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Abstract
An algebraic solution for the hydrogen atom analogous to the one recently
proposed to solve the relativistic version of the system is presented. We
add to the usual radial description of the problem an additional angular
variable and an associated operator which can be considered as part of an
su(1, 1) Lie algebra. The operators of the algebra define radial ladder operator
relating the eigenfunctions of the system in unit steps of the principal quantum
number. We conclude that the radial bound states of the hydrogen atom in
our extended configuration space can be regarded as spanning the minimal M
representation of the su(1, 1) Lie algebra. The method can also be extended
to solve the s-wave Morse problem and the three-dimensional harmonic
oscillator.

PACS numbers: 31.15.−p, 31.15.Hz

1. Introduction

Algebraic methods are widely used in physics, especially for studying the hydrogen atom
in both the relativistic and non-relativistic descriptions [1–20]. In the non-relativistic
case, the history of algebraic methods is particularly long, probably beginning with the
1926 paper by Pauli [1]. Today there are many works devoted to the symmetries of the
non-relativistic Coulomb problem described by means of O(4), SU(2) ⊗ SU(2) or even
SO(2, 1) group representations [21–23]. Also, there are some works based in non-compact
(de Sitter) group representations, such as [24–27]. Comparison of the technique used in
this paper with that in [21] is interesting, because they use shift operators of the angular
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momentum l for the radial hydrogen atom wavefunctions with fixed principal quantum
number N, whereas we use shift operators of the radial wavefunctions with fixed angular
momentum l.

As is known, in the hydrogen atom the spherical symmetry of the problem accounts for
the magnetic quantum number, m, degeneracy of its energy spectrum but offers no clue on
the degeneracy in the angular momentum quantum number, l. Such an extra degeneracy is
explained by the dynamical SO(4) symmetry of the bound problem as discovered by Fock [2].
In the Dirac relativistic description the system possesses an SO(2, 1) symmetry [15] which
explains, on taking into account the Johnson–Lippmann constant [20], all the degeneracies of
the spectrum.

Also in classical mechanics the remarkable symmetries of the Kepler orbits completely
determine the Newtonian gravitational potential as Bertrand’s theorem makes evident [28, 29].
Symmetries, even partial or approximate ones, are crucial for understanding the spectrum and
properties of hydrogen-like or Rydberg atoms, and for devising approximation techniques for
the corresponding perturbed systems [29–32].

The purpose of this work is to present an algebraic method for solving the bounded part
of the non-relativistic hydrogen atom. Our approach is based on the su(1, 1) symmetry of the
extended radial part of the problem—we call it extended because we add an angular variable,
a phase, to the usual description. The method is analogous to the spectrum generating algebra
used for solving certain quantum problems [23]. We can summarize the approach as follows.
We write the radial part of the Schrödinger equation as an eigenvalue equation for the Casimir
operator of the Cartan Lie algebra of su(1, 1). The radial Hamiltonian of the problem is
then transformed in such a way that the eigenvalues of the resulting operator are the same
as those of the squared angular momentum l(l + 1). So, the radial part of the Schrödinger
equation is related to the quantum number l instead of to the principal quantum number, N, as
is customarily done [21]. The realization of the elements of the algebra is done in terms of
two linear first-order differential operators acting on R × S1. The space R is related to the
radial coordinate whereas the eigenvalues of the operator acting over S1 are related with the
discrete energy eigenvalues of the Hamiltonian.

We further remark that we use a two-dimensional realization of the su(1, 1) Lie algebra
instead of the more common one-dimensional one [33]. This algebra is shown to be spanned
by two shift operators �±, plus an additional phase-related operator �3 (see equation (7)), both
of which add an extra angular variable to the system and close the two-dimensional algebra
[14, 33, 34]. The operators �± are then shown to be ladder operators for the problem, which,
after fixing the Casimir eigenvalue, (which turns out to be l(l+1) the same as the eigenvalues of
the angular momentum J2), and finding the base states of the algebra, allows us to obtain both
the energy spectrum and the bound state radial eigenfunctions of the non-relativistic hydrogen
atom. We thus conclude that the radial bound states of the hydrogen atom in the extended
configuration space we use span the so-called minimal M representation of the aforementioned
algebra [34].

