Prof. Dr. Alexandre Fontes da Fonseca

Departamento de Física AplicadaIFGW UNICAMP

Alexandre     abcde

 

Home

Pesquisa

Publicações

Grupo

Cursos

Extensão

Outros assuntos

 

 

 

Links:

 

 

 

FAPESP

 

 

       

CNPq

  

 

 

CAPES

 

 

 

ISI

Web of Science

 

 

 

 

Lista de Publicações

 

### Nomes de alunos (pos-docs) orientados (supervisionados) por mim em negrito  ###

 

Artigos peer-reviewed em Revistas Científicas

 

 

55. Elastocaloric Effect in Graphene Kirigami

Luiz A. Ribeiro Jr, M. L. Pereira Júnior and Alexandre F. Fonseca.

Nano Letters 23, 8801-8807 (2023).  

 

54. Exploring the elastic properties and fracture patterns of Me-graphene monolayers and nanotubes through reactive molecular dynamics simulations

M. L. Pereira Júnior, J. M. De Sousa, W. H. S. Brandão, D. S. Galvão, Alexandre F. Fonseca, Luiz A. Ribeiro Jr.

Chemical Physics Letters 830, 140812 (2023).  

 

53. Mechanical, Electronic, and Optical Properties of 8-16-4 Graphyne: A 2D Carbon Allotrope with Dirac Cones

R. M. Tromer, M. L. Pereira Júnior, K. A. L. Lima, Alexandre F. Fonseca, L. R. da Silva, D. S. Galvão, Luiz A. Ribeiro Jr.

The Journal of Physical Chemistry C 127, 12226–12234 (2023).  

 

52. First-principles and reactive molecular dynamics study of the elastic properties of pentahexoctite-based nanotubes

W. H. S. Brandão, J. M. De Sousa, A. L. Aguiar, D. S. Galvão, Luiz A. Ribeiro Jr. and Alexandre F. Fonseca.

Mechanics of Materials 183, 104694 (2023).  

 

51. Fully atomistic molecular dynamics investigation of the simplest model of dry-draw fabrication of carbon nanotube fibers

Luís F. V. Thomazini and Alexandre F. Fonseca.

MRS Advances 8, 349-354 (2023).  

 

50. Density dependence of elastic properties of graphynes

Guilherme B. Kanegae and Alexandre F. Fonseca.

MRS Advances 8, 355-360 (2023).  

 

49. Mechanical properties of tetragraphene single-layer: A molecular dynamics study

W. H. S. Brandão, A. L. Aguiar, Alexandre F. Fonseca, D. S. Galvão and J. M. De Sousa.

Mechanics of Materials 176, 104503 (2023).  

 

48. High performance of carbon nanotube elastocaloric refrigerators over a large temperature span

Tatiana Naomi Yamamoto Silva and Alexandre F. Fonseca.

Physical Review B 106, 165413 (2022).  

 

47. Scalable Synthesis and Characterization of Multilayer γ-Graphyne, New Carbon Crystals with a Small Direct Band Gap

V. G. Desyatkin, W. B. Martin, A. E. Aliev, N. E. Chapman, Alexandre F. Fonseca, D. S. Galvão, E. R. Miller, K. H. Stone, Z. Wang, D. Zakhidov, F. T. Limpoco, S. R. Almahdali, S. M. Parker, R. H. Baughman and V. O. Rodionov

Journal of the American Chemical Society 39, 17999–18008 (2022).  

 

46. Effective acetylene length dependence of the elastic properties of different kinds of graphynes

Guilherme B. Kanegae and Alexandre F. Fonseca.

Carbon Trends 7, 100152 (2022).  

 

45. Auxetic properties of a newly γ-graphyne-like material

R. Paupitz, T. J. da Silva, M. J. Caldas, D. S. Galvão and Alexandre F. Fonseca.

Chemical Physics Letters 787, 139220 (2022).  

 

44. Twisting or untwisting graphene twisted nanoribbons without rotation

Alexandre F. Fonseca.

Physical Review B 104, 045401 (2021).  

 

43. Mechanical properties of single-walled penta-graphene-based nanotubes: A DFT and Classical molecular dynamics study

J. M. De Sousa, A. L. Aguiar, E. C. Girão, Alexandre F. Fonseca, V. R. Coluci and D. S. Galvão.

Chemical Physics 547, 111187 (2021).  

 

42. Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane

J. M. De Sousa, A. L. Aguiar, E. C. Girão, Alexandre F. Fonseca, A. G. Souza Filho and D. S. Galvão.

Chemical Physics 542, 111052 (2021).  

 

41. Graphene-based nanoscale version of da Vinci's reciprocal structures

Alexandre F. Fonseca and D. S. Galvão.

Computational Materials Science 187, 110105 (2021).  

