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A simple algebraic method, which is as easy to use as the angular momentum algebra, is
demonstrated as a pedagogical way to solve certain central force problems exactly. Solutions for the
hydrogen atom and the three-dimensional isotropic harmonic oscillator are presented together with
a discussion of the limits of the method. @02 American Association of Physics Teachers.
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[. INTRODUCTION closed algebra. Thus2"?~! must be equal t@?, whence
h ral f bl b=1 and[r3 rp]=iafir?. Similarly, we obtain for the other
€ central force problem, commutator brackets,

H|EIm)=E|EIm), 1)

[r3r2 3p?]|=a(a—1)h%+2iakrp, (10)
where
) ) [rp.r?~2p*]=ihar®2p? (11
P2 I(1+1)%
H= ot 5+ V(r), (20 wherec=2—a s chosen so that the algebra closes. Note that

these brackets do not depend in any way on the choice of a
andp=p, is a familiar one in quantum physics. It covers the potential. Indeed, we choose the remaining degree of free-
Coulomb potential(Fig. 1), which describes the hydrogen dom, a, to fit our algebra to the potentials we solve.
atom, as well as the three-dimensional isotropic harmonic We introduce the change of variables, viz.,
oscillator potentialFig. 2), which is used as an approxima- V. =2 12
tion to the strong force independent—particle mean field in 1= (12

nuclei. Finding exact solutions to these problems by differ- 1
ential methods is tedious. We outline an algebraici//\taiy V,=—[rp—3i(a—1)4], (13
solving for the energy eigenvalues and eigenfunctions that is a
more elegant than the traditional differential methods, and 1
also explore the limits of this method. V3=¥r2‘ap2. (14)

The commutator brackets, Eq®), (10), and(11), can now

[I. BUILDING THE ALGEBRA be written as

A well-known example of an algebraic solution to a stan- [V1,V,]=iAV,, (15)
dard quantum mechanical problem is the solution to the an- _
gular momentum problem, [V2,V3]=ihV3, (16)
L2N ) =N Au), 3 [V3,Vi]=—2ihV,. (17
LA p)=pu|Au), (4) A subtle and key extension of this algebraic structure is

realized by noting thata can take on both positive and nega-

which uses the commutator brackets . . .
tive values in Eq(12), and therefore that 2=V, ! yields,

[Lyx.Ly]=ifL,, (5 from Egs.(9) and(13),
[Ly, L ]=ifly, (6) [V,,V;=iavi (18)
[L,,Ly]=iALy, (7)  Therefore, from Eqs(16) and (18) we obtain
and yields\=1(I+1)4% p=mh (m=1,1-1,..,10-1.., [Vo,(Va+ 7V H]=ih(Va+ 7V D), (19
—1). These commutator brackets, or Lie products, define the ) .
Lie algebrd sa3). where 7 is a constanbr any operator that commutesith
The algebraic solution t¢1) can be achieved using the V1. V2, andVs. That is, the algebra of Eq$15)—(17) is
commutator bracket, unchanged by the replacement\¢f with V5+ TVIl. With
[r.p™=ifmp™ L, ®) one last linear combinatiotextension of the algebra, viz.,
1 -1_
and the Lie products that result for the operatSrsrp, and T1=2(Vat+ 7V, 7= Vy), (20
r°p2. [We only consider powers gf up to p? because that is T,=V,, (22)

the highest power op in Eq. (1).] From Eq.(8) we obtain

[r3rPpl=rP[rd pl=rP(inar® YH=ikard*®"1. (9
Justad ,, L,, andL, form the closed algebra of Eq&)-
(7), we want the Lie products af, r°p, andr®p? to form a [Ty, To]=—iAT,, (23

Ta=3(Va+ 7V 1+ Vy), (22)

we obtain the commutator algebra,
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Fig. 1. The hydrogen atom—the Coulomb potential is the dotted line, the

“centrifugal” potential is the dashed line, and the total potential is the solid
line.

[Tz,T3]:iﬁT1,
[T3,T1]:iﬁT2.

