Teoria de Perturbação independente do tempo: caso degenerado

Até aqui
$$\begin{cases} \lim_{\lambda \to 0} E_n = E_n^{(0)} \\ & \Longrightarrow \end{cases}$$
 Se degenerado, $|n\rangle$ vai para qual dos $\{|n_i^{(0)}\rangle\}$?
$$\lim_{\lambda \to 0} |n\rangle = |n^{(0)}\rangle$$

Uma maneira de descrever kets degenerados em energia é tomar A, tal que $[A, H_0] = 0$ (se necessário for, tome também B, C, etc.) até que exista um único ket para cada conjunto de números $(\underline{E_n^{(0)}, a_i, b_j, c_\ell}$ etc.).

simbolizados por $k^{(0)}$

Para facilitar, suponha que baste A para quebrar a degenerescência. Agora, se $[H,A] \neq 0$ por que $[V,A] \neq 0$, os autokets de H, em ordem zero, não serão autokets de A. Ao ligar λ os kets do espaço degenerado, $\{|n_i^{(0)}\rangle\}$, misturariam entre si e ao desligá-lo, o ket perturbado não iria de forma suave para um deles e sim para uma mistura deles. Além disso, a expressão $\frac{V_{nk}}{E_n^{(0)} - E_k^{(0)}}$ teria uma

singularidade, pois
$$\begin{cases} V_{nk} \neq 0 \\ E_n^{(0)} - E_k^{(0)} = 0 \end{cases}$$

Precisamos mudar o método para acomodar esta situação

MAPLima

Teoria de Perturbação independente do tempo: caso degenerado

As singularidades ficam evidentes nas expressões do caso não-degenerado,

$$\Delta_n = \lambda V_{nn} + \lambda^2 \sum_{k \neq n} \frac{V_{nk} V_{kn}}{E_n^{(0)} - E_k^{(0)}} + \mathcal{O}(\lambda^3)$$

$$|n\rangle = |n^{(0)}\rangle + \lambda \sum_{k \neq n} \frac{V_{kn}}{E_n - E_k^{(0)}} |k^{(0)}\rangle + \mathcal{O}(\lambda^2)$$

caso incluíssemos na soma em k os estados do sub-espaço degenerado, com o mesmo autovalor $E_n^{(0)}$, mas com $V_{kn} \neq 0$. Para resolver isso, escolheremos uma base de kets do sub-espaço de degenerescência de ordem g (chamaremos este sub-espaço de D), tal que $V_{nk} = 0$ p/ $k \neq n$ com $|k^{(0)}\rangle \in D$.

O novo formalismo

Degenerescência g significa que existem g autokets de H_0 com a mesma energia $E_D^{(0)}$, não-perturbada. Suponha que com auxílio de A possamos definir um subconjunto de kets de forma única, pelo par $(E_D^{(0)}, a_i)$. Chamaremos estes kets de $\{|m^{(0)}\rangle\}$. Quando ligamos V, suponha que a degenerescência é removida (cada autovalor corresponde à um único autoket). Chamaremos estes kets de $|\ell^{(0)}\rangle$. Note que quando $\lambda \to 0 \Rightarrow |\ell\rangle \to |\ell^{(0)}\rangle$ podem ser diferentes de $|m^{(0)}\rangle$

Teoria de Perturbação independente do tempo: caso degenerado

De qualquer maneira $\{|\ell^{(0)}\rangle\}$ e $\{|m^{(0)}\rangle\}$ estão ligados (descrevem o mesmo sub-espaço D), por $|\ell^{(0)}\rangle = \sum |m^{(0)}\rangle\langle m^{(0)}|\ell^{(0)}\rangle$.

(1) tome a equação básica:
$$(E_n^{(0)} - H_0)|n\rangle = (\lambda V - \Delta_n)|n\rangle$$

(2) aplique para o autovalor degenerado $E_D^{(0)}$, isto é:

$$\langle E_D^{(0)} - H_0 \rangle | \ell \rangle = (\lambda V - \Delta_\ell) | \ell \rangle$$

