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A simple algebraic method, which is as easy to use as the angular momentum algebra, is
demonstrated as a pedagogical way to solve certain central force problems exactly. Solutions for the
hydrogen atom and the three-dimensional isotropic harmonic oscillator are presented together with
a discussion of the limits of the method. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

The central force problem,

HuElm&5EuElm&, ~1!

where

H5
p2

2m
1

l ~ l 11!\2

2mr2 1V~r !, ~2!

andp5pr is a familiar one in quantum physics. It covers t
Coulomb potential~Fig. 1!, which describes the hydroge
atom, as well as the three-dimensional isotropic harmo
oscillator potential~Fig. 2!, which is used as an approxima
tion to the strong force independent–particle mean field
nuclei. Finding exact solutions to these problems by diff
ential methods is tedious. We outline an algebraic way1 of
solving for the energy eigenvalues and eigenfunctions tha
more elegant than the traditional differential methods, a
also explore the limits of this method.

II. BUILDING THE ALGEBRA

A well-known example of an algebraic solution to a sta
dard quantum mechanical problem is the solution to the
gular momentum problem,

L2ulm&5lulm&, ~3!

Lzulm&5mulm&, ~4!

which uses the commutator brackets

@Lx ,Ly#5 i\Lz , ~5!

@Ly ,Lz#5 i\Lx , ~6!

@Lz ,Lx#5 i\Ly , ~7!

and yieldsl5 l ( l 11)\2, m5m\ (m5 l ,l 21,...,1,0,21,...,
2 l ). These commutator brackets, or Lie products, define
Lie algebra2 so~3!.

The algebraic solution to~1! can be achieved using th
commutator bracket,

@r ,pm#5 i\mpm21, ~8!

and the Lie products that result for the operatorsr a, r bp, and
r cp2. @We only consider powers ofp up top2 because that is
the highest power ofp in Eq. ~1!.# From Eq.~8! we obtain

@r a,r bp#5r b@r a,p#5r b~ i\ara21!5 i\ara1b21. ~9!

Just asLx , Ly , andLz form the closed algebra of Eqs.~5!–
~7!, we want the Lie products ofr a, r bp, andr cp2 to form a
945 Am. J. Phys.70 ~9!, September 2002 http://ojps.aip.or
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closed algebra. Thus,r a1b21 must be equal tor a, whence
b51 and@r a,rp#5 ia\r a. Similarly, we obtain for the other
commutator brackets,

@r a,r 22ap2#5a~a21!\212ia\rp, ~10!

@rp,r 22ap2#5 i\ar22ap2, ~11!

wherec522a is chosen so that the algebra closes. Note t
these brackets do not depend in any way on the choice
potential. Indeed, we choose the remaining degree of f
dom,a, to fit our algebra to the potentials we solve.

We introduce the change of variables, viz.,

V15r a, ~12!

V25
1

a
@rp2 1

2i ~a21!\#, ~13!

V35
1

a2 r 22ap2. ~14!

The commutator brackets, Eqs.~9!, ~10!, and~11!, can now
be written as

@V1 ,V2#5 i\V1 , ~15!

@V2 ,V3#5 i\V3 , ~16!

@V3 ,V1#522i\V2 . ~17!

A subtle and key extension of this algebraic structure
realized3 by noting thata can take on both positive and neg
tive values in Eq.~12!, and therefore thatr 2a5V1

21 yields,
from Eqs.~9! and ~13!,

@V2 ,V1
21#5 i\V1

21. ~18!

Therefore, from Eqs.~16! and ~18! we obtain

@V2 ,~V31tV1
21!#5 i\~V31tV1

21!, ~19!

wheret is a constantor any operator that commuteswith
V1 , V2 , and V3 . That is, the algebra of Eqs.~15!–~17! is
unchanged by the replacement ofV3 with V31tV1

21. With
one last linear combination~extension! of the algebra, viz.,

T15 1
2~V31tV1

212V1!, ~20!

T25V2 , ~21!

