Simetria

Aula 26 São poucos os problemas reais com soluções simples. As dificuldades surgem devido: (1) à complexidade dos potenciais envolvidos e, de um modo geral, (2) aos desafios para solucionar equações envolvendo muitos corpos. Isso vale tanto para a Mecânica Clássica quanto para Mecânica Quântica. Na disciplina FI002 (capítulo 5, do livro texto), estudaremos os chamados métodos pertubativos e variacionais para simplificar problemas e extrair soluções que consigam minimamente descrever a realidade. Nesta aula introduzimos formas de simplificar problemas, prestando atenção nas simetrias existentes no sistema. Onde encontramos simetrias?

alguns exemplos e têm muitos outros!

- 1) Em problemas que permanecem iguais quando realizamos uma rotação de φ graus;
- 2) Em problemas que permanecem iguais quando refletimos todas as coordenadas com respeito à um plano ou
- 3) quando invertemos as coordenadas ou combinamos operações de rodar e inverter e projetar;
- 4) Em problemas onde parte das partículas são idênticas (têm a mesma massa, spin, carga, etc.);
- 5) Em problemas que permanecem iguais quando invertemos a flecha do tempo; 6)...

Simetrias na Física Clássica

Discutiremos apenas um exemplo de simetria que produz uma lei de conservação:

Uma vez conhecida a Langrangeana
$$\mathcal{L} = \mathcal{L}(q_i, \dot{q}_i, t)$$
, sabemos que
$$\begin{cases} \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial q_i} \\ p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \end{cases}$$

Se \mathcal{L} não muda com q_i (a Lagrangeana não muda quando q_i é substituída por

$$q_i + dq_i$$
), então: $\frac{\partial \mathcal{L}}{\partial q_i} = 0$: $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{dp_i}{dt} = 0$: $p_i = \text{cte. Ou seja}, p_i \in$

"conservado". Note que poderíamos ter concluído a mesma coisa pela

Hamiltoniana
$$\mathcal{H} = \sum p_i \dot{q}_i - \mathcal{L} = \mathcal{H}(q_i, p_i, t)$$
 onde
$$\begin{cases} \frac{dq_i}{dt} = \frac{\partial \mathcal{H}}{\partial p_i} \\ \frac{dp_i}{dt} = -\frac{\partial \mathcal{H}}{\partial q_i} \end{cases}$$

Se \mathcal{H} não muda com deslocamento $\Longrightarrow \frac{dp_i}{dt} = 0$ e $\therefore p_i = \text{cte. Ou seja}, p_i$ é "conservado."

Uma simetria: " \mathcal{L} e \mathcal{H} não mudam com o deslocamento," induz uma lei de conservação (no caso a do momento linear).

F1001 Aula 26

Simetrias na Mecânica Quântica

Seja Υ , um operador unitário $1 - i\epsilon \frac{G}{\hbar}$

associado à operação de $\begin{cases} \text{transladar: } G = \mathbf{p.n} \\ \text{rodar: } G = \mathbf{J.n} \end{cases}$

Chamaremos Y de operador de simetria mesmo quando o sistema não tem a simetria correspondente. Se H é invariante sob $\Upsilon \Longrightarrow \Upsilon^\dagger H \Upsilon = H,$ ou seja

$$(1+i\epsilon \frac{G}{\hbar})H(1-i\epsilon \frac{G}{\hbar})=H\Longrightarrow GH-HG=0\to [G,H]=0$$
e a equação de

Heisenberg nos ensina que $\frac{dG}{dt} = \frac{1}{i\hbar}[G, H] = 0$ e \therefore G é uma constante de movimento. Ou seja, Se

 $\begin{cases} \text{translação} \implies \text{Momento Linear \'e constante} \\ \text{de movimento.} \end{cases}$ $H \text{ \'e invariante sob a operação de} \begin{cases} \text{rotação} \implies \text{Momento Angular \'e constante} \\ \text{de movimento.} \end{cases}$

Simetrias na Mecânica Quântica

Note que se [G,H]=0 e $G|g'\rangle=g'|g'\rangle$ então $|g',t_o;t\rangle=U(t_0,t)|g'\rangle$ é tal que $G|g',t_o;t\rangle=GU(t_0,t)|g'\rangle=U(t_0,t)G|g'\rangle=U(t_0,t)g'|g'\rangle=g'|g',t_o;t\rangle$, ou seja $G|g',t_o;t\rangle=g'|g',t_o;t\rangle$

Isto significa que, se o sistema é colocado em $|g'\rangle$, um autoket de G, em um dado instante, a qualquer instante no futuro, o estado do sistema estará em um autoket de G com o mesmo autovalor!