 

40. Sarin and Air Permeation Through a Nanoporous Graphene

Marco A. Maria and Alexandre F. Fonseca.

MRS Advances 5, 1475 (2020).  

 

39. New Zero Poisson's Ratio Structures

V. Gaal, V. Rodrigues, S. O. Dantas, D. S. Galvão and Alexandre F. Fonseca.

Physica Status Solid - Rapid Research Letters 14, 1900564 (2020).  

 

38. Energy barriers for collapsing large-diameter cabon nanotubes

R. R. Del Grande, Alexandre F. Fonseca and Rodrigo B. Capaz.

Carbon 159, 161 (2020).  

 

37. Dynamics of graphene/Al interfaces using COMB3 potentials

D. Zhang, Alexandre F. Fonseca, T. Liang, Simon R. Phillpot and Susan B. Sinnott.

Physical Review Materials 3, 114002 (2019).  

 

36. Torsional refrigeration by twisted, coiled, and supercoiled fibers.

R. Wang, S. Fang, Y. Xiao, E. Gao, N. Jiang, Y. Li, L. Mou, Y. Shen, W. Zhao, S. Li, Alexandre F. Fonseca, D. S. Galvão, M. Chen, W. He, K. Yu, H. Lu, X. Wang, D. Qian, A. E. Aliev, N. Li, C. S. Haines, Z. Liu, J. Mu, Z. Wang, S. Yin, M. D. Lima, B. An, X. Zhou, Z. Liu and R. H. Baughman.

Science 366, 216-221 (2019).  

 

35. The structure of graphene on graphene/C60/Cu interfaces: a molecular dynamics study.

Alexandre F. Fonseca, Socrates O. Dantas, Douglas S. Galvão, Difan Zhang and Susan Sinnott.

Nanotechnology 30, 505707 (2019).  

 

34. High Performance of Carbon Nanotube Refrigerators.

Tiago E. Cantuario and Alexandre F. Fonseca

Annalen der Physik 531, 1800502 (2019).  

 

33. Self-tearing and self-peeling of folded graphene nanoribbons.  

Alexandre F. Fonseca and Douglas S. Galvão

Carbon 143, 230-239 (2019).  

 

32. Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt.

Celina M. Miyazaki, Marco A. E. Maria, Daiane D. Borges, Cristiano F. Woellner, Gustavo Brunetto, Alexandre F. Fonseca, Carlos J. L. Constantino, Marcelo A. Pereira-da-Silva, Abner de Siervo, Douglas S. Galvão and Antonio Riul Jr. 

Journal of Materials Science 53, 10049-10058 (2018).  

 

31. Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation.

Alexandre F. Fonseca and Douglas S. Galvão

MRS Advances 3, 463-468 (2018).  

 

30. Titanium-Carbide Formation at Defective Curved Graphene-Titanium Interfaces.

Alexandre F. Fonseca, Tao Liang, Difan Zhang, Kamal Choudhary, Simon R. Phillpot and Susan B. Sinnott

MRS Advances 3, 457-462 (2018).  

 

29. Mechanical Properties of Pentagraphene-based Nanotubes: A Molecular Dynamics Study.

J. M. de Sousa, A. L. Aguiar, E. C. Girão, Alexandre F. Fonseca, A. G. Sousa Filho and Douglas S. Galvao

MRS Advances 3, 97-102 (2018).  

 

28. Mechanical Properties of Phagraphene Membranes: A Fully Atomistic Molecular Dynamics Investigation.

J. M. de Sousa, A. L. Aguiar, E. C. Girão, Alexandre F. Fonseca, A. G. Sousa Filho and Douglas S. Galvao. 

MRS Advances 3, 67-72 (2018).  

 

27. Graphene-Titanium Interfaces from Molecular Dynamics Simulation.

Alexandre F. Fonseca, T. Liang, D. Zhang, K. Choudhary, S. R. Phillpot and S. B. Sinnott. 

ACS Applied Materials and Interfaces 9, 33288-33297 (2017).  

 

26. Anisotropic elastic modulus, high Poisson's ratio and negative thermal expansion of graphynes and graphdiynes.

Sergio A. Hernandez and Alexandre F. Fonseca

Diamond & Related Materials, 77, 57-64 (2017).  

  

25. Computational Investigation on CO2 Adsorption in Titanium Carbide-Derived Carbons with Residual Titanium.

Difan Zhang, M. R. Dutzer, Tao Liang, Alexandre F. Fonseca, Y. Wu, K. S. Walton, D. S. Sholl, A. H. Farmahini, Suresh K. Bhatia and Susan B. Sinnott. 

Carbon 111, 741 (2017).

