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So we arrive at a very far-reaching conclusion: The magnetic charges must be

guantized in units of

h 137

R RO (el (2.7.86)
el 9

The smallest magnetic charge possible is fic/2|e|, where e is the electronic
charge. It is amusing that once a magnetic monopole is assumed to exist, we
can use (2.7.85) backward, so to speak, to explain why the electric charges are
quantized—for example, why the proton charge cannot be 0.999972 times |e|.*

We repeat once again that quantum mechanics does not require magnetic
monopoles 1o exist. However, it unambiguously predicts that a magnetic charge,
if it is ever found in nature, must be quantized in units of fic/2|e|. The quanti-
zation of magnetic charges in quantum mechanics was first shown in 1931 by
P. A. M. Dirac. The derivation given here is due to T. T. Wu and C. N. Yang. A
different solution, which connects the Dirac quantization condition to the quan-
tization of angular momentum, is discussed by H. J. Lipkin, W. 1. Weisberger,
and M. Peshkin in Annals of Physics 53 (1969) 203. Finally, we will revisit this
subject again in Section 5.6 when we discuss Berry’s Phase in conjunction with
the adiabatic approximation.

Problems

onsider the spin-precession problem discussed in the text. It can also be solved in
the Heisenberg picture. Using the Hamiltonian

B
X2 e H=—(e—) il s,

mc

write the Heisenberg equations of motion for the time-dependent operators S, (1),
Sy(1), and S_(r). Solve them to obtain S . as functions of time.

0ok again at the Hamiltonian of Chapter 1, Problem 1.11. Suppose the typist made
an error and wrote H as

H = Hj 1) (1] + Hx2l2) (2] + Hy2|1){2].

What principle is now violated? Illustrate your point explicitly by attempting to
solve the most general time-dependent problem using an illegal Hamiltonian of
this kind. (You may assume H; = Hay = 0 for simplicity.)

n electron is subject to a uniform, time-independent magnetic field of strength B
: in the positive z-direction. At ¢ = 0 the electron is known to be in an eigenstate of
S with eigenvalue 7 /2, where fi is a unit vector, lying in the xz-plane, that makes

an angle § with the z-axis.

*Empirically, the equality in magnitude between the electron charge and the proton charge is
established to an accuracy of four parts in 1019,
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(a) Obtain the probability for finding the electron in the Sy =N /2 state as a function
of time,

(b) Find the expectétion value of S, as a function of time.,

(¢) For your own peace of mind, show that your answers make good sense in the

X extreme cases (i) # — 0 and (ii) 8 — /2.

2.4 Derive the neutrino oscillation probability (2.1.65) and use it, along with the data
~—in Figure 2.2, to estimate the values of Am2c? (in units of eV?) and 9.

QCt x(#) be the coordinate operator for a free particle in one dimension in the
; Heisenberg picture. Evaluate

[x (), x(O)].
‘@Consider a particle in one dimension whose Hamiltonian is given by

P2
H=—+V(x).
2m

By calculating [[H,x], x], prove

2 h?
2N el By~ B = o,
/
a
where |a’) is an energy eigenket with eigenvalue E .
Consider a particle in three dimensions whose Hamiltonian is given by
2
P
H=—+Vx).
3 (x)
By calculating [x+ p, H], obtain
p?

d
S (x-p) = (;)— (x-VV).

In order for us to identify the preceding relation with the quantum-mechanical ana-
logue of the virial theorem, it is essential that the left-hand side vanish. Under what
condition would this happen?

Consider a free-particle wave packet in one dimension. At r = 0 jt satisfies the
minimum uncertainty relation

712
(A (Ap)?) = 5 =0
In addition, we know
(x}=(p)=0 @=0.

Using the Heisenberg picture, obtain {(Ax)?), as a function of t(t = 0) when
((Ax)?),_g is given. (Hint: Take advantage of the property of the minimum un-
certainty wave packet you worked out in Chapter 1, Problem 1.18.)
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et |a') and |a”) be eigenstates of a Hermitian operator A with eigenvalues a’ and
a", respectively (¢’ # a”). The Hamiltonian operator is given by

H = |a')§{a"| +|a")8{a],

where § is just a real number,

(a) Clearly, |a’) and |a”) are not eigenstates of the Hamiltonian. Write down the
eigenstates of the Hamiltonian. What are their energy eigenvalues?

