Chapter 5 Approximation Methods

Problems

/S‘YA simple harmonic oscillator (in one dimension) is subjected to a perturbation

NEh =1

where b is a real constant.
(a) Calculate the energy shift of the ground state to lowest nonvanishing order.

(b) Solve this problem exactly and compare with your result obtained in (a). You
may assume without proof that

n
(o |¥1ttn) = | e (VA 1801 1+ V18 1)

In nondegenerate time-independent perturbation theory, what is the probability of
finding in a perturbed energy eigenstate (|k)) the corresponding unperturbed eigen-
state (|k©))? Solve this up to terms of order/gz/. .

Consider a particle in a two-dimensional potential

{0, forl0=n =iy < L
VA= .
o0, otherwise.

Write the energy eigenfunctions for the ground state and the first excited state. We
now add a time-independent perturbation of the form

Vi — Axy, forO0<x<L,0<y<L
=010 otherwise.

Obtain the zeroth-order energy eigenfunctions and the first-order energy shifts for
the ground state and the first excited state.

% Consider an isotropic harmonic oscillator in fwo dimensions. The Hamiltonian i«

given by
2 2 2
JEERL | Y ) )
Hy=22 4 e .
= o | T )

(a) What are the energies of the three lowest-lying states? Is there any degeneracy -
(b) We now apply a perturbation

WV = Smwzxy,

where § is a dimensionless real number much smaller than unity. Find e
zeroth-order energy eigenket and the corresponding energy to first order [the
is, the unperturbed energy obtained in (a) plus the first-order energy shift] 7o
each of the three lowest-lying states.

(¢) Solve the Hy+ V problem exactly. Compare with the perturbation results o=
tained in (b). [You may use (n'|x|n) = //2mo (/1 + 18, 1 + /18—

5.5 Establish (5.1.54) for the one-dimensional harmonic oscillator given by (5.1.5
with an additional perturbation V = %emwzxz. Show that all other matrix elems=
Vo vanish.
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/
(From Merzbacher 1970.) A slightly anisotropic three-dimensional harmonic os-

\ cillator has @, ~ wy = @y. A charged particle moves in the field of this oscillator
and is at the same time exposed to a uniform magnetic field in the x-direction. As-
suming that the Zeeman splitting is comparable to the splitting produced by the
anisotropy, but small compared to 7, calculate to first order the energies of the
components of the first excited state. Discuss various limiting cases.

(/

7" A one-electron atom whose ground state is nondegenerate is placed in a uniform
electric field in the z-direction. Obtain an approximate expression for the induced
electric dipole moment of the ground state by considering the expectation value
of ez with respect to the perturbed-state vector computed to first order. Show that
the same expression can also be obtained from the energy shift A = —a|E|?/2 of
the ground state computed to second order. (Note: o stands for the polarizability.)
Ignore spin.

5.8 Evaluate the matrix elements (or expectation values) given below. If any vanishes,
explain why it vanishes using simple symmetry (or other) arguments.
(@) (n=2l=1m=0xln=2l= 0,m =0).
® (n=20=1m=0|p;|n= 2.1 =10sm =IO
[In (a) and (b), |nlm) stands for the energy eigenket of a nonrelativistic hydrogen
atom with spin ignored.]
(¢) (L) for an electron in a central field with j = %, m= %, [ =4.
(d) (singlet,m; = Onge') — S§e+)|triplet,m s = 0) for an s-state positronium.
(&) (81 .S@) for the ground state of a hydrogen molecule.

5.9 A p-orbital electron characterized by |n,l =1,m = £1,0) (ignore spin) is subjected
to a potential

V= )\(x2 — yz) (A = constant).

(a) Obtain the “correct” zeroth-order energy eigenstates that diagonalize the per-
turbation. You need not evaluate the energy shifts in detail, but show that the
original threefold degeneracy is now completely removed.

(b) Because V is invariant under time reversal and because there is no longer any
degeneracy, we expect each of the energy cigenstates obtained in (a) to go
into itself (up to a phase factor or sign) under time reversal. Check this point

A explicitly.

%0 Consider a spinless particle in a two-dimensional infinite square well:

e 0,  forl0=bagaall=y < a
~ Joo, otherwise.