T35 1
2~V31tV1

211V1!, ~22!

we obtain the commutator algebra,

@T1 ,T2#52 i\T3 , ~23!
945g/ajp/ © 2002 American Association of Physics Teachers
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@T2 ,T3#5 i\T1 , ~24!

@T3 ,T1#5 i\T2 . ~25!

These are reminiscent of the angular momentum commut
brackets mentioned in Eqs.~5!–~7!. Equations~23!–~25! are
identical to Eqs.~5!–~7! except for the sign difference be
tween Eqs.~5! and ~23!. The Lie algebra described byLx ,
Ly , and Lz is so~3!, whereas the algebra described byT1 ,
T2 , andT3 is so~2,1!. We learn a great deal about this alg
bra by comparing it with our knowledge of angular mome
tum.

III. A COMPARISON OF so „3… AND so„2,1…

To compare the algebras so~2,1! and so~3!, we write them
in the condensed form

@T1 ,T2#5 ig\T3 , ~26!

@T2 ,T3#5 i\T1 , ~27!

@T3 ,T1#5 i\T2 , ~28!

Fig. 1. The hydrogen atom–the Coulomb potential is the dotted line,
‘‘centrifugal’’ potential is the dashed line, and the total potential is the so
line.

Fig. 2. The 3D harmonic oscillator–the oscillator potential is the dotted l
the ‘‘centrifugal’’ potential is the dashed line, and the total potential is
solid line.
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or

-

whereg511 for so~3! andg521 for so~2,1!. Using these
equations enables us to translate much of our knowledg
so~3! into so~2,1!. For example, the raising and lowerin
operators areT65T16 iT2 , and produce

@T1 ,T2#52g\T3 , ~29!

@T3 ,T6#56\T6 , ~30!

T25g~T1
21T2

2!1T3
25gT1T21T3

22\T3

5gT2T11T3
21\T3 , ~31!

@T2,Tk#50, k51,2,3. ~32!

Simultaneous eigenkets ofT2 andT3 exist and obey

T2uQq&5QuQq&, ~33!

T3uQq&5quQq&, ~34!

T3T6uQq&5~q6\!T6uQq&. ~35!

Thus the T6 operators perform ladder operations on t
eigenvectors of T3 , and therefore the eigenvalue
eigenvector spectrum ofT3 is obtained. So, to find the con
straints on the eigenvalues, we consider

^Qqu~T22T3
2!uQq&5Q2q2,

5
g

2
^Qqu~T1T21T2T1!uQq&. ~36!

By rewriting Eq.~36! using

T1uQq&5ux&, ~37!

T2uQq&5uc&, ~38!

we obtain4

1
2^QquT~T1T21T2T1!uQq&5^xux&1^cuc&>0, ~39!

which means, forg511,

Q2q2>0, ~40!

q<AQ. ~41!

Equation~41! is the result we expect for so~3!. The eigen-
values ofT3 (Lz) are bounded above and below, creating
range of values forq(ml). ~Moreover, from these bounds
follows that ml5 l ,l 21,...,1,0,21,...,l .! However, for g
521,

Q2q2<0, ~42!

q>AQ. ~43!

Either q has a lower bound or an upper bound, but not bo
@Because of the infinite nature of the eigenvalues, so~2,1! is
called a noncompact algebra.# We choose forq to have a
lower bound; the motivation for this choice will become ev
dent later. We define the lowest eigenstate as

T2uQq0&50, ~44!

and find

T2uQq0&5~2T1T21T3
22\T3!uQq0&

5~q0
22q0\!uQq0&5q0~q02\!uQq0&. ~45!

Just as the irreducible representations5 of so~3! are labeled by
l and the eigenvalues ofL2 are l ( l 11), so the irreducible
representations of so~2,1! are labeled byq0 , and the eigen-
values ofT2 are q0 (q02\). The only difference between

e

,
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the irreps of the two groups is that the irreducible repres
tations of so~3! consist of a finite number of states, where
the irreducible representations of so~2,1! consist of an infi-
nite number of states.