(a) ordem
$$\lambda^{(0)} : 0 = 0$$

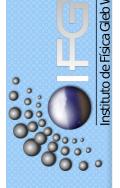
A proposta é:
$$\begin{cases} (E_D^{(0)} - H_0)|\ell\rangle = (\lambda V - \Delta_\ell)|\ell\rangle \\ (B_D^{(0)} - H_0)|\ell\rangle = (\lambda V - \Delta_\ell)|\ell\rangle \\ (B_D^{(0)} - H_0)|\ell\rangle + \lambda |\ell^{(1)}\rangle + \dots \\ (B_D^{(0)} - H_0)|\ell\rangle + \lambda |\ell^{(1)}\rangle + \dots \\ (B_D^{(0)} - H_0)|\ell\rangle + \lambda |\ell\rangle \\ (A_D^{(0)} - H_0)|\ell\rangle + \lambda |\ell\rangle \\ (A_D^{(0)} - H_0)|\ell\rangle + \mu |\ell\rangle + \mu |\ell\rangle \\ (A_D^{(0)} - H_0)|\ell\rangle + \mu |\ell\rangle + \mu |\ell\rangle + \mu |\ell\rangle \\ (A_D^{(0)} - H_0)|\ell\rangle + \mu |\ell\rangle + \mu |\ell$$

(5) multiplique esta última equação por $\langle m'^{(0)}|(\text{bra que }\in D^{\dagger})$ e obtenha $\sum_{m} V_{m'm} \langle m^{(0)}|\ell^{(0)}\rangle = \Delta_{\ell}^{(1)} \langle m'^{(0)}|\ell^{(0)}\rangle$

Este resultado na forma matricial fica:

$$\begin{pmatrix} V_{11} & V_{12} & \dots \\ V_{21} & V_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \langle 1^{(0)} | \ell^{(0)} \rangle \\ \langle 2^{(0)} | \ell^{(0)} \rangle \\ \vdots \end{pmatrix} = \Delta_{\ell}^{(1)} \begin{pmatrix} \langle 1^{(0)} | \ell^{(0)} \rangle \\ \langle 2^{(0)} | \ell^{(0)} \rangle \\ \vdots \end{pmatrix}$$

Uma equação de autovalor de V em D.



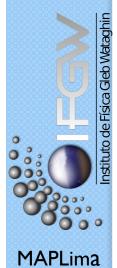
MAPLima

Teoria de Perturbação independente do tempo: caso degenerado

Algumas considerações:

- Para resolver a equação matricial, tome $Det(V \Delta_{\ell}^{(1)} \mathbb{1}) = 0$; ache os autovalores, substitua-os de volta e ache $\langle m^{(0)} | \ell^{(0)} \rangle$ para cada ℓ .
- Feito isso, teremos a correção de primeira ordem nas energias, $\Delta_{\ell}^{(1)}$, e de ordem zero nos autokets, os $|\ell^{(0)}\rangle$.
- No limite de $\lambda \to 0$, $|\ell\rangle$ vai para $|\ell^{(0)}\rangle$ (uma combinação dos $|m^{(0)}\rangle$ de D).
- ullet Se o sub-espaço D fosse o espaço inteiro, teríamos resolvido o problema exatamente ao diagonalizar V (estaríamos diagonalizando H no espaço todo).
- A presença de kets fora de D só aparece em termos de $2^{\underline{a}}$ ordem em energia e $1^{\underline{a}}$ ordem nos vetores.
- A expressão $\Delta_{\ell}^{(1)} = \langle \ell^{(0)} | V | \ell^{(0)} \rangle$, quando V é diagonal em D, é igual a do caso não-degenerado $\langle n^{(0)} | V | n^{(0)} \rangle$.

Como tratar ordens superiores?



Teoria de Perturbação independente do tempo: caso degenerado Estratégia do Sakurai&Napolitano

Defina P_0 como um projetor do sub-espaço $D = \{|m^{(0)}\rangle\}$, isto é

$$P_0 = \sum_{m \in D} |m^{(0)}\rangle\langle m^{(0)}|$$
. Defina $P_1 = \mathbb{1} - P_0$ um projetor sobre o

restante dos kets. A equação de Schrödinger que define $|\ell\rangle$ é dada por: $0 = (E - H_0 - \lambda V) |\ell\rangle$ e pode ser re-escrita, com auxílio de $\mathbb{1} = P_0 + P_1$ na seguinte forma: $0 = (E - H_0 - \lambda V)(P_0 + P_1)|\ell\rangle$. Se usarmos que $H_0|m^{(0)}\rangle = E_D^{(0)}|m^{(0)}\rangle, \ m \in D, \text{ temos que:}$

$$0 = (E - E_D^{(0)} - \lambda V)P_0|\ell\rangle + (E - H_0 - \lambda V)P_1|\ell\rangle$$