(a) What are the energy eigenvalues for the three lowest states? Is there any de-
generacy?
(b) We now add a potential

Vi =" 0<x<al0<y=<a

Taking this as a weak perturbation, answer the following:
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(i) Is the energy shift due to the perturbation linear or quadratic in 1 for each of
the three states?
(i) Obtain expressions for the energy shifts of the three Jowest states accurate to
order A. (You need not evaluate integrals that may appear.)
(iii) Draw an energy diagram with and without the perturbation for the three energy
states. Make sure to specify which unperturbed state is connected to which
perturbed state.

The Hamiltonian matrix for a two-state system can be written as

RE?AA
S

Clearly, the energy eigenfunctions for the unperturbed problems (A = 0) are given

by
1 0
¢§0) £ ( ) ; ¢£0) s (1> .

(a) Solve this problem exactly to find the energy eigenfunctions 1 and v, and the
energy eigenvalues E1 and Ej.

(b) Assuming that A|A] K IE? — Eg\, solve the same problem using time-
independent perturbation theory up to first order in the energy eigenfunctions
and up to second order in the energy eigenvalues. Compare with the exact
results obtained in (a).

(c) Suppose the two unperturbed energies are “almost degenerate”; that is,

|E — B < MA.

Show that the exact results obtained in (a) closely resemble what you would
expect by applying degenerate perturbation theory to this problem with £ (1) set
exactly equal to Eg.

(This is a tricky problem because the degeneracy between the first state and the
second state is not removed in first order. See also Gottfried 1966, p. 397, Problem
1.) This problem is from Schiff 1968, p. 295, Problem 4. A system that has three
unperturbed states can be represented by the perturbed Hamiltonian matrix

187 O a
0 By b8
a® " e,

where E, > E;. The quantities a and b are to be regarded as perturbations that
are of the same order and are small compared with E» — E. Use the second-order
nondegenerate perturbation theory to calculate the perturbed eigenvalues. (Is this
procedure correct?) Then diagonalize the matrix to find the exact eigenvalues. Fi-
nally, use the second-order degenerate perturbation theory. Compare the three re-
sults obtained.

Compute the Stark effect for the 2512 and 2Py 2 levels of hydrogen for a field ¢ suf-
ficiently weak that eea is small compared to the fine structure, but take the Lamb
shift § (§ = 1,057 MHz) into account (that is, ignore 2P35 in this calculation .
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Show that for ecag < 8, the energy shifts are quadratic in ¢, whereas for ecag > 6,
they are linear in ¢. (The radial integral you need is (2s|r|2p) = 34/3ap.) Briefly
discuss the consequences (if any) of time reversal for this problem. This problem
is from Gottfried 1966, Problem 7-3.

Work out the Stark effect to lowest nonvanishing order for the n = 3 level of the hy-
drogen atom. Ignoring the spin-orbit force and relativistic correction (Lamb shift),
obtain not only the energy shifts to lowest nonvanishing order but also the corre-
sponding zeroth-order eigenket.

Suppose the electron had a very small intrinsic electric dipole moment analogous to
the spin-magnetic moment (that is, f,; proportional to ¢). Treating the hypothetical
— i, + E interaction as a small perturbation, discuss qualitatively how the energy
levels of the Na atom (Z = 11) would be altered in the absence of any external
electromagnetic field. Are the level shifts first order or second order? Indicate ex-
plicitly which states get mixed with each other. Obtain an expression for the energy
shift of the lowest level that is affected by the perturbation. Assume throughout that
only the valence electron is subjected to the hypothetical interaction.

Consider a particle bound to a fixed center by a spherically symmetrical potential

V).
o z EZX
o) _(—mz)(dr)

(a) Prove
for all s-states, ground and excited.

(b) Check this relation for the ground state of a three-dimensional isotropic os-
cillator, the hydrogen atom, and so on. (Note: This relation has actually been
found to be useful in guessing the form of the potential between a quark and
an antiquark.)

' (a) Suppose the Hamiltonian of a rigid rotator in a magnetic field perpendicular to

the axis is of the form (Merzbacher 1970, Problem 17-1)
AL? L BERGI,

if terms quadratic in the field are neglected. Assuming B > C, use perturbation
theory to lowest nonvanishing order to get approximate energy eigenvalues.

(b) Consider the matrix elements
(n’l/m;m;|(3z2 — )| nlmymy),
(U mymig | xy|ndmms)
of a one-electron (for example, alkali) atom. Write the selection rules for Al,
Amy, and Amy. Justify your answer.

