F689 Aula 24

Momento Angular na Mecânica Quântica

- Explorando o fato que $\mathcal{E}(j,k)$ é globalmente invariante sob ação de \vec{J} . Lembre que \forall componente J_u pode ser escrita em função de J_z, J_+, J_- e que esses três operadores no máximo mudam m (resultado $\in \mathcal{E}(j,k)$)
- A representação matricial de J_u ou de qualquer $F(\vec{J})$ deve ser bloco diagonal.

$\langle k,j,m F(\vec{J}) k'\!,j'\!,m'\rangle$	$\mathcal{E}(k,j)$	$\mathcal{E}(k',j)$	$\mathcal{E}(k',j')$
$\mathcal{E}(k,j)$	$(2j+1) \times (2j+1)$	0	0
$\mathcal{E}(k',j)$	0	$(2j+1) \times (2j+1)$	0
$\mathcal{E}(k',j')$	0	0	$(2j+1) \times (2j+1)$

 $k \neq k' \in j \neq j'$

• Podemos calculá-la usando $\begin{cases} J_z |k, j, m \rangle = m\hbar |k, j, m \rangle \\ J_{\pm} |k, j, m \rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} |k, j, m\pm 1 \rangle \end{cases}$

ou ainda $\begin{cases} \langle k, j, m | J_z | k', j', m' \rangle = m' \hbar \delta_{kk'} \delta_{jj'} \delta_{mm'} \\ \langle k, j, m | J_{\pm} | k', j', m' \rangle = \hbar \sqrt{j'(j'+1) - m'(m'\pm 1)} \delta_{kk'} \delta_{jj'} \delta_{m,m'\pm 1} \end{cases}$

Note que esses elementos não dependem de k. Uma vez calculada a representação de J_u ou de $F(\vec{J})$, podemos usá-la para \forall sistema físico.

F689 Aula 24

MAPLima

Representação das coordenadas do momento angular

Na representação das coordenadas $\{|\vec{r}\rangle\}$, temos $L_z = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial r}\right)$. Para

explorar possíveis simetrias do sistema, é interessante escrever esse operador (assim como $L_x, L_y \in L^2$) em coordenadas polares e esféricas.

- Para ilustrar, L_z em Coordenadas polares (z, ρ, φ) $\begin{cases} x = \rho \cos \varphi & \rho \\ y = \rho \sin \varphi & \varphi \\ x = \rho \sin \varphi & \varphi \end{cases}$
 - $L_z = \frac{\hbar}{i} \Big(x(\rho,\varphi) \frac{\partial \rho}{\partial y} \frac{\partial}{\partial \rho} + x(\rho,\varphi) \frac{\partial \varphi}{\partial y} \frac{\partial}{\partial \varphi} y(\rho,\varphi) \frac{\partial \rho}{\partial x} \frac{\partial}{\partial \rho} y(\rho,\varphi) \frac{\partial \varphi}{\partial x} \frac{\partial}{\partial \varphi} \Big)$ Usando que $\begin{cases} \rho^2 = x^2 + y^2 \to \rho = \sqrt{x^2 + y^2} \\ e \text{ que } \frac{d}{d\lambda} \arctan \lambda = \frac{1}{1 + \lambda^2}, \end{cases}$

$$\tan \varphi = \frac{y}{x} \to \varphi = \arctan \frac{y}{x}$$

podemos escrever
$$\begin{cases} \frac{\partial \rho}{\partial y} = \frac{y}{\rho} = \sin\varphi \\ \frac{\partial \rho}{\partial x} = \frac{x}{\rho} = \cos\varphi \end{cases} \quad e \begin{cases} \frac{\partial \varphi}{\partial y} = \frac{1}{1+y^2/x^2} \cdot \left(\frac{1}{x}\right) = \frac{x}{\rho^2} = \frac{\cos\varphi}{\rho} \\ \frac{\partial \varphi}{\partial x} = \frac{1}{1+y^2/x^2} \cdot \left(-\frac{y}{x^2}\right) = -\frac{y}{\rho^2} = -\frac{\sin\varphi}{\rho} \end{cases}$$