The method discussed here can be applied to other quantum systems such as the three-
dimensional oscillator, the Morse potential and the relativistic hydrogen atom [4] and allows
making contact with developments in quantum optics and in the study of squeezed and
coherent states of hydrogenic atoms and all of their applications [33, 35–38]. As the theory
of hydrogen-like atoms is useful in condensed matter [39, 40] our results could be of interest
there. On the other hand, they can help making contact with dynamical symmetry group
techniques which are useful in atomic and molecular physics calculations [10, 41], and it
may, possibly, be also applied to the study of ionization states [42] by using non-discrete
representations of the su(1, 1) algebra.
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2. The su(1, 1) Lie algebra of a hydrogen atom

The Schrödinger equation for a hydrogen-like atom with nuclear charge Z and eigenenergy E
can be written as (h̄ = me = qe = 1)[

−1

2
∇2 − Z

r
− E

]
�(r) = 0. (1)

After separating the angular contributions in (1) and rearranging, it can be written as[
1

ρ2

d

dρ

(
ρ2 d

dρ

)
+

2λ

ρ
− l(l + 1)

ρ2
− 1

]
R(ρ) = 0 (2)

where we used �(r) = R(r)Y (θ, φ), r ≡ |r|, λ ≡ 2Z/k and l = 0, 1, 2, . . . , is the orbital
angular momentum quantum number; we have introduced the non-dimensional variable
ρ = kr/2, and k ≡ √−8E (note that ρ has been defined with an extra 1/2 factor not
used in the analogous variable usually employed in this problem). We are describing bound
states, thus, E < 0 always.

Introducing the transformed radial eigenfunctions

R(ρ) = F(ρ)

ρ1/2
, (3)

we obtain the expression[
ρ2 d2

dρ2
+ ρ

d

dρ
+ 2λρ − ρ2 − 1

4

]
F(ρ) = l(l + 1)F (ρ). (4)

Changing to the variable x defined through ρ ≡ ex , we can finally write (2) in the form[
d2

dx2
+ 2λ ex − e2x − 1

4

]
F(x) = l(l + 1)F (x). (5)

This equation is an eigenvalue equation with eigenvalues l(l + 1), l = 0, 1, 2, 3, . . . , which
are fixed by the spherical symmetry of the problem. As we show in what follows, it can be
used to obtain the bound radial eigenfunctions and the energy spectrum of the hydrogen atom.
This is accomplished using the properties of the su(1, 1) Lie algebra which stems from it.

The algebra we are going to construct is exactly the same as the one needed to solve for
the bound states of the relativistic hydrogen atom in Dirac’s description [4]. One probable
reason for such behaviour is the fact that both in the relativistic and in the non-relativistic
problems the solution can be expressed in terms of Laguerre polynomials [20, 43]; in the
former case the Laguerre polynomials are labelled by a non-integer index s related to the
total angular momentum as s =

√
(j + 1/2)2 − Z2α2

F where αF = 1/c � 1/137 is the fine
structure constant [4, 11, 12, 43]. When the non-relativistic limit is taken, αF becomes
negligible and s becomes an integer, transforming the non-integer polynomials into the more
usual non-relativistic ones [29, 44]. Of course, in the relativistic case we have to deal with
two independent radial equations instead of only one. But we have shown that, in this Dirac
case, we just need to deal with two eigenvalue equations which differ from each other in one
unit [4]. Such, at first sight, surprising algebraic parallelism between the relativistic and the
non-relativistic problems may be explained by an already known parameter map relating these
two problems; the map in question is [45]

Z → ZE,

l →
{
s,

−s − 1,

E → 1
2 (E2 − c4),

(6)
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where E is the non-relativistic energy and E is the relativistic one, and helps explain the
connection found between the relativistic and non-relativistic problems.

2.1. Defining the algebra

Let us introduce an additional angular variable ϕ ∈ [0, 2π ] into the problem’s description
through the operator

�3 ≡ −i
∂

∂ϕ
, (7)

and try to associate the discrete energy eigenvalues of the Hamiltonian with the discrete
eigenvalues of this operator. Let us also introduce the operators

�± ≡ i e±iϕ

(
∂

∂x
∓ ex ∓ i

∂

∂ϕ
+

1

2

)
, (8)

which depend both on ϕ and x. We can show that these three operators satisfy an su(1, 1) Lie
algebra [14, 33, 34], that is

[�3, �±] = ±�±, (9)

and

[�+, �−] = −2�3. (10)