Work out the quadratic Zeeman effect for the ground-state hydrogen atom [(x]0) =
(1/,/mad)e™/%] due to the usually neglected e*A*/ 2mec?-term in the Hamilto-
nian taken to first order. Write the energy shift as

A=—}xB?
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and obtain an expression for diamagnetic susceptibility, X The following definite
integral may be useful:
/ooe_‘"r"dr = il :
0 ant!

5.19 (Merzbacher 1970, p. 448, Problem 11.) For the He wave function, use

—Zest(r1 +12)
ao

P (X1,%2) = (ngf/nag)exp [

with Zeff =2 — —153, as obtained by the variational method. The measured value of

the diamagnetic susceptibility is 1.8 x 109 cm?/mole.

Using the Hamiltonian for an atomic electron in a magnetic field, determine.
for a state of zero angular momentum, the energy change to order B? if the system
is in a uniform magnetic field represented by the vector potential A = %B XL

Defining the atomic diamagnetic susceptibility X by E = —% x B2, calculate
x for a helium atom in the ground state and compare the result with the measured
value.

4 500 Estimate the ground-state energy of a one-dimensional simple harmonic oscillator
using

(xl(» — P

as a trial function with B to be varied. You may use

o n!
f A=t -
0 an-l—l
9 }{1 Estimate the lowest eigenvalue (1) of the differential equation

2
'd—%'i'()»'lxl)‘/f:(), ¥ — 0 for|x| — o0
dx

using the variational method with

(o to be varied)

it {c(oc—lx|), for |x| <o

= 105 for |x| > &

as a trial function. (Caution: dyr/dx is discontinuous at x = 0.) Numerical data
that may be useful for this problem are

33— 1442, 53 =1710, 3%°=2.080, 7?3 =2.145.
The exact value of the lowest eigenvalue can be shown to be 1.019.

5.22 Consider a one-dimensional simple harmonic oscillator whose classical angulz
frequency is wo. For f < 0 it is known to be in the ground state. For ¢ > 0 there =
also a time-dependent potential

V(t) = Fox coswt,

where Fy is constant in both space and time. Obtain an expression for the expec-
tation value (x) as a function of time using time-dependent perturbation theor

| —

T T m———
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to lowest nonvanishing order. Is this procedure valid for w 2~ wp? [You may use

/x| = o/ BT 2m@0(/F 1o 1+ ~/180/n-1)]

8 A one-dimensional harmonic oscillator is in its ground state for # < 0.Fort > 0it
is subjected to a time-dependent but spatially uniform force (not potential!) in the
x-direction,

F(t) = Foe™'/".

(a) Using time-dependent perturbation theory to first order, obtain the probability
of finding the oscillator in its first excited state for 1 > 0. Show that the t — 00
(r finite) limit of your expression is independent of time. Is this reasonable or
surprising?

(b) Can we find higher excited states? You may use

(1) = /B 2m@( M8y et + N B 41).
e

5\44 Consider a particle bound in a simple harmonic-oscillator potential. Initially (# <
/ '\ 0),itis in the ground state. At¢ = 0 a perturbation of the form

H'(x,1) = Ax%e”'/"

is switched on. Using time-dependent perturbation theory, calculate the probability
that after a sufficiently long time (z > 1), the system will have made a transition to
a given excited state. Consider all final states.

5.25 The unperturbed Hamiltonian of a two-state system is represented by

2Y .
H°—(o %)

There is, in addition, a time-dependent perturbation

0 Acoswt
VU)Z(Acoswt 0 ) (rreal).

(a) At =0 the system is known to be in the first state, represented by

)

Using time-dependent perturbation theory and assuming that E(l) — Eg is not
close to +Hw, derive an expression for the probability that the system is found

in the second state represented by
0
1
as a function of ¢(t > 0).
(b) Why is this procedure not valid when E? — Eg is close to hw?

5.26 A one-dimensional simple harmonic oscillator of angular frequency o is acted upon
by a spatially uniform but time-dependent force (not potential)

sl OO <l < 00,

v
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5.27

5.28

5.29

At ¢ = —o0, the oscillator is known to be in the ground state. Using the tme-
dependent perturbation theory to first order, calculate the probability that the osc-
lator is found in the first excited state at 7 = +00.