Lembre que $U|g'\rangle = \exp\left(-i\frac{H}{\hbar}(t-t_0)\right)|g'\rangle = \exp\left(-i\frac{E_{g'}}{\hbar}(t-t_0)\right)|g'\rangle$ e que para todos os efeitos $|g', t_o; t\rangle$ é o próprio $|g'\rangle$ (eles diferem por uma fase).

Degenerescência

Instituto de Física Gleb Wataghin

MAPLima

Se $[H,\Upsilon]=0$ então $H\Upsilon|n\rangle=\Upsilon H|n\rangle=E_n\Upsilon|n\rangle$ ou seja, $\Upsilon|n\rangle$ é um auto-estado de H com o mesmo autovalor de energia que o $|n\rangle$. Desta forma, se $\Upsilon|n\rangle$ e $|n\rangle$ forem estados diferentes (o que para nós significa $\Upsilon|n\rangle\neq c|n\rangle$) então, eles serão degenerados.

Simetrias na Mecânica Quântica

Suponha [D(R), H] = 0. Isto Implica em $[\mathbf{J}, H] = 0$ e $[\mathbf{J}^2, H] = 0$. Escolha H, \mathbf{J}^2 , e J_z para construir $\{|n; jm\rangle\}$, uma base de autokets simultâneos destes 3 operadores.

O slide anterior nos ensinou que o sistema em $D(R)|n;jm\rangle$ tem a mesma energia que o sistema no estado $|n;jm\rangle$. Vimos também que:

$$D(R)|n;j,m\rangle = \sum_{m'} |n;jm'\rangle \underbrace{\mathcal{D}_{m'm}^{(j)}(R)}$$

Isto é caracterizado por um parâmetro que varia continuamente

Se rodando continuamente (em qualquer direção) obtemos sempre um autoestado com a mesma energia, conclui-se que: todos os $|n; jm'\rangle$ com m's diferentes, tenham a mesma energia. Ou seja, existe uma degerescência (2j+1) na energia, entre os estados $|n; jm\rangle$ com n e j fixos e $-j \le m \le j$.

Exemplo:

 $V = V(r) + V_{LS}(r)$ comuta com **J** e : tem uma degerescência de 2j + 1.

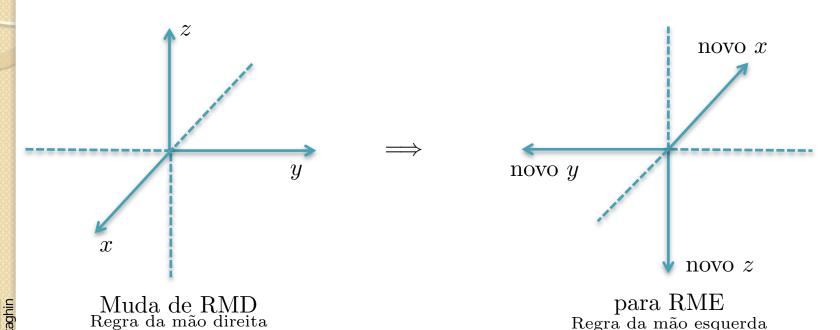
$$\frac{J^2 - L^2 - S^2}{2}$$

F1001 Aula 26

Simetrias discretas, paridade (inversão espacial)

Até aqui $\Upsilon = 1 - i\epsilon \frac{G}{\hbar}$ com ϵ variando continuamente. Nem sempre é assim!

Exemplo: Paridade ou Inversão Espacial



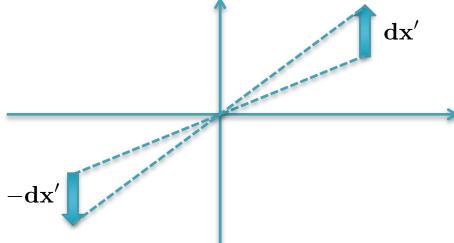
Neste curso (Sakurai&Napolitano) temos adotado transformações nos kets e não no sistema de coordenadas. Assim, definiremos π , tal que $|\alpha\rangle \to \pi |\alpha\rangle$ operador de paridade

