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Angular Momentum in Spherical
Coordinates

In this appendix, we will show how to derive the expressions of the gradient 6’, the Laplacian
V2, and the components of the orbital angular momentum in spherical coordinates.

B.1 Derivation of Some General Relations

The Cartesian coordinates (x, y, z) of a vector r are related to its spherical polar coordinates
(.6, 9) by
x =rsinfcosp, y =rsinfsing, z =rcosf (B.)

The orthonormal Cartesian basis (£, 7, 2) is related to its spherical counterpart (7, 8, $) by

% = Fsinfcosgp + 0O cosbcosp — Gsing (B.2)
$ = Fsinfsing + 6 cosf sing + ¢ cos g, (B.3)
2 = Fcosf —sinb. (B.4)

Differentiating (B.1), we obtain

dx = sinflcosp dr 4+ rcosf cos @ df — rsinfsing do (B.5)
dy = sinfsingdr +rcosfsingdf +rcospdp, (B.6)
dz = cosfdr —rsinf db. (B.7)

Solving these equations for dr, df and dg, we obtain

dr = sinf cosp dx + sinf sing dy + cosf dz (B.8)
1 1 1

df = —cosflcospdx + —cos@sinpdy — 3 sinfl dz, (B.9)
¥ e _ 7

Hip. e sin @ cos @ (B.10)
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We can verify that (B.5) to (B.10) lead to

[»}]

r g ad 1 o sing
— = sinf cosp, — == cosf, —_=—— B.11
ox - % éx r Bt ox rsinf ( )
or 68 1 3 cos
— = sinfsing, (i— = —sing cos#, ﬁ = ,—w, (B.12)
ey dy r 'y rsind
0 50 1. 3
A cosf, -c:— = ——sinf, %('E =0, (B.13)
0z 0z r oz
which, in turn, yield
6 _ oor ¢ o6 ¢ op
dx  érdx  80éx By ox
. é 1 sing ¢é
= sinfcosp— + —cosfcosp— — ———, .14
gaér +r qaéﬁ' rsinf é6 L
é 6or 06080 8 dp
dy  ordy o608y o dy
: .o 1 . 6 cosp ©
= smBsmga;——l—-cosﬁsmgof——k - 2 Ai, (B.15)
or r 80  rsinf dp
é 0 8 é o6 & 0 iné &
e ;; ——7—-1—7—?—@—(:059;— = —. (B.16)
bz 6réz 0006z B éz or or o6

B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator V in
spherical coordinates:

(B.17)

- 6 0 a8 5 6 6 6o 5 0
szv_vz(ei+_i+ o i)‘(,:i+_i+ @ _) (B.18)

Now, using the relations

b 50 s
= =i, s 9 Pl (B.19)
or or or
oF a0 o9
— 6’ —_— — i — 0, .20
26 60 - 26 (.20
f—r = ¢sinf, E—B = ¢ cosé, f—(‘a = —#sinf — 6 cosb, (B.21)
cp cQ cQ

1[0 (.0 1 & (. & 1 &2
V=zlaE 536 \"20%5 ) + 525502 |- B.
r2 {5? (r 61‘) = sind 66 (Smgag) + sn2 g 5@,2] (B.22)
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'B.3 Angular Momentum in Spherical Coordinates

The orbital angular momentum operator L can be expressed in spherical coordinates as:

5 a A 6 6 p 0
L =Rx B =(=ikr)f x V = (=ihr) x ri+—i+ L (B.23)
rof  rsin@ dp
or as 3
5 6 & o
(LA :
j ( b — = ) (B.24)

Using (B.24) along with (B.2) to (B.4), we express the components Ex, L s L within the con-
text of the spherical coordinates. For instance, the expression for L, can be written as follows

5 - e A %8 o 6 o
Ly = XL =—ih (r sind cos ¢ + 0 cosl cos ¢ — qosmgo) . ( = ma)
i | si ¢ + cotd 4 (B.25)
= ifi|sing— + cot@cosp— | . :
gPY: oy
Similarly, we can easily obtain
L, = ih|-cos 2 ~+ cot@ sin . (B.26)
Y T @ 20 @ B0 .
By i (B.27)

o9
From the expressions (B.25) and (B.26) for Lyand L y, we infer, that

Ly=Lc+il, =he? (% +i cotﬁ%) , (B.28)
I_=1,—il,=hei? ;—zcoteﬁ'i (B.29)
’ % o0 g
The expression for L?is
P2=ot?2¢xV) ¢ xy=—nt?|v2_ 12 (29 (B.30)
r2or \ or '

it can be easily written in terms of the spherical coordinates as

. 1 0 d 1 9
Lzz—hz s i 9— s | B'3l
[sine 26 (Sm aa) e 6402] el
this expression was derived by substituting (B. 22) into (B.30).
Note that, using the expression (B.30) for L2 , we can rewrite V2 as

1o & 1 - 1 82 1 -
2 s 2 D 2
V 2 ar (?' 5) — hz}wz L = ;6}12?' — _}}2}»2[‘ & (B32)