To illuminate the nature ofq0 , consider

T252T1
22T2

21T3
25~T32T1!~T31T1!2@T3 ,T1#2T2

2

5V1~V31tV1
21!2 i\V22V2

2. ~46!

Then, using

V2
25

1

a2 F r 2p22 ia\rp2S a21

2
\ D 2G ~47!

@from Eqs.~8! and ~13!#, and Eqs.~12!, ~13!, and ~14!, we
can simplify Eq.~46! to

T25t1
\2

4a2 ~12a2!. ~48!

From

^Qq0uT2uQq0&5q0~q02\!, ~49!

we obtain

q0
22q0\2Ft1

\2

4a2 ~12a2!G50, ~50!

which implies that

q05
\

2 S 16A4t

\2 1
1

a2D . ~51!

IV. WAVE FUNCTIONS

To find the ground state wave function, consider

~T22T3!uQq0&52q0uQq0&. ~52!

Using T25T12 iT2 and Eqs.~20!, ~21!, ~22!, we obtain

~V11 iV22q0!uQq0&50, ~53!

which simplifies to

F r a1
irp

a
1

\

2

a21

a
2q0G uQq0&50. ~54!

If we express Eq.~54! in the position representatio
@r→a21r ,p→2 i\ad/dr, uQq&→C0(r )#, we obtain the
differential equation

r
dc0~r !

dr
1Fa

\ S r

a D a

1
a21

2
2

aq0

\ Gc0~r !50, ~55!

wherea permits a scaling of the position coordinate. It d
rectly follows that Eq.~55! is separable, and thusC0(r ) can
be written as

c0~r !5ArCe2~1/\!~r /a!a
, ~56!

whereC5aq0\2121/2(a21). The substitution ofq0 from
Eq. ~51! gives

C5
1

2 F16A4a2t

\2 11G . ~57!

The excited state wave functions can be obtained usin

@T12~T32qn!#cn~r !5kn11cn11~r !, ~58!
947 Am. J. Phys., Vol. 70, No. 9, September 2002
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where kn is a normalization constant andqn5q01nr\.
Through a process similar to that leading from Eqs.~52! to
~55!, we write Eq.~58! as

r
dcn~r !

dr
1F2

a

\ S r

a D a

1
a21

2
1

aqn

\ Gcn~r !

5kn11cn11~r !. ~59!

The actual calculation of the excited state wave functio
~and of their normalization constants! is left as an exercise
for the reader. Note that we have proceeded thus far by tr
ing Eq. ~2! as a one-dimensional Hamiltonian. However, b
cause radial integrals have an extra factor ofr 2 compared
with one-dimensional integrals, the three-dimensional wa
functions are related to the one-dimensional wave functi
we have found, viz.,

cn~r ![rfn~r !, ~60!

wherefn(r ) is the radial portion of the wave function tha
solves the original three-dimensional problem, andC(r ) is
the wave function that solves the simplified one-dimensio
radial problem stated in Eq.~2!.

V. THE LIMITS OF so „2,1… AS APPLIED TO
CENTRAL FORCE PROBLEMS

All of the problems under consideration are based up
the connection between the so~2,1! operator T3 and the
Hamiltonian operator, as follows:

~T32qn!5ar b~H2E!. ~61!

If we expand each side of Eq.~61! and use Eqs.~20!, ~21!,
and ~22!, we obtain

1

2 S 1

a2 r 22ap21
t

r a 1r aD2qn

5ar bF p2

2m
1

l ~ l 11!\2

2mr2 1V~r !2EG . ~62!

Immediately the terms inp2 can be equated, and the result
a5ma22 andb522a. Therefore, Eq.~62! reduces to

1

2 S t2
l ~ l 11!\2

a2 D1
r 2a

2
2r aqn2

m

a2 r 2V~r !1
m

a2 r 2E50.

~63!

We can make a power series expansion ofr 2V(r ) in r, but
the only terms with nonzero coefficients will be terms of t
same powers ofr that we see in Eq.~63!, except for anr 2

term ~we do not wish to build the energyE into our poten-
tial!.
Thus, by inspection we write

r 2V~r !5A1Br2a1Dr a. ~64!