Por definição: $\langle \alpha | \pi^{\dagger} \mathbf{x} \pi | \alpha \rangle = -\langle \alpha | \mathbf{x} | \alpha \rangle$ e como vale para qualquer $|\alpha \rangle$, temos: $\pi^{\dagger} \mathbf{x} \pi = -\mathbf{x}$ e como $\pi^{\dagger} \pi = \pi \pi^{\dagger} = 1$, podemos escrever $\mathbf{x} \pi = -\pi \mathbf{x}$

Paridade

Note que o ket $\pi | \mathbf{x}' \rangle$ é autoket de \mathbf{x} , pois $\mathbf{x} \pi | \mathbf{x}' \rangle = -\pi \mathbf{x} | \mathbf{x}' \rangle = -\mathbf{x}' \pi | \mathbf{x}' \rangle$. Ou seja, $\pi | \mathbf{x}' \rangle$ é autoket de \mathbf{x} com autovalor $-\mathbf{x}'$. Assim, é possível escrever que: $\pi | \mathbf{x}' \rangle = e^{i\delta} | -\mathbf{x}' \rangle$. Adota-se $\delta = 0$. Note também que $\pi^2 | \mathbf{x}' \rangle = | \mathbf{x}' \rangle$ e $\therefore \pi^2 = 1$. Assim, como $\pi^{\dagger} = \pi^{\dagger} \pi^2 = \underline{\pi}^{\dagger} \pi \pi = \pi$ e $\therefore \pi^{\dagger} = \pi$ e ainda $\pi^{-1} = \pi$.

E o \mathbf{p} ? Se $\mathbf{p} = m \frac{d\mathbf{x}}{dt}$ deveríamos esperar que \mathbf{p} seja ímpar (anticomutação) mediante a operação de paridade. Uma outra forma de ver isso é observar que: translação seguida de paridade é equivalente a paridade seguida de translação no sentido oposto (ver figura).



Essa propriedade pode ser escrita na forma:

$$\begin{cases}
\pi \Im(\mathbf{d}\mathbf{x}') = \Im(-\mathbf{d}\mathbf{x}')\pi \\
\pi \left(1 - i\frac{\mathbf{p}.\mathbf{d}\mathbf{x}'}{\hbar}\right) = \left(1 + i\frac{\mathbf{p}.\mathbf{d}\mathbf{x}'}{\hbar}\right)\pi, \\
ou \ seja, \ \{\pi, \mathbf{p}\} = 0 \to \pi^{\dagger}\mathbf{p}\pi = -\mathbf{p}
\end{cases}$$

F1001

J sob Paridade

Aula 26 Caso (1):
$$\mathbf{J} = \mathbf{L} = \mathbf{x} \times \mathbf{p}$$

$$[\pi, \mathbf{L}] = [\pi, \mathbf{x} \times \mathbf{p}] = 0, \text{ pois } \begin{cases} \pi \mathbf{x} = -\mathbf{x}\pi \\ \pi \mathbf{p} = -\mathbf{p}\pi \end{cases} \therefore \pi \mathbf{x} \times \mathbf{p} = -\mathbf{x} \times \pi \mathbf{p} = \mathbf{x} \times \mathbf{p}\pi$$

Caso (2): $\forall \mathbf{J}$, usando operador de rotações.

Para rodar vetores na Mecânica Clássica, usamos $R^{\text{rotação}}$ e para paridadade

$$R^{\text{paridade}} = \begin{pmatrix} -1 & & 0 \\ & -1 & \\ 0 & & -1 \end{pmatrix} = -1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Note que $R^{\text{rotação}}R^{\text{paridade}} = R^{\text{paridade}}R^{\text{rotação}}$.

Para rodar kets na Mecânica Quântica, teremos: $\pi D(R) = D(R)\pi$.

Para o caso infinitesimal, onde
$$D(R) = 1 - i\epsilon \frac{\mathbf{J.n}}{\hbar} \to [\pi, \mathbf{J}] = 0$$
 ou $\pi^{\dagger} \mathbf{J} \pi = \mathbf{J}$.

Note que ${f x}$ e ${f J}$ transformam do mesmo jeito sob rotação, pois ambos são tensores esféricos de primeira ordem. Sob paridade um é par outro é impar.

