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This paper lists 15 commonly held misconceptions concerning quantum mechanics, such as
“Energy eigenstates are the only allowed states” and “The wave function is dimensionless.” A few
suggestions are offered to help combat these misconceptions in teaching. © 1996 American

Association of Physics Teachers.

L. INTRODUCTION

Effective teaching does not simply teach students what is
correct—it also insures that students do not believe what is
incorrect. The study of student misconceptions in introduc-
tory mechanics has become both an important concern of
physics education research and a valuable tool for the prac-

ticing physics teacher. (See Ref. 1 for a review.) This paper.

concerns misconceptions in the more advanced and abstruse
field of quantum mechanics.

In the context of introductory mechanics, misconceptions
are often called “preconceptions” because they arise from
the everyday observations and generalizations, beginning in
childhood, that everyone needs in order to toss a ball, walk
down a street, or chew food. Indeed, professional basketball
players probably earn more from their preconceptions con-
cerning classical mechanics than professional physicists
earns from their correct conceptions. The origin of miscon-
ceptions in quantum mechanics—notoriously far from every-
day experience—is less clear. The catalog that follows sug-
gests origins for particular misconceptions, but these are
speculations only and must not be mistaken for well-founded
results. The empirical observation is merely that these errors
are easy to slip into.

This list of misconceptions is based on my casual obser-
vations of students, colleagues, writings, and myself. (At one
time or another I have held nearly all of them.) It is not
supported by interviews, examinations, or any of the appara-
tus of the developing field of physics education research.
Consequently I am is sure that it contains omissions and
inaccuracies. To give just one example, the list emphasizes
conceptual difficulties at the expense of what might be called
“operational” difficulties: errors or infelicities frequently
made while solving problems, deriving formulas, interpret-
ing experiments, etc.

How can this list be used in teaching? In many cases it is
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sufficient to simply point out the existence of an error that is
easy to slip into—forewarned is forearmed. (In this function
the list plays the role of the “dangerous curve” sign found on
most highways and in some mathematics books.) In other
situations teaching tools such as guided discussions, essay
questions, or diagnostic examinations? will be more appro-
priate. A very effective strategy is to assign a traditional
quantitative/analytical problem that renders the misconcep-
tion concrete. Examples are given in items 2 and 14 of the
list. (The best such problems are those that lead to one an-
swer if the misconception is followed and to a different one
if the correct path is taken. These problems demonstrate that
misconceptions are of operational as well as conceptual im-
portance. They are, however, difficult to produce.) A teaching
strategy known to be ineffective in combating misconcep-
tions is to ignore them.

II. MISCONCEPTIONS REGARDING THE IDEA OF
QUANTAL STATE

1. “Energy eigenstates are the only allowed states.” This
is a particularly common and a particularly galling miscon-
ception. If it were true, then quantum mechanics would have
no classical limit because, for example, every simple har-
monic oscillator, at every instant of time, would have an
expected displacement of zero. (Also, every planet would
have an expected position in the middle of the sun.) It seems
to arise from at least three sources: First, it is similar to the
correct statement “Energy eigenvalues are the only allowed
energies.” Second, the “old quantum theory” of 1900-1925
did indeed have the framework of restricting the ““allowed
states.” Third, quantum mechanics courses usually devote
most of their time to the energy eigenproblem, leaving stu-
dents with the understandable impression that energy eigen-
states are in some way blessed by nature rather than by hu-
man convenience.
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One way to combat this misconception is by devoting
more of the course to the time development problem. Al-
though analytically difficult in general, quantal time devel-
opment can be treated effectively through computer
51mu1at10n 34 or through analytic tricks in a few special
cases.” Careful use of terminology can also help prevent this
mlsconceptlon s birth and growth. For example I always call
the “time-dependent Schrodmger equation” simply the
“Schrodinger equation” (Schrodinger himself © called it the
“real wave equation”) and I call to the “time-independent
Schrodinger equation” by the less dignified name of the “en
ergy eigenproblem.” 1 refer to a stationary state as an “en-
ergy eigenstate” and to any possible state as an “arbitrary
state.”” For time-independent and time-dependent perturba-
tion theory I use the terms “perturbation theory for the en-
ergy eigenproblem” and “perturbation theory for the time
development problem,” respectively.