If we substitute Eq.~64! into Eq. ~63!, we find

1

2 S t2
l ~ l 11!\2

a2 2
m

a2 AD1S 1

2
2

m

a2 BD r 2a

2S q01
m

a2 D D r a1
m

a2 r 2E50. ~65!

It is impossible for the above equality to hold for all valu
of a without E being identically zero. However, for certai
choices ofa, one of the other terms will cancel ther 2E term.
947T. H. Cooke and J. L. Wood
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The first term, having nor dependence at all, cannot provid
this cancellation. This leads to two possible cases:a51 and
a52.

By rearranging Eq.~64!, viz.,

V~r !5
A

r 2 1Br2a221Dr a22, ~66!

we see thatA50 anda51 gives the Coulomb potential an
A50 anda52 gives the harmonic oscillator potential. No
that theonly other possible nonrelativistic central force pro
lems solvable with the so~2,1! algebra are the modified Cou
lomb potential~where AÞ0!, and the Davidson6 potential
@the three-dimensional~3-D! harmonic oscillator withAÞ0#.

VI. THE HYDROGEN ATOM

The energy eigenvalue equation for the hydrogen atom

F p2

2m
2

e2

4pe0r
1

l ~ l 11!\2

2mr 2 2EG uElml&50. ~67!

If we multiply through bymar , we obtain

Farp2

2
2

mae2

4pe0
1

a l ~ l 11!\2

2r
2marEG uElml&50. ~68!

The substitutionR for a21r and P for ap in Eq. ~68! pro-
duces

FRP2

2
2

me2a

4pe0
1

l ~ l 11!\2

2R
2ma2REG uElml&50. ~69!

By using Eqs.~12!, ~13!, and~14!, we rewrite Eq.~69! as

1

2 FV32
me2a

2pe0
1 l ~ l 11!\2V1

2122ma2V1EG uElml&50,

~70!

wherea51 so that the powers ofR match. If we examine
Eq. ~70! closely, we see that three terms match the definit
of T3 in Eq. ~22!. In fact, if

t5 l ~ l 11!\2, ~71!

2ma2E521, ~72!

q5
me2a

4pe0
, ~73!

then Eq.~70! reduces to

@T32q#uelml&50. ~74!

Note that the values ofq are the eigenvalues ofT3 and, as we
saw in Sec. III, should be indexed by and increase from
eigenvalueq0 . From Eq.~51! we deduce that

q05
\

2
„16~2l 11!…. ~75!

Because we wantq0 to be positive, we take the positiv
sign, and therefore obtain

q05\~ l 11!, ~76!

T25 l ~ l 11!\2. ~77!

Thus, if we label increments ofq by nr \, we find
948 Am. J. Phys., Vol. 70, No. 9, September 2002
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n

e

q5q01nr\5~ l 11!\1nr\5
me2a

4pe0
, ~78!

or

a5
4pe0\

me2 @~ l 11!1nr #. ~79!

Finally,

E52
me4

32p2e0
2\2

1

~ l 111nr !
2 . ~80!

With the substitutionn5 l 111nr we get the familiar energy
levels of the hydrogen atom,

E52
Ry

n2 . ~81!

Note that here the irreducible representations of so~2,1! con-
sist of energy eigenstates of a particular angular moment
and therefore each irreducible representation is labeled
value of angular momentum. The raising and lowering o
erators,T6 , change the energy eigenstate within a particu
irreducible representation, but do not move between irred
ible representations. In other words, we can useT6 to
changen, but it does not changel. Another interesting point
is that the Hamiltonian does not commute with all of t
elements of so~2,1!; unlike so~3!, so~2,1! is not a symmetry
group of the hydrogen atom. Instead, because the Ha
tonian is simply related to one of the generators, so~2,1! is
called a dynamical symmetry group of the hydrogen atom

We immediately write the wave functions using Eq.~56!,
viz.,

c0~r !5ArCe2r /a\. ~82!

