rangle \dots \langle \psi | u_i \rangle \dots).$$

Se base for contínua

$$\langle \psi | \doteq (\ldots c^{\star}(\alpha) \ldots) = (\ldots \langle \psi | w_{\alpha} \rangle \ldots)$$

Note que os números que representam os bras são os complexos conjugados dos números que representam os kets. A representação do bra nada mais é que a transposta da matriz que representa o ket, seguida da conjugação complexa de todos os elementos.

Representações no espaço de estados

• O bracket $\langle \varphi | \psi \rangle$

Considere novamente uma base conhecida $\{|u_i\rangle\}$. Para obter o valor do bracket nesta base basta fazer uso do operador unidade na relação:

$$\langle \varphi | \psi \rangle = \langle \varphi | \mathbb{1} | \psi \rangle = \sum_{i} \langle \varphi | u_{i} \rangle \langle u_{i} | \psi \rangle = \sum_{i} b_{i}^{\star} c_{i} \operatorname{com} \begin{cases} b_{i} = \langle u_{i} | \varphi \rangle \\ c_{i} = \langle u_{i} | \psi \rangle \end{cases}$$

Note que esse mesmo resultado seria obtido pela multiplicação de matrizes

$$\langle \varphi | \psi \rangle = \begin{pmatrix} b_1^{\star} b_2^{\star} & \dots & b_i^{\star} & \dots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_i \\ \vdots \end{pmatrix} \stackrel{\text{continua}}{=} \begin{pmatrix} \dots & b^{\star}(\alpha) & \dots \end{pmatrix} \begin{pmatrix} \vdots \\ c(\alpha) \\ \vdots \\ \vdots \end{pmatrix}$$

• Representação dos operadores. Sabendo que $A_{ij} = \langle u_i | A | u_j \rangle$, definimos:

$$A \doteq \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1j} & \dots \\ A_{21} & A_{22} & \dots & A_{2j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{i1} & A_{12} & \dots & A_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

Representação do produto de operadores: AB

Sabendo que $A_{ij} = \langle u_i | A | u_j \rangle$, e $B_{ij} = \langle u_i | B | u_j \rangle$, represente cada operador por

$$A \doteq \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1j} & \dots \\ A_{21} & A_{22} & \dots & A_{2j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{i1} & A_{12} & \dots & A_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

$$B \doteq \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1j} & \dots \\ B_{21} & B_{22} & \dots & B_{2j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ B_{i1} & B_{12} & \dots & B_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

O produto $AB = \mathbb{1}A\mathbb{1}B\mathbb{1} = \sum_{i \neq j} |u_i\rangle A_{i\ell}B_{\ell j}\langle u_j|$ fica representado por

$$AB \doteq \left(\begin{array}{ccccc} A_{11} & A_{12} & \dots & A_{1j} & \dots \\ A_{21} & A_{22} & \dots & A_{2j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{i1} & A_{12} & \dots & A_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right) \left(\begin{array}{cccccc} B_{11} & B_{12} & \dots & B_{1j} & \dots \\ B_{21} & B_{22} & \dots & B_{2j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ B_{i1} & B_{12} & \dots & B_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right)$$