Assim,
$$\begin{cases} \mathbf{x} \in \mathbf{p} \to \text{ impares sob paridade } \to \text{ vetores polares} \\ \mathbf{J}(\mathbf{L} \in \mathbf{S}) \to \text{ pares sob paridade } \to \text{ vetores axiais (pseudovetores)} \\ \pi^{-1}\mathbf{S}.\mathbf{x}\pi = -\mathbf{S}.\mathbf{x} \to \text{ pseudoescalar} \\ \pi^{-1}\mathbf{L}.\mathbf{S}\pi = \mathbf{L}.\mathbf{S} \to \text{ escalar ordinário como } \mathbf{x}.\mathbf{p} \end{cases}$$

F1001 Aula 26

Funções de onda mediante Paridade

Primeiro, vamos tratar partículas sem spin, onde $\psi(\mathbf{x}') = \langle \mathbf{x}' | \alpha \rangle$. Como ficaria $\pi |\alpha\rangle$? $\langle \mathbf{x}'|\pi|\alpha\rangle = \langle -\mathbf{x}'|\alpha\rangle = \psi(-\mathbf{x}')$. Se $|\alpha\rangle$ for um autoket de π , então $\pi |\alpha\rangle = \pm |\alpha\rangle$.

> únicos autovalores possíveis, pois $\pi^2=1$

Ou seja $\langle \mathbf{x}' | \pi | \alpha \rangle = \pm \langle \mathbf{x}' | \alpha \rangle \Longrightarrow \psi(-\mathbf{x}') = \pm \psi(\mathbf{x}')$. As funções são pares ou ímpares, ou seja, elas têm paridade bem definida. Como $[\mathbf{p}, \pi] \neq 0$ (lembre que $\{\mathbf{p},\pi\}=0$) autofunções de \mathbf{p} podem não ser de $\pi.$ Por exemplo, a onda plana $e^{\frac{i\mathbf{p}.\mathbf{x}'}{\hbar}}$ não tem paridade bem definida. Note, entretanto, que $[\mathbf{L}, \pi] = 0$ \therefore $\langle \mathbf{x}' | \alpha; \ell m \rangle = R_{\alpha}(r) Y_{\ell}^{m}(\theta, \varphi)$ deve ter

$$\underset{\text{trocamos}}{\text{quando}} \mathbf{x}' \text{ por } -\mathbf{x}' \begin{cases} r \to r \\ \theta \to \pi - \theta \text{ que resulta em } \cos \theta \to -\cos \theta \\ \varphi \to \varphi + \pi \text{ que resulta em } e^{im\varphi} \to (-1)^m e^{im\varphi} \end{cases}$$

$$\begin{array}{c} \text{quando trocamos} \ \mathbf{x}' \ \text{por} \ -\mathbf{x}' \left\{ \theta \to \pi - \theta \ \text{que resulta em } \cos \theta \to -\cos \theta \\ \varphi \to \varphi + \pi \ \text{que resulta em } e^{im\varphi} \to (-1)^m e^{im\varphi} \right. \\ \text{Como} \ Y_\ell^m(\theta,\varphi) = (-1)^m \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}} P_\ell^m(\cos\theta) e^{im\varphi}, \ \text{onde} \ m \geq 0 \ \text{e} \\ P_\ell^{|m|}(\cos\theta) = \frac{(-1)^{m+\ell}(\ell+|m|)!}{2^\ell\ell!(\ell-|m|)!} \sin^{-|m|}\theta \left(\frac{d}{d(\cos\theta)}\right)^{\ell-|m|} \sin^{2\ell}\theta, \ \text{\'e fácil} \\ \text{ver que} \ Y_\ell^m \to (-1)^\ell Y_\ell^m \Longrightarrow \pi|\alpha;\ell m\rangle = (-1)^\ell|\alpha;\ell m\rangle \end{array}$$

$$P_{\ell}^{|m|}(\cos \theta) = \frac{(-1)^{m+\ell}(\ell + |m|)!}{2^{\ell}\ell!(\ell - |m|)!} \sin^{-|m|} \theta \left(\frac{d}{d(\cos \theta)}\right)^{\ell - |m|} \sin^{2\ell} \theta, \text{ \'e f\'acil}$$

ver que
$$Y_{\ell}^m \to (-1)^{\ell} Y_{\ell}^m \Longrightarrow \pi |\alpha; \ell m\rangle = (-1)^{\ell} |\alpha; \ell m\rangle$$

