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Proof. Noting (3.11 .26), we have

{O!',jmlJ-V]a,jm) — (

@, jml{(JoVo— Jp Vg — J_1 Vi)

o, jm)

=mhi, jm|Volar, jm) + %\/(j-f-m)(j i

x (@, jm—1|V_|a, im)

_:% (J=m)(j+m+ 1), jm + UViile, jm)

=cjm(c j[|V[]aj)

(3.11.42)

by the Wigner-Eckart theorem (3.11.31

as ¢;. Because ¢j does not depend an V.(3.11.42)h
o’ — «; that is,

(@, jmlPla, jm) = ¢, (@)l T ).

(3.11.43)
Returning to the Wigner-Eckart theorem applied to V,, and Jy. we have 3
1’ im’ Vv 5 k- -
(e J.f’",l qlo {m) o 4 J.HVHC!.J)_ (3.11.44)
. jm'|. Iy fer, jm) (/I ]lej)

But we can write (oz’,jm[Jono:,jm)/(cv,jm]lecx,jm
(3.11.44) by (3.1 1.42) and (3.1 1.43). Moreover, the Ie
Just j(j + 1A% So

) for the right-hand side of
fi-hand side of (3.11.43) is

et 4 o, jmJ Via, jmy
I | Vgla, jmy = — 2= COII,L g : 3.11.45
o jm'|Vyla, jm) G0 {jm'|Jq| jm) ( )

which proves the projection theorem.

We will give applications of the theorem in subsequent sections,

Problems

3.1 Find the eigenvalues and eigenvectors of oy = ( ? El ) Suppose an electron

is in the spin state ( ; ) If s is measured, what is the probability of the result
r h/27

”ind, by explicit construction using Pauli matrices, the eigenvalues for the Hamil-
-\ tonian

2u
H=_2"g,
hSB

for a spin 21 particle in the presence of a magnetic field B = B, % + B\¥+ B.3.
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4 i

7\
{33 }Zonsider the 2 x 2 matrix defined by

\\_// U__ag+io'-a

ag—ic-a’

where ag is a real number and a is a three-dimensional vector with real components.
(a) Prove that U is unitary and unimodular.
(b) In general, a 2 x 2 unitary unimodular matrix represents a rotation in three
dimensions. Find the axis and angle of rotation appropriate for U/ in terms of
¥ 2a)

ap, ay, az, and as.
-4 /The spin-dependent Hamiltonian of an electron-positron system in the presence of
,/j a uniform magnetic field in the z-direction can be written as

3

= S el 24
H = AS¢7) .8 + ("‘mf?) (S§e ' S§e+)) I

N
Suppose the spin function of the system is given by xf / x(, )

(a) Is this an eigenfunction of H in the limit A — 0,eB/mc # 07 If it is, what is
the energy eigenvalue? If it is not, what is the expectation value of H?

_(b) Solve the same problem when e B /mc — 0, A #0.
*cmsider a spin 1 particle. Evaluate the matrix elements of

7 Se(S; +A)S; —h) and  Sy(Sy+R)(Sy —h).

et the Hamiltonian of a rigid body be

I
H v [l a2 ME T3 ,
AN 16 SR VE
where K is the angular momentum in the body frame. From this expression obtain

the Heisenberg equation of motion for K, and then find Buler’s equation of motion
in the correspondence limit.

et U = /032102861637 where (a, B, y) are the Eulerian angles. In order that U
represent a rotation (e, 8,y ), what are the commutation rules that must be satisfied
by the G ? Relate G to the angular-momentum operators.

3.8 What is the meaning of the following equation?

U—lAkU= ZRkJAj,

where the three components of A are matrices. From this equation show that matrix
elements (m|A|n) transform like vectors.

onsider a sequence of Euler rotations represented by

1)(1/2)(a,,8,y) =exp (;i_;z_&') exp (*tgzﬁ) exp (—12 y)

e HOHN/2 o5 g —e @2 in g—

' @=¥)/2gin g Y2 o0 B



maplima
Realce

maplima
Realce

maplima
Realce

maplima
Realce


Problems 257

Because of the group properties of rotations, we expect that this sequence of oper-
ations is equivalent to a single rotation about some axis by an angle 6. Find 6.

4\% @a) Consider a pure ensemble of identically prepared spin % systems. Suppose the
expectation values {S.) and (S.) and the sign of (S,} are known. Show how we
may determine the state vector. Why is it unnecessary to know the magnitude
of (Sy)?

(b) Consider a mixed ensemble of spin % systems. Suppose the ensemble aver-
ages [S;], [Sy], and [S.] are all known. Show how we may construct thel2 >

density matrix that characterizes the ensemble.

3.11 (a) Prove that the time evolution of the density operator p (in the Schrédinger
picture) is given by

p(t) = U, 1) () U (2, 10).