  

24. Properties of Ti/TiC Interfaces from Molecular Dynamics Simulations.

Tao Liang, Michael Ashton, Kamal Choudhary, Difan Zhang, Alexandre F. Fonseca, Benjamin C. Revard, Richard G. Hennig, Simon R. Phillpot and Susan B. Sinnott.  

The Journal of Physical Chemistry C 120, 12530 (2016).

  

23. Probing the accuracy of reactive and non-reactive force fields to describe physical and chemical properties of graphene-oxide.

Alexandre F. Fonseca, Tao Liang, Difan Zhang, Kamal Choudhary and Susan B. Sinnott.  

Computational Materials Science 114, 236 (2016).

  

22. Architectured materials: Straining to expand entanglement.

Ray H. Baughman and Alexandre F. Fonseca

Nature Materials 15, 7 (2016).

  

21. Carbon-Based Nanostructures Derived from Bilayer Graphene with Zero Thermal Expansion Behavior.

André R. Muniz and Alexandre F. Fonseca

The Journal of Physical Chemistry C 119, 17458 (2015).

  

20. Formation energy of graphene oxide structures: a molecular dynamics study on distortion and thermal effects.

Alexandre F. Fonseca, Hengji Zhang and Kyeongjae Cho

Carbon 84, 365 (2015).

  

19. Thermal expansion behavior of holes in graphene nanomeshes.

Newton C. B. Mostério and Alexandre F. Fonseca

Physical Review B 89, 195437 (2014).

 

18. Violation of the universal behavior of membranes inside cylindrical tubes at nanoscale.

E. Perim, Alexandre F. Fonseca, N. M. Pugno and D. S. Galvao

EPL (Europhysics Letters) 105, 56002 (2014).

 

17. Tailoring Thermal Transport Property of Graphene through Oxygen Functionalization.

Hengji Zhang, Alexandre F. Fonseca and Kyeongjae Cho

The Journal of Physical Chemistry C 118, 1436 (2014).

 

16. Developing Descriptors to Predict Mechanical Properties of Nanotubes.

Tammie L. Borders, Alexandre F. Fonseca, Hengji Zhang, Kyeongjae Cho and Andrew Rusinko. 

Journal of Chemical Information and Modeling 53, 773 (2013).

 

15. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles.

M. D. Lima, N. Li, M. J. de Andrade, S. Fang, J. Oh, G. M. Spinks, M. E. Kozlov, C. S. Haines, D. Suh, J. Foroughi, S. J. Kim, Y. Chen, T. Ware, M. K. Shin, L. D. Machado, Alexandre F. Fonseca, J. D. W. Madden, W. E. Voit, D. S. Galvão and R. H. Baughman. 

Science 338, 928 (2012).

- Destaques na mídia: GloboG1  CorreioBraziliense  Estadão  UNESP  InovaçãoTecnol    MIT-Reviews  Discovery-News  physicsworld.com  Scientific-American  Nature-News  IEEE (com vídeo do Ray)  e  outros.   

 

14. Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulations.

Alexandre F. Fonseca, G. Lee, T. L. Borders, H. Zhang, T. W. Kemper, T. -R. Shan, S. B. Sinnot and K. Cho. 

Physical Review B 84, 075460 (2011).

 

13. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests.

A. A. Kuznetsov, Alexandre F. Fonseca, R. H. Baughman and A. A. Zakhidov.

ACS Nano 5, 985 (2011). 

 

12. Isotope Effect on Thermal Conductivity of Graphene.

H. Zhang G. Lee, Alexandre F. Fonseca, T. L. Borders and K. Cho. 

Journal of Nanomaterials 2010, 537657 (2010). <<<OPEN ACESS>>> 

 

11. Load transfer between cross-linked walls of a carbon nanotube.

Alexandre F. Fonseca, T. Borders, R. H. Baughman and K. Cho. 

 

10. Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles.

A. E. Aliev, J. Oh, M. E. Kozlov, A. A. Kuznetsov, S. Fang, Alexandre F. Fonseca, R. Ovalle, M. D. Lima, M. H. Haque, Y. N. Gartstein, M. Zhang, A. A. Zakhidov and R. H. Baughman. 

Science 323, 1575 (2009). 

- Destaque na mídia nacional: Site Inovação Tecnológica 

 

9. Entanglement and the Nonlinear Elastic Behavior of Forests of Coiled Carbon Nanotube.

V. R. Coluci, Alexandre F. Fonseca, D. S. Galvão and C. Daraio. 

Physical Review Letters 100, 086807 (2008). 

 

8. Is it possible to grow amorphous normal nanosprings ?

Alexandre F. Fonseca, C. P. Malta and D. S. Galvão. 

Nanotechnology 18, 435606 (2007).

 

7. Elastic properties of nanowires.

Alexandre F. da Fonseca, C. P. Malta and D. S. Galvão. 