Funções de onda mediante Paridade

A paridade das autofunções de \mathbf{L}^2 e L_z poderia ter sido obtida de forma mais simples, notando que $(L_\pm)^r |\ell 0\rangle$, com r=0,1,2..., tem a mesma paridade que $|\ell 0\rangle$. Isto porque, se $\lambda (=\pm 1)$ é a paridade de $|\ell 0\rangle$, isto é: $\pi |\ell 0\rangle = \lambda |\ell 0\rangle$, então, podemos multiplicar esta equação por $(L_\pm)^r$ e obter:

$$T_{ij} = \lambda_{ij} \epsilon_{ij}$$
, entab, podemos muntiplicar esta equação por $(L_{\pm})^{-}$ e obt $(L_{\pm})^{r} \pi_{ij} \ell_{ij} \ell_{ij} - (L_{\pm})^{r} \ell_{ij} \ell_{ij} \ell_{ij} - (L_{\pm})^{r} \ell_{ij} \ell_{i$

$$\underbrace{(L_{\pm})^r \pi} |\ell 0\rangle = \underbrace{(L_{\pm})^r \lambda} |\ell 0\rangle \Longrightarrow \pi \underbrace{(L_{\pm})^r |\ell 0\rangle} = \lambda \underbrace{(L_{\pm})^r |\ell 0\rangle}$$

comutam λ é número

autoket de π com o mesmo autovalor λ

Com isso basta estudar a paridade de $P_{\ell}^{0}(\cos\theta)$ e concluir que:

$$Y_{\ell}^{m}(-\mathbf{r}) = (-1)^{\ell} Y_{\ell}^{m}(\mathbf{r})$$

Teorema

Se $[H, \pi] = 0$ e $H|n\rangle = E_n|n\rangle$, então, se E_n é não degenerado, $|n\rangle$ tem paridade bem definida.

Demonstração

Queremos mostrar que $\pi|n\rangle=\lambda|n\rangle$ com $\lambda=\pm 1$. Primeiro, note que

 $\frac{1}{2}(1\pm\pi)|n\rangle$ é autoket de π com autovalor λ . Para ver isso aplique π e obtenha

$$\pi \frac{1}{2}(1 \pm \pi)|n\rangle = \frac{1}{2}(\pi \pm \pi^2)|n\rangle = (\pm 1)\frac{1}{2}(1 \pm \pi)|n\rangle$$

Em seguida, vamos mostrar que $|\alpha\rangle = \frac{1}{2}(1\pm\pi)|n\rangle$ é o próprio $|n\rangle$.

Funções de onda mediante Paridade

Para isso aplique H em $|\alpha\rangle = \frac{1}{2}(1\pm\pi)|n\rangle$ e obtenha:

$$H\frac{1}{2}(1\pm\pi)|n\rangle = \frac{1}{2}(1\pm\pi)H|n\rangle = \frac{1}{2}(1\pm\pi)E_n|n\rangle = E_n\frac{1}{2}(1\pm\pi)|n\rangle.$$

Ou seja, $H|\alpha\rangle = E_n|\alpha\rangle$. Se E_n é não degenerado, então $|\alpha\rangle = |n\rangle$.

Observe que a hipótese de E_n não-degenerado é importante. Para isso pense no átomo de hidrogênio onde os níveis 2s e 2p são degenerados. Uma combinação destes kets seria autoestado de H, mas não seria um autoestado de π .

Finalmente, note que se considerarmos

$$\frac{1}{2}(1\pm\pi)|n\rangle = |n\rangle \text{ temos, } (1\pm\pi)|n\rangle = 2|n\rangle \Longrightarrow \pi|n\rangle = \pm|n\rangle$$

Exemplo 1: Oscilador Harmônico Simples

 $|0\rangle$ é par (Gaussiana), mas $|1\rangle = a^{\dagger}|0\rangle$ é impar, pois a^{\dagger} é uma mistura de x e p (ambos impares). Daí concluí-se que $|n\rangle$ tem paridade $(-1)^n$.

Funções de onda mediante Paridade

Exemplo 2: Ondas livres.

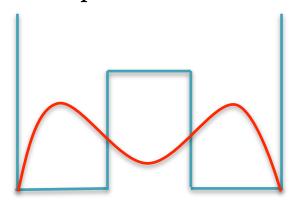
Embora $H = \frac{p^2}{2m}$ comuta com π , os autovalores $\frac{p'^2}{2m}$ são degenerados

e as autofunções correspondentes podem não ser autofunções de π .