2. “A quantal state ¥(x) is com?letely specified by its
associated probability density |¢(x)|".”” This misconception
seems to be particularly prevalent among chemists.” It is true
that the “probability cloud” is important, but it is not the
only thing that is important. It says nothing, for example,
about the expected momentum, and therefore nothing about
the probability density at future times. A good antidote to this
misconception is to assign an exercise calculating the expec-
tation values for the momentum of two Gaussian wave pack-
ets with identical probability densities but different phases
and hence with different expected momenta. Exercises like
this are commonly assigned early in a quantum mechanics
course, and using them to squash a misconception adds to
both their utility and interest.

3. “The wave function (x) is a function of regular three-
dimensional position space.” In fact, it is a function of con-
figuration space, which is isomorphic to position space only
for one-particle systems. Thus for a two-particle system the
wave function {x;,X,) exists in six-dimensional configura-
tion space.

4. “The wave function is dimensionless.” In fact, it carries
the dlmenswns [length]™“N'2, where N is the number of par-
ticles in the system and d is the dimensionality of space.

5. “A wave function (or state vector) describes an en-
semble of classical systems.” In the standard Copenhagen
interpretation, a state vector describes a single system, e.g., a
single particle or, in systems such as the hydrogen atom, a
single pair of particles. In tenable statistical interpretations,®
the state vector describes an ensemble of individual systems
each of which does not behave classically. The appealing
view that a state vector represents an ensemble of classical
systems was rendered untenable by tests of Bell’s theorem®
which show that no deterministic model, no matter how
complicated, can give rise to all the results of quantum me-
chanics.

Discussions of quantal scattering are often phrased so as to
reinforce this misconception, as when the transmission prob-
ability through a barrier is defined as the fraction of particles
passing through the barrier when a large number impinge
upon it. Definitions of this sort are pedagogically sound and
I do not advocate abandoning them. In fact, reminding stu-
dents that this definition of transmission probability does rot
imply the ensemble view is a good way to spiral back to a
previously established point.

6. “A wave function (or state vector) describes a single
system averaged over some amount of time.” In fact it de-
scribes a single system at a single instant. (Otherwise what
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does the time dependence of a wave function represent?)
Anyone 10,11 asking the common question “How does a par-
ticle get through a node in its wave function?” is thinking
that the particle is a dot with a definite position and zero
width, and probably with definite momentum as well, and
that the wave function represents some sort of time average
or ensemble average. In other words, the person asking the
question is suffering from either this or the previous miscon-
ception or both. An effective pedagogical tool is to invite the
passage-through-node question and then guide students in
discussion to discover for themselves that the question is
unanswerable because it assumes an incorrect classical pic-
ture underlying quantum mechanics. (Similar misconcep-
tions probably underlie the thoughts of anyone who says that
“when a particle tunnels through a potential barrier, it never
appears under the barrier...it just disappears from one side
and reappears on the other.”)

II1. MISCONCEPTIONS REGARDING
MEASUREMENT

7. “The ‘collapse of the wave packet’ involves (or permits)
faster-than-light communication.” This mlsconceptlon fre-
quently comes up in connection with Bell’s theorem,” and it
almost always involves an implicit acceptance of misconcep-
tion 3. If permitted to grow unchecked, this mlsconceptlon
can do enormous harm. For example, Dossey'? invokes this
misconception to “explain” faith healing at a distance.

An analogy to electrodynamics helps students here. In the
Coulomb gauge, the electric potential at a point in space
changes the instant that any source particle moves, regardless
of how far away it is."> This does not imply that information
moves instantly, because electric potential by itself is not
measurable. The same applies for wave function.

8. “Measurement disturbs the system.” In more detail, this
misconception holds that each particle really does have defi-
nite values for both position and momentum, but these defi-
nite values cannot be determined because measurement of,
say, a particle’s position alters the value of its momentum. (It
is related to the idea of a classical picture underlying quan-
tum mechanics mentioned in item 6.) This is a particularly
common misconception because some arguments due to
Heisenberg (“‘the gamma ray microscope”) and Bohr can be
interpreted to support it. It is another attractlve idea rendered
untenable through tests of Bell’s theorem.’ (Thls idea is also
shown to be incorrect through “quantum eraser’” arguments,
as in Ref. 14.)