(24
(29

These are reminiscent of the angular momentum commutator

brackets mentioned in Eq&)—(7). Equationg23)—(25) are
identical to Eqs.(5)—(7) except for the sign difference be-
tween Egs(5) and (23). The Lie algebra described Ry, ,
Ly, andL, is sd3), whereas the algebra described Dy,
T,, andT5 is sd2,1). We learn a great deal about this alge-
bra by comparing it with our knowledge of angular momen-
tum.

Ill. A COMPARISON OF so0 (3) AND s0(2,1)

To compare the algebras(2ql) and s@3), we write them
in the condensed form

[Ty, To]=iyATs, (26)
[T, T3]=iATy, (27
[T, T{]=1AT,, (28

N

-~
~
e —

""centrifugal” potential

Fig. 2. The 3D harmonic oscillator—the oscillator potential is the dotted line,
the “centrifugal” potential is the dashed line, and the total potential is the
solid line.
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wherey=+1 for sq3) and y=—1 for sq2,1). Using these
equations enables us to translate much of our knowledge of
sa3) into sd2,1). For example, the raising and lowering
operators ard . =T,*iT,, and produce

[T, . T_]1=2yAT,, (29
[T3, TL]=*=AT., (30
T2= T2+ T+ T5=yT. T_+T5- 4T,

=yT_T,+T3+ATs, (32)
[T?,T,]=0, x=1,23. (32)

Simultaneous eigenkets @f and T exist and obey
T2|Qa)=QlQa), (33
T5lQa)=0|Qa), (34)
T3T.|Qa)=(aq=%)T|Qq). (395

Thus theT. operators perform ladder operations on the
eigenvectors of Tz, and therefore the eigenvalue—
eigenvector spectrum df; is obtained. So, to find the con-

straints on the eigenvalues, we consider

(Qq|(T?-TH|Qa)=Q—d?,

~24Qa(T.T_+T_T)lQ). (39
By rewriting Eq.(36) using
T Qa=Ix). (37)
T_[Qa)=[#), (38)
we obtairt

HQAIT(T, T_+T_-T)[Qa)=(x|x)+(¢4)=0, (39
which means, fory=+1,

Q—-q*=0, (40)

9=<\Q. (41)
Equation(41) is the result we expect for §8). The eigen-

values ofT3 (L,) are bounded above and below, creating a
range of values fog(m,). (Moreover, from these bounds it

follows that m=I,1-1,...,1,0-1,...,I.) However, for y
=-1,
Q-q2<0, (42)
q=Q. (43

Either g has a lower bound or an upper bound, but not both.
[Because of the infinite nature of the eigenvalue$24pis
called a noncompact algebfalMe choose forg to have a
lower bound; the motivation for this choice will become evi-
dent later. We define the lowest eigenstate as

T_|Qqo)=0, (44
and find
T?Qao)=(—T.T_+T5—%T3)|Qd)
= (95— 9o%)| Qo) =do(do—%)|Q0). (45

Just as the irreducible representatﬁmfsso(B) are labeled by
| and the eigenvalues df? arel(I+1), so the irreducible
representations of §9,1) are labeled byy,, and the eigen-
values of T? areqq (qo—7%). The only difference between
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the irreps of the two groups is that the irreducible represenwhere «,, is a normalization constant ang,=qy+n,%.
tations of s@3) consist of a finite number of states, whereasThrough a process similar to that leading from EG2) to

the irreducible representations of(2d) consist of an infi-
nite number of states.
To illuminate the nature ofj,, consider

T2= —Ti-To+T5=(To=T)(Ta+ Ty —[T5,T4]-T5
=V (Va+ 7V H—ikV,— Va. (46)
Then, using
1 a-1 \?
V§=¥[r2p2—iaﬁrp—(—2 h) } (47)

[from Egs.(8) and (13)], and Eqgs.(12), (13), and (14), we
can simplify Eq.(46) to
2

T2=r1+ 4—az(1—a2). (48)
From

(Qao| T?|Qdo) =do(do— 1), (49
we obtain

2

az—qoh — T+E(1—a2) =0, (50)

which implies that
h 47 1
qo=§(li \/ﬁju? : (51)