• Para obter $L_z = \frac{\hbar}{i} \left(\rho \cos \varphi \sin \varphi \frac{\partial}{\partial \rho} + \rho \frac{\cos^2 \varphi}{\rho} \frac{\partial}{\partial \varphi} - \rho \sin \varphi \cos \varphi \frac{\partial}{\partial \rho} + \rho \frac{\sin^2 \varphi}{\rho} \frac{\partial}{\partial \varphi} \right)$

e finalmente sua forma final $L_z = \frac{\hbar}{i} \frac{\partial}{\partial \varphi}$.

A seguir fornecemos apenas os resultados.

F689

Representação das coordenadas do momento angular

• Serviço doloroso (mas sem grandes dificuldades) leva à:

F689

Aula 24

MAPLima

Já que temos todos os operadores na representação das coordenadas, nosso problema se resume a resolver:

$$L^{2}Y_{\ell}^{m}(\theta,\varphi) = \ell(\ell+1)\hbar^{2}Y_{\ell}^{m}(\theta,\varphi)$$
$$L_{z}Y_{\ell}^{m}(\theta,\varphi) = m\hbar Y_{\ell}^{m}(\theta,\varphi)$$

onde $Y_{\ell}^{m}(\theta, \varphi)$ são as chamadas Harmônicas Esféricas.

y

MAPLima

Representação das coordenadas do momento angular

- Na representação das coordenadas, temos duas equações diferenciais: a de L_z é em primeira ordem em φ (tem solução simples) e permite que na de L^2 , a dependência em φ seja facilmente retirada. Assim o desafio seria resolver uma equação em segunda ordem em θ (cuja solução dá origem aos polinômios de Legendre). Ao invés de resolver a equação envolvendo segundas derivadas em θ , usaremos os operadores L_{\pm} para obter soluções resolvendo equações de primeira ordem.
- Antes, alguns comentários:
- As integrais em volume envolvendo coordenadas cartesianas e esféricas estão relacionadas da seguinte maneira:

$$dv = dxdydz = r^{2}\sin\theta drd\theta d\varphi,$$

onde, as cartesianas
$$\begin{cases} -\infty < x < +\infty \\ -\infty < y < +\infty \end{cases}$$
 enquanto que as esféricas
$$\begin{cases} 0 \le r < \infty \\ 0 \le \theta \le \pi \\ 0 \le \varphi \le 2\pi \end{cases}$$

Uma vez obtidas as Harmônicas esféricas, podemos escrever uma função de base do espaço R^3 como $\psi_{k\ell m}(r,\theta,\varphi) = f_{k\ell m}(r)Y_{\ell}^m(\theta,\varphi).$

5

Representação das coordenadas do momento angular

> Nestas condições a normalização de $\psi_{k\ell m}(r,\theta,\varphi)$, dada por

$$\begin{split} \int \int \int r^2 \sin\theta dr d\theta d\varphi \big| \psi_{k\ell m}(r,\theta,\varphi) \big|^2 &= 1, \\ \text{pode ser separada em duas condições} \begin{cases} \int_0^\infty r^2 dr \big| f_{k\ell m}(r) \big|^2 &= 1 \end{cases} \end{split}$$

 $\left\{ \int \int \sin\theta d\theta d\varphi |Y_{\ell}^{m}(\theta,\varphi)|^{2} = 1 \right\}$

6

- Vimos que em casos especiais, a parte radial $f_{k\ell m}(r)$, pode não depender de m(indexaremos por $f_{k\ell}(r)$) e até mesmo pode não depender de ℓ e m (neste caso indexaremos apenas com k, e a parte radial será chamada de $f_k(r)$).
 - Obtenção das Harmônicas Esféricas $Y_{\ell}^{m}(\theta, \varphi)$.

