Proof. Noting (3.11.26), we have

$$\begin{split} \langle \alpha', jm | \mathbf{J \cdot V} | \alpha, jm \rangle &= \langle \alpha', jm | (J_0 V_0 - J_{+1} V_{-1} - J_{-1} V_{+1}) | \alpha, jm \rangle \\ &= m \hbar \langle \alpha', jm | V_0 | \alpha, jm \rangle + \frac{\hbar}{\sqrt{2}} \sqrt{(j+m)(j-m+1)} \\ &\times \langle \alpha', jm - 1 | V_{-1} | \alpha, jm \rangle \\ &- \frac{\hbar}{\sqrt{2}} \sqrt{(j-m)(j+m+1)} \langle \alpha', jm + 1 | V_{+1} | \alpha, jm \rangle \\ &= c_{jm} \langle \alpha' j | | \mathbf{V} | | \alpha j \rangle \end{split}$$

by the Wigner-Eckart theorem (3.11.31), where c_{jm} is independent of α , α' , and V, and the matrix elements of $V_{0,\pm 1}$ are all proportional to the double-bar matrix element (sometimes also called the **reduced matrix element**). Furthermore, c_{jm} is independent of m because $J \cdot V$ is a scalar operator, so we may as well write it as c_j . Because c_j does not depend on V, (3.11.42) holds even if we let $V \rightarrow J$ and $\alpha' \rightarrow \alpha$; that is,

$$\langle \alpha, jm | \mathbf{J}^2 | \alpha, jm \rangle = c_j \langle \alpha j | |\mathbf{J}| | \alpha j \rangle.$$
 (3.11.43)

Returning to the Wigner-Eckart theorem applied to \mathcal{V}_q and \mathcal{J}_q , we have

$$\frac{\langle \alpha', jm' | V_q | \alpha, jm \rangle}{\langle \alpha, jm' | J_q | \alpha, jm \rangle} = \frac{\langle \alpha' j | | \mathbf{V} | | \alpha j \rangle}{\langle \alpha j | | \mathbf{J} | | \alpha j \rangle}.$$
(3.11.44)

But we can write $\langle \alpha', jm | \mathbf{J} \cdot \mathbf{V} | \alpha, jm \rangle / \langle \alpha, jm | \mathbf{J}^2 | \alpha, jm \rangle$ for the right-hand side of (3.11.44) by (3.11.42) and (3.11.43). Moreover, the left-hand side of (3.11.43) is

$$\langle \alpha', jm' | V_q | \alpha, jm \rangle = \frac{\langle \alpha', jm | \mathbf{J} \cdot \mathbf{V} | \alpha, jm \rangle}{\hbar^2 j (j+1)} \langle jm' | J_q | jm \rangle, \tag{3.11.45}$$

which proves the projection theorem.

We will give applications of the theorem in subsequent sections.

Problems

- 3.1 Find the eigenvalues and eigenvectors of $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Suppose an electron is in the spin state $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. If s_y is measured, what is the probability of the result $\hbar/2$?
- 3.2 Find, by explicit construction using Pauli matrices, the eigenvalues for the Hamiltonian

$$H = -\frac{2\mu}{\hbar} \mathbf{S} \cdot \mathbf{B}$$

for a spin $\frac{1}{2}$ particle in the presence of a magnetic field $\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$.

Chapter 3 Theory of Angular Momentum

3.3 Consider the 2×2 matrix defined by

$$U = \frac{a_0 + i\boldsymbol{\sigma} \cdot \mathbf{a}}{a_0 - i\boldsymbol{\sigma} \cdot \mathbf{a}},$$

where a_0 is a real number and a is a three-dimensional vector with real components.

- (a) Prove that U is unitary and unimodular.
- (b) In general, a 2×2 unitary unimodular matrix represents a rotation in three dimensions. Find the axis and angle of rotation appropriate for U in terms of a_0 , a_1 , a_2 , and a_3 .