If we substitute fora from Eq. ~79!, we obtain

c0~r !5ArCe2me2r /4pe0\2n, ~83!

which simplifies to

c0~r !5ArCe2r /na0, ~84!

where a0 is the Bohr radius. From Eqs.~57! and ~71! we
calculate

C5 1
2 @16A4l ~ l 11!11#, ~85!

and taking the positive value, as we did before, we obtai

C5 l 11. ~86!

Finally, recalling Eq.~60!, we obtain the ground state wav
functions for each irreducible representation,

f0~r !5Arle2r /na0. ~87!

The energy spectrum is depicted in Fig. 3, along with
action ofT1 andT2 .

VII. THE THREE-DIMENSIONAL ISOTROPIC
HARMONIC OSCILLATOR

The 3-D isotropic harmonic oscillator can be solved
much the same way as the hydrogen atom. First, the en
eigenvalue equation is

F p2

2m
1

1

2
mv2r 21

l ~ l 11!\2

2mr2 2EG uElml&50. ~88!
948T. H. Cooke and J. L. Wood
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Then, if we multiply through byb2/4 and substituteR
5b21r andP5bp,

F P2

8m
1

1

8
mv2b4R21

l ~ l 11!\2

8mR2 2
b2E

4 G uElml&50,

~89!

F1

2 S P2

4m
1

1

4
mv2b4R21

l ~ l 11!\2

4mR2 D2
b2E

4 G uElml&50.

~90!

We can again use Eqs.~12!, ~13!, and~14!, and the condition
that a52 to obtain

F 1

2m S V31
1

4
m2v2b4V11

l ~ l 11!\2

4V1
D2

b2E

4 G uElml&50.

~91!

Then if
1
4 m2v2b451, ~92!

t5
l ~ l 11!\2

4
, ~93!

we find that the eigenvalue equation simplifies to

FT32
b2mE

4 G uElml&50. ~94!

The values for the energy can be obtained from the eigen
ues ofT3 , once we have determined the values forq0 ,

q05
1

2 S \6A4t1
\2

a2D 5
1

2 S \6\Al ~ l 11!1
1

4D
5 1

2 ~\6\~ l 1 1
2!!. ~95!

In anticipation of positive energy values, we use the posit
sign, whence

q05
\

2 S l 1
3

2D . ~96!

Fig. 3. The hydrogen atom energy spectrum–the raising and lowering
erators move between states in an irrep labelled by 1.
949 Am. J. Phys., Vol. 70, No. 9, September 2002
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e

Therefore,

E5~2nr1 l 1 3
2!\v, ~97!

or, for N[2nr1 l ,

E5~N1 3
2!\v. ~98!

As before, we can immediately write the wave functions u
ing Eq. ~56!, viz.,

c0~r !5ArCe2r 2/b2\, ~99!

and from Eq.~92! we obtain

c0~r !5ArCe2mvr 2/2\, ~100!

or

c0~r !5ArCe2r 2/2b0
2
, ~101!

whereb05(\/mv)1/2 is a characteristic length of the osci
lator. From Eqs.~57! and ~93! we calculate

C5 1
2@16A4l ~ l 11!11#, ~102!

and, taking the positive value, we obtain

C5 l 11. ~103!

Finally, considering Eq.~60!, we obtain the ground stat
wave functions for each irreducible representation,

f0~r !5Arle2r 2/2b0
2
. ~104!

The energy spectrum is depicted in Fig. 4, along with
action ofT1 andT2 .

VIII. CLOSING REMARKS

We find the foregoing both rewarding and limiting. Lim
iting because the exactly solvable cases are few7 ~but not
trivial!. Rewarding because it introduces a range of new
gebraic concepts in a way that is accessible to students
have mastered the angular momentum algebra. Indeed, t
algebraic concepts reveal a simple underlying unity to
exactly solvable cases, which is not evident when using o
methods.

