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Problems

6.1

6.2

6.3

6.4

The Lippmann-Schwinger formalism can also be applied to a one-dimensional
transmission-reflection problem with a finite-range potential, V(x) # 0 for 0 <
|x| < a only.

(a) Suppose we have an incident wave coming from the left: {x|¢) = eikx /2.
How must we handle the singular 1/(E — Hp) operator if we are to have a
transmitted wave only for x > a and a reflected wave and the original wave for
x <—a?lsthe E—~ E+ié¢ prescription still correct? Obtain an expression for
the appropriate Green’s function and write an integral equation for (x| .

(b) Consider the special case of an attractive 8-function potential

h2
= (%—) 5(x) (¥ >0)
m

Solve the integral equation to obtain the transmission and reflection ampli-
tudes. Check your results with Gottfried 1966, p. 52.

(c) The one-dimensional §-function potential with y > 0 admits one (and only one)
bound state for any value of y. Show that the transmission and reflection am-
plitudes you computed have bound-state poles at the expected positions when
k is regarded as a complex variable.

Prove

m? 5 aue) , sin® k|jx — x|

Otot = ;ﬁz‘/\d )Cfd X V(r)V(r )m

in each of the following ways.

(a) Byintegrating the differential cross section computed using the first-order Born
approximation.

(b) By applying the optical theorem to the forward-scattering amplitude in the
second-order Born approximation. [Note that £(0) is real if the first-order. Born
approximation is used.]

Estimate the radius of the 40Cq nucleus from the data in Figure 6.6 and compare to
that expected from the empirical value ~ 1.4A'3 fm, where A is the nuclear mass
number. Check the validity of using the first-order Born approximation for these
data.

Consider a potential
V=0 forr>R, V = Vj = constant forir, < R,
where V may be positive or negative. Using the method of partial waves, show that

for |Vo| K E = 72k?/2m and kR K 1, the differential cross section is isotropic and
that the total cross section is given by

(1671 ) m>VZ RO
Otot =— R e
9 nt




Problems 443

6.5

6.6

6.7

Suppose the energy is raised slightly. Show that the angular distribution can then
be written as

d
d—;— = A+ Bcosé.

Obtain an approximate expression for B/A.

A spinless particle is scattered by a weak Yukawa potential
Voe M
Vi L’
ur

where > 0 but V can be positive or negative. It was shown in the text that the
first-order Born amplitude is given by

2mVy il
#2u [2k2(1 —cos)+ 2]’
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(a) Using f(V(9) and assuming |8;| < 1, obtain an expression for §; in terms of a
Legendre function of the second kind,
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(b) Use the expansion formula

!
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to prove each assertion.
(i) & is negative (positive) when the potential is repulsive (attractive).
(ii) When the de Broglie wavelength is much longer than the range of the
potential, & is proportional to %+, Find the proportionality constant.

Check explicitly the x — p, uncertainty relation for the ground state of a particle
confined inside a hard sphere: V = oo for r > a, V =0 for r < a. (Hint: Take
advantage of spherical symmetry.)

Consider the scattering of a particle by an impenetrable sphere

Ot > a
coNfoRr < a.

VA= {

(a) Derive an expression for the s-wave (/ = 0) phase shift. (You need not know the
detailed properties of the spherical Bessel functions to do this simple problem!)
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(b) What is the total cross section o [0 = f (do/d2)d2] in the extreme low-energy
limit kK — 0? Compare your answer with the geometric cross section wa?. You
may assume without proof:

do
G0 2
70 WACHI
1 oo
fO = (%) > @1+ 1)e™ sing; Fi(cos b).
1=0

6.8 Use 8 = A(D)|p—i/x to obtain the phase shift § for scattering at high energies
by (a) the Gaussian potential, V = Voexp(—r2/a?), and (b) the Yukawa potential,
V = Voexp(—ur)/ur. Verify the assertion that & goes to zero very rapidly with
increasing [ (k fixed) for [ > kR, where R is the “range” of the potential. [The
formula for A(b) is given in (6.5.14)].

6.9 (a) Prove

n? 1 : A
e e 8~ k)Y YOI @) itk i ),

1 m

where r(r>) stands for the smaller (larger) of r and r’.
(b) For spherically symmetrical potentials, the Lippmann-Schwinger equation can
be written for spherical waves:

1

Using (a), show that this equation, written in the x-representation, leads to an
equation for the radial function, A;(k; r), as follows:

2mik

hZ
o0

x f Jiller DR )V YA r ) 2dr.
0

Ay(ksr) = jitkr) —

By taking r very large, also obtain
i5, SN
filk) = L SUH
k
2m Sk )
=— 2 / Jitkr) A (ks r)V (r)rdr.
0
6.10 Consider scattering by a repulsive §-shell potential:
2m
el Vn)=ho=R), (> 0).

(a) Set up an equation that determines the s-wave phase shift 8o as a function of
k(E = h%k*/2m). ‘
(b) Assume now that y is very large,

1
—.k.
y > R
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6.11

6.12

6.13

Show that if tan kR is not close to zero, the s-wave phase shift resembles the
hard-sphere result discussed in the text. Show also that for tan kR close to (but
not exactly equal to) zero, resonance behavior is possible; that is, cotdy goes
through zero from the positive side as k increases. Determine approximately
the positions of the resonances keeping terms of order 1/y; compare them
with the bound-state energies for a particle confined inside a spherical wall of
the same radius, /

V=10 rl—aR Vi— o0, =1
Also obtain an approximate expression for the resonance width T" defined by
-2
N = s
[d(cot 80)/dE]|E=E,

and notice, in particular, that the resonanees become extremely sharp as y be-
comes large. (Note: For a different, more sophisticated approach to this prob-
lem, see Gottfried 1966, pp. 131-41, who discusses fthe analytic properties of
the D;-function defined by A; = j;/D;.)

A spinless particle is scattered by a time-dependent potential
V(r,t) = V(r)coswt.

Show that if the potential is treated to first order in the transition amplitude, the
energy of the scattered particle is increased or decreased by hiw. Obtain do/dS2.
Discuss qualitatively what happens if the higher-order terms are taken into account.

Show that the differential cross section for the elastic scattering of a fast electron
by the ground state of the hydrogen atom is given by

do _<4mze4) 1 16 1
dar s [4+(a] ]

(Ignore the effect of identity.)

Let the energy of a particle moving in a central field be E(J;J2J3), where
(J1,J2,J3) are the three action variables. How does the functional form of E
specialize for the Coulomb potential? Using the recipe of the action-angle method,
compare the degeneracy of the central-field problem to that of the Coulomb prob-
lem, and relate it to the vector A.
If the Hamiltonian is
P2 2
H = — + V(RO

24
how are these statements changed?

Describe the corresponding degeneracies of the central-field and Coulomb
problems in quantum theory in terms of the usual quantum numbers (n, [, m) and
also in terms of the quantum numbers (k, m, n). Here the second set, (k, m, n), labels
the wave functions DX (afy).

How are the wave functions D¥

@By ) related to Laguerre times spherical
harmonics?