9. Angular momentum measurements. This misconception
(more accurately the class of misconceptions) is that given a
system with a definite value of L,, there exists a definite
value of L, (or of L, or both), but that it is changing rapidly
(or randomly, or unpredictably) so that when its value is
measured the outcome of the measurement cannot be pre-
dicted. This misconception is reinforced by the “rotating
vector model” often invoked in modern physics courses.
This is not to say that the rotating vector model must never
be used (although as a matter of taste I do not), but only that
it must be presented along with cautions concerning its limi-
tations.

Misconceptions 8 and 9 exemplify the overarching mis-
conception that quantum mechanics involves uncertainty,
whereas in fact it involves indeterminacy. To combat this
misconception, it is desirable to use the term “expected
value” rather than “mean value”—the latter suggests that
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there is only one, correct, value, which is subject to experi-
mental error. Similarly, one can use “indeterminacy in x”
rather than “uncertainty in x,” and “Heisenberg indetermi-
nacy principle” rather than “Heisenberg uncertainty prin-
ciple.” Whether the payoff in accuracy is worth the invest-
ment in syllables is a matter of individual choice.

IV. MISCONCEPTIONS REGARDING IDENTICAL
PARTICLES

10. “In the two-body expression y(X;,X,), the labels 1 and
2 refer to particles.” In fact, they refer to positions. Thus, for
two nonidentical particles,

| (%, %,)[?

is the probability density for finding the particle of type 1 at
X, and the particle of type 2 at x,. The location within the
argument list tells which particle is being considered, while
the subscript labels the positions being examined. For two
identical particles,

|‘//(X2,X1)|2

is the probability density for finding a particle at X, and a
particle at x;. Once again the subscripts refer to positions
rather than to particle types, now because both particles are
of the same type.

This may be seem entirely nitpicky, but if the subscript 1
refers to particle 1, then, in expressions like

W(Xy,%2) = P(%;,%),

how are we to interpret the second member? And if the sub-
scripts label particles, then how can they ever be used with
identical particles, which by definition cannot be labeled? To
be completely unambiguous, in my teaching I label positions
by numbers (X;,X;,X3,...), wave functions by letters
(¥4 .45 .¥¢»-..), and particles by colors (red, orange, yel-
low,...,). This is probably overkill, but once I started I found
it impossible to stop.

11. “An antisymmetric wave function for two particles is
necessarily the difference of products of one-body wavefunc-
tions.” One can indeed construct a basis of such states, but
an arbitrary state will be a linear combination of such basis
states. If the particles interact, then even the energy eigen-
states will not (in general) be in the “difference of products™
form.

Where does this misconception come from? It is, of
course, quite true that any antisymmetric wave function may
be written as a difference

P(x1,%2) = f(X1,%5) — f(x2,%q).

The trouble is that the function f(x,,x,) might not factorize.
Students, however, almost always see the situation where
f(x;,%,) is a product of one-body energy eigenstates, because
they are almost always worried about producing two-body
energy eigenstates. A possible antidote is to introduce, per-
haps in an exercise, the one-dimensional bivariate Gaussian
wave function, for which the unsymmetrized “building
block™ is

flxy,x2)=A exp [~ (x}/d}~2Gx;x,+x3/d3)]

i(kyx,+k
X e'tkix1tkaxz)

where A is a normalization constant.
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12. “Two nearby identical fermions (in the same spin
state) repel each other with a force.” The effective repulsion
(in the classical limit) of such particles is sometimes called
an “exchange force.” It holds for noninteracting as well as
interacting particles. No Hamiltonian—no force—is in-
volved. Ultimately it is not due to strong, electroweak, or
gravitational interactions: it is instead a direct consequence
of the Pauli principle.