We can alternatively define the two operators �1 and �2 as

�1 = 1

2
(�+ + �−), �2 = 1

2i
(�+ − �−), (11)

in terms of (10) and (11), the su(1, 1) algebra takes the form

[�1, �2] = −i�3, [�2, �3] = i�1, [�3, �1] = i�2. (12)

The Casimir operator of the algebra is [14, 33, 34]

�c = −�2
1 − �2

2 + �2
3 = ∂2

∂x2
− e2x − 2i ex ∂

∂ϕ
− 1

4
, (13)

satisfying [�c,�i] = 0, for i = 1, 2, 3.
To obtain the complete set of eigenvalues and of simultaneous eigenfunctions of �c and

�3, let us write their eigenfunctions as V λ′
ξ (x, ϕ), using λ′ for the eigenvalue of �3 and ξ for

the eigenvalue of �c; we set

�3V
λ′
ξ (x, ϕ) = λ′V λ′

ξ (x, ϕ), (14)

�cV
λ′
ξ (x, ϕ) = ξV λ′

ξ (x, ϕ). (15)

From the definition of �3, we find

V λ′
ξ (x, ϕ) = eiλ′ϕF λ′

ξ (x). (16)

From equation (7) we conclude that we can cast equation (15) precisely in the form of the
radial equation for the hydrogen atom, equation (5). If we then set λ′ = λ and identify the
eigenfunctions of the algebra as

F(x) ≡ Fλ
ξ (x) with R(x) = e−x/2Fλ

ξ (x) = 1

ρ1/2
Fλ

ξ (ρ), (17)

the eigenvalues ξ are necessarily

ξ = l(l + 1). (18)

We have thus written the radial problem of the non-relativistic hydrogen atom as the
eigenvalue problem for the Casimir operator of a su(1, 1) algebra with eigenvalues ξ = l(l+1).
Note the clear analogy with the angular momentum algebra and thence with the Legendre
polynomials; we thus expect that the Fλ

ξ (x) functions defined here depend on ξ and λ

eigenvalues as happens in the angular momentum case.
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2.2. The relationship with the relativistic hydrogen atom

We have shown [4] that the radial equations for the big F(ρ)/ρ and small components G(ρ)/ρ,
where ρ = kr and k = √

c4 − E2, E being the relativistic energy, can also be casted in the
form of equation (5), using again the variable ρ = ex and defining

F(ρ(x)) =
√

c2 + E[ψ−(x) + ψ+(x)], (19)

G(ρ(x)) =
√

c2 − E[ψ−(x) − ψ+(x)], (20)

It is then possible to show that the equations for ψ±(x) are the same as (5) but with a
parameter λ → λrel and the eigenvalue of the Casimir operator changed as l(l + 1) →
(j + 1/2)2 − Z2α2 − 1/4, where for ψ+(x) we have

λrel = (Zα)E√
c4 − E2

+
1

2
, (21)

and the same equation for ψ−(x) changing only λrel → λrel −1 [4]. In the non-relativistic limit
we have that s ≈ (j + 1/2) becomes an integer and

√
c4 − E2 ≈ √−2E. The non-relativistic

limit can be established using

ψ+(x) → ψ−(x),

λrel → Z√−2E
+

1

2
= λ +

1

2
,

e−x/2ψ+(x) → F(x).

(22)

With the above limit and using the coupled, first-order differential equations that follow from
the radial Dirac equation [4], we obtain precisely equation (5).

3. The algebraic solution

The operators �± play the role of ladder operators as follows from equation (9); since

�3�±V λ
ξ (x, ϕ) = (�±�3 ± �±)V λ

ξ (x, ϕ) = (λ ± 1)�±V λ
ξ (x, ϕ), (23)

the �± operators shift λ to λ ± 1,

�±V λ
ξ (x, ϕ) ∝ V λ±1

ξ (x, ϕ). (24)

Let us define the inner product

(g, f ) =
∫ 2π

0

dϕ

2π

∫ ∞

−∞
g∗(ϕ, x)f (ϕ, x) dx, (25)

where g(ϕ, x) and f (ϕ, x) are periodic functions on the interval ϕ ∈ [0, 2π ] and tend to
zero as x → ±∞; we can now show that �i, i = 1, 2, 3, are all Hermitian, �

†
i = �i .