F689

Aula 24

MAPLima

Conforme indicamos, a parte em φ é relativamente simples. Comece pela equação de autovalor de L_z , na representação das coordenadas, isto é:

As variáveis $\theta \in \varphi$ aparecem desacopladas, sugerindo a separação e a forma da solução para $\varphi \implies Y_{\ell}^m(\theta, \varphi) = F_{\ell}^m(\theta) e^{im\varphi}$

- F689 Aula 24 • Note que ao exigir que $Y_{\ell}^{m}(\theta, 0) = Y_{\ell}^{m}(\theta, 2\pi)$, temos $e^{im2\pi} = 1$, que só ocorre se *m* for inteiro.
 - Se m é inteiro, ℓ também é inteiro. Ou seja, ao exigir que a função de onda seja unicamente definida ao darmos uma volta completa no espaço R^3 , aprende-se que a possibilidade ℓ semi-inteiro para momento angular orbital precisa ser descartada.
 - Em seguida, acharemos $Y_{\ell}^{\ell}(\theta,\varphi)$ e usaremos L_{+} (slide 4) para obter $Y_{\ell}^{m}(\theta,\varphi)$. $L_{+}Y_{\ell}^{\ell}(\theta,\varphi) = 0 \Longrightarrow \hbar e^{i\varphi} \Big(\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\varphi}\Big) F_{\ell}^{\ell}(\theta) e^{i\ell\varphi} = 0$ $\left(\frac{\partial}{\partial\theta} - \ell\cot\theta\right)F_{\ell}^{\ell}(\theta) = 0 \Rightarrow \frac{dF_{\ell}^{\ell}}{d\theta}(\theta) - \ell\cot\theta F_{\ell}^{\ell}(\theta) = 0 \Rightarrow \frac{dF_{\ell}^{\ell}}{F^{\ell}} = \ell\cot\theta d\theta$ $\therefore \frac{dF_{\ell}^{\iota}}{F^{\ell}} = \ell \frac{\cos \theta}{\sin \theta} d\theta = \ell \frac{d\sin \theta}{\sin \theta} \text{ integrando dos dois lados, temos:}$ $\ln F_{\ell}^{\ell} = \ell \ln \sin \theta + \underline{\operatorname{cte}} \Rightarrow \ln F_{\ell}^{\ell} = \ln \left(c_{\ell} (\sin \theta)^{\ell} \right) \Rightarrow F_{\ell}^{\ell} = c_{\ell} (\sin \theta)^{\ell}$ chame $\ln c_{\ell}$, para facilitar e por poder depender de ℓ Assim, temos finalmente $Y_{\ell}^{\ell}(\theta,\varphi) = c_{\ell}(\sin\theta)^{\ell} e^{i\ell\varphi}$, onde c_{ℓ} é a constante

de normalização.

Representação das coordenadas do momento angular

Podemos agora obter $Y_{\ell}^m(\theta, \varphi)$ com auxílio do operador L_{-} .

Para isso, basta lembrar que deduzimos que

$$L_{\pm}Y_{\ell}^{m}(\theta,\varphi) = \hbar\sqrt{\ell(\ell+1) - m(m\pm 1)}Y_{\ell}^{m\pm 1}(\theta,\varphi),$$

que com auxílio do slide 4 permite escrever:

$$e^{\pm i\varphi}\hbar\Big(\pm\frac{\partial}{\partial\theta}+i\cot\theta\frac{\partial}{\partial\varphi}\Big)Y_{\ell}^{m}(\theta,\varphi) = \sqrt{\ell(\ell+1)-m(m\pm1)}Y_{\ell}^{m\pm1}(\theta,\varphi)$$

Assim, para obter $Y_{\ell}^{\ell-1}(\theta,\varphi)$ a partir de $Y_{\ell}^{\ell}(\theta,\varphi)$ basta usar
 $Y_{\ell}^{m\pm1}(\theta,\varphi) = \frac{e^{\pm i\varphi}\hbar\Big(\pm\frac{\partial}{\partial\theta}+i\cot\theta\frac{\partial}{\partial\varphi}\Big)Y_{\ell}^{m}(\theta,\varphi)}{\sqrt{\ell(\ell+1)-m(m\pm1)}}$ com sinal inferior e $m = \ell$.