Challenge for experts: F(t) is s0 normalized that the impulse

/ F(t)dt

imparted o the oscillator is always the same—that is, independent of 7} yet ©¢
7> 1/w, the probability for excitation is essentially negligible. Is this reasonadbis
[Matrix element of x: (n'|x|n) = (1 12m) (8 gt + N1+ 180 n41) ]

Consider a particle in one dimension moving under the influence of some time-
independent potential. The energy levels and the corresponding eigenfunctions “o¢
this problem are assumed to be known. We now subject the particle to a travelime
pulse represented by a time-dependent potential,

V(1) = As(x —ct).

(a) Suppose that at f = —00 the particle is known to be in the ground state whoss
energy eigenfunction is (x]i) = ui(x). Obtain the probability for finding e
system in some excited state with energy eigenfunction (x| fi=usx)atr=
+o0.

(b) Interpret your result in (a) physically by regarding the 8-function pulse z= =
superposition of harmonic perturbations; recall

I > ]
Sx—ct)==— dwe! @971,
DTN oo
Emphasize the role played by energy conservation, which holds even quantu=-
mechanically as long as the perturbation has been on for a very long time.

A hydrogen atom in its ground state [(n,1,m) = (1,0,0)] is placed between &=
plates of a capacitor. A time-dependent but spatially uniform electric field (=
potential!) is applied as follows: ]

E= {0 fort <0 g in the positivez-direction)

Eoe /2 SoRzE0}

Using first-order time-dependent perturbation theory, compute the probability T
the atom to be found at 7 >> 7 in each of the three 2 p states: (n,1,m)=2,1,£lor 0
Repeat the problem for the 2s state: (n,l,m) = (2,0,0). You need not attemp: *
evaluate radial integrals, but perform all other integrations (with respect to angles
and time).

Consider a composite system made up of two spin % objects. For ¢ < 0, the Ham
tonian does not depend on spin and can be taken to be zero by suitably adjustzc
the energy scale. For 7 > 0, the Hamiltonian is given by

4N
H= (?) Si-Ss.

Suppose the system is in |+—) forz <0.Find, asa function of time, the probab:’:
for its being found in each of the following states | ++), | + —), | =), and [——
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(a) By solving the problem exactly.

(b) By solving the problem assuming the validity of first-order time-dependent
perturbation theory with H as a perturbation switched on at 7 = 0. Under what
condition does (b) give the correct results?

7
& % Consider a two-level system with E; < E». There is a time-dependent potential
/ that connects the two levels as follows:

—iwt

Vit=Va =0, Vig=ye®, Va=ye (y real).

At t = 0, it is known that only the lower level is populated—that is, ¢1(0) =1,

2(0)=0.

(a) Find |c1(0))? and |ca(2)|? for ¢ > 0 by exactly solving the coupled differential
equation

2
ihéy=Y Vin(®)e%'c,, (c=1,2).
n=1
(b) Do the same problem using time-dependent perturbation theory to lowest non-
vanishing order. Compare the two approaches for small values of y. Treat the
following two cases separately: (i) o very different from w; and (ii)  close

to wy.
Answer for (a): (Rabi’s formula)

B 2) i 291/2

|C2(t)|2 i 2/h2 +}’( /h )2/4 Sin2 { I:% L (w 40)21) ] t} .
¥ w— w21

lei@)F=1 =eaB)S

5.31 Show that the slow-turn-on of perturbation V — Ve (see Baym 1969, p. 257) can
generate a contribution from the second term in (5.7.36).

@ 532 (a) Consider the positronium problem you solved in Chapter 3, Problem 3.4. In
the presence of a uniform and static magnetic field B along the z-axis, the
Hamiltonian is given by

eB

G

H=ASI‘S2+ ( )(SIZ_SZZ)-

Solve this problem to obtain the energy levels of all four states using degener-
ate time-independent perturbation theory (instead of diagonalizing the Hamil-
tonian matrix). Regard the first and second terms in the expression for H as Hy
and V, respectively. Compare your results with the exact expressions

h2A B\ singlet m = 0
E=—(22) 142, (ISR for |

4 mechA triplet m =0
_h’A
- A

where triplet (singlet) m = O stands for the state that becomes a pure triplet
(singlet) withm =0 as B — 0.

E for triplet m = %1,
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d emission and absorption’
llating magnetic field of the
along the z-axis of along

static field is assumed to

(b) We now attempt to cause transitions (via stimulate
between the two m = 0 states by introducing an osci
“right” frequency. Should we orient the magnetic field
the x- (or y-) axis? Justify your choice. (The original
be along the z-axis throughout.)