3.4 The spin-dependent Hamiltonian of an electron-positron system in the presence of a uniform magnetic field in the *z*-direction can be written as

$$H = A\mathbf{S}^{(e^{-})} \cdot \mathbf{S}^{(e^{+})} + \left(\frac{eB}{mc}\right) \left(S_{z}^{(e^{-})} - S_{z}^{(e^{+})}\right).$$

Suppose the spin function of the system is given by $\chi_{+}^{(e^{-})}\chi_{-}^{(e^{+})}$.

- (a) Is this an eigenfunction of H in the limit $A \to 0$, $eB/mc \ne 0$? If it is, what is the energy eigenvalue? If it is not, what is the expectation value of H?
- (b) Solve the same problem when $eB/mc \rightarrow 0$, $A \neq 0$.

3.5 Consider a spin 1 particle. Evaluate the matrix elements of

$$S_z(S_z + \hbar)(S_z - \hbar)$$
 and $S_x(S_x + \hbar)(S_x - \hbar)$.

3.6 Let the Hamiltonian of a rigid body be

$$H = \frac{1}{2} \left(\frac{K_1^2}{I_1} + \frac{K_2^2}{I_2} + \frac{K_3^2}{I_3} \right),$$

where K is the angular momentum in the body frame. From this expression obtain the Heisenberg equation of motion for K, and then find Euler's equation of motion in the correspondence limit.

3.8 What is the meaning of the following equation?

$$U^{-1}A_kU=\sum R_{kl}A_l,$$

where the three components of A are matrices. From this equation show that matrix elements $\langle m|A_k|n\rangle$ transform like vectors.

3.9 Consider a sequence of Euler rotations represented by

$$\mathcal{D}^{(1/2)}(\alpha,\beta,\gamma) = \exp\left(\frac{-i\sigma_3\alpha}{2}\right) \exp\left(\frac{-i\sigma_2\beta}{2}\right) \exp\left(\frac{-i\sigma_3\gamma}{2}\right)$$

$$= \begin{pmatrix} e^{-i(\alpha+\gamma)/2}\cos\frac{\beta}{2} & -e^{-i(\alpha-\gamma)/2}\sin\frac{\beta}{2} \\ e^{i(\alpha-\gamma)/2}\sin\frac{\beta}{2} & e^{i(\alpha+\gamma)/2}\cos\frac{\beta}{2} \end{pmatrix}.$$

Because of the group properties of rotations, we expect that this sequence of operations is equivalent to a *single* rotation about some axis by an angle θ . Find θ .

- (3.10 (a) Consider a pure ensemble of identically prepared spin $\frac{1}{2}$ systems. Suppose the expectation values $\langle S_x \rangle$ and $\langle S_z \rangle$ and the sign of $\langle S_y \rangle$ are known. Show how we may determine the state vector. Why is it unnecessary to know the magnitude of $\langle S_y \rangle$?
 - (b) Consider a mixed ensemble of spin $\frac{1}{2}$ systems. Suppose the ensemble averages $[S_x]$, $[S_y]$, and $[S_z]$ are all known. Show how we may construct the 2×2 density matrix that characterizes the ensemble.
 - **3.11** (a) Prove that the time evolution of the density operator ρ (in the Schrödinger picture) is given by

$$\rho(t) = \mathcal{U}(t, t_0) \rho(t_0) \mathcal{U}^{\dagger}(t, t_0).$$

- (b) Suppose we have a pure ensemble at t=0. Prove that it cannot evolve into a mixed ensemble as long as the time evolution is governed by the Schrödinger equation.
- **3.12** Consider an ensemble of spin 1 systems. The density matrix is now a 3×3 matrix. How many independent (real) parameters are needed to characterize the density matrix? What must we know in addition to $[S_x]$, $[S_y]$, and $[S_z]$ to characterize the ensemble completely?
- 3.13 An angular-momentum eigenstate $|j,m=m_{\max}=j\rangle$ is rotated by an infinitesimal angle ε about the y-axis. Without using the explicit form of the $d_{m'm}^{(j)}$ function, obtain an expression for the probability for the new rotated state to be found in the original state up to terms of order ε^2 .
- original state up to terms of order ε^2 .

