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ity to create and destroy particles is inconsistent with our “single-particle” ap-
proach to writing down dynamics in quantum mechanics. Instead, we would need
to reexamine the Hamiltonian formalism, on which much of this book is based, in
order to address these issues.

Quantum field theory is the correct framework for addressing relativistic quan-
tum mechanics and mutli-particle quantum mechanics in general. There are essen-
tially two ways to approach quantum field theory, neither of which is developed
here. We mention them only for the reader interested in going on to the next steps.

One approach is through the method of “second quantization,” wherein oper-
ators are introduced that create and destroy particles. These operators commute
with each other if they have integer spin, and they anticommute for half-integer
spin. Work needs to be done in order to build in relativistic covariance, but it is
relatively straightforward. It is also, however, not necessary if the problem doesn’t
warrant it. This is the case, for example, in a vast number of fascinating problems
in condensed-matter physics.

Second quantization is discussed in Section 7.5 of this book. For other ex-
amples, see Quantum Mechanics, 3rd ed., by Eugen Merzbacher, and Quantum
Theory of Many-Particle Systems, by Alexander L. Fetter and John Dirk Walecka.

The second approach is through the path-integral approach to quantum me-
chanics, famously pioneered by Richard Feynman in his Ph.D. thesis. This
conceptually appealing formalism is straightforward to extend from particle
quantum mechanics to quantum fields. However, it is not straightforward to use
this formalism for calculation of typical problems until one makes the connection
to the “canonical” formalism that eventually becomes second quantization. Nev-
ertheless, it is a worthwhile subject for students who would like to have a better
understanding of the principles that lead to the quantum many-body problem.

Path integrals are not the basis for many books on quantum field theory, but
they are beautifully exploited in Quantum Field Theory in a Nutshell by Anthony
Zee.

Problems

8.11 These exercises are to give you some practice with natural units.

(a) Express the proton mass m, = 1.67262158 x 10?7 kg in units of GeV.

(b) Assume a particle with negligible mass is confined to a box the size of the
proton, around 1 fm = 10715 m. Use the uncertainty principle estimate the
cnergy of the confined particle. You might be interested to know that the mass,
in natural units, of the pion, the lightest strongly interacting particle, i8 m, =
135 MeV.

(¢) String theory concerns the physics at a scale that combines gravity, relativity,
and quantum mechanics. Use dimensional analysis to find the “Planck mass”
M p, which is formed from G, %, and ¢, and express the result in GeV.

8.12 Show that a matrix n#¥ with the same elements as the metric tensor 7, used in
this chapter has the property that 7/*n,,, = 84, the identity matrix. Thus, show that
the natural relationship n*¥ = n**n"%n;,, in fact holds with this definition. Show
also that a*by, = a, b" for two four-vectors a/ and b*.
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8.13 Show that (8.1.11) is in fact a conserved current when W(x,7) satisfies the Klein-
Gordon equation.

/)/gg Show that (8.1.14) follows from (8.1.8).

8.15 Derive (8.1.16a), (8.1.16b), and (8.1.18).

8.16 Show that the free-particle energy eigenvalues of (8.1.18) are £ = £FE, and that
the eigenfunctions are indeed given by (8.1.21), subject to the normalization that
YinY =41 for E=1E,.

8.17

This problem is taken from Quantum Mechanics II: A Second Course in Quantum
Theory, 2nd ed., by Rubin H. Landau (1996). A spinless electron is bound by the
Coulomb potential V(r) = —Ze?/r in a stationary state of total energy E < m.
You can incorporate this interaction into the Klein-Gordon equation by using the
covariant derivative with V = —e® and A = 0. Work with the upper component of
the wave function.

(a)

(b)

(c)

()

Assume that the radial and angular parts of the equation separate and that the
wave function can be written as e £ [u;(kr)/7 1Y}, (6, ). Show that the radial
equation becomes

du [26Ze 1 10+1D)=(Za)® o
dp? yp 4 P2 g

where o = €2, y2 = 4(m?* — E?), and p =kr.
Assume that this equation has a solution of the usual form of a power series
times the p — oo and p — 0 solutions, that is,

u(p) = p*(A 4 cip+cap® +--)e 2,

and show that

1 NG
k=ke=2= (l+5> —(Za)?

and that only for k4 is the expectation value of the kinetic energy finite and
that this solution has a nonrelativistic limit that agrees with the solution found
for the Schrodinger equation.

Determine the recurrence relation among the ¢;’s for this to be a solution of the
Klein-Gordon equation, and show that unless the power series terminates, the
will function will have an incorrect asymptotic form.