(b) Suppose the system is known to be in state |a’) at f = 0. Write down the state
vector in the Schrisdinger picture for 1 > 0.

(c) What is the probability for finding the system in |a") for 7 > 0 if the system is
known to be in state |a’) at t = 0?

(d) Can you think of a physical situation corresponding to this problem?

@ A box containing a particle is divided into a right and a left compartment by a

thin partition. If the particle is known to be on the right (left) side with certainty,

ﬂ the state is represented by the position eigenket |R)(|L)), where we have neglected
spatial variations within each half of the box. The most general state vector can
then be written as

lor) = [R}(Rler) + L) (Ller),

where (R|a) and (L|x) can be regarded as “wave functions.” The particle can tun-
nel through the partition; this tunneling effect is characterized by the Hamiltonian

H = A(LY(R|+|R){LI),

where A is a real number with the dimension of energy.

(a) Find the normalized energy eigenkets. What are the corresponding energy
eigenvalues?

(b) In the Schradinger picture the base kets |R) and |L) are fixed, and the state
vector moves with time. Suppose the system is represented by |a) as given
above at { = 0. Find the state vector |a,#p = 0;1} for ¢ > 0 by applying the
appropriate time-evolution operator to [e).

(¢) Suppose that at # = 0 the particle is on the right side with certainty. What is the

_ probability for observing the particle on the left side as a function of time?

(d) Write down the coupled Schrisdinger equations for the wave functions (R|e,fy =
0:1) and (L], 7o = 0;f). Show that the solutions to the coupled Schridinger
equations are just what you expect from (b).

(e) Suppose the printer made an error and wrote H as

H = A|L)(R|.

By explicitly solving the most general time-evolution problem with this Hamil-
tonian, show that probability conservation is violated.

2.11 Using the one-dimensional simple harmonic oscillator as an example, illustrate the

difference between the Heisenberg picture and the Schrédinger picture. Discuss in
particular how (a) the dynamic variables x and p and (b) the most general state
vector evolve with time in each of the two pictures.

L -
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2,12 Consider a particle subject to a one-dimensional simple harmonic oscillator poten-
tial. Suppose that at £ = 0 the state vector is given by

exp (—_%) 10),

where p is the momentum operator and a is some number with dimension of length.
Using the Heisenberg picture, evaluate the expectation value {x} for z > ().

a) Write down the wave function (in coordinate space) for the state specified in
£ Problem 2.12 at t = 0. You may use

i Blow B2
"oy = 5 1/4, —1/2 L : (2 .
(x'|0y =x Xy “exp S X0 =

(b) Obtain a simple expression for the probability that the state is found in the
ground state at ¢ = 0. Does this probability change for ¢ = 07

onsider a one-dimensional simple harmonic oscillator.

(a) Using
a _\/E_J(x ip aln)}_ vajn—1)
"4 Vo mw)’  dm)[ T |VaFin+1),

evaluate (m|x|n), (m|p|n), (m|{x, p}|n), (m]x*|n), and (m|p?|n).
(b) Check that the virial theorem holds for the expectation values of the kinetic
energy and the potential energy taken with TeSpect to an energy eigenstate.

2.15 (a) Using
(x'1p") = @)~ 1200 ' 1h {one dimension),

prove
¥ . a !
{p'lxle) =ah—a (P |a).
P

(b) Consider a one-dimensional simple harmonic oscillator. Starting with the
Schrédinger equation for the state vector, derive the Schrédinger equation
for the momentum-space wave function. (Make sure to distinguish the oper-
ator p from the eigenvalue P'.) Can you guess the energy eigenfunctions in
momentum space?

#onsider a function, known as the correlation function, defined by
R ;

y. g C@) = (x(t)x(0)),

where (1) is the position operator in the Heisenberg picture. Evaluate the correla-
tion function explicitly for the ground state of a one-dimensional simple harmonic
oscillator,
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Chapter 2 Quantum Dynamics

2.17 Consider again a one-dimensional simple harmonic oscillator. Do the following

algebraically—that is, without using wave functions.
(a) Construct a linear combination of |0} and |1} such that {x) is as large as possi-

ble.
. (b) Suppose the oscillator is in the state constructed in (a) at7 = 0. What is the state
vector for 1 > 0 in the Schrisdinger picture? Evaluate the expectation value {x)

as a function of time for ¢ > 0, using (i) the Schradinger picture and (ii) the

Heisenberg picture.
(¢) Evaluate ((Ax)?) as a function of time using either picture.