 3.14 Show that the 3×3 matrices $G_i (i = 1, 2, 3)$ whose elements are given by

$$(G_i)_{ik} = -i\hbar\varepsilon_{ijk},$$

where j and k are the row and column indices, satisfy the angular-momentum commutation relations. What is the physical (or geometric) significance of the transformation matrix that connects G_i to the more usual 3×3 representations of the angular-momentum operator J_i with J_3 taken to be diagonal? Relate your result to

$$\mathbf{V} \rightarrow \mathbf{V} + \hat{\mathbf{n}} \delta \phi \times \mathbf{V}$$

under infinitesimal rotations. (*Note:* This problem may be helpful in understanding the photon spin.)

$$\mathbf{J}^2 = J_z^2 + J_+ J_- - \hbar J_z.$$

(b) Using (a) (or otherwise), derive the "famous" expression for the coefficient c_{-} that appears in

$$J_{-}\psi_{jm} = c_{-}\psi_{j,m-1}.$$

- 3.16 Show that the orbital angular-momentum operator L commutes with both the operators \mathbf{p}^2 and \mathbf{x}^2 ; that is, prove (3.7.2).
- V(r) is given by

$$\psi(\mathbf{x}) = (x + y + 3z)f(r).$$

- (a) Is ψ an eigenfunction of L^2 ? If so, what is the *l*-value? If not, what are the possible values of *l* that we may obtain when L^2 is measured?
- (b) What are the probabilities for the particle to be found in various m_l states?
- (c) Suppose it is known somehow that $\psi(\mathbf{x})$ is an energy eigenfunction with eigenvalue E. Indicate how we may find V(r).
- A particle in a spherically symmetrical potential is known to be in an eigenstate of L^2 and L_z with eigenvalues $\hbar^2 l(l+1)$ and $m\hbar$, respectively. Prove that the expectation values between $|lm\rangle$ states satisfy

$$\langle L_x \rangle = \langle L_y \rangle = 0, \quad \langle L_x^2 \rangle = \langle L_y^2 \rangle = \frac{[l(l+1)\hbar^2 - m^2\hbar^2]}{2}.$$

- Interpret this result semiclassically.
- Suppose a half-integer l-value, say $\frac{1}{2}$, were allowed for orbital angular momentum. From

$$L_+Y_{1/2,1/2}(\theta,\phi) = 0,$$

we may deduce, as usual,

$$Y_{1/2,1/2}(\theta,\phi) \propto e^{i\phi/2} \sqrt{\sin\theta}$$
.

- Now try to construct $Y_{1/2,-1/2}(\theta,\phi)$ by (a) applying L_- to $Y_{1/2,1/2}(\theta,\phi)$; and (b) using $L_-Y_{1/2,-1/2}(\theta,\phi)=0$. Show that the two procedures lead to contradictory results. (This gives an argument against half-integer l-values for orbital angular momentum.)
- Consider an orbital angular-momentum eigenstate $|l=2,m=0\rangle$. Suppose this state is rotated by an angle β about the y-axis. Find the probability for the new state to be found in $m=0,\pm 1$, and ± 2 . (The spherical harmonics for l=0,1, and 2 given in Section B.5 in Appendix B may be useful.)
 - **3.21** The goal of this problem is to determine degenerate eigenstates of the three-dimensional isotropic harmonic oscillator written as eigenstates of L^2 and L_z , in terms of the Cartesian eigenstates $|n_x n_y n_z\rangle$.
 - (a) Show that the angular-momentum operators are given by

$$L_i = i\hbar\varepsilon_{ijk}a_ja_k^{\dagger}$$

$$\mathbf{L}^2 = \hbar^2 \left[N(N+1) - a_k^\dagger a_k^\dagger a_j a_j \right],$$

where summation is implied over repeated indices, ε_{ijk} is the totally antisymmetric symbol, and $N \equiv a_j^{\dagger} a_j$ counts the total number of quanta.