- Essa fórmula de recorrência pode ser usada para obter, sucessivamente, todas as Harmônicas Esféricas para um dado ℓ e m. Basta aplicá-la variando m de ℓ até $-\ell + 1$, e fazendo uso da deduzida expressão para $Y_{\ell}^{\ell}(\theta, \varphi)$.
- Ortonormalização: $\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \ Y_{\ell'}^{m'*}(\theta,\varphi) Y_{\ell}^m(\theta,\varphi) = \delta_{\ell\ell'} \delta_{mm'}$
- Relação de completeza.

As harmônicas esféricas formam uma base capaz de escrever qualquer função

de
$$\theta \in \varphi \Rightarrow f(\theta, \varphi) = \sum_{0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell m} Y_{\ell}^{m}(\theta, \varphi)$$
. Quanto vale $c_{\ell m}$?

nstituto de Física Gleb Watagh

MAPLima

F689 Aula 24

Relação de Completeza Usando a relação de ortonormalidade das Harmônicas esféricas, obtemos

$$c_{\ell m} = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \ Y_{\ell}^{m \star}(\theta,\varphi) f(\theta,\varphi)$$

A relação de completeza pode ser expressa por $\sum \sum |\ell, m\rangle \langle \ell, m| = 1$, $\ell = 0 \ m = -\ell$

que na representação das coordenadas fica $\sum \sum \langle \hat{r} | \ell, m \rangle \langle \ell, m | \hat{r}' \rangle = \langle \hat{r} | \hat{r}' \rangle$, $\ell = 0 m = -\ell$

ou ainda
$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\theta,\varphi) Y_{\ell}^{m\star}(\theta',\varphi') = \langle \hat{r} | \hat{r}' \rangle = \frac{\delta(\theta-\theta')\delta(\varphi-\varphi')}{\sin\theta}$$

onde usamos a delta de Dirac em coordenadas esféricas, isto é:

$$\langle \vec{r} | \vec{r}' \rangle = \delta(\vec{r} - \vec{r}') = \delta(x - x')\delta(y - y')\delta(z - z') = \frac{\delta(r - r')\delta(\theta - \theta')\delta(\varphi - \varphi')}{r^2 \sin \theta}$$

$$\text{Isso permite escrever } f(\theta, \varphi) = \int \int d\varphi' \sin \theta' d\theta' \frac{\delta(\theta - \theta')\delta(\varphi - \varphi')}{\sin \theta} f(\theta', \varphi')$$

$$f(\theta, \varphi) = \int \int d\varphi' \sin \theta' d\theta' \Big[\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell}^m(\theta, \varphi) Y_{\ell}^{m\star}(\theta', \varphi') \Big] f(\theta', \varphi') \text{ que pode}$$

ser escrito por $f(\theta, \varphi) = \sum \sum c_{\ell m} Y_{\ell}^{m}(\theta, \varphi) \operatorname{com} c_{\ell m}$ definido acima. $\ell = 0 m = -\ell$ UNICAME

9

F689 Aula 24

Momento Angular na Mecânica Quântica: Simetrias

• Paridade. O que acontece quando trocamos $\vec{r} \rightarrow -\vec{r}$?

F689

Aula 24

MAPLima

Conjugação complexa $Y_{\ell}^{m\star}(\theta,\varphi) = (-1)^m Y_{\ell}^{-m}(\theta,\varphi)$ (ver complemento $A_{\rm VI}$).

Momento Angular na Mecânica Quântica: base padrão

Base padrão.