;@Show {hat for the one-dimensional simple harmonic oscillator,
{01¢** [0) = expl—* (01x710) /2],

‘where x is the position operator.

coherent state of a one-dimensional simple harmonic oscillator is defined to be
an eigenstate of the (non-Hermitian) annihilation operator a:

ald) = AlA),

where % is, in general, a complex number.
(a) Prove that

) =224 |0)

is a normalized coherent state.
(b) Prove the minimum uncertainty relation for such a state.

(¢) Write |A) as

=Y fln).

n=0

Show that the distribution of | f (n)|* with respect to n is of the Poisson form.
Find the most probable value of n, and hence of E.

(d) Show that a coherent state can also be obtained by applying the translation
(finite-displacement) operator e~ P! (where p is the momentum operator and
1 is the displacement distance) to the ground state. (See also Gottfried 1966,

262-64.)
Let

h
S = haLa;, JE= E(ala.,. — aia_), INE— a1a+ —I—aia_,

annihilation and creation operators of two independent

where a1 and al are the
armonic oscillator com-

simple harmonic oscillators satisfying the usual simple h
mutation relations. Prove

2
[y ] = A s s R0, 0 = (%) i [(%) s l]'
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[Fps ] = i Ty R0, 7 = (
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2.21 Derive the normalization constant Cn In (2.5.28) by deriving the orthogonality rela-
tionship (2.5.29) using generating functions, Star by working out the integral

i3 2
i / 80, 0g(x,5)e ™ dx,
el )

and then consider the integral again with the generating functions in termg of series
with Hermite polynomials,

2.22 \Consider a particle of mass subject to a one-dimensional potential of the follow-
g form;

1
T Ekx2 for x ~ 0
fole} for x < 0.

(@) What js (he ground-state energy?
(b) What is the expectation value (x?) for the ground state?

2.23 A particle in one dimension is trapped between two rigid walls;

ORSSSToR( = = 1

e {oo, forx <0,x > L.

At 7 =0 it is known to be exactly at x = J, /2 with certainty. What are the relative

probabilities for the particle to be found in various energy eigenstates? Write down

the wave function forr > (. (You need not worry about absolute normalization,
.\ convergence, and other mathematica] subtleties. )

224\ Consider a particle in one dimension bound to 5 fixed center by  § -function poten-
{tial of the form

V@) = —ws(x), (upreal and positive).

/ ""\ bound states?

: /2.25\A particle of mass m in one dimension is bound to 4 fixeq center by an attractive

//_g-function potential:

Al? =0, the potential is suddenly switched off (thatis, V =0 for ; = (). Find the
wave function for ¢ - (), (Be quantitative! Byt you need not attempt to evaluate an
integral that may appear,)

V) =—-8(x). (> 0).

2.26 A particle in one dimension (—oo < x - 00) is subjected to a constant force deriy-
able from

Vo6 )

(a) Is the ENCIgy spectrum continuoys of discrete? Write down an approximate
expression for the energy eigenfunction specified by E. Also sketch it crudely.
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(b) Discuss briefly what changes are needed if Vis replaced by

VA= .

Derive an expression for the density of free-particle states in wo dimensions, nor-
malized with periodic boundary conditions inside a box of side length L. Your
answer should be written as a function of & (or E) times dEd¢, where ¢ is the polar
angle that characterizes the momentum direction in two dimensions.

228\ Consider an electron confined to the interior of a hollow cylindrical shell whose
xis coincides with the z-axis. The wave function is required to vanish on the inner
and outer walls, p = pg and pp, and also at the top and bottom, z =0 and L.

(a) Find the energy eigenfunctions. (Do not bother with normalization.) Show that
the energy eigenvalues are given by

K2 . I\?
i — Z_me foe i (l:1,2,3,...,m=0,1,2,...),

where ky,y, is the nth root of the transcendental equation
Jon(Kimn pb)Nm(kmn Pa) — Nk 06) I (kmn pa) = 0.

