F789 Aula 21 • $\tilde{W}_{fi}(t')$ • $\tilde{W}_{fi}(t')$ • $\tilde{W}(t') = \begin{cases} 0 \text{ para } t' < 0 \\ W(t') \text{ para } 0 \le t' \le t \\ 0 \text{ para } t' > t \end{cases}$

 $\begin{array}{c} & & \\ \mathbf{0} & \mathbf{t} & \mathbf{t}' \\ \mathbf{t} & \\ \mathbf{t}' & \\ \mathbf$

• Em primeira ordem, $\mathcal{P}_{if}(t) = \frac{1}{\hbar^2} \Big| \int_0^t e^{i\omega_{fi}t'} W_{fi}(t') dt' \Big|^2$, é proporcional ao quadrado da transformada de Fourier de $W_{fi}(t) = \langle \varphi_f | W(t) | \varphi_i \rangle$, um

elemento de matriz da perturbação entre os estados inicial e final.

- Note que a transformada de Fourier de uma função do tempo é uma função de freqüência e no caso ela é calculada na freqüência $\omega = \omega_{fi} = \frac{E_f E_i}{\hbar}$.
- Obtivemos esse resultado com ajuda de $\begin{cases} |\psi(t)\rangle = \sum_{n} C_{n}(t) |\varphi_{n}\rangle \\ C_{n}(t) = b_{n}(t)e^{-\frac{iE_{n}t}{\hbar}} \end{cases}$ na equação

de Schrödinger dependente do tempo. Isso levou à (sem aproximações):

$$i\hbar \frac{d}{dt}b_n(t) = \lambda \sum_k e^{i\omega_{nk}t} \hat{W}_{nk}(t)b_k(t)$$

MAPLima

Métodos Aproximativos para problemas dependentes do tempo.

A teoria de perturbação foi obtida, substituindo a série hierárquica de potências $(\lambda << 1): \quad b_n(t) = b_n^{(0)}(t) + \lambda b_n^{(1)}(t) + \lambda^2 b_n^{(2)}(t) + \dots + \lambda^r b_n^{(r)}(t)$ na equação do slide anterior e tomando os coeficientes de λ^r em ambos os lados.

Isso resultou em: $i\hbar \frac{d}{dt}b_n^{(r)}(t) = \lambda \sum_k e^{i\omega_{nk}t}\hat{W}_{nk}(t)b_k^{(r-1)}(t).$

- Aprendemos que $\begin{cases} b_n^{(0)}(t) = \delta_{ni} \\ b_n^{(r)}(0) = 0, r \ge 1 \end{cases}$ garante à condição inicial $|\psi(0)\rangle = |\varphi_i\rangle.$
- Para r = 1, obtemos a teoria em primeira ordem

F789 Aula 21

MAPLima

$$i\hbar \frac{d}{dt} b_{f}^{(1)}(t) = \lambda \sum_{k} e^{i\omega_{fk}t} \hat{W}_{fk}(t) b_{k}^{(0)}(t) = \lambda \sum_{k} e^{i\omega_{fk}t} \hat{W}_{fk}(t) \delta_{ki} = e^{i\omega_{fi}t} W_{fi}(t)$$
$$b_{f}^{(1)}(t) = \frac{1}{i\hbar} \int_{0}^{t} e^{i\omega_{fi}t'} \hat{W}_{fi}(t') dt',$$

Note também que ao comparar a equação acima (primeira ordem) com a do slide anterior, verifica-se que o efeito prático foi trocar b_k(t) por b_k(0) = b⁽⁰⁾_k(t).
Assim, a solução em primeira ordem vai ser boa, se b_k(t) não diferir muito de b_k(0). Quando t cresce, nada impede que as outras ordens fiquem importantes.

• Definição do problema $\hat{W}(t) = \begin{cases} \hat{W} \sin \omega t \\ \hat{W} \cos \omega t \end{cases} \Rightarrow \hat{W} = \hat{W}(\mathbf{R}, \mathbf{P}) \text{ é geral, mas não}$

depende do tempo.