(¢) Calculate the eigenvectors to first order.

oblem 5.32, but with the atomic hydrogen Hamiltonian

eB
H=AS;-S2+ (’)Sl'B,
MeC

5.33 Repeat Pr

where in the hyperfine term, AS;+ Sz, Si is the electron spin and Sy is the proton
ess symmetry than the positronium casel.

spin. [Note that the problem here has 1
n by an excited atom. The process

5.34 Consider the spontancous emission of a photo
is known to be an E1 transition. Suppose the magnetic quantum number of the
atom decreases by one unit. What is the angular distribution of the emitted photon”
Also discuss the polarization of the photon, with attention to angular-momenturn
conservation for the whole (atom plus photon) system.

clectron and a singly charged (Z = 1) triton CH)-

5.35 Consider an atom made up of an
Suppose the system un-

Initially the system is in its ground state (1 = =10
dergoes beta decay, in which the nuclear charge suddenly increases by one unit

(realistically by emitting an electron and an antineutrino). This means that the tri-
tium nucleus (called a triton) turns into a helium (Z = 2) nucleus of mass 3 (He).
(a) Obtain the probability for the system to be found in the ground state of the
resulting helium ion. The hydrogenic wave function is given by

1 Z ! Zr,
= - —\— —Zr/ag .
wn_1,1_0(x) = <ao> e

¢ energy in tritium beta decay is about 18 keV, and the size of
about 1A. Check that the time scale T for the transformation
dity for the sudden approximation.

(b) The availabl
the >He atom is
satisfies the criterion of vali

defined in (5.6.23) is 2 purely real quantity.

gnetic field, fixed at an angle 6 with respect to the Z-axis.
¢-direction. That is, the tip of the magnetic field traces

out a circle on the surface of the sphere at “latitude” 7w — 0. Explicitly calculate the
Berry potential A for the spin-up state from (5.6.23), take its curl, and determing
Berry’s Phase V+- Thus, verify (5.6.42) for this particular example of a curve d
(For hints, see “The Adiabatic Theorem and Berry’s Phase” by B.R. Holstein, A7

J. Phys. 57 (1989) 1079.)

5.38 The ground state of a hydrogen atom n=11=
potential as follows:

5.36 Show that A, (R)

5,37 Consider a neutron in a ma,
but rotating slowly in the

0) is subjected to a time-dependert

vix,t) =V cos(kz — wt).
Using time-dependent perturbation theory, obtain an expression for the transitic®
rate at which the electron is emitted with momentum p- Show, in particular, ho™
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you may compute the angular distribution of the ejected electron (in terms of 8 and
¢ defined with respect to the z-axis). Discuss briefly the similarities and the differ-
ences between this problem and the (more realistic) photoelectric effect. (Note: For
the initial wave function, see Problem 5.35. If you have a normalization problem,
the final wave function may be taken to be

1 .
Yr(x) = (m) oPx/h

with L very large, but you should be able to show that the observable effects are
independent of L.)
A particle of mass m constrained to move in one dimension is confined within
0 < x < L by an infinite-wall potential

Vi=tcolniforl<- 0ixni=>"L,

V=0 for 5 b
Obtain an expression for the density of states (that is, the number of states per unit

energy interval) for high energies as a function of E. (Check your dimension!)

Linearly polarized light of angular frequency o is incident on a one-electron
“atom” whose wave function can be approximated by the ground state of a three-
dimensional isotropic harmonic oscillator of angular frequency wp. Show that the
differential cross section for the ejection of a photoelectron is given by

7 dah?i3 % # 2
29 | Sl Lexp R k}—l—(g)
dQ  m2wwy \| may mag @
2hk
x sin® 0 cos ¢ exp [( fw)cos@],
mawoc

provided the ejected electron of momentum /iky can be regarded as being in a
plane-wave state. (The coordinate system used is shown in Figure 5.12.)

Find the probability |¢(p’)|*d> p’ of the particular momentum p’ for the ground-
state hydrogen atom. (This is a nice exercise in three-dimensional Fourier trans-
forms. To perform the angular integration, choose the z-axis in the direction of p.)

Obtain an expression for t(2p — 1s) for the hydrogen atom. Verify that it is equal
to 1.6 x 107 s.