Projetando esta equação em P_0 e em P_1 , respectivamente, encontramos

dois conjuntos de equações:
$$\begin{cases} (E - E_D^{(0)} - \lambda P_0 V) P_0 |\ell\rangle - \lambda P_0 V P_1 |\ell\rangle = 0 \\ -\lambda P_1 V P_0 |\ell\rangle + (E - H_0 - \lambda P_1 V) P_1 |\ell\rangle = 0 \end{cases}$$

$$-\lambda P_1 V P_0 |\ell\rangle + (E - H_0 - \lambda P_1 V) P_1 |\ell\rangle = 0$$

A segunda equação pode ser invertida, por não ter singularidades (autovalores de H_0 em P_1 são distintos de $E \approx E_D$. Isto é:

$$P_1|\ell\rangle = P_1 \frac{\lambda}{E - H_0 - \lambda P_1 V P_1} P_1 V P_0 |\ell\rangle$$

Teoria de Perturbação independente do tempo: caso degenerado

A inserção da expansão em λ , $|\ell\rangle = |\ell\rangle + \lambda^{(1)}|\ell^{(1)}\rangle + \dots$ na equação na caixa verde do slide anterior nos leva ao termo de primeira ordem:

$$P_1|\ell^{(1)}\rangle = \sum_{k \notin D} \frac{|k^{(0)}\rangle V_{k\ell}}{E_D^{(0)} - E_k^{(0)}}$$

Inserção da equação da caixa verde, na equação da caixa azul do slide anterior

nos leva à:
$$(E - E_D^{(0)} - \lambda P_0 V P_0 - \lambda^2 P_0 V P_1 \frac{1}{E - H_0 - \lambda V} P_1 V P_0) P_0 |\ell\rangle = 0$$

inserção das expansões
$$\begin{cases} E - E_D^{(0)} = \Delta_D = \lambda \Delta_D^{(1)} + \lambda^2 \Delta_D^{(2)} + \dots \\ \\ |\ell\rangle = |\ell^{(0)}\rangle + \lambda^{(1)} |\ell^{(1)}\rangle + \dots \end{cases}$$

resulta em (primeira ordem): $(\Delta_D^{(1)} - P_0 V P_0)(P_0 | \ell^{(0)}) = 0$ que é exatamente a equação matricial que obtivemos no slide 3. Para obtermos ordens superiores, a equação da caixa roxa pode ser re-escrita (simplificando o denominador que, com λV e Δ_D fornece termos de terceira ordem em λ), temos:

$$(E - E_D^{(0)} - \lambda P_0 V P_0 - \lambda^2 P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 |\ell\rangle = 0$$

Teoria de Perturbação independente do tempo: caso degenerado

A inserção usual da expansão de $|\ell\rangle$ e Δ_D na equação na caixa azul do slide anterior nos leva à:

$$(\lambda \Delta_D^{(1)} + \lambda^2 \Delta_D^{(2)} - \lambda P_0 V P_0 - \lambda^2 (P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 (|\ell^{(0)}\rangle + \lambda |\ell^{(1)}\rangle) = 0$$

- Em primeira ordem em λ , temos 0 = 0, pois $(\lambda \Delta_D^{(1)} \lambda P_0 V P_0) P_0 |\ell^{(0)}\rangle = 0$
- Em segunda ordem em λ , temos:

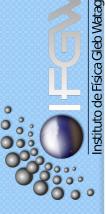
$$(\Delta_D^{(1)} - P_0 V P_0) P_0 |\ell^{(1)}\rangle = (P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 |\ell^{(0)}\rangle - \Delta_D^{(2)} |\ell^{(0)}\rangle$$

se escolhermos o auto-estado $|\ell_i\rangle$ (que seria $|\ell_i^{(0)}\rangle$ em ordem zero e teria energia $E_D + v_i$ em primeira ordem), podemos re-escrever a equação acima da seguinte

forma:
$$(v_i - P_0 V P_0) P_0 |\ell_i^{(1)}\rangle = (P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 |\ell_i^{(0)}\rangle - \Delta_D^{(2)} |\ell_i^{(0)}\rangle$$

Se multiplicarmos pela esquerda por $\langle \ell_i^0 |$ encontramos zero na esquerda, o que indica que o ket da direita não tem componente $|\ell_i^0\rangle$. Se a degenerescência foi completamente quebrada com a diagonalização de V, a ausência de $|\ell_i^0\rangle$ permite inverter a equação.