V. MISCELLANEQUS MISCONCEPTIONS

13. “A barrier ‘far away’ from a particle, where ¥{x)=0,
can affect the particle.” Quantum mechanics is weird but not
that weird. This misconception is presented in Roger Pen-
rose’s The Emperor’s New Mind."®

14. “The probability current density j(x) is related to the
speed of that part of the particle which is located at position
x.” In the Born interpretation, a quantal particle behaves
somewhat like a classical fiuid with density |¥(x)[* and ve-
locity field v(x)=j(x)/|¢Ax)|>. Like the rotating vector model,
this picture is valuable if its limitations are recognized and
dangerous if they are not. It leaves the impression that, al-
though the particle as a whole has neither a definite position
nor a definite velocity, it is made up of parts each of which
does have definite position x and definite velocity v(x). (This
misinterpretation is related to misconceptions 5 and 6 in that
it imagines some sort of classical undergirding to quantum
mechanics.) In fact it is not even correct to speak of “that
part of the particle which is located at x”’—particles are not
made up of parts.

Here is another instance where assigning a traditional ana-
lytic problem can help prevent a misconception from taking
hold. The mean velocity in the classical fluid picture, and the
expected velocity in quantum mechanics, is

f d’xj(x)

in both cases. But the fotal kinetic energy in the classical
fluid picture, and the expected kinetic energy in quantum
mechanics, are

m jz(x) A2 *
Ef T —mf Py () V2 y(x),

respectively. These quantities are not the same either in in-
terpretation or in numerical value. For example, the total
kinetic energy in the classical fluid picture vanishes for any
energy eigenstate. [It is possible that a more sophisticated
classical fluid picture, for example, one in which j(x) repre-
sents the mean current of constituent parts that are flowing in
many different directions, could make these two expressions
match. But it is hard to imagine how such a picture could
resolve the differences in interpretation or in setting (namely
that one picture takes place in position space and the other in
configuration space).]

15. “For any energy eigenstate, the probability density
must have the symmetry of the Hamiltonian.” 1f a one-
dimensional potential has reflection symmetry about any
point, then the probability density functions associated with
each energy eigenstate will also possess that symmetry. This
fact is so reasonable (and so strongly stressed by many text-
books) that many students slip into believing that it holds for
other symmetries, such as the rotational symmetry of the
Coulomb problem, where it does not. I have often seen this
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misconception submerge and propagate unseen until the stu-
dent takes a course in solid state physics, where it emerges to
make the Bloch theorem appear trivial.
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The ambiguity of random choices: Probability paradoxes in some physical

processes
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Intriguing problems whose solutions seem to run counter to intuition are sometimes discussed
theoretically in probability textbooks; under close scrutiny, they often appear to originate from an
incomplete specification of the sampling procedures. Interest in these oddities is not purely
academic; the world of real point processes (with its multitude of applications in science and
engineering) exhibits its own “paradoxes” that follow from certain ambiguities in the random
choice of an event. The paper discusses some probabilistic subtleties that can be easily illustrated by
ordinary demonstration experiments in the physics laboratory. © 1996 American Association of

Physics Teachers.

I. INTRODUCTION: A PROBLEM IN STATISTICAL
ASTRONOMY

The results of a survey, performed to determine the posi-
tions of galaxies whose redshifts fall within a certain inter-
val, are available at a number of PC terminals disseminated
within an astronomical observatory. Each galaxy appears on
the screen as a dark dot in white background, an image that
evokes the distribution of sand grains scattered at random on
a white table.

A student wants to calculate some statistical parameter of
the galaxy population and chooses the measurement of the
average distance between a randomly selected galaxy and its
nearest neighbor.

“For one thing,” the student argues, “I must pick a galaxy
completely at random. Then I explore the field around it and

34 Am. J. Phys. 64 (1), January 1996

look for its nearest neighbor, I measure the distance between
the two, I repeat the procedure a large number of times and
eventually get an average.”

Of course, our future astronomer need not materially per-
form the whole sequence of operations described above nor
perform all subsequent operations necessary to complete the
job; the student merely instructs the computer to do so by
implementing a suitable program.

The first task, therefore, is to set up a procedure for select-
ing a galaxy at random; but the student soon realizes that this
can be done in several ways, two of which are illustrated
below.