F689

Aula 24

MAPLima

Suponha
$$\psi_{k\ell m}(\vec{r})$$
, tal que
$$\begin{cases} L^2 \psi_{k\ell m}(\vec{r}) = \ell(\ell+1)\hbar^2 \psi_{k\ell m}(\vec{r}) \\ L_z \psi_{k\ell m}(\vec{r}) = m\hbar \psi_{k\ell m}(\vec{r}) \\ L_{\pm} \psi_{k\ell m}(\vec{r}) = \hbar \sqrt{\ell(\ell+1) - m(m\pm1)} \psi_{k\ell m\pm1}(\vec{r}) \end{cases}$$

A dependência em θ e φ é conhecida $\psi_{k\ell m}(\vec{r}) = R_{k\ell m}(r)Y_{\ell}^{m}(\theta,\varphi)$ e isso fornece $L_{\pm}\psi_{k\ell m}(\vec{r}) = \hbar\sqrt{\ell(\ell+1) - m(m\pm 1)}R_{k\ell m\pm 1}(r)Y_{\ell}^{m\pm 1}(\theta,\varphi) = R_{k\ell m}(r)L_{\pm}Y_{\ell}^{m}(\theta,\varphi) =$ $= R_{k\ell m}(r)\hbar\sqrt{\ell(\ell+1) - m(m\pm 1)}Y_{\ell}^{m\pm 1}(\theta,\varphi)$ \therefore $R_{k\ell m\pm 1}(r) = R_{k\ell m}(r).$

Onde se concluí que $R_{k\ell m}(r)$ não depende de $m \Rightarrow$ use $R_{k\ell}(r)$.

• Assim, a base padrão permite escrever $\psi_{k\ell m}(\vec{r}) = R_{k\ell}(r)Y_{\ell}^{m}(\theta,\varphi)$, com

$$\int d^{3}r \ \psi_{k\ell m}^{\star}(\vec{r})\psi_{k'\ell'm'}(\vec{r}) = \int_{0}^{\infty} r^{2}R_{k\ell}^{\star}(r)R_{k'\ell'}(r) \underbrace{\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{\ell}^{m\star}(\theta,\varphi)Y_{\ell'}^{m'}(\theta,\varphi)}_{\delta_{\ell\ell'}\delta_{mm'}}$$

$$Como \ \int d^{3}r \ \psi_{k\ell m}^{\star}(\vec{r})\psi_{k'\ell'm'}(\vec{r}) = \delta_{kk'}\delta_{\ell\ell'}\delta_{mm'} \ \therefore \ \int_{0}^{\infty} r^{2}R_{k\ell}^{\star}(r)R_{k'\ell}(r) = \delta_{kk'}.$$
Será que $R_{k\ell}(r)$ depende de ℓ ? Suponha $R_{k}(r)Y_{\ell}^{m}(\theta,\varphi)$ e olhe $r \to 0.$ (11)

Momento Angular na Mecânica Quântica: Medidas

Base padrão (continuação)

F689

Aula 24

MAPLima

- Se $\lim_{r\to 0} R_k(r) = \text{cte}$, a presença de $Y_\ell^m(\theta, \varphi)$ faz com que essa constante dependa do caminho, exceto para $\ell = 0$ (neste caso $Y_0^0(\theta, \varphi)$ é constante e, portanto, não
- depende de $\theta \in \varphi$). Ou seja, $R_k(r)$ não é diferenciável em $\vec{r}=0$. Para resolver isso,

impomos que $\begin{cases} R_{k\ell}(r) = 0 \text{ para } \ell \neq 0 \\ R_{k\ell}(r) = \text{cte para } \ell = 0 \end{cases} \Rightarrow \text{isso, por si só, indica a dependência em } \ell.$

- Quem cuida de possíveis valores diferentes de zero de $\psi(\vec{r})$ na origem é o $R_{k\ell=0}(r)$.
- Cálculo de previsões físicas com respeito à medidas de L^2 e L_z . Considere uma partícula, cujo estado é descrito pela função de onda:

$$\langle \vec{r} | \psi \rangle = \psi(\vec{r}) = \psi(r, \theta, \varphi)$$

 $\begin{cases} L^2 \text{ fornece } \ell(\ell+1)\hbar^2, \text{ com } \ell \text{ inteiro positivo} \\ \text{ou zero, isto } \acute{e}, \, \ell(\ell+1)\hbar^2 = 0, 2\hbar^2, 6\hbar^2, \dots \end{cases}$

