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Archimedes, the Center of Gravity, and the First Law of Me-
chanics deals with the most fundamental aspects of physics. 
The book describes the main events in the life of Archimedes 
and the content of his works. It goes on to discuss a large num-
ber of experiments relating to the equilibrium of suspended 
bodies under the influence of 
Earth’s gravitational force. All ex-
periments are clearly described 
and performed with simple, inex-
pensive materials. These experi-
ments lead to a clear conceptual 
definition of the center of gravity 
of material bodies and illustrate 
practical procedures for locating it 
precisely. The conditions of sta-

ble, neutral, and unstable equilibrium are analyzed. 
Many equilibrium toys and games are described and 
explained. Historical aspects of the concept are pre-
sented, together with the theoretical values of center of 
gravity obtained by Archimedes. The book also explains how to build and calibrate 
precise balances and levers. Several experiments are performed leading to a mathe-
matical definition of the center of gravity and the first law of mechanics, also called 
the law of the lever. Consequences of this law and different explanations of it are 
described at the end of the book, together with an exhaustive analysis of the works 
of Euclid and Archimedes.  
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Introduction 

One of the goals of this book is to present the basic phenomena of 
mechanics through simple experiments performed with inexpen-
sive materials. We present the fundamental experiments on falling 
bodies, equilibrium and oscillations around equilibrium positions. 
We also show how the theoretical concepts are formed and modi-
fied during this process, just as occurred in the formulation of the 
basic laws of mechanics. 

We show how more complex phenomena can be explained 
and clarified by means of elementary experiments. Playful and cu-
rious experiments are also presented. They stimulate creativity, 
critical thinking and a sense of humour in science. They also relate 
everyday phenomena to the fundamental laws of physics. 

The emphasis is placed on experimental activities. After the 
experiments we formulate the definitions, concepts, postulates, 
principles, and laws describing the phenomena. The materials util-
ized are very simple, easily found at home or in stores, all of them 
very inexpensive. Even so, we can carry out very precise experi-
ments and construct sensitive scientific equipment. The reader 
need not depend on any school or research laboratory, as he can 
build his own equipment and perform all the measurements.  

If the experiments presented here are performed in the class-
room, each student should ideally perform all the tasks, even 
when working in a group. Each one should build his own equip-
ment (support, plumb line, lever, etc.), cut out his geometric fig-
ures and then take all this personal material home. This procedure 
is richer in lessons than simple demonstrations of the effects by a 
teacher. It is essential that all students put their hands to the 
plough. 

The book is also rich in historical information, which gives 
the context in which some laws were discovered, and also differ-
ent approaches taken in discovering them. We are careful about in 
formulating concepts and physical principles. It will be seen, for 
example, how difficult is to find the correct words to precisely de-
fine the center of gravity so that this concept can encompass a 



whole series of experiments. We distinguish clearly between defi-
nitions, postulates, experimental results, and physical laws. We 
also distinguish explanations from descriptions of phenomena. 
These aspects illustrate the sociological and human aspects of the 
formulation of physical laws. 

This book is written for students and teachers of science, 
physics, and mathematics. It can be utilized at High Schools or at 
Universities, depending on the level at which each aspect is ana-
lyzed and explored. It has enough experimental and theoretical 
material to be employed in all levels of teaching. Each teacher 
should adapt the contents presented here to his own school envi-
ronment. It can also be utilized in courses on the history and phi-
losophy of science. 

The best way to grasp the contents of the book is to perform 
the majority of the experiments described here in parallel with the 
reading. There are many philosophical, theoretical, and mathe-
matical approaches relating to physical science. But physics is es-
sentially an experimental science. It is the combination of all these 
aspects that make it so fascinating. For this reason we strongly 
recommend that the experiments presented in the book be re-
peated and improved. We hope that the reader will have the same 
pleasure in performing these experiments as we had in developing 
them. 

When necessary we employ the sign ≡ as a symbol of defini-
tion. We utilize the SI international system of units. 