In the case where the series terminates, show that the energy eigenvalue for the

- k4 solution is

(e)

m
2
(1+(Za)2[n—l—%+ (l+%)2—(Za)2:| >

where 7 is the principal quantum number.

Expand E in powers of (Za)? and show that the first-order term yields the
Bohr formula. Connect the higher-order terms with relativistic corrections, and
discuss the degree to which the degeneracy in / is removed.
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Jenkins and Kunselman, in Phys. Rev. Lert. 17 (1966) 1148, report measurements
of a large number of transition energies for 77~ atoms in large-Z nuclei. Compare
some of these to the calculated energies, and discuss the accuracy of the prediction.
(For example, consider the 3d — 2p transition in >Co, which emits a photon with
energy 384.6 + 1.0 keV.) You will probably need either to use a computer to carry
out the energy differences with high enough precision, or else expand to higher
powers of (Za)?.

@Prove that the traces of the y*, o, and f are all zero.

8.9 (a) Derive the matrices y* from (8.2.10) and show that they satisfy the Clifford
algebra (8.2.4).

(b) Show that

o i/ TERR O
V—(O g s s

3 i ;
and y’:( —(i'i % >=G’®it2,

where [ is the 2 x 2 identity matrix, and o/ and 7; are the Pauli matrices. (The
® notation is a formal way to write our 4 x 4 matrices as 2 x 2 matrices of 2 x 2
matrices.)

8.10 Prove the continuity equation (8.2.11) for the Dirac equation.
8.11 Find the eigenvalues for the free-particle Dirac equation (8.2.20).

8.12 Insert one of the four solutions u(]fz( p) from (8.2.22) into the four-vector proba-
bility current (8.2.13) and interpret the result.

8.13 Make use of Problem 8.9 to show that Ur as defined by (8.3.28) is just 2 ® I, up
___ toaphase factor.
) ; \\
/ 8.14 /Write down the positive-helicity, positive-energy free-particle Dirac spinor wave

{

L function W(x,7).
(a) Construct the spinors LW, CW, TV,

(b) Construct the spinor €T W and interpret it using the discussion of negative-
energy solutions to the Dirac equation.

8.15 Show that (8.4.38) imply that u(x) and v(x) grow like exponentials if the series
(8.4.32) and (8.4.33) do not terminate.

81? Expand the energy eigenvalues given by (8.4.43) in powers of Zw, and show that

.~ the result is equivalent to including the relativistic correction to kinetic energy
(5.3.10) and the spin-orbit interaction (5.3.31) to the nonrelativistic energy eigen-
values for the one-electron atom (8.4.44).

8.17 The National Institute of Standards and Technology (NIST) maintains a web site
with up-to-date high-precision data on the atomic energy levels of hydrogen and
deuterium:

http:/physics.nist.gov/PhysRefData/HDEL/data.html
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The accompanying table of data was obtained from that web site. It gives the en-
ergies of transitions between the (1,1, j) = (1,0,1/2) energy level and the energy
level indicated by the columns on the left.

e i [E@ml,j)—E(1,0,1/2)]/hc (em™h)
20 1R 82 258.954 399 2832(15)
Fen R 82 258.919 113 406(80)
2197 82 259.285 001 249(80)
3 0 12 97 492221 724 658(46)
g1 W2 97 492.211 221 463(24)
3 1 32 97 492.319 632 775(24)
3t R 97 492.319 454 928(23)
g9 92 97 492.355 591 167(23)
4 0 12 102 823.853 020 867(68)
4 1 12 102 823.848 581 881(58)
4 1 32 102 823.894 317 849(58)
AN 102 823.894 241 542(58)
4 2 52 102 823.909 486 535(58)
4 3 572 102 823.909 459 541(58)
4 3 1IN 102 823.917 081 991(58)

(The number in parentheses is the numerical value of the standard uncertainty re-
ferred to the last figures of the quoted value.) Compare these values to those pre-
dicted by (8.4.43). (You may want to make use of Problem 8.16.) In particular:
(a) Compare fine-structure splitting between the n =2, j =1/2 andn = 2S=15/7,
states to (8.4.43).
(b) Compare fine-structure splitting between the n =4, j = 5/2andn=4,j=17/2
states to (8.4.43).
(¢) Compare the 1§ — 25 transition energy to the first line in the table. Use as
many significant figures as necessary in the values of the fundamental con-
stants, to compare the results within standard uncertainty.
(d) How many examples of the Lamb shift are demonstrated in this table? Identify
one example near the top and another near the bottom of the table, and compare
their values.