Journal of Applied Physics 99, 094310 (2006).
 

6. Mechanical properties of amorphous nanosprings.

Alexandre F. da Fonseca, C. P. Malta and D. S. Galvão. 

Nanotechnology 17,5620 (2006). 

 

5. Resonant helical deformations in nonhomogeneous Kirchhoff filaments.

Alexandre F. da Fonseca, C. P. Malta and M. A. M. De Aguiar. 

Physica A 352, 547 (2005). 

 

4. Mechanical Properties of Nanosprings.

Alexandre F. da Fonseca and D. S. Galvão. 

Physical Review Letters 92, 175502 (2004). 

 

3. Solving the boundary value problem for finite Kirchhoff rods.

Alexandre F. da Fonseca and M. A. M. De Aguiar. 

Physica D 181, 53 (2003). 

 

2. Near equilibrium dynamics of nonhomogeneous Kirchhoff filaments in viscous media.

Alexandre F. Fonseca and M. A. M. De Aguiar. 

Physical Review E 63, 016611 (2001). 

 

1. Informational-statistical thermodynamics of a complex system.

Alexandre F. Fonseca, M. V. Mesquita, A. R. Vasconcellos and R. Luzzi. 

Journal of Chemical Physics 112, 3967 (2000).

  

 

Artigos peer-reviewed completos em Anais de encontros

 

  

8. Determination of the Thermal Expansion Coefficient of Nanostructured Materials Using Molecular Dynamics.

Andre R. Muniz, Leandro J. Guarnetti and Alexandre F. Fonseca 

Anais do COBEQ - XX Congresso Brasileiro de Engenharia Química (2014).

 

7. Abrikosov-like lattices in organic crystals on graphite surface.

Alexandre F. Fonseca and Paulo N. Lisboa-Filho

Mater. Res. Soc. Symp. Proc. Vol. 1663, DOI: 10.1557/opl.2014.376 (2014).

 

6. Mechanical and Thermal Properties of Graphene Nanomeshes.

Newton C. B. Mostério and Alexandre F. Fonseca

Mater. Res. Soc. Symp. Proc. Vol. 1505, DOI: 10.1557/opl.2013.186 (2013).

 

5. When Small is Different: The Case of Membranes Inside Tubes.

E. Perim, Alexandre F. Fonseca and D. S. Galvão. 

Mater. Res. Soc. Symp. Proc. Vol. 1451, DOI: 10.1557/opl.2012.1252 (2012). 

 

4. Entanglement and the Nonlinear Elastic Behavior of Forests of Coiled Carbon Nanotubes.

V. R. Coluci, Alexandre F. Fonseca, D. S. Galvão and C. Daraio.

Mater. Res. Soc. Symp. Proc. Vol. 1081, art. n. 1081-P08-24, DOI: 10.1557/PROC-1081-P08-24 (2008).

 

3. Elastic Properties of Normal and Binormal Helical Nanowires.

Alexandre F. da Fonseca, C. P. Malta and D. S. Galvão. 

Mater. Res. Soc. Symp. Proc. Vol. 963E, art. n. 0963-Q20-27, DOI: 10.1557/PROC-0963-Q20-27 (2006).

 

2. Binormal nanohelices.

Alexandre F. da Fonseca, D. S. Galvão and C. P. Malta. 

Mater. Res. Soc. Symp. Proc. Vol. 903E, art. n. 0903-Z14-33.1, DOI: 10.1557/PROC-0903-Z14-33 (2005). 

 

1. Effects of Sequence-Dependent Elastic Properties in Tandemly Repeated DNA.

Alexandre F. da Fonseca, C. P. Malta and M. A. M. De Aguiar. 

The 12th International Workshop on Nonlinear Dynamics of Electronic Systems, p. 154 (2004).

 

 

A maioria dos artigos publicados e listados acima tiveram apoio financeiro da FAPESP. Para ver a lista de bolsas e auxílios da FAPESP obtidos por mim, clique no link da Biblioteca Virtual da Fapesp referente aos meus projetos aqui. Entretanto, é preciso esclarecer que as opiniões, hipóteses e conclusões ou recomendações expressas neste material são de responsabilidade do(s) autor(es) e não necessariamente refletem a visão da FAPESP

 

Se tiver interesse em trabalhar em algum de nossos projetos, entre em contato:

 

Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas

Rua Sérgio Buarque de Holanda, 777 - Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-859, Campinas, SP.

e-mail: afonseca "at" ifi.unicamp.br

Telefone: 55(19)3521-5364 - Ramal:

----------------------------------

 

Esta pagina não é uma publicação oficial da UNICAMP, e seu conteudo não foi examinado e/ou editado por esta instituição. A responsabilidade por seu conteudo é exclusivamente do autor. Último update: 27 de Setembro de 2023.