To all those who, down through the centuries, have 
worked to preserve, translate, interpret, and dis-
seminate the works of Archimedes. 
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Chapter 1 

The Life of Archimedes 

The account of Archimedes’s life given here is drawn essentially from 
Heath,1 Dijksterhuis,2 and Plutarch.3  

Archimedes lived from 287 to 212 B.C. He was born in Syracuse, 
on the coast of Sicily, where he spent most of his life. He was the son of 
Pheidias, an astronomer, who estimated the ratio of the diameters of the 
Sun and the Moon. Archimedes spent some time in Egypt. It is possible 
that he studied at the city of Alexandria, which was then the center of 
Greek science, with the successors of the mathematician Euclid, who 
flourished around 300 B.C. and published the book The Elements of Ge-
ometry. Many of Archimedes’s works were sent to mathematicians who 
lived in Alexandria or who had been there. The famous Museum in Al-
exandria, which housed a huge library, one of the largest in antiquity, 
was founded around 300 B.C. It is estimated that it had up to 500,000 
papyrus scrolls, with an average of 20,000 words in each scroll. The city 
was under Roman rule from 30 B.C. to 400 A.D. When Cesar was be-
sieged in the palace of Alexandria in 48 B.C., a fire may have reached 
the book repository, and in 391 A.D. the library may have been de-
stroyed by decree of Emperor Theodosius I. There are no records of the 
existence of the library and museum after the fifth century. The Roman 
Empire was fragmented into two parts, Western and Eastern, in 395. 
Many works of Archimedes were irremediably lost in the ensuing pe-
riod.  

Archimedes is considered one of the greatest scientists of all time, 
and the greatest mathematician of antiquity. In modern times only Isaac 
                                                                                                                                                                                                                                                                                                             

1 T.L. Heath, ed., The Works of Archimedes (Dover, New York, 2002). T.L. Heath, A History 
of Greek Mathematics, Vol. II: From Aristarchus to Diophantus (Oxford: Clarendon Press, 1921). 

2 E.J. Dijksterhuis, Archimedes (Princeton: Princeton University Press, 1987). 
3 Plutarch, Marcellus, http://classics.mit.edu/Plutarch/marcellu.html, translated by John Dry-

den, site available in 2007. 
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Newton (1642-1727) is comparable to him, both for producing experi-
mental and theoretical works of great impact, and for his originality and 
immense influence. By utilizing the method of exhaustion, Archimedes 
was able to determine the area, volume, and center of gravity of many 
important geometrical figures, which had never been accomplished be-
fore him. He is considered one of the founders of statics and hydrostat-
ics. 

His concentration is well described in this passage from Plutarch 
(46-c. 122):4 

And thus it ceases to be incredible that (as is commonly told of 
him) the charm of his familiar and domestic Siren made him for-
get his food and neglect his person, to that degree that when he 
was occasionally carried by absolute violence to bathe or have 
his body anointed, he used to trace geometrical figures in the 
ashes of the fire, and diagrams in the oil on his body, being in a 
state of entire preoccupation, and, in the truest sense, divine pos-
session with his love and delight in science. 

Archimedes’s preoccupation with scientific matters in all aspects of 
life is also recounted by Vitruvius (c. 90-20 B.C.) in a famous passage in 
his book on architecture. It is related to the fundamental principle of hy-
drostatics, which deals with the upward force exerted upon bodies im-
mersed in fluids. The passage illustrates how Archimedes arrived at this 
principle, or at least the origin of the initial intuition which led to the 
discovery. We quote from Mach:5 

Though Archimedes discovered many curious matters that evince 
great intelligence, that which I am about to mention is the most 
extraordinary. Hiero, when he obtained the regal power in Syra-
cuse, having, on the fortunate turn of his affairs, decreed a votive 
crown of gold to be placed in a certain temple to the immortal 
gods, commanded it to be made of great value, and assigned for 
this purpose an appropriate weight of the metal to the manufac-
turer. The latter, in due time, presented the work to the king, 
beautifully wrought; and the weight appeared to correspond with 
that of the gold which had been assigned for it. But a report had 
been circulated, that some of the gold had been abstracted, and 
that the deficiency thus caused had been supplied by silver, Hiero 
was indignant at the fraud, and, unacquainted with the method by 
which the theft might be detected, requested Archimedes would 
undertake to give it his attention. Charged with this commission, 
he by chance went to a bath, and on jumping into the tub, per-
ceived that, just in the proportion that his body became im-
mersed, in the same proportion the water ran out of the vessel. 