(b) Repeat the same problem when there is a uniform magnetic field B = B2 for
0 < p < pg. Note that the energy eigenvalues are influenced by the magnetic
field even though the electron never “touches™ the magnetic field.

(¢) Compare, in particular, the ground state of the B = 0 problem with that of
the B # 0 problem. Show that if we require the ground-state energy Lo be
unchanged in the presence of B, we obtain “flux quantization”

27 Nk
wplB = ”e N 0,12,

2.29 Consider a particle moving in one dimension under the influence of a potential
V (x). Suppose its wave function can be written as exp[i S(x,1)/k]. Prove that WE5)
<atisfies the classical Hamilton-Jacobi equation to the extent that # can be regarded
as small in some sense. Show how one may obtain the correct wave function for
a plane wave by starting with the solution of the classical Hamilton-Jacobi equa-
tion with V(x) set equal to zero. Why do we get the exact wave function in this

particular case?

Using spherical coordinates, obtain an expression for j for the ground and excited
states of the hydrogen atom. Show, in particular, that for m; # O states, there is a
circulating flux in the sense that j is in the direction of increasing or decreasing ¢,

depending on whether m; is positive or negative.

Derive (2.6.16) and obtain the three-dimensional generalization of (2.6.16).

2.32 Define the partition function as

Zi= fd3x’K(Xl=I;X',0)lﬁ=f:/h,


maplima
Realce

maplima
Realce


Problems 155

as in (2.6.20)—(2.6.22). Show that the ground-state energy is obtained by taking

18072

*Egs (B — 00).

Iustrate this for a particle in a one-dimensional box.

The propagator in momentum space analogous to (2.6.26) is given by (p”.¢|p.f0)-
Derive an explicit expression for {p”,z|p’, 7o) for the free-particle case.

(a) Write down an expression for the classical action for a simple harmonic oscil-
ﬁ lator for a finite time interval.

(b) Construct {x,, % |xn—1,Ln—1) for a simple harmonic oscillator using Feynman’s
prescription for £, — f,—1 = At small. Keeping only terms up to order (At)?,
show that it is in complete agreement with the 7 — fp — 0 limit of the propagator
given by (2.6.26).

2.35 State the Schwinger action principle (see Finkelstein 1973, p. 155). Obtain the
solution for {xatz|x1 1) by integrating the Schwinger principle and compare it with
the corresponding Feynman expression for (x2/2[x171)- Describe the classical limits
of these two expressions.

2.36 Show that the wave-mechanical approach to the gravity-induced problem discussed
in Section 2.7 also leads to phase-difference expression (2.7.17).

(a) Verify (2.7.25) and (2.7.27).
(b) Verify continuity equation (2.7.30) with j given by (2.7.31).

¥4
V4
/ 2.38, Consider the Hamiltonian of a spinless particle of charge e. In the presence of a
£ static magnetic field, the interaction terms can be generated by

eA
Poperator —> Poperator — :__1

where A is the appropriate vector potential. Suppose, for simplicity, that the mag-
netic field B is uniform in the positive z-direction. Prove that the above prescription
indeed leads to the correct expression for the interaction of the orbital magnetic
moment (e/2mc)L with the magnetic field B. Show that there is also an extra term
proportional to B2(x2+ y%), and comment briefly on its physical significance.

é}\n electron moves in the presence of a uniform magnetic field in the z-direction
(B = Bi).
(a) Evaluate

[Ty, T, 1.

where

eAy eAy
Iy = px— 4 M= Pyt
(& c

(b) By comparing the Hamiltonian and the commutation relation obtained in
(a) with those of the one-dimensional oscillator problem, show how we can
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56 Chapter 2 Quantum Dynamics
immediately write the energy eigenvalues as

. 4h2k2+ leB|h (_I_l
o me i 21

where Ak is the continuous eigenvalue of the p; operator and  is a nonnegative
integer including zero.

2.40 Consider the neutron interferometer.

|~ 2ii Interference region
p=h"] g

|
|
| A
/ L ™
o

4 ‘-}\I

Prove that the difference in the magnetic fields that produce two successive maxima
in the counting rates is given by

i dhe
le|gnil’
where g,(= —1.91) is the neutron magnetic moment in units of —ef/2m,c. (If
you had solved this problem in 1967, you could have published your solution in
Physical Review Letters!)