F789 Aula 21

MAPLima

- Exemplos de utilidade desta perturbação estão nos complementos A_{XIII} e B_{XIII} . O mais notório é o cálculo de $\mathcal{P}_{if}(t)$, a probabilidade induzida por uma onda eletromagnética para uma transição entre os estados $|\varphi_i\rangle$ e $|\varphi_f\rangle$.
- Os elementos de matriz $\hat{W}_{fi}(t)$ (caso seno).

$$\begin{split} \hat{W}_{fi}(t) &= \hat{W}_{fi} \sin \omega t = \frac{\hat{W}_{fi}}{2i} \left(e^{+i\omega t} - e^{-i\omega t} \right) \text{ em } b_f^{(1)}(t) = \frac{1}{i\hbar} \int_0^t e^{i\omega_{fi}t'} \hat{W}_{fi}(t') dt', \\ \text{leva à } -\frac{\hat{W}_{fi}}{2\hbar} \int_0^t \left[e^{i(\omega_{fi}+\omega)t'} - e^{i(\omega_{fi}-\omega)t'} \right] dt' = -\frac{\hat{W}_{fi}}{2\hbar} \left[\frac{e^{i(\omega_{fi}+\omega)t} - 1}{i(\omega_{fi}+\omega)} - \frac{e^{i(\omega_{fi}-\omega)t} - 1}{i(\omega_{fi}-\omega)} \right] \\ \text{Isto } \hat{e}, \ b_f^{(1)}(t) = \frac{\hat{W}_{fi}}{2i\hbar} \left[\frac{1 - e^{i(\omega_{fi}+\omega)t}}{\omega_{fi}+\omega} - \frac{1 - e^{i(\omega_{fi}-\omega)t}}{\omega_{fi}-\omega} \right]. \end{split}$$

• Para finalmente, obtermos:

$$\mathcal{P}_{if}(t) = \lambda^2 |b_f^{(1)}(t)|^2 = \frac{|W_{fi}|^2}{4\hbar^2} \Big| \frac{1 - e^{i(\omega_{fi} + \omega)t}}{\omega_{fi} + \omega} - \frac{1 - e^{i(\omega_{fi} - \omega)t}}{\omega_{fi} - \omega} \Big|^2$$

Solução aproximada da Equação de Schrödinger

O que mudaria se fosse o $\hat{W} \cos \omega t$? Só o sinal relativo das frações

$$\mathcal{P}_{if}(t) = \lambda^2 |b_f^{(1)}(t)|^2 = \frac{|W_{fi}|^2}{4\hbar^2} \Big| \frac{1 - e^{i(\omega_{fi} + \omega)t}}{\omega_{fi} + \omega} + \frac{1 - e^{i(\omega_{fi} - \omega)t}}{\omega_{fi} - \omega} \Big|^2$$

Para obter uma perturbação independente do tempo, basta fazer $\omega = 0$, no caso cosseno. Isso leva uma probabilidade de transição igual à:

$$\mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} \Big| \frac{1 - e^{i\omega_{fi}t}}{\omega_{fi}} + \frac{1 - e^{i\omega_{fi}t}}{\omega_{fi}} \Big|^2 = \frac{|W_{fi}|^2}{4\hbar^2} \Big| \frac{2(1 - e^{i\omega_{fi}t})}{\omega_{fi}} \Big|^2 = \frac{|W_{fi}|^2}{\hbar^2} \frac{\Big| 1 - e^{i\omega_{fi}t} \Big|^2}{\omega_{fi}^2}$$
ou ainda $\mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{\hbar^2} \Big| \frac{e^{i\frac{\omega_{fi}}{2}t}(e^{-i\frac{\omega_{fi}}{2}t} - e^{+i\frac{\omega_{fi}}{2}t})}{\omega_{fi}} \Big|^2 = \frac{|W_{fi}|^2}{\hbar^2} \Big| \frac{2ie^{i\frac{\omega_{fi}}{2}t}\sin\frac{\omega_{fi}}{2}t}{\omega_{fi}} \Big|^2$

Para finalmente, termos

F789 Aula 21

MAPLima

$$\mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{\hbar^2} \left[\frac{\sin\frac{\omega_{fi}}{2}t}{\frac{\omega_{fi}}{2}}\right]^2$$

• Para entender fisicamente o que está acontecendo, estudaremos transições entre estados discretos e entre discreto e um conjunto do contínuo.