Aprendemos que uma medida de

 $\begin{array}{l} L_z \text{ fornece } m\hbar, \ \mathrm{com} \, m \text{ inteiro } \mathrm{e} - \ell \leq m \leq \ell, \\ \mathrm{isto} \ \mathrm{\acute{e}}, \ m\hbar = 0, \pm \hbar, ..., \pm \ell\hbar. \end{array}$

• Como calcular a probabilidade de se obter um desses resultados $(\ell, m \text{ ou ambos})$ a partir de $\psi(r, \theta, \varphi)$?

F689 Momento Angular na Mecânica Quântica: Medidas Aula 24 • Lembrando que podemos expandir qualquer $\psi(\vec{r})$ em termos de $\psi_{k\ell m}(\vec{r})$ com

$$\psi_{k\ell m}(\vec{r}) = R_{k\ell}(r)Y_{\ell}^{m}(\theta,\varphi) \begin{cases} L^{2}\psi_{k\ell m}(\vec{r}) = \ell(\ell+1)\hbar^{2}\psi_{k\ell m}(\vec{r}) \\ L_{z}\psi_{k\ell m}(\vec{r}) = m\hbar\psi_{k\ell m}(\vec{r}) \\ L_{\pm}\psi_{k\ell m}(\vec{r}) = \hbar\sqrt{\ell(\ell+1) - m(m\pm1)}\psi_{k\ell m\pm1}(\vec{r}) \end{cases}$$

vale:
$$\psi(\vec{r}) = \sum_{k} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{k\ell m} R_{k\ell}(r) Y_{\ell}^{m}(\theta,\varphi), \text{ com } c_{k\ell m} = \int d^{3}r \ \psi_{k\ell m}^{\star}(\vec{r}) \psi(\vec{r})$$

ou melhor $c_{k\ell m} = \int_0^\infty r^2 dr \ R_{k\ell}^{\star}(r) \int_0^{2\pi} d\varphi \int_0^\pi d\theta \sin\theta \ Y_{\ell}^{m\star}(\theta,\varphi) \psi(r,\theta,\varphi)$

Quanto vale a probabilidade de medirmos um certo par (ℓ, m) ? Basta calcular a amplitude de probabilidade de se obter a trinca (k, ℓ, m) e tratar k como sendo a degenerescência do par, isto é

$$\mathcal{P}_{L^{2},L_{z}}(\ell,m) = \sum_{k} \left| \underbrace{\langle \psi_{k\ell m} | \psi \rangle}_{\swarrow} \right|^{2} = \sum_{k} \left| c_{k\ell m} \right|^{2}$$

soma sobre a degenerescência amplitude de probabilidade

E se medíssemos somente $L^2?$ Qual a chance de obter $\ell(\ell+1)\hbar^2.$ Que tal

$$\mathcal{P}_{L^{2}}(\ell) = \sum_{k} \sum_{m=-\ell}^{\ell} \left| \langle \psi_{k\ell m} | \psi \rangle \right|^{2} = \sum_{m=-\ell}^{\ell} \mathcal{P}_{L^{2},L_{z}}(\ell,m) = \sum_{k} \sum_{m=-\ell}^{\ell} \left| c_{k\ell m} \right|^{2}$$
soma sobre a degenerescência amplitude de probabilidade

Momento Angular na Mecânica Quântica: Medidas

Aula 24 • E se medíssemos somente L_z ? Qual a chance de obter $m\hbar$? Que tal

$$\mathcal{P}_{L_z}(m) = \sum_{\ell \ge |m|} \mathcal{P}_{L^2, L_z}(\ell, m) = \sum_k \sum_{\ell \ge |m|} \left| c_{k\ell m} \right|^2$$