Therefore, we can find a complete orthogonal basis of simultaneous eigenfunctions of �c and
�3 which can be written as V λ

ξ (x, ϕ) ≡ |ξλ〉 and it is assumed to be orthonormalized, i.e.
〈ξ ′λ′|ξλ〉 = δξ,ξ ′δλ,λ′ .

The Casimir operator �c is not positive definite, as �c = −�2
1 − �2

2 + �2
3, but the

operator Ξ2 = (
�2

1 + �2
2 + �2

3

)
is indeed positive. From the relation

Ξ2 = �2
1 + �2

2 + �2
3 = 2�2

3 − �c, (26)

we directly obtain

2λ2 � ξ. (27)
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Thus |λ| must be bounded by below. Let us call |λ|min, the minimum value of it. We can
choose either λ > 0 or λ < 0; then, respectively, λ is bounded by below or λ is bounded by
above. The relevant representation we are constructing is thus the lowest weight representation.
Let us consider first λ > 0, and define N ≡ λmin. Therefore, �+�−|ξN〉 = 0. From

�+�− = −�c + �2
3 − �3 (28)

we get

−ξ + N2 − N = 0 or ξ = l(l + 1) = N(N − 1); (29)

with solutions N = l + 1 or N = −l. So, the positive solution is then

N = l + 1. (30)

Thence N = 1, 2, 3, . . . ; in other words, λ is just the principal quantum number N of
the hydrogen atom problem. Once with the eigenvalues of the algebra, we can rename
the eigenfunctions as |ξλ〉 → |Nl〉, where we interchanged the order of the labels of the
eigenvalues in order to rewrite them in the usual order of the wavefunctions of the hydrogen
atom. From the point of view of the su(1, 1) algebra, the label l stands for the Casimir
eigenvalue of the algebra, l(l + 1), whereas N is the eigenvalue of the operator �3.

The representation we are working out here is called the two-mode bosonic representation
of su(1, 1), because the operators (7) and (11) can be constructed using two bosonic
creation operators [33]. Since λ is the principal quantum number because λmin = l + 1,
the representation becomes what Bargmann calls minimal M, (λ has a minimal value), D+

λ ,
where λ takes the values 1/2, 1, 3/2, . . . [34]. In our non-relativistic case the semi-integer
representations are excluded.

3.1. The energy eigenstates

The energy spectrum of the hydrogen atom follows immediately from the definition of λ,

E = −1

2

Z2

N2
N = 1, 2, 3 . . . , (31)

which is the standard Balmer formula [44].
To obtain the wavefunctions of the hydrogen, let us start with the ground state |10〉;

applying �− to such state,

e−iϕ

(
∂

∂x
+ ex + i

∂

∂ϕ
+

1

2

)
eiϕF 0

1 (x) = 0, (32)

we obtain

F 0
1 (x) = C0

1 ex/2 exp(−ex) or F 0
1 (ρ) = C0

1ρ
1/2 e−ρ, (33)

where C0
1 is a normalization constant. So, the ground state radial eigenfunction can be written

as

R0
1(r) = C0

1 e−Zr, (34)

with C0
1 = 2Z3/2. Once with the base state for a given l, we can obtain the whole series of

states with l fixed for all N = l + 1, l + 2, . . . from �+|Nl〉 ∼ |N + 1l〉.
To obtain the rest of the eigenfunctions, we first need to obtain the base state of the

algebra for l fixed. Such a base state is given by the condition �−|λminl〉 = 0; the base state
is precisely |NN − 1〉. The condition that the operator �− annihilates this state becomes

ie−iϕ

(
∂

∂x
+ ex + i

∂

∂ϕ
+

1

2

)
eiNϕF l=N−1

N (x) = 0, (35)
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and so

|NN − 1〉 ∼ eiNϕ e(N−1/2)x e−ex

. (36)

Thus, RN−1
N (r) = CN−1

N rN−1 e−(2Z/aoN)r , with CN−1
N = 2N(Z/aBN)(N+1/2)(N�(2N))−1/2 to

be properly normalized. The radial wavefunctions for any value of l = 0, 1, 2, . . . are obtained
applying successively the operator �+ to (36).