. 2

F789
Aula 21
Teoria de Perturbação dependente do tempo: potencial constante

$$W(t) = \begin{cases} 0 \text{ se } t < 0 \\ W \text{ se } t \ge 0 \end{cases} \Rightarrow \begin{cases} W \text{ é independente de } t, \text{ mas pode depender} \\ de \mathbf{x} \in \mathbf{p}. \end{cases}$$

Se em $t = 0$ o sistema estiver em $|i\rangle$, podemos escrever:
 $c_n^{(0)} = c_n^{(0)}(0) = \delta_{in}$
 $c_n^{(1)} = -\frac{i}{\hbar}W_{ni}\int_0^t e^{i\omega_{ni}t'}dt' = -\frac{i}{\hbar}W_{ni}\frac{1}{i\omega_{ni}}e^{i\omega_{ni}t'}\Big|_0^t = \frac{W_{ni}}{\hbar\omega_{ni}}(1 - e^{i\omega_{ni}t})$
 $= \frac{W_{ni}}{\hbar\omega_{ni}}e^{\frac{i\omega_{ni}t'}{2}}.(-2i)\Big(\frac{e^{\frac{i\omega_{ni}t'}{2}} - e^{-\frac{i\omega_{ni}t}{2}}}{2i}\Big) = -\frac{2ie^{\frac{i\omega_{ni}t}{2}}W_{ni}}{\hbar\omega_{ni}}\sin\frac{\omega_{ni}t}{2}$
 $e \therefore P(i \to n) = |c_n^{(1)}(t)|^2 = \frac{4|W_{ni}|^2}{|E_n - E_i|^2}\sin^2\frac{\omega_{ni}t}{2} \bullet \text{ Conforme slide anterior}$
Suponha que existam muitos estados finais \rightarrow praticamente um contínuo de
energias $\omega \equiv \frac{E_n - E_i}{\hbar}$ com ω variando continuamente. Vamos plotar $\frac{|c_n^{(1)}(t)|^2}{|W_{ni}|^2}$
como função de ω para um dado t . Isto \acute{e} , no slide seguinte apresentamos uma
figura de $f(\omega) = \frac{|c_n^{(1)}(t)|^2}{|W_{ni}|^2} = \frac{4}{\hbar^2\omega^2}\sin^2\frac{\omega t}{2}$. Note: $\lim_{\omega \to 0} f(\omega) = \frac{4}{\hbar^2\omega^2}(\frac{\omega t}{2})^2 = \frac{t^2}{\hbar^2}$
A amplitude cresce quadraticamente no tempo se $\omega \approx 0$.

MAPLima

F789

UNICAME

F789

MAPLima

F789

Instituto de Fisica Gleb Matantin

F789

• O máximo de probabilidade ocorre em $\omega = 0$, com $E_n = E_i$.