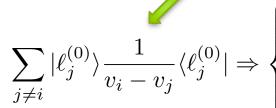
inverter a equação. Cuidado! Retire a componente i antes de inverter
$$P_0|\ell_i^{(1)}\rangle = \frac{1}{v_i - P_0 V P_0} \Big((P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 |\ell_i^{(0)}\rangle - \Delta_D^{(2)} |\ell_i^{(0)}\rangle \Big)$$



Teoria de Perturbação independente do tempo: caso degenerado

Para entender o cuidado a ser tomado, copiamos abaixo a equação do slide

anterior:
$$P_0|\ell_i^{(1)}\rangle = \frac{1}{v_i - P_0 V P_0} \left((P_0 V P_1 \frac{1}{E_D^{(0)} - H_0} P_1 V P_0) P_0 |\ell_i^{(0)}\rangle - \Delta_D^{(2)} |\ell_i^{(0)}\rangle \right).$$



 $\sum_{j\neq i} |\ell_j^{(0)}\rangle \frac{1}{v_i - v_j} \langle \ell_j^{(0)}| \Rightarrow \begin{cases} \text{Como } V \text{ \'e diagonal em } D, \text{a presença} \\ \text{de } P_0 \text{ ao redor de } V \text{ garante que a matriz} \\ \text{inversa \'e a apenas a matriz dos inversos dos} \end{cases}$ elementos da diagonal

Ou ainda, se definirmos $\bar{P}_0 = \sum |\ell_j^{(0)}\rangle\langle\ell_j^{(0)}|$ a operação de inversão fica:

$$\frac{1}{(v_i - P_0 V P_0)} \bar{P}_0 = \bar{P}_0 \frac{1}{(v_i - P_0 V P_0)} \bar{P}_0 = \bar{P}_0 \frac{1}{(v_i - V)} \bar{P}_0 = \sum_{j \neq i} |\ell_j^{(0)}\rangle \frac{1}{v_i - v_j} \langle \ell_j^{(0)}|$$

$$\bar{P}_0 P_0 = \bar{P}_0$$

Assim, finalmente, temos:

$$P_0|\ell_i^{(1)}\rangle = \sum_{j \neq i} \frac{P_0|\ell_j^{(0)}\rangle}{v_i - v_j} \sum_{k \notin D} \langle \ell_j^{(0)}|V|k^{(0)}\rangle \frac{1}{E_D^{(0)} - E_k^{(0)}} \langle k^{(0)}|V\ell_i^{(0)}\rangle$$

(note que o termo que contém $\Delta_D^{(2)}$ desapareceu $\to \langle \ell_i^{(0)} | \ell_i^{(0)} \rangle = 0$, p/ $i \neq j$)

MAPLima

Teoria de Perturbação independente do tempo: caso degenerado

Da equação da caixa azul do slide 5, podemos escrever:

$$\langle \ell_i^{(0)} | \left((E - E_D^{(0)} - \lambda P_0 V) P_0 | \ell \rangle - \lambda P_0 V P_1 | \ell \rangle \right) = 0$$

Adotando que $\langle \ell_i^{(0)} | \ell \rangle = 1$, como no caso não-degenerado e lembrando que

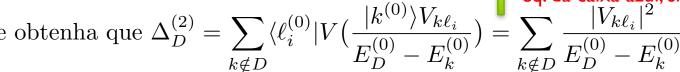
$$\Delta_D = E - E_D^{(0)}$$
, temos: $\Delta_D = \lambda \langle \ell_i^{(0)} | V P_0 | \ell \rangle + \lambda \langle \ell_i^{(0)} | V P_1 | \ell \rangle = \lambda \langle \ell_i^{(0)} | V | \ell \rangle$

inserção das expansões $\begin{cases} E - E_D^{(0)} = \Delta_D = \lambda \Delta_D^{(1)} + \lambda^2 \Delta_D^{(2)} + \dots \\ |\ell\rangle = |\ell^{(0)}\rangle + \lambda^{(1)} |\ell^{(1)}\rangle + \dots \end{cases}$

fornece
$$\begin{cases} \Delta_D^{(1)} = \langle \ell_i^{(0)} | V P_0 | \ell_i^{(0)} \rangle + \langle \ell_i^{(0)} | V P_1 | \ell_i^{(0)} \rangle = v_i \text{ (conforme vimos).} \\ \Delta_D^{(2)} = \langle \ell_i^{(0)} | V P_0 | \ell_i^{(1)} \rangle + \langle \ell_i^{(0)} | V P_1 | \ell_i^{(1)} \rangle \end{cases}$$