V. WAVE FUNCTIONS

To find the ground state wave function, consider

(T_—T3)|Qdo)=—0o|Qqp)- (52
UsingT_=T,—iT, and Egs(20), (21), (22), we obtain

(V1+iV,—00)[Q0o) =0, (53
which simplifies to

a irp ha-1 B

T3 % |QQo)=0. (54

If we express Egq.(54) in the position representation
[r—a 'r,p——ifad/dr, |Qg)—W¥y(r)], we obtain the
differential equation

; diho(r) |a a-1 aq
dr f 2 h
where « permits a scaling of the position coordinate. It di-

rectly follows that Eq(55) is separable, and thoky(r) can
be written as

a

ajlr

a

a—1 aqg

o(r)=0, (59

%(r):Arce—(lmw/a)a, (56)

whereC=aqy% ~1—1/2(a—1). The substitution of|, from
Eq. (51) gives

1 4a°r

+
1+ —hz—+1 .

(57)

The excited state wave functions can be obtained using
[T+ = (Tz=dn) 1¢hn(r) = Kns1¥nsa(r), (59
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(55), we write Eq.(58) as

di (1) a/fr\* a—1 aq,
"o 7wl T*TW”
= Knp1¥n+a(r). (59

The actual calculation of the excited state wave functions
(and of their normalization constaptis left as an exercise
for the reader. Note that we have proceeded thus far by treat-
ing Eq.(2) as a one-dimensional Hamiltonian. However, be-
cause radial integrals have an extra factor dfcompared
with one-dimensional integrals, the three-dimensional wave
functions are related to the one-dimensional wave functions
we have found, viz.,

Yn(r)=ren(r), (60)

where ¢, (r) is the radial portion of the wave function that
solves the original three-dimensional problem, ah¢r) is

the wave function that solves the simplified one-dimensional
radial problem stated in Eq2).

V. THE LIMITS OF so (2,1 AS APPLIED TO
CENTRAL FORCE PROBLEMS

All of the problems under consideration are based upon
the connection between the (8l) operator T; and the
Hamiltonian operator, as follows:

(Ts—dn)=ar’(H-E). (61)

If we expand each side of E¢61) and use Eqgs(20), (21),
and(22), we obtain

1

a
2

ra

1

2-apn2
—r +
a2 p

—0n

2
s P

I(1+1)%2
2m

2mr? : (62

=ar

+V(r)—E

Immediately the terms ip? can be equated, and the result is
a=ma ? and8=2—a. Therefore, Eq(62) reduces to

1( [(I +1)ﬁ2) r2a
T— +

2 a2 2

rég,— —r2V(r)+ —r?e=0
na? a’ '
(63

We can make a power series expansiom df(r) in r, but
the only terms with nonzero coefficients will be terms of the
same powers of that we see in Eq(63), except for anr?
term (we do not wish to build the enerdy into our poten-
tial).

Thus, by inspection we write

r’V(r)=A+Br?+Dr2 (64)
If we substitute Eq(64) into Eq. (63), we find
1 [(1+1)A% m 1 m_\
Ak el R e
m m
—(q0+52D ra+52r2E=o. (65)

It is impossible for the above equality to hold for all values
of a without E being identically zero. However, for certain
choices ofa, one of the other terms will cancel théE term.
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The first term, having no dependence at all, cannot provide wela

this cancellation. This leads to two possible cases1 and q=qotnfi=(+1L)h+nh= drmey’ (78)
a=2.
By rearranging Eq(64), viz., or
A 4megh

V(r)=Fz+Brza‘2+Dra‘2, (66) = [(I+1)+n.]. (79
we see thaA=0 anda=1 gives the Coulomb potential and Finally,
A=0 anda=2 gives the harmonic oscillator potential. Note wet 1
that theonly other possible nonrelativistic central force prob- E=- 327726(2)ﬁ2 (+1+n)% (80)

lems solvable with the $8,1) algebra are the modified Cou-
lomb potential(where A#0), and the Davidsdhpotential ~ With the substitutiom=1+ 1+ n, we get the familiar energy

[the three-dimension&B-D) harmonic oscillator wittA+0].  levels of the hydrogen atom,
Ry
E=-— - (81)