F789 Aula 21

MAPLima

- Quando t cresce, $f(\omega)$ fica apreciável no intervalo $0 \le |\omega| \le \frac{2\pi}{t}$. Isso permite escrever a largura em energia dos estados finais possíveis (estados que podem ser excitados por terem amplitudes de probabilidade relevantes). Para isso, tome $|\omega|_{max} = \frac{E_n^{\max} - E_i}{\hbar} = \frac{\Delta E}{\hbar} \sim \frac{2\pi}{t} = \frac{2\pi}{\Lambda t}$, onde $\Delta t = t$ é o tempo de potencial ligado. Pode-se expressar isso de uma forma conhecida: $\Delta E \Delta t \sim \hbar$. largura em energia envolvida no processo $\therefore \begin{cases} \text{Se } \Delta t \text{ pequeno: a largura em energia \'e grande} \\ \begin{cases} \text{transições podem violar} \\ \text{a conservação de energia} \end{cases} \\ \text{Se } \Delta t \text{ grande: a largura em energia \'e pequena} \\ \begin{cases} \text{transições respeitam} \\ \text{a conservação de energia} \end{cases} \end{cases}$ • Para transições "finas", com $E_n = E_i$, temos $|c_n(t)|^2 = \frac{|W_{ni}|^2 t^2}{\hbar^2}$, ou seja,
 - a probabilidade de haver mudança é quadrática em t. Precisamos discutir o o significado disso. Antes dessa discussão, na próxima aula, apresentaremos dois exemplos de transições sem perda de energia (para $\Delta E = 0.$) 10

Perturbação senoidal entre dois estados discretos.

Um fenômeno de ressonância

- Caso cosseno: quando t está fixo, $\mathcal{P}_{if}(t)$ é uma função de ω (freqüência imposta). Veremos que está função tem um máximo quando $\omega \approx \omega_{fi}$ ou $\omega \approx -\omega_{fi}$.
- Tomando ω positivo (definição de nossa escolha), os dois casos tratam situações onde $\omega_{fi} > 0$ ou $\omega_{fi} < 0$.

F789 Aula 21

MAPLima

Consideraremos o caso $\omega_{fi} > 0$ (situação da esquerda). As expressões do topo do slide 4 (cosseno) ou a do slide 3 (seno) mostram que trata-se da soma ou diferença de dois números complexos, A_+ e A_- com:

$$A_{\pm} = \frac{1 - e^{i(\omega_{fi} \pm \omega)t}}{\omega_{fi} \pm \omega} = -ie^{i\frac{(\omega_{fi} \pm \omega)}{2}t}\frac{\sin\left[\frac{(\omega_{fi} \pm \omega)}{2}t\right]}{\frac{(\omega_{fi} \pm \omega)}{2}}$$

Perturbação senoidal entre dois estados discretos.

Um fenômeno de ressonância

• Note que para $A_{\pm} = -ie^{i\frac{(\omega_{fi}\pm\omega)}{2}t} t \frac{\sin[\frac{(\omega_{fi}\pm\omega)}{2}t]}{\frac{(\omega_{fi}\pm\omega)}{2}}$, os denominadores, respeitam

as relações $\begin{cases} \lim_{\omega \to -\omega_{fi}} \text{denominador de } A_{+} = 0 \therefore A_{+} \text{ cresce fortemente;} \\\\ \lim_{\omega \to +\omega_{fi}} \text{denominador de } A_{-} = 0 \therefore A_{-} \text{ cresce fortemente.} \end{cases}$

- Note que A_{\pm} só não explodem, porque os numeradores também vão à zero.
- Quando $\omega \to +\omega_{fi}(-\omega_{fi}) \Rightarrow A_{-}(A_{+})$ é dito termo ressonante.

F789 Aula 21

MAPLima

• Consideraremos o caso $|\omega - \omega_{fi}| << |\omega_{fi}|$. Nesta situação, podemos negligenciar

o termo
$$A_+$$
, e escrever: $\mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} \Big[A_+ \pm A_- \Big]^2 = \frac{|W_{fi}|^2}{4\hbar^2} \Big[\frac{\sin \frac{\omega_{fi} - \omega}{2} t}{\frac{\omega_{fi} - \omega}{2}} \Big]^2$

Compare com o caso estudado, potencial constante, do slide 4 e verifique que diferem apenas pela troca ω_{fi} por $\omega_{fi} - \omega$. Note também que $A_{\pm}(-\omega) = A_{\mp}(\omega)$. Note que $\lim_{\omega \to \omega_{fi}} = \mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} t^2$. Isso acontecia no caso ω_{fi} indo à zero,

para o potencial constante. Agora basta fazer a frequência imposta igual à frequência de Bohr que assistimos uma ressonância.