- (b) Use these relations to express the states $|qlm\rangle = |01m\rangle$, $m = 0, \pm 1$, in terms of the three eigenstates $|n_x n_y n_z\rangle$ that are degenerate in energy. Write down the representation of your answer in coordinate space, and check that the angular and radial dependences are correct.
- (c) Repeat for $|qlm\rangle = |200\rangle$.
- (d) Repeat for $|qlm\rangle = |02m\rangle$, with m = 0, 1, and 2.
- **3.22** Follow these steps to show that solutions to Kummer's Equation (3.7.46) can be written in terms of Laguerre polynomials $L_n(x)$, which are defined according to a generating function as

$$g(x,t) = \frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} L_n(x) \frac{t^n}{n!},$$

where 0 < t < 1. The discussion in Section 2.5 on generating functions for Hermite polynomials will be helpful.

- (a) Prove that $L_n(0) = n!$ and $L_0(x) = 1$.
- (b) Differentiate g(x,t) with respect to x, show that

$$L'_n(x) - nL'_{n-1}(x) = -nL_{n-1}(x),$$

and find the first few Laguerre polynomials.

(c) Differentiate g(x,t) with respect to t and show that

$$L_{n+1}(x) - (2n+1-x)L_n(x) + n^2L_{n-1}(x) = 0.$$

(d) Now show that Kummer's Equation is solved by deriving

$$xL_n''(x) + (1-x)L_n'(x) + nL_n(x) = 0,$$

and associate n with the principal quantum number for the hydrogen atom.

What is the physical significance of the operators

$$K_{+} \equiv a_{+}^{\dagger} a_{-}^{\dagger}$$
 and $K_{-} \equiv a_{+} a_{-}$

in Schwinger's scheme for angular momentum? Give the nonvanishing matrix elements of K_{+} .

We are to add angular momenta $j_1 = 1$ and $j_2 = 1$ to form j = 2, 1, and 0 states. Using either the ladder operator method or the recursion relation, express all (nine) $\{j,m\}$ eigenkets in terms of $|j_1j_2,m_1m_2\rangle$. Write your answer as

$$|j = 1, m = 1\rangle = \frac{1}{\sqrt{2}}|+,0\rangle - \frac{1}{\sqrt{2}}|0,+\rangle,...,$$

where + and 0 stand for $m_{1,2} = 1$, 0, respectively.

3.25 (a) Evaluate

$$\sum_{m=-j}^{j} |d_{mm'}^{(j)}(\beta)|^2 m$$

for any j (integer or half-integer); then check your answer for $j = \frac{1}{2}$.

Chapter 3 Theory of Angular Momentum

(b) Prove, for any j,

$$\sum_{m=-j}^{j} m^2 |d_{m'm}^{(j)}(\beta)|^2 = \frac{1}{2} j(j+1) \sin^2 \beta + m'^2 \frac{1}{2} (3\cos^2 \beta - 1).$$

[Hint: This can be proved in many ways. You may, for instance, examine the rotational properties of J_z^2 using the spherical (irreducible) tensor language.]

3.26\(\(\mathbb{a}\)\) Consider a system with j = 1. Explicitly write

$$\langle j=1,m'|J_y|j=1,m\rangle$$

in 3×3 matrix form.

(b) Show that for j=1 only, it is legitimate to replace $e^{-iJ_y\beta/\hbar}$ by

$$1 - i\left(\frac{J_y}{\hbar}\right)\sin\beta - \left(\frac{J_y}{\hbar}\right)^2 (1 - \cos\beta).$$

(c) Using (b), prove

$$d^{(j=1)}(\beta) = \begin{pmatrix} \left(\frac{1}{2}\right)(1 + \cos\beta) & -\left(\frac{1}{\sqrt{2}}\right)\sin\beta & \left(\frac{1}{2}\right)(1 - \cos\beta) \\ \left(\frac{1}{\sqrt{2}}\right)\sin\beta & \cos\beta & -\left(\frac{1}{\sqrt{2}}\right)\sin\beta \\ \left(\frac{1}{2}\right)(1 - \cos\beta) & \left(\frac{1}{\sqrt{2}}\right)\sin\beta & \left(\frac{1}{2}\right)(1 + \cos\beta) \end{pmatrix}.$$