A. Procedure 1 (galaxy nearest to a random point)

At first, our student remembers that in order to select a
pulse at random out of a stream of cosmic rays he or she
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NOTES AND DISCUSSIONS

Erratum: “The intrinsic magnetic moment of elementary particles”

[Am. J. Phys. 64(5), 597—601 (1996)]
Robert J. Gould

Physics Department 0319, University of California, San Digeo, La Jolla, California 92093-0319

My recent paper’ failed to cite some important references.
In particular, there is the work of Hagen and Hurley® which
obtained the result g=1/s for gemeral spin s through a
Galilean-invariant formulation that also imposed certain rea-
sonable ‘‘minimality’” conditions. It was shown there that in
the absence of a minimality condition the g factor can be
totally arbitrary. The extension to the special relativity case
was carried out by Singh and Hagen for the integer’ and
half-integer* spin cases.

The recent work’ by Ferrara, Porrati, and Telegdi should
also have been cited. This paper presents a completely dif-
ferent point of view, namely, that g=2 is appropriate for
all s.

I am grateful to Dr. C. R. Hagen for calling his work to
my attention and wish to apologize to him and to others for
omitting the references in my original paper.

!R. J. Gould, ““The intrinsic magnetic moment of elementary particles,”’
Am. J. Phys. 64, 597-601 (1996).

*C. R. Hagen and W. 1. Hurley, ‘‘Magnetic Moment of a Particle with
Arbitrary Spin,”” Phys. Rev. Lett. 24, 1381-1384 (1970).

L. P. S. Singh and C. R. Hagen, ‘‘Lagrangian Formulation for Arbitrary
Spin. . The Boson Case,”” Phys. Rev. D 9, 898-909 (1974).

“L. P. S. Singh and C. R. Hagen, ‘“‘Lagrangian Formulation for Arbitrary
Spin. II. The Fermion Case,”” Phys. Rev. D 9, 910-920 (1974).

5S. Ferrara, M. Porrati, and V. L. Telegdi, ‘‘g=2 as the natural value of the
tree-level gyromagnetic ratio of elementary particles,”” Phys. Rev. D 46,
3529-3537 (1992).

Erratum: “Common misconceptions regarding quantum mechanics”

[Am. J. Phys. 64(1), 31-34 (1996)]
Daniel F. Styer

Department of Physics, Oberlin College, Oberlin, Ohio 44074

The commentary for misconception number 5 of this pa-
per should have said that “‘no local deterministic model, no
matter how complicated, can give rise to all the results of
quantum mechanics.”” Due to a blunder on my part, the pub-

lished paper did not include the necessary qualifier ‘‘local.”
I thank Professors Art Hobson of the University of Arkansas
and Gary Bowman of Northern Arizona University for bring-
ing this error to my attention.

Comment on “Retardation and relativity: The case of a moving line
of charge,” by Oleg D. Jefimenko [Am. J. Phys. 63(5), 454—459 (1995)]

W. Geraint V. Rosser

Physics Department, University of Exeter, Exeter, EX4 4QL United Kingdom
(Received 8 November 1995; accepted 28 November 1995)

In a recent paper in this journal, Jefimenko' raised two
interesting queries. First, to quote Jefimenko: ‘‘And why can
Lorentz contraction be ignored in classical calculations in-
volving linear dimensions of moving charges without mak-
ing the results of the calculations incorrect?”” In practice,
when the laws of classical electromagnetism are applied to
determine the electric field in a particular inertial reference
frame, such as the laboratory reference frame 2, all the quan-
tities used in the theory must be measured relative to the
chosen reference frame. For example, in the case of the labo-
ratory reference frame 3, in which the line of charge is mov-
ing with uniform velocity v, the length to be used, when
applying classical electromagnetism is the length / of the
moving line of charge measured in 3, using methods consis-
tent with classical electromagnetism, such as radar methods.

1202 Am. J. Phys. 64 (9), September 1996

If all the quantities, such as /, are measured in 3,, there is no
need to mention any other reference frame and there is no
need to consider length contraction. The relativistic transfor-
mation need only be applied when the values of some of the
variables are not in the chosen reference frame 3, but are
given relative to some other inertial reference frame. For
example, if we are given the length /, measured in the iner-
tial reference frame moving with velocity v relative to 2, and
in which the line of charge is at rest, then the correct value to
be used for the length ! of the moving line of charge in 3
would be Io(1 — v*/¢?)!/? which is precisely the value that
would be measured in 2 using radar methods (Ref. 2).

The second query raised by Jefimenko! was expressed in
the form: ‘“‘On the other hand, although the retarded field
derivation is based on the idea that retardation in the propa-
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