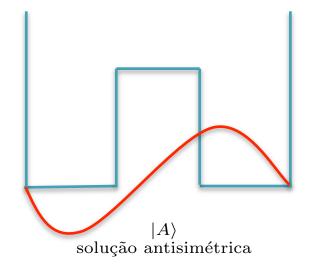
Repare, entretanto, que embora $e^{\pm i \frac{\mathbf{p} \cdot \mathbf{x}'}{\hbar}}$ não tenham paridade bem definida,

as combinações no subespaço degenerado
$$\begin{cases} \cos \frac{\mathbf{p}.\mathbf{x}'}{\hbar} = \frac{e^{+i\frac{\mathbf{p}.\mathbf{x}'}{\hbar}} + e^{-i\frac{\mathbf{p}.\mathbf{x}'}{\hbar}}}{2} \\ \sin \frac{\mathbf{p}.\mathbf{x}'}{\hbar} = \frac{e^{+i\frac{\mathbf{p}.\mathbf{x}'}{\hbar}} - e^{-i\frac{\mathbf{p}.\mathbf{x}'}{\hbar}}}{2i} \end{cases}$$
têm paridade bem definida.

Exemplo 3: Potencial de poço duplo simétrico.



 $|S\rangle$ solução simétrica



Paridade: Potencial de poço duplo simétrico

As soluções nas regiões classicamente $\begin{cases} \text{permitidas} \implies \text{são do tipo sin e cos} \\ \text{proibidas} \implies \text{são do tipo sinh e cosh} \end{cases}$

Cálculos mostram que $E_A > E_S$, mas se a barreira interna (BI) é alta $E_A \approx E_S$.

Considere
$$\begin{cases} |D\rangle = \frac{1}{\sqrt{2}} (|S\rangle + |A\rangle) & \text{onde, } |D\rangle \text{ e } |A\rangle \text{ não são autoestados} \\ |E\rangle = \frac{1}{\sqrt{2}} (|S\rangle - |A\rangle) & \text{onde, } |D\rangle \text{ e } |A\rangle \text{ não são autoestados} \end{cases}$$

Note que $|D\rangle(|E\rangle)$ representa uma partícula com mais chances de estar do lado direito (esquerdo). Suponha, agora $|\Psi\rangle = |D\rangle$ para t=0. No futuro, teríamos:

$$|D, t_0 = 0; t\rangle = \frac{1}{\sqrt{2}} \left(e^{-i\frac{E_S t}{\hbar}} |S\rangle + e^{-i\frac{E_A t}{\hbar}} |A\rangle \right) = \frac{e^{-i\frac{E_S t}{\hbar}}}{\sqrt{2}} \left(|S\rangle + e^{-i\frac{(E_A - E_S)}{\hbar}t} |A\rangle \right)$$

Suponha
$$T = \frac{2\pi}{\frac{(E_A - E_S)}{\hbar}} = \frac{2\pi\hbar}{(E_A - E_S)}$$

$$\operatorname{Em} \begin{cases} t = T/2 \to e^{-i\frac{(E_A - E_S)}{\hbar}t} = e^{-i\pi} = -1 \Longrightarrow |D, t_0; T/2\rangle = |E\rangle \\ t = T \to e^{-i\frac{(E_A - E_S)}{\hbar}t} = e^{-i2\pi} = 1 \Longrightarrow |D, t_0; T\rangle = |D\rangle \end{cases}$$

Oscilações entre $|E\rangle$ e $|D\rangle$ com frequência angular $\omega = \frac{(E_A - E_S)}{\hbar}$.

Se BI $\to \infty$, $E_A \sim E_S \to \omega \sim 0$ e $T \to \infty$. $|D\rangle$ e $|E\rangle$ ficam autoestados e duram para sempre. Lembre que quando há degenerescência as funções não precisam ter paridade bem definida, mesmo quando $[H, \pi] = 0$.

MAPLima

Molécula de Amônia: um potencial de poço duplo simétrico

A natureza apresenta muitos poços duplos simétricos. A molécula de $\rm NH_3$ é um bom exemplo. O sistema é mais estável quando N está para cima ou para baixo e menos estável quando está bem no meio do triângulo isósceles que caracteriza os 3 átomos de hidrogênio. O estado real é uma mistura e "oscila" entre as duas situações.