                                                                                                                                                                                                                                                                                                             

4 Plutarch, op. cit. 
5 E. Mach, The Science of Mechanics (La Salle: Open Court, 1960), 107. 
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Whence, catching at the method to be adopted for the solution of 
the proposition, he immediately followed it up, leapt out of the 
vessel in joy, and returning home naked, cried out with a loud 
voice that he had found that of which he was in search, for he 
continued exclaiming, in Greek, εϋρηχα, εϋρηχα, (I have found 
it, I have found it!) 

Those works of Archimedes that have survived were addressed to 
the astronomer Conon of Samos (at that time living in Alexandria), to 
Conon’s disciple Dositheus after the death of Conon, to king Gelon, son 
of the king Hiero of Syracuse, and to Eratosthenes, librarian of the Li-
brary of Alexandria and famous for his precise estimation of the radius 
of the Earth.  

Archimedes would send his works together with some introductory 
texts. Through these texts we can discover the order of some of his dis-
coveries and a little of his personality. For example, in the introduction 
of his famous work The Method, he states:6 

Archimedes to Eratosthenes greeting.  

I sent you on a former occasion some of the theorems discovered 
by me, merely writing out the enunciation and inviting you to 
discover the proofs, which at the moment I did not give. The 
enunciations of the theorems which I sent were as follows. (...) 
The proofs then of these theorems I have written in this book and 
now send to you. (...) 

His habit of sending initially only the enunciations of some theo-
rems, without demonstrations, may have led some mathematicians pla-
giarize Archimedes, claiming that his results belonged to them. It is per-
haps for this reason that Archimedes on one occasion sent two false re-
sults, as he mentions in the preface of his work On Spirals:7 

Archimedes to Dositheus greeting.  

Of most of the theorems which I sent to Conon, and of which 
you ask me from time to time to send you the proofs, the demon-
strations are already before you in the books brought to you by 
Heracleides; and some more are contained in that which I now 
send you. Do not be surprised at my taking a considerable time 
before publishing the proofs. This has been owing to my desire 
to communicate them first to persons engaged in mathematical 
studies and anxious to investigate them. In fact, how many theo-
rems in geometry which have seemed at first impracticable are in 
time successfully worked out! Now Conon died before he had 
sufficient time to investigate the theorems referred to; otherwise 

                                                                                                                                                                                                                                                                                                             

6 T.L. Heath, ed., The Works of Archimedes (New York: Dover, 2002), Supplement, pp. 12-13. 
7 Ibid., p. 151. 
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he would have discovered and made manifest all these things, 
and would have enriched geometry by many other discoveries 
besides. For I know well that it was no common ability that he 
brought to bear on mathematics, and that his industry was ex-
traordinary. But, though many years have elapsed since Conon’s 
death, I do not find that any one of the problems has been stirred 
by a single person. I wish now to put them in review one by one, 
particularly as it happens that there are two included among them 
which are impossible of realisation8 [and which may serve as a 
warning] how those who claim to discover everything but pro-
duce no proofs of the same may be confuted as having actually 
pretended to discover the impossible. 

Archimedes would often spend years trying to find the proof of a 
difficult theorem. We can see the perseverance with which he strived to 
reach his goal in the introduction to On Conoids and Spheroids:9 

Archimedes to Dositheus greeting.  

In this book I have set forth and send you the proofs of the re-
maining theorems not included in what I sent you before, and 
also of some others discovered later which, though I had often 
tried to investigate them previously, I had failed to arrive at be-
cause I found their discovery attended with some difficulty. And 
this is why even the propositions themselves were not published 
with the rest. But afterwards, when I had studied them with 
greater care, I discovered what I had failed in before. 

Although the works that have come down to us are related to 
mathematics and theoretical physics, the fame of Archimedes in antiq-
uity is due to his work as an engineer and builder of war machines 
(catapults, burning mirrors, etc.). One of the inventions attributed to him 
is a water pumping system known as the cochlias, or Archimedes screw, 
which is used even to this day. The word cochlias is Greek, meaning 
snail. It is believed that he invented this hydraulic machine during his 
stay in Egypt, where it was used for irrigating fields and pumping water.  