V1. THE HYDROGEN ATOM Note that here the irreducible representations ¢2 49 con-

Eist of energy eigenstates of a particular angular momentum,
and therefore each irreducible representation is labeled by a
value of angular momentum. The raising and lowering op-
erators,T.. , change the energy eigenstate within a particular
) _ irreducible representation, but do not move between irreduc-
If we multiply through byuar, we obtain ible representations. In other words, we can se to
[arp? pae? al(l+1)k2 changen, but it does not change Another interesting point

5 dme + T |EIm))=0. (68) is that the Hamlltonlan does not commute with all of the
. 0 elements of s@,1); unlike sa3), sa2,1) is not a symmetry
The substitutiorR for .~ *r andP for ap in Eq. (68) pro-  group of the hydrogen atom. Instead, because the Hamil-

The energy eigenvalue equation for the hydrogen atom i

[ p? e? I(1+1)%2
p ( )2_E

121 47TEOI'+ 2ur [Elm;)=0. 67

—parkE

duces tonian is simply related to one of the generator§25D is
i ) ) called a dynamical symmetry group of the hydrogen atom.
RPZ_ nea " [+ 1D)n — 1a®RE||[EIm)=0. (69) We immediately write the wave functions using E§6),
| 2 A4meg 2R # ! ' viz.,
By using Eqs(12), (13), and(14), we rewrite Eq.(69) as Po(r)=ArCe ol (82
1 wela 1 If we substitute fora from Eq. (79), we obtain
=|Vs— =—+I1(I1+ 1A%V '—2ua?V,E||EIm)=0, 5 5
2 27T€0 wo(r) :ArCef,ue rl4megh n, (83)
(70) o
. which simplifies to
wherea=1 so that the powers d® match. If we examine C—tin
Eq. (70) closely, we see that three terms match the definition ~ #o(r)=Ar~e"""%, (84)
of Tz in Eq. (22). In fact, if where a, is the Bohr radius. From Eq$57) and (71) we
r=1(1+1)%?, (71  calculate
Z/LQZE:—]., (72 C:%[li\/4|(|+1)+1], (85
nela and taking the positive value, as we did before, we obtain
a= dmey’ (73) C=I+1. (86)
then Eq.(70) reduces to Finally, recalling Eq.(60), we obtain the ground state wave
functions for each irreducible representation,
[T3—q]|elm|>—0. (74) ({)O(I’):Al’lef”nao. (87)

Note that the values af are the eigenvalues d% and, as we . . - .
saw in Sec. lll, should be indexed by and increase from th(-arhe energy spectrum is depicted in Fig. 3, along with the

eigenvalueqy. From Eq.(51) we deduce that action of T, andT.-.

fi
Go=7 (1=(21+1)). (79 vII. THE THREE-DIMENSIONAL ISOTROPIC

N ~ HARMONIC OSCILLATOR
Because we war, to be positive, we take the positive

sign, and therefore obtain The 3-D isotropic harmonic oscillator can be solved in
much the same way as the hydrogen atom. First, the energy

Qo=n(l+1), (78 gigenvalue equation is
T2=1(1+1)%k%. (77 p> 1, l+DA?
Thus, if we label increments af by n, #, we find om T gmMeT 5z F [Elm;)=0. 3
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Fig. 4. The 3D harmonic oscillator energy spectrum—the raising and lower-
ing operators move between states in an irrep labelled by 1.

Fig. 3. The hydrogen atom energy spectrum—the raising and lowering op-

erators move between states in an irrep labelled by 1.

Then, if we multiply through byB%/4 and substituteR
=B~ 1r andP=pp,
2 2 2
P 5 an [(IF DA _E IElm)—0
8mR° 4 ’
(89

%4‘ §mw B R+
1
(90)

We can again use Eq&l2), (13), and(14), and the condition
thata=2 to obtain

P2 1
- 2 p4p2
4m+4mw,8R+

B°E
4

|(|+1)ﬁ2)
amrRe |

[% v3+%m2w234v1+ I(lz\}jﬁz)— B:E}|Elm,>=0.
(91
Then if
imlw?pi=1, (92
T: I(1+1)hk? ©3
4
we find that the eigenvalue equation simplifies to
B’mE
{Tg— 7 |[Elm;)=0. (94