(b) Suppose we have a pure ensemble at + = 0. Prove that it cannot evolve into a
mixed ensemble as long as the time evolution is governed by the Schridinger
equation.

3.12 Consider an ensemble of spin 1 systems. The density matrix is now a 3 x 3 matrix.
How many independent (real) parameters are needed to characterize the density
matrix? What must we know in addition to [Sk], [S,], and [S;] to characterize the
ensemble completely?

3.13 An angular-momentum eigenstate | j,m = mimax = J) is rotated by an infinitesimal
angle & about the y-axis. Without using the explicit form of the dfnj,zn function,
obtain an expression for the probability for the new rotated state to be found in the

~ original state up to terms of order £2.
*how that the 3 x 3 matrices G;(i = 1, 2, 3) whose elements are given by

(Gi)jr = —iheijr,

where j and k are the row and column indices, satisfy the angular-momentum com-
mutation relations. What is the physical (or geometric) significance of the trans-
formation matrix that connects G; to the more usual 3 x 3 representations of the
angular-momentum operator J; with J3 taken to be diagonal? Relate your result to

V— V+idpxV

under infinitesimal rotations. (Nore: This problem may be helpful in understanding
the photon spin.)

a) Let J be angular momentum. (It may stand for orbital L, spin 8, or Jiotar.) Us-
ing the fact that Jy, Jy, J.(J+ = J, i J,) satisfy the usual angular-momenturmn
commutation relations, prove

1P P

(b) Using (a) (or otherwise), derive the “famous” expression for the coefficient ¢
that appears in

J_Iffjm = Cﬁl,ulfj,mfl.
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‘how that the orbital angular-momentum operator L commutes with both the op-
erators p? and x°: that is, prove (3.7.2).

ra
}?! 3.17 )The wave function of a particle subjected to a spherically symmetrical potential
V(r) is given by

Y(x)=(x+y+32)f(r)

(a) Is ¥ an eigenfunction of 127 If so, what is the [-value? If not, what are the
possible values of [ that we may obtain when .7 is measured?

(b) What are the probabilities for the particle to be found in various m; states?

/gc) Suppose it is known somehow that v(x) is an energy eigenfunction with eigen-
value E. Indicate how we may find V().

A particle in a spherically symmetrical potential is known to be in an eigenstate of
L2 and L, with cigenvalues n2 (I + 1) and mh, respectively. Prove that the expec-
4 tation values between |Im) states satisfy

1+ )n? —mh?
(L)l =0l <L3>=<L5>=Mz—m—]'

Interpret this result semiclassically.
5 3.19 ‘ESuppose a half-integer [-value, say % were allowed for orbital angular momentum.
A/ From
L. Y12,1/200,9) =0,
we may deduce, as usual,
Yi/21/20,0) o e/*/sinf.

Now try to construct Y12 1/2(6.¢) by (a) applying L_ to Y12.1/2(6,¢); and (b)
using L_Yi/2.—12(6,¢) = 0. Show that the two procedures lead to contradictory
results. (This gives an argument against half-integer [-values for orbital angular

momentumn. )
onsider an orbital angular-moementum eigenstate |/ = 2,7 = 0). Suppose this state
/ is rotated by an angle  about the y-axis. Find the probability for the new state to

be found in m = 0, =1, and £2. (The spherical harmonics for I =0, 1, and 2 given
in Section B.5 in Appendix B may be useful.)

3.21 The goal of this problem is to determine degenerate eigenstates of the three-
dimensional isotropic harmonic oscillator written as eigenstates of L2 and L_, in
terms of the Cartesian eigenstates W“n yhz)-

(a) Show that the angular—momenruh{ operators are given by
s
L; =ihsgijjra;a,
L? =2 [NV + 1) - a[ajaja ]
7 o

where summation is implied over repeated indices, & is the totally antisym-

metric symbol, and N = a}a ; counts the total number of quanta.
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(b} Use these relations to express the states |glm) = [0lm), m = 0, £1, in terms
of the three eigenstates |nnyn;} that are degenerate in energy. Write down the
representation of your answer in coordinate space, and check that the angular
and radial dependences are correct.

(¢) Repeat for |glm) = [200).

(d) Repeat for |qim) = |02m), withm =0, 1, and 2.

3.22 Follow these steps to show that solutions to Kummer’s Equation (3.7.46) can be
written in terms of Laguerre polynomials L,(x), which are defined according to a
generating function as

e X/1=D e "
glx.t)= S e gbn(x)a,

where 0 < ¢ < 1. The discussion in Section 2.5 on generating functions for Hermite

polynomials will be helpful.

(a) Prove that L,(0) =n!and Lo(x)=1.