He built a famous planetarium that had a single hydraulic mecha-
nism which moved several globes simultaneously, reproducing the mo-
tions of the stars, the Sun, the Moon, and the planets around the Earth. 
He also built a hydraulic organ in which the air fed to the pipes was 
compressed above water in an air chamber. Also attributed to him are 
the inventions of the compound pulley, machines for discharging show-
ers of missiles, the Roman balance with unequal arms etc. 

                                                                                                                                                                                                                                                                                                             

8 Note by Heath: Heiberg reads τέλος δέ ποθεσόμενα, but F has τέλονς, so that the true reading 
is perhaps τέλους δέ ποτιδεόμενα. The meaning appears to be simply ‘wrong.’ 

9 Heath, ed., The Works of Archimedes, p. 99. 
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Several authors quote a famous sentence by Archimedes in connec-
tion with his mechanical devices and his ability to move great weights 
with a small force: “Give me a place to stand on, and I will move the 
Earth.”10 Apparently he uttered this when he accomplished a feat or-
dered by king Hiero to launch a ship weighing many tons and carrying a 
full load. He succeeded in this unaided, with his hands and the aid of a 
few mechanical instruments. Plutarch relates this story as follows:11 

Archimedes, however, in writing to King Hiero, whose friend 
and near relation he was, had stated that given the force, any 
given weight might be moved, and even boasted, we are told, re-
lying on the strength of demonstration, that if there were another 
earth, by going into it he could remove this. Hiero being struck 
with amazement at this, and entreating him to make good this 
problem by actual experiment, and show some great weight 
moved by a small engine, he fixed accordingly upon a ship of 
burden out of the king’s arsenal, which could not be drawn out of 
the dock without great labour and many men; and, loading her 
with many passengers and a full freight, sitting himself the while 
far off, with no great endeavour, but only holding the head of the 
pulley in his hand and drawing the cords by degrees, he drew the 
ship in a straight line, as smoothly and evenly as if she had been 
in the sea. 

Hiero was so amazed that he said: “From that day forth Archimedes 
was to be believed in everything that he might say.”12 

Plutarch continued:13 
The king, astonished at this, and convinced of the power of the 
art, prevailed upon Archimedes to make him engines accommo-
dated to all the purposes, offensive and defensive, of a siege. 
These the king himself never made use of, because he spent al-
most all his life in a profound quiet and the highest affluence. 
But the apparatus was, in most opportune time, ready at hand for 
the Syracusans, and with it also the engineer himself. 

During the second Punic war between Rome and Carthage, the city 
of Syracuse was allied with Carthage. Syracuse was attacked by the 
Romans in 214 B.C., under General Marcellus. Many histories about 
Archimedes have survived in a famous biography of Marcellus written 
by Plutarch. Marcellus attacked Syracuse by land and sea, heavily 
armed. According to Plutarch:14 
                                                                                                                                                                                                                                                                                                             

10 E.J. Dijksterhuis, Archimedes (Princeton: Princeton University Press, 1987), p. 15. 
11 Plutarch, Marcellus. 
12 Heath, ed., The Works of Archimedes, p. xix 
13 Plutarch, Marcellus. 
14 Plutarch, Marcellus. 
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[All machines of Marcellus], however, were, it would seem, but 
trifles for Archimedes and his machines. These machines he had 
designed and contrived, not as matters of any importance, but as 
mere amusements in geometry; in compliance with King Hiero’s 
desire and request, some little time before, that he should reduce 
to practice some part of his admirable speculation in science, and 
by accommodating the theoretic truth to sensation and ordinary 
use, bring it more within the appreciation of the people in gen-
eral. 