Para obter $\Delta_D^{(2)}$ use resultados de slides anteriores, isto é que

$$|\ell_{i}^{(1)}\rangle = \begin{cases} P_{0}|\ell_{i}^{(1)}\rangle = \sum_{j\neq i} \frac{P_{0}|\ell_{j}^{(0)}\rangle}{v_{i}-v_{j}} \sum_{k\notin D} \langle \ell_{j}^{(0)}|V|k^{(0)}\rangle \frac{1}{E_{D}^{(0)}-E_{k}^{(0)}} \langle k^{(0)}|V\ell_{i}^{(0)}\rangle \\ P_{1}|\ell_{i}^{(1)}\rangle = \sum_{k\notin D} \frac{|k^{(0)}\rangle V_{k\ell}}{E_{D}^{(0)}-E_{k}^{(0)}} \end{cases}$$
 e obtenha que $\Delta_{D}^{(2)} = \sum_{k\notin D} \langle \ell_{i}^{(0)}|V(\frac{|k^{(0)}\rangle V_{k\ell_{i}}}{E_{D}^{(0)}-E_{k}^{(0)}}) = \sum_{k\notin D} \frac{|V_{k\ell_{i}}|^{2}}{|V_{k\ell_{i}}|^{2}} = \sum_{k\notin D} \frac{|V_{k\ell_{i}}|^{2}}{|V_{k\ell_{i}}|^{2}}} = \sum_{k\notin D} \frac{|V_{k\ell_{i}}|^{2}}{|V_{k\ell_{i}}|^{2}} = \sum_{k\notin D} \frac{|V_{k\ell_{i$



F1002

Teoria de Perturbação independente do tempo: aplicações Aula 03 Efeito Stark Linear

Obtemos este efeito com um campo elétrico homogêneo sobre o nível 2 do átomo de hidrogênio. Desconsiderando spin, o nível 2 é quadridegenerado, isto é

$$n = 2: \begin{cases} 2s \to \ell = 0, m = 0 \\ 2p \to \ell = 1, m = -1, 0, 1 \end{cases}$$
 ambos com energia $E_2 = -\frac{e^2}{2a_0} \frac{1}{2^2} = -\frac{1}{8} \frac{e^2}{a_0}$

Se o autovalor é quadridegenerado, V será 4×4 , isto é:

* $\langle \varphi | z | \varphi \rangle = 0$, pois, $\langle \mathbf{r} | \varphi \rangle$ tem paridade bem definida. ** $\langle n; \ell m | z | n'; \ell' m' \rangle = 0$ se $m \neq m'$. Lembre também que $V_{21} = V_{12}^*$.

Assim, sobrou só: $V_{12} = \langle 2s|z|2p_0 \rangle = \langle 2p_0|z|2s \rangle^* = V_{21}^*$.

Fazendo as contas, obtemos $\langle 2s|z|2p_0\rangle = \langle 2p_0|z|2s\rangle = 3ea_0|\mathbf{E}|$. A teoria

de perturbação, fornece:
$$\begin{cases} \text{ordem 1 em energia } \Delta_{\pm}^{(1)} = \pm 3ea_0 |\mathbf{E}| \\ \text{ordem 0 em ket } |\pm\rangle = \frac{1}{\sqrt{2}} (|2s\rangle \pm |2p_0\rangle) \end{cases}$$

Teoria de Perturbação: Efeito Stark Linear

- Note que o átomo ganhou um momento de dipolo elétrico permanente, isto é $\mathbf{p} = \int \mathbf{x}' \rho(\mathbf{x}') d^3 x' \neq 0, \text{ pois } \rho = |\langle \mathbf{x}' | \pm \rangle|^2 \text{ e } \langle \mathbf{x}' | \pm \rangle \text{ não tem paridade bem definida.}$
- E se olhássemos para o átomo de H verdadeiro? 2s seria degenerado com 2p? Não, de fato a interação spin-órbita quebra esta degenerescência. Veremos que o espectro é do tipo $\begin{cases} -2p_{3/2} \\ -2s_{1/2}2p_{1/2} \end{cases}$ (Lamb Shift remove esta)

Continua correto aplicar o formalismo de níveis não degenerados? Sim, se a distância entre os níveis for pequena comparada com a quebra de degenerescência causada pelo campo elétrico. Se não for, use o formalismo não degenerado.