Todas as figuras que fizemos, ficam agora centradas em ω_{fi} .

Perturbação senoidal entre dois estados discretos. Um fenômeno de ressonância

Um novo olhar para a largura da ressonância e a relação de incerteza tempoenergia. Novamente, $\Delta \omega$ pode ser definido como a distância entre os 2 zeros de $\mathcal{P}_{if}(t)$ ao redor de ω_{fi} . Tais zeros são obtidos quando o argumento

F789

Aula 21

MAPLima

lo seno em
$$\mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} \Big[A_+ \pm A_- \Big]^2 = \frac{|W_{fi}|^2}{4\hbar^2} \Big[\frac{\sin \frac{\omega_{fi} - \omega}{2} t}{\frac{\omega_{fi} - \omega}{2}} \Big]^2$$
 são iguais à $\pm \pi$. Isto é $\frac{\omega_{fi} - \omega_{\mp}}{2} t = \pm \pi \Rightarrow (\omega_+ - \omega_-) \frac{t}{2} = 2\pi \Rightarrow \Delta \omega = \frac{4\pi}{t}$.

• Para o potencial constante no tempo, a largura foi associada a distribuição de estados finais. Agora, é a largura da freqüência imposta ao redor de dois níveis. A mensagem é: as transições ocorrem se a freqüência da perturbação estiver no intervalo $\omega_{fi} - \frac{2\pi}{t} < \omega < \omega_{fi} + \frac{2\pi}{t}$. Quanto maior for o tempo de exposição, menor pode ser a largura de frequências.

• Como
$$\mathcal{P}_{if}^{\max(1)}(t) = \lim_{\omega \to \omega_{fi}} \mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} t^2$$
, quanto vale a altura do segundo
máximo à sua direita? Ocorre com o "argumento do seno" $= \frac{3\pi}{2}$.
 $\therefore \frac{\omega_{fi} - \omega}{2} t = \frac{3\pi}{2} \Rightarrow \frac{\omega_{fi} - \omega}{2} = \frac{3\pi}{2t} \Rightarrow \mathcal{P}_{if}(t) = \frac{|W_{fi}|^2}{4\hbar^2} \left[\frac{1}{\frac{\omega_{fi} - \omega}{2}}\right]^2 = \frac{|W_{fi}|^2 t^2}{9\pi^2\hbar^2}$.
(14)

Perturbação senoidal entre dois estados discretos.

Um fenômeno de ressonância

Validade do tratamento por perturbação.

F789 Aula 21

MAPLima

- Na nossa discussão, fizemos a hipótese que $\omega \approx \omega_{fi}$ e desprezamos A_+ com respeito à A_- . Seria bom comparar melhor A_+ com A_- . A figura do slide 13 diz respeito à A_- . Como seria A_+ ?
- Primeiro note (ver slide 12) que $|A_+(\omega)| = |A_-(-\omega)|$, simétrico com respeito à $\omega = 0$.
- Isso permite concluir que se a largura da ressonância for muito menor que a distância entre os picos de A₊ e A₋, A₊ pode ser negligenciado na região da ressonância. Ou seja, se Δω << 2ω_{fi} nossa análise está correta. Mas lembre que Δω = 4π/t e essa exigência implica em 4π/t << 2ω_{fi}. Isso é o mesmo que pedir que t >> 2π/|ω_{fi}| ≈ 2π/ω = T (período de 1 de ciclo). Em outras palavras, a aproximação é boa se no intervalo [0, t] a perturbação realiza diversas oscilações (um convite ao sistema entrar em ressonância).
 A Perturbação constante T = ∞ nunca satisfaz a condição t >> 2π/μ, = T.