Therefore,

E=2n+1+ o, (97
or, for N=2n,+1,

E=(N+dtow. (99)

As before, we can immediately write the wave functions us-
ing Eq. (56), viz.,

Yo(r)=ArCe 1%, (99)
and from Eq.(92) we obtain

Yo(r)=ArCe meri2h, (100
or

Po(r) =ArCe 125, (101

whereby=(%/mw)'? is a characteristic length of the oscil-
lator. From Eqs(57) and(93) we calculate

C=[1=al(I+1)+1], (102
and, taking the positive value, we obtain
C=I+1. (103

Finally, considering Eq(60), we obtain the ground state
wave functions for each irreducible representation,

¢>0(r)=Ar'e‘r2’2bé. (104)

The energy spectrum is depicted in Fig. 4, along with the
action of T, andT_.

The values for the energy can be obtained from the eigenval-

ues of T3, once we have determined the values dgt

—1h+ 4 ﬁ2—1h+ﬁ I(1+1 !
Qo= | Az Va7t | =5 (A=A \IU+D+7

=3(h=h(l+3).

(99

VIIl. CLOSING REMARKS

We find the foregoing both rewarding and limiting. Lim-
iting because the exactly solvable cases are’ féwt not
trivial). Rewarding because it introduces a range of new al-
gebraic concepts in a way that is accessible to students who
have mastered the angular momentum algebra. Indeed, these

In anticipation of positive energy values, we use the positivedlgebraic concepts reveal a simple underlying unity to the

sign, whence

_h
CIO—E

I+3
2

: (96)
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exactly solvable cases, which is not evident when using other
methods.

For the adventurous student who wishes to make a more
in-depth study of algebraic methods as applied to familiar
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guantum mechanical problems, we némth no attempt at where
completenegsthe following selections: Adanfsde Lange
and Raaly,and Frank and van Isack&t.
We are also aware of two introductory texXtdarris and he1
Loeb" and Ohaniatf) that introduce(othep algebraic tech- S (—D*2Kn-Dl@+2n-!t
niques for solving central force problems. Although we en- Gni(x)= & T (n—k—1)IKI (21 + 2k+ 1)11

courage the student to look at these texts, we point out that

although the techniques are simply defirfeby involve fac-
torization of the radial Schdinger equatioy they are not

familiar structures. Again, for the adventurous student, we Note (21+1)!!'=(2l+1)(21—1)(2-3)---(5)(3)(1).
note that these structures can be classified as supersymmetriq3) Calculate the energy eigenvalue spectrum and the nor-
or as isospectral, details of which are developed, for exmalized ground state wave functions of the Davidson poten-

ample, in de Lanfe and Raab’s bdaind in an introductory
text by Schwabl? Suggested problems for students are
given in the Appendix.
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APPENDIX: SUGGESTED PROBLEMS FOR
STUDENTS

(1) Show for the hydrogen atom that

@
B 2 12 I+1a—rlag(l+1)
ho(r)= (I+1)ka‘5(k—1)!} ne
=r¢o(r)=rRp =n-1(r);
(b)
B 2k(|+1) 1/2
Ya(r)= (I+2)ka‘5(k—2)!}

r
(I+1)(1+2)ag

:r(ﬁl(r)Ear,I:an(r)-

[Hint: Equations(59), (79), (84), and (86) can be used
with the precaution that the value of should be for the
final (raised state]

(2) Show for the three-dimensional isotropic harmonic os-
cillator that

rl+lefr/a0(l+l)

x| 1-

(a)
7' 2I+2 l/2rI722
¢O(r):b0 3/2_ 71_1)2(2'_’_1)”} (b_O) e ' IZbO;

(b)
$1(r)=by %3 2 ! 2|+3—2—r2
! 0 | 277721 +3)!! b3

r l 2,002
e—r/ZbO;

*\bo

(©

2|+2

(n—=L)!2l+2n—1)!!

}1/2

dn(r)= ba”{ Sn=1_172

r

bo

r

|
202
— | e T /2bo,
bo

o
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tial, as given by

B

+ .
I’2

Vbavidsor=

=1 >

(Hint: Proceed in a manner similar to the development of the
hydrogen atom given in the text.
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