For the adventurous student who wishes to make a m
in-depth study of algebraic methods as applied to fami

p-

Fig. 4. The 3D harmonic oscillator energy spectrum–the raising and low
ing operators move between states in an irrep labelled by 1.
949T. H. Cooke and J. L. Wood
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quantum mechanical problems, we note~with no attempt at
completeness! the following selections: Adams,8 de Lange
and Raab,9 and Frank and van Isacker.10

We are also aware of two introductory texts~Harris and
Loeb11 and Ohanian12! that introduce~other! algebraic tech-
niques for solving central force problems. Although we e
courage the student to look at these texts, we point out
although the techniques are simply defined~they involve fac-
torization of the radial Schro¨dinger equation!, they are not
familiar structures. Again, for the adventurous student,
note that these structures can be classified as supersymm
or as isospectral, details of which are developed, for
ample, in de Lange and Raab’s book9 and in an introductory
text by Schwabl.13 Suggested problems for students a
given in the Appendix.
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APPENDIX: SUGGESTED PROBLEMS FOR
STUDENTS

~1! Show for the hydrogen atom that

~a!

c0~r !5F 2k

~ l 11!ka0
k~k21!! G

1/2

r l 11e2r /a0~ l 11!

5rf0~r ![rRn,l 5n21~r !;

~b!

c1~r !5F 2k~ l 11!

~ l 12!ka0
k~k22!! G

1/2

3S 12
r

~ l 11!~ l 12!a0
D r l 11e2r /a0~ l 11!

5rf1~r ![rRn,l 5n22~r !.

@Hint: Equations~59!, ~79!, ~84!, and ~86! can be used
with the precaution that the value ofnr should be for the
final ~raised! state.#

~2! Show for the three-dimensional isotropic harmonic o
cillator that

~a!

f0~r !5b0
23/2F 2l 12

p1/2~2l 11!!! G
1/2S r

b0
D l

e2r 2/2b0
2
;

~b!

f1~r !5b0
23/2F 2l 12

2p1/2~2l 13!!! G
1/2F2l 132

2r 2

b0
2 G

3S r

b0
D l

e2r 2/2b0
2
;

~c!

fn~r !5b0
23/2F 2l 12

2n21p1/2~n21!! ~2l 12n21!!! G
1/2

3GnlS r

b0
D S r

b0
D l

e2r 2/2b0
2
,

950 Am. J. Phys., Vol. 70, No. 9, September 2002
-
at

e
tric
-

f

-

where

Gnl~x!5 (
k50

n21
~21!k2k~n21!! ~2l 12n21!!!

~n2k21!!k! ~2l 12k11!!!
x2k.

Note: (2l 11)!![(2l 11)(2l 21)(2l 23)¯(5)(3)(1).
~3! Calculate the energy eigenvalue spectrum and the

malized ground state wave functions of the Davidson pot
tial, as given by

VDavidson5
A

r
1

B

r 2 .

~Hint: Proceed in a manner similar to the development of
hydrogen atom given in the text.!

a!Electronic mail: jw20@prism.gatech.edu, gt7307a@prism.gatech.edu
1We are entirely indebted to a paper by J. Cizek and J. Paldus, ‘‘An a
braic approach to bound states of simple one-electron systems,’’ In
Quantum Chem.12, 875–896~1977!, for this idea.

2Although we name the algebraic features that arise in the present wor
their technical names, this is done to acquaint the reader with termino
and does not require previous exposure to these terms. For an introdu
to Lie algebras that would be suitable for the application to physics pr
lems, we suggest H. J. Lipkin,Lie Groups for Pedestrians~North Holland,
Amsterdam, 1965!.

3This realization was made by Cizek and Paldus, Ref. 1.
4A subtle issue arises here in the definition of a Hermitian inner product,
example, the formation of̂xux& from ux&5T1uQq& and ^xu5^QquT2 .
The Hermitian inner product for any operatorO that can be expressed in
terms of V1 , V2 , and V3 @Eqs. ~12!–~14!#, is given by ^cuOux&
5*c* (r a22O)x dV, where the integration extends over the whole thre
dimensional~physical! space. Although the point is one of considerab
sophistication, in practical terms it means thatr a22O, whereO is any
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