Elsewhere, Plutarch writes:15 
When, therefore, the Romans assaulted the walls in two places at 
once, fear and consternation stupefied the Syracusans, believing 
that nothing was able to resist that violence and those forces. But 
when Archimedes began to ply his engines, he at once shot 
against the land forces all sorts of missile weapons, and immense 
masses of stone that came down with incredible noise and vio-
lence; against which no man could stand; for they knocked down 
those upon whom they fell in heaps, breaking all their ranks and 
files. In the meantime huge poles thrust out from the walls over 
the ships sunk some by the great weights which they let down 
from on high upon them; others they lifted up into the air by an 
iron hand or beak like a crane’s beak and, when they had drawn 
them up by the prow, and set them on end upon the poop, they 
plunged them to the bottom of the sea; or else the ships, drawn 
by engines within, and whirled about, were dashed against steep 
rocks that stood jutting out under the walls, with great destruc-
tion of the soldiers that were aboard them. (...) In fine, when such 
terror had seized upon the Romans, that, if they did but see a lit-
tle rope or a piece of wood from the wall, instantly crying out, 
that there it was again, Archimedes was about to let fly some en-
gine at them, they turned their backs and fled, Marcellus desisted 
from conflicts and assaults, putting all his hope in a long siege. 

Also connected with the defence of Syracuse is the famous story 
about burning the Roman ships with mirrors. Archimedes used a great 
mirror or a system of small mirrors in order to concentrate the sun’s rays 
and focus them on the ships. The two most famous accounts are due to 
Johannes Tzetzes, a Byzantine scholar, and John Zonaras, both of the 
twelfth century: 

When Marcellus withdrew them [his ships] a bow-shot, the old 
man [Archimedes] constructed a kind of hexagonal mirror, and at 
an interval proportionate to the size of the mirror he set similar 
small mirrors with four edges, moved by links and by a form of 
hinge, and made it the centre of the sun’s beams--its noon-tide 

                                                                                                                                                                                                                                                                                                             

15 Plutarch, Marcellus. 
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beam, whether in summer or in mid-winter. Afterwards, when 
the beams were reflected in the mirror, a fearful kindling of fire 
was raised in the ships, and at the distance of a bow-shot he 
turned them into ashes. In this way did the old man prevail over 
Marcellus with his weapons. –J. Tzetzes.16 
At last in an incredible manner he [Archimedes] burned up the 
whole Roman fleet. For by tilting a kind of mirror toward the sun 
he concentrated the sun’s beam upon it; and owing to the thick-
ness and smoothness of the mirror he ignited the air from this 
beam and kindled a great flame, the whole of which he directed 
upon the ships that lay at anchor in the path of the fire, until he 
consumed them all. –J. Zonaras.17 

Only after a siege of three years was Marcellus able to conquer 
Syracuse. Archimedes was killed by a Roman soldier in 212 A.D. during 
the capture of the city. Marcellus had given express orders that Ar-
chimedes’s life should be spared, in recognition of the genius of this en-
emy who had caused him so many losses. In spite of this, a soldier killed 
him while he was trying to protect or finish some mathematical discov-
eries. The last words uttered by Archimedes seem to have been ad-
dressed to this soldier: “Fellow, stand away from my diagram.”18 Plu-
tarch gives us three different versions of his death:19 

But nothing afflicted Marcellus so much as the death of Ar-
chimedes, who was then, as fate would have it, intent upon work-
ing out some problem by a diagram, and having fixed his mind 
alike and his eyes upon the subject of his speculation, he never 
noticed the incursion of the Romans, nor that the city was taken. 
In this transport of study and contemplation, a soldier, unexpect-
edly coming up to him, commanded him to follow to Marcellus; 
which he declining to do before he had worked out his problem 
to a demonstration, the soldier, enraged, drew his sword and ran 
him through. Others write that a Roman soldier, running upon 
him with a drawn sword, offered to kill him; and that Ar-
chimedes, looking back, earnestly besought him to hold his hand 
a little while, that he might not leave what he was then at work 
upon inconclusive and imperfect; but the soldier, nothing moved 
by his entreaty, instantly killed him. Others again relate that, as 
Archimedes was carrying to Marcellus mathematical instru-
ments, dials, spheres, and angles, by which the magnitude of the 
sun might be measured to the sight, some soldiers seeing him, 
and thinking that he carried gold in a vessel, slew him. Certain it 

                                                                                                                                                                                                                                                                                                             

16 C. Rorres (organizer), Archimedes, 
http://www.math.nyu.edu/~crorres/Archimedes/contents.html. Site available in 2007. 

17 Rorres, Archimedes. 
18 Dijksterhuis, Archimedes, p. 31. 
19 Plutarch, Marcellus. 
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is that his death was very afflicting to Marcellus; and that Mar-
cellus ever after regarded him that killed him as a murderer; and 
that he sought for his kindred and honoured them with signal fa-
vours. 