Será que precisamos expandir em k?Lembre da expressão inicial

$$\psi(\vec{r}) = \sum_{k} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{k\ell m} R_{k\ell}(r) Y_{\ell}^{m}(\theta,\varphi), \text{ com } c_{k\ell m} = \int d^{3}r \ \psi_{k\ell m}^{\star}(\vec{r}) \psi(\vec{r})$$

e rescreva

F689

$$\psi(\vec{r}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[\sum_{k} c_{k\ell m} R_{k\ell}(r) \right] Y_{\ell}^{m}(\theta,\varphi), \text{ com } \underbrace{a_{\ell m}(r)}_{\ell m} = \int d\Omega Y_{\ell}^{m\star}(\theta,\varphi) \psi(\vec{r}),$$
obtido sem auxílio de $R_{k\ell}(r)$
ou $a_{\ell m}(r) = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \sin \theta Y_{\ell}^{m\star}(\theta,\varphi) \psi(r,\theta,\varphi).$ Como $a_{\ell m}(r) = \sum_{k} c_{k\ell m} R_{k\ell}(r),$
temos $c_{k\ell m} = \int_{0}^{\infty} r^{2} R_{k\ell}^{\star}(r) a_{\ell m}(r) \quad e \quad \left|a_{\ell m}(r)\right|^{2} = \sum_{kk'} c_{k\ell m} c_{k'\ell m}^{\star} R_{k\ell} R_{k'\ell}^{\star}.$
Note que $\int_{0}^{\infty} r^{2} \left|a_{\ell m}(r)\right|^{2} dr = \sum_{kk'} c_{k\ell m} c_{k'\ell m}^{\star} \int_{0}^{\infty} r^{2} R_{k\ell} R_{k'\ell}^{\star} = \sum_{kk'} \left|c_{k\ell m}\right|^{2} = \mathcal{P}_{L^{2}L_{z}}(\ell, m)$

Momento Angular na Mecânica Quântica: Medidas

Aula 24 • De forma semelhante, podemos escrever

$$\mathcal{P}_{L^{2}}(\ell) = \sum_{m=-\ell}^{\ell} \mathcal{P}_{L^{2},L_{z}}(\ell,m) = \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} r^{2} |a_{\ell m}(r)|^{2} dr$$
$$\mathcal{P}_{L_{z}}(m) = \sum_{\ell \ge |m|} \mathcal{P}_{L^{2},L_{z}}(\ell,m) = \sum_{\ell \ge |m|} \int_{0}^{\infty} r^{2} |a_{\ell m}(r)|^{2} dr$$

- Ou seja, obtivemos $\mathcal{P}_{L^2;L_z}(\ell,m), \mathcal{P}_{L^2}(\ell)$, e $\mathcal{P}_{L_z}(m)$ de um sistema no estado $\psi(\vec{r})$ em função de $a_{\ell m}(r) = \int d\Omega \ Y_{\ell}^{m\star}(\theta,\varphi)\psi(\vec{r})$, (uma integral do produto de uma Harmônica Esférica pelo estado do sistema). Não foi necessário usar as $R_{k\ell}(r)$ para obter essas quantidades.
 - E se tivéssemos interessados em apenas medir L_z . Será que poderíamos, além de evitar o uso das $R_{k\ell}(r)$, evitar também o uso explícito das Harmônicas Esféricas?

Para tanto, bastaria expandir $\psi(r, \theta, \varphi) = \sum_{m} b_m(r, \theta) \frac{e^{im\varphi}}{\sqrt{2\pi}}$ e usar que

 $b_m(r,\theta) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\varphi \ e^{-im\varphi} \psi(r,\theta,\varphi) \text{ (verifique por substituição direta e uso de}$ $\int_0^{2\pi} d\varphi \ \frac{e^{im\varphi}}{\sqrt{2\pi}} \frac{e^{-im'\varphi}}{\sqrt{2\pi}} = \delta_{mm'}\text{). Obtenha} \mathcal{P}_{L_z}(m) = \int_0^{\infty} \int_0^{\pi} |b_m(r,\theta)|^2 r^2 \sin\theta d\theta dr.$

MAPLima

F689