There is only one more thing to address, the case where λ < 0. In this instance, we should
have that λmax ≡ M < 0 is the largest eigenvalue. Consequently �+|ξM〉 = 0 for this state,
or �−�+|ξM〉 = 0. The solutions to this equation are M = l, or M = −(l + 1). Taking the
negative solution, we find by successive applications of �− to the ket |ξM〉, that

|ξM〉 ∼ eiMϕ e−(M+1/2)x eex = eiMϕρ−(M+1/2) eρ, (37)

state which diverges as ρ → ∞. Thus, to describe physically realizable states, we have
to select just the positive set of λ eigenvalues. To summarize, we have from equation (28)
N = l + 1 or N = −l. The former is associated with the regular representation, whereas the
latter with the irregular one. They behave near the origin as rl+1 and r−l respectively. Since
we need to chose λ > 0, we keep only the regular representation which is the one that has
the correct behaviour near the origin. On the other hand the representation just discussed
above (case λ < 0) corresponds to either M = l or M = −l − 1 which is an equivalent,
though disconnected representation of the former. Since in this last case we are forced to take
negative values for λ, we discard this representation. Thus, the only relevant representation is
the minimal weight representation with λ > 0.

3.2. The extra variable and the Lie algebra of the problem

But now, what is the interpretation of the extra variable ϕ? When we perform a rotation on
the functions V λ

ξ (x, ϕ), using the �3 operator with parameter ϕ′, we get

V λ
ξ (x, ϕ)−→

�3

ei�3ϕ
′
V λ

ξ (x, ϕ) = eiλϕ′
V λ

ξ (x, ϕ). (38)

From equations (16) and (17), we conclude that the effect of a �3 rotation over the radial
wavefunction is

R(ρ)−→
�3

eiλϕ′
R(ρ); (39)

the effect is thus only multiplying it by a global phase factor. In this sense, the present approach
takes advantage of a basic property of quantum theory incorporating it into the basic features
of our system. Namely, that the properties of any quantum system are unaffected by a global
phase change in the wavefunctions describing the system.

What is the symmetry of the system implied by our approach? As the angular momentum
operators, Ji and the �i , are completely independent of one another, we have [�i, Jj ] = 0.
So, together the six generators span a SO(3) ⊗ SU(1, 1) group. Let us define the operators
A1 ≡ i�1, A2 ≡ i�2, A3 ≡ �3, and construct with them the operators Ki ≡ i(Ai − Ji) and
Mi ≡ Ai + Ji ; we then obtain

[Ki,Kj ] = −iεijkMk, [Mi,Mj ] = iεijkMk, [Mi,Kj ] = iεijkKk. (40)

Thus, we have constructed the so(3, 1) algebra, the same algebraic structure of the Lorentz
group. As expected from the properties of such group, the representations are not, in general,
unitary. In fact, A1 and A2 are not Hermitian, but since �3 is Hermitian, the ‘boost’ K3

is anti-Hermitian, and the ‘rotation’ M3 is Hermitian. We note in passing that the so(3, 1)

algebra is also the symmetry algebra of the unbounded (E > 0) states of the non-relativistic
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hydrogen atom. We should also mention that the whole bound-state symmetry algebra of the
non-extended problem can always be cast in the form of a so(4, 1) algebra, as has been shown
in [7].

4. The three-dimensional and Morse oscillators

The method developed here can be applied to other systems as well. In particular, it can be
applied to the s-wave Morse problem and to the three-dimensional oscillator. This property
is a manifestation of the shape invariance symmetry associated with the Natanzon class
of potentials, which includes the Coulomb, the harmonic oscillator and the s-wave Morse
problems [45, 46]. In this section, we shall briefly outline the case of the Morse and of the
three-dimensional harmonic oscillator problems.

4.1. The Morse potential

The Morse potential is

V (r) = D(e−2r/a − 2e−r/a), (41)

where a is a parameter with units of length. We give a quick proof that the method developed
here also applies to it. In the generalized s-wave Morse problem (λ = 1 corresponds to the
original undeformed problem) defining x = r/a we obtain an equation very similar to (5). To
prove this assertion, we define K = √

2Da, ρ = K e−r/a, µ = 2a2E and RM(ρ) = ρFM(ρ),
where RM(ρ) is the radial part of the Morse wavefunction and E is the energy of the problem.
When we write the Morse equation (l = 0), in terms of the above quantities, we obtain the
same equation as in (4). So if both the equations are the same, we can follow the same
path we followed for the hydrogen atom and construct the same su(1, 1) algebra to solve
the generalized s-wave Morse problem. The map relating the Coulomb to the Morse problem
is [47]