3.27 Express the matrix element $\langle \alpha_2 \beta_2 \gamma_2 | J_3^2 | \alpha_1 \beta_1 \gamma_1 \rangle$ in terms of a series in

- (a) What is the probability for observer A to obtain $s_{1z} = \hbar/2$ when observer B makes no measurement? Solve the same problem for $s_{1x} = \hbar/2$.
- Observer B determines the spin of particle 2 to be in the $s_{2z} = \hbar/2$ state with certainty. What can we then conclude about the outcome of observer A's measurement (i) if A measures s_{1z} ; (ii) if A measures s_{1x} ? Justify your answer.

$$V_{\pm 1}^{(1)} = \mp \frac{V_x \pm i V_y}{\sqrt{2}}, \quad V_0^{(1)} = V_z.$$

Using the expression for $d^{(j=1)}$ given in Problem 3.26, evaluate

$$\sum_{q'} d_{qq'}^{(1)}(\beta) V_{q'}^{(1)}$$

and show that your results are just what you expect from the transformation properties of $V_{x,y,z}$ under rotations about the y-axis.

- (b) Construct a spherical tensor of rank 2 out of two different vectors **U** and **V**. Write down explicitly $T_{\pm 2,\pm 1,0}^{(2)}$ in terms of $U_{x,y,z}$ and $V_{x,y,z}$.
- 3.31 Consider a spinless particle bound to a fixed center by a central force potential.
 - (a) Relate, as much as possible, the matrix elements

$$\langle n', l', m' | \mp \frac{1}{\sqrt{2}} (x \pm iy) | n, l, m \rangle$$
 and $\langle n', l', m' | z | n, l, m \rangle$

using *only* the Wigner-Eckart theorem. Make sure to state under what conditions the matrix elements are nonvanishing.

- **(b)** Do the same problem using wave functions $\psi(\mathbf{x}) = R_{nl}(r)Y_l^m(\theta, \phi)$.
- (a) Write xy, xz, and $(x^2 y^2)$ as components of a spherical (irreducible) tensor of rank 2.
- (b) The expectation value

$$Q \equiv e\langle \alpha, j, m = j | (3z^2 - r^2) | \alpha, j, m = j \rangle$$

is known as the quadrupole moment. Evaluate

$$e\langle \alpha, j, m' | (x^2 - y^2) | \alpha, j, m = j \rangle,$$

where m' = j, j - 1, j - 2,..., in terms of Q and appropriate Clebsch-Gordan coefficients.

3.33 A spin $\frac{3}{2}$ nucleus situated at the origin is subjected to an external inhomogeneous electric field. The basic electric quadrupole interaction may by taken to be

$$H_{\rm int} = \frac{eQ}{2s(s-1)\hbar^2} \left[\left(\frac{\partial^2 \phi}{\partial x^2} \right)_0 S_x^2 + \left(\frac{\partial^2 \phi}{\partial y^2} \right)_0 S_y^2 + \left(\frac{\partial^2 \phi}{\partial z^2} \right)_0 S_z^2 \right],$$

where ϕ is the electrostatic potential satisfying Laplace's equation, and the coordinate axes are chosen such that

$$\left(\frac{\partial^2 \phi}{\partial x \partial y}\right)_0 = \left(\frac{\partial^2 \phi}{\partial y \partial z}\right)_0 = \left(\frac{\partial^2 \phi}{\partial x \partial z}\right)_0 = 0.$$

Show that the interaction energy can be written as

$$A(3S_z^2 - \mathbf{S}^2) + B(S_+^2 + S_-^2),$$

and express A and B in terms of $(\partial^2 \phi/\partial x^2)_0$ and so on. Determine the energy eigenkets (in terms of $|m\rangle$, where $m=\pm\frac{3}{2},\pm\frac{1}{2}$) and the corresponding energy eigenvalues. Is there any degeneracy?