During his lifetime, Archimedes expressed the wish that upon his 
tomb there should be placed a cylinder circumscribing a sphere within 
it, together with an inscription giving the ratio between the volumes of 
these two bodies. We can infer that he regarded the discovery of this ra-
tio as his greatest achievement. It appears in Propositions 33 and 34 of 
the first part of his work On the Sphere and Cylinder. These two results 
are extremely important, and both are due to Archimedes. “Proposition 
33: The surface of any sphere is equal to four times the greatest circle in 
it.”20 That is, in modern language, with A being the area of the surface of 
a sphere of radius r: ( )2 4 rA π= . “Proposition 34: Any sphere is equal to 
four times the cone which has its base equal to the greatest circle in the 
sphere and its height equal to the radius of the sphere.”21 In modern lan-
guage, with VE the volume of a sphere of radius r, and 3/ 2 rrVC ⋅= π , 
the volume of a cone of height r and base area equal to 2 rπ , we have 

( )3/ 44 3rVV CE π== . The inscription Archimedes requested for his tomb 
seems to be related to a Corollary presented at the end of this Proposi-
tion: “From what has been proved it follows that every cylinder whose 
base is the greatest circle in a sphere whose height is equal to the diame-
ter of the sphere is a 2

3  of the sphere, and its surface together with its 
base is 2

3  of the surface of the sphere.”22 
Marcellus saw to it that this wish was fulfilled. Cicero (106-

43 B.C.), the Roman orator, saw this tomb in a neglected state in 
75 A.D. when he was quaestor in Sicily, and restored it. It has never 
been seen since. Cicero’ writes:23 

But from Dionysius’s own city of Syracuse I will summon up 
from the dust—where his measuring rod once traced its lines—
an obscure little man who lived many years later, Archimedes. 
When I was quaestor in Sicily I managed to track down his 
grave. The Syracusians knew nothing about it, and indeed denied 
that any such thing existed. But there it was, completely sur-
rounded and hidden by bushes of brambles and thorns. I remem-
bered having heard of some simple lines of verse which had been 
inscribed on his tomb, referring to a sphere and cylinder mod-
elled in stone on top of the grave. And so I took a good look 
round all the numerous tombs that stand beside the Agrigentine 

                                                                                                                                                                                                                                                                                                             

20 Heath, ed., The Works of Archimedes, p. 39. 
21 Heath, ed., The Works of Archimedes, p. 41 
22 Heath, ed., The Works of Archimedes, p. 43. 
23 Rorres, Archimedes. 
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Gate. Finally I noted a little column just visible above the scrub: 
it was surmounted by a sphere and a cylinder. I immediately said 
to the Syracusans, some of whose leading citizens were with me 
at the time, that I believed this was the very object I had been 
looking for. Men were sent in with sickles to clear the site, and 
when a path to the monument had been opened we walked right 
up to it. And the verses were still visible, though approximately 
the second half of each line had been worn away. So one of the 
most famous cities in the Greek world, and in former days a great 
centre of learning as well, would have remained in total igno-
rance of the tomb of the most brilliant citizen it had ever pro-
duced, had a man from Arpinum not come and pointed it out! 
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Chapter 2 

The Works of Archimedes 

The works of Archimedes known to us are available in the original 
Greek and in Latin.1 English translations in modern notation have been 
published.2 A literal translation from the Greek to French can also be 
found.3 

Until one hundred years ago, the oldest and most important manu-
scripts containing works of Archimedes in Greek (with the exception of 
The Method, which did not appear in any manuscript) were mainly from 
the 15th and 16th centuries, housed in libraries located in Europe. They 
had been copied from two other 9th and 10th century Greek manuscripts. 
One of these manuscripts belonged to the humanist George Valla, who 
taught at Venice between 1489 and 1499. This manuscript disappeared 
between 1544 and 1564. It is not known if it still exists. It contained the 
following works, in this order: On the Sphere and Cylinder, Measure-
ment of a Circle, On Conoids and Spheroids, On Spirals, On the Equi-
librium of Planes, The Sand-Reckoner, Quadrature of the Parabola, Eu-
tocius’s commentaries on