(b) Differentiate g(x,#) with respect to x, show that

L;!(I) a ani—l(x) =—nL,_(x),

and find the first few Laguerre polynomials.
(¢) Differentiate g(x,#) with respect to ¢ and show that

Ln41(x) = 20+ 1 = 1) Ly(x) 0Ly 1(x) = 0.
(d) Now show that Kummer’s Equation is solved by deriving
: XL+ (1 =X)L (x)+nl,(x) =0,
ity and associate n with the principal quantum number for the hydrogen atom.
“‘\’hat is the physical significance of the operators
s ) K zaiai and K_=aa_

in Schwinger’s scheme for angular momentum? Give the nonvanishing matrix ele-
ents of K.

"We are to add angular momenta j; = 1 and j, = 1 to form j =2, 1, and O states.
Using either the ladder operator method or the recursion relation, express all (nine)
{j.m} eigenkets in terms of | j jo;mma). Write your answer as

1 1
e o
ﬁH_’ ) V2

where + and O stand for m > = 1, 0, respectively.

3.25 (a) Evalunate

U:]_}m:]): |0,+),...,

i
e
m=—j
for any j (integer or half-integer); then che%k your answer for = %

h\
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(b) Prove, for any J,
: 2 4() 2 s 2 2 r2] 2
> m2ldD) (B = 53U + Dsin® p+m"5 (3 cos g—1).
m=—j

[Hint: This can be proved in many ways. You may, for instance, examine the
rotational properties of J :2 using the spherical (irreducible) tensor language.|

/
1‘3.26\\(3) Consider a system with j = 1. Explicitly write
(j=Lm'|Iy|j=1m)

in 3 x 3 matrix form.
(b) Show that for j = 1 only, it is legitimate to replace e

i fl o /! 21
41(?)sm,8—(g) (1 —cos ).

()+cosp) —(5)sinp (5)(1—cosp)
d¥=Dg) = (ﬁ)sinﬁ cosf — (%) sin
(3)(1 —cos B) (—fﬁ) sinf (1) (1+cosp)

—ilyBih by

(¢) Using (b), prove

3.27 Express the matrix element (o2 ﬁgyg!.lflal Biy1) in terms of a series in

Di (aBy) = (aBy|jmn).

Consider a system made up of two spin 12 particles. Observer A specializes in

measuring the spin components of one of the particles (51, S1x and so on), while

observer B measures the spin components of the other particle. Suppose the system

is known to be in a spin-singlet state—that is, St = 0

(a) What is the probability for observer A to obtain s1, = 7/2 when observer B
makes no measurement? Solve the same problem for s1x = h/2.

(b) Observer B determines the spin of particle 2 to be in the s2; = 71/2 state with
certainty. What can we then conclude about the outcome of observer A’s mea-

% surement (i) if A measures s1;; (ii) if A measures s1,? Justify your answer.

3.29\ Consider a spherical tensor of rank 1 (that is, a vector)

V. =iV,
&)} & ? by 2
Vﬂ:l=:FAT@iy, VO — L2
Using the expression for d=" given in Problem 3.26, evaluate
(1) (O]
Y o dy BV,
qf

and show that your results arc just wht fyou expect from the transformation prop-
erties of V., under rotations about the y-axis.
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(a) Construct a spherical tensor of rank 1 out of two different vectors U = (U, Uy,
U,) and V = (Vy, V., Vo). Explicitly write T, in terms of Uy, and Vy.y..

(b) Construct a spherical tensor of rank 2 out of two different vectors U and V.
Write down explicitly sz) 410 interms of Uy y - and Vi -

Consider a spinless particle bound to a fixed center by a central force potential.
(a) Relate, as much as possible, the matrix elements

1
(n',t’,m'|:1:—z(x:tiy)ln,l,m) and (0, 0',m'|z|n,l,m)

V2

using only the Wigner-Eckart theorem. Make sure to state under what condi-
tions the matrix elements are nonvanishing. i

(b) Do the same problem using wave functions ¥ (x) = Ry (r)¥/"(0.9).

a) Write xy, xz, and (x* — v?) as components of a spherical (irreducible) tensor of
rank 2.

(b) The expectation value
0 =ela,j,m=jl3 —rDla, j,m=j)
is known as the quadrupole moment. Evaluate
el jom'|(® = yP)la, j.m = j),

where m' = J.ji—1,j—2,...,in terms of Q and appropriate Clebsch-Gordan
coefficients.

3.33 A spin % nucleus situated at the origin is subjected to an external inhomogeneous
electric field. The basic electric quadrupole interaction may by taken to be

eQ 9%¢ 2 (32¢’) 2 (82¢) 2]
| e AN sl
o 2s(s — 1)A? [(312)05x+ ay? OSy+ de2uloi

where ¢ is the electrostatic potential satisfying Laplace’s equation, and the coordi-
nate axes are chosen such that

(o el i),
axay)o_ SOy ORIz

Show that the interaction energy can be written as

A(382— 8%+ B(S3 + 52),

and express A and B in terms of (3%¢/dx%)o and so on. Determine the energy
eigenkets (in terms of [m), where m = i%, i%) and the corresponding energy
cigenvalues. Is there any degeneracy?
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