R(ρ) → ρFM(ρ), Z
√

2/(−E) → 2K, l(l + 1) → µ + 1/4. (42)

4.2. The 3D harmonic oscillator

For the 3D oscillator case, with potential energy term V (r) = ω2r2/2, we define, in atomic
units, a2 = 1/ω, ρ = r/a and ε = E/ω, where ω is the frequency of the oscillator, r the
radial variable and E the energy to obtain the Schrödinger equation of the problem as [48][

− d2

dρ2
+ ρ2 +

l(l + 1)

ρ2

]
R(ρ) = 2εR(ρ). (43)

We now define F(ρ) = R/
√

ρ and change the radial variable to u = 1/2ρ2 to obtain[
u2 d2

du2
+ u

d

du
+

(
εu − u2 − 1

4

)]
F(u) = 1

4

[
l(l + 1) − 3

4

]
F(u). (44)

In this equation, we change u = ex and λ = ε/2 to obtain precisely equation (5), with
eigenvalue ξ = (1/4)[l(l + 1) − 3/4]; we may then follow step by step the same path we
followed in the hydrogen problem. In particular, we found that |λ| must be bounded by
below. The only relevant representation, the lowest weight one, is when λ > 0. Let us
call λmin = s + 1/4. From equation (28) we have that λmin(λmin − 1) = ξ , which implies,
following the same reasoning as in the hydrogen problem, that s = (1/2)(l + 1). As before,
λ = λmin, λmin + 1, . . . . So, we put λ = s + 1/4 + n, where n = 1, 2, . . . . Since λ = ε/2, we
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get ε = 2[s + 1/4 + n], or

E = ω
(
2n + l + 3

2

)
, (45)

which is precisely the expression for the energy of this problem [48]. The eigenfunctions of
the problem follow from the same procedure as before.

5. Concluding remarks

In summary, we have constructed an su(1, 1) Lie algebra for the non-relativistic hydrogen atom
by introducing the Hermitian operators �i, i = 1, 2, 3. This formulation requires extending
the radial configuration space of the system with the extra phase ϕ. The algebra predicts
the correct energy spectrum and eigenfunctions of the system. We can calculate any radial
eigenfunction by applying an operator with only a first-order derivative, namely �+ or �−.
From the point of view of the algebra described here, the L2 angular momentum eigenvalue
plays a more important role than the principal quantum number N since we need to fix it first
and then proceed to construct the wavefunctions. The angular momentum symmetry is then
playing a central role in the behaviour of the system; this feature is related to the contribution
of the centrifugal potential l(l + 1)/r2 to the properties of the system. The representation
spanned by the problem has been called the minimal M representation [34].

We emphasize that the extra variable ϕ is required in order to close the algebra. In terms
of the solutions, ϕ plays the role of a phase. Also, when we perform an SU(1, 1) rotation,
the energy spectrum remains unchanged because the radial equation (5) commutes with any
of the three generators of the algebra. This is a consequence of the fact that both the radial
equation and the Casimir operator �c, are identical when λ = N .

In a certain way, it is remarkable that our method could be applied to the more complicated
relativistic hydrogen atom. But this is due to the fact the hydrogen atom is a system with
symmetry properties larger than the obvious geometrical symmetry of its Hamiltonian in
both the relativistic and the non-relativistic descriptions [10, 29], and to the existence of the
simple mapping (42) relating the parameters in both descriptions. The algebra needed in the
relativistic description is exactly the same as the one described here though the eigenvalues
and the relation with the energy is, of course, different [4].

The importance of symmetry methods for dealing with the dynamical Stark and Zeeman
effects indicates that our method might be extended to deal with such and other related
problems [30, 49]. The algebraic method of solution and the expression of the bound
state eigenfunctions in terms of the ladder operators �± presented here may offer some
simplifications in atomic physics calculations [31, 41], can be useful in diverse applications
in quantum optics [35, 37] and it may be applied to the study of ionization states [42] by
using non-discrete representations of su(1, 1). But apart from the above considerations, the
theory of one-electron atoms and ions has found uses in many different fields of modern
physics including molecular, condensed and plasma physics, quantum optics and quantum
information theory [33, 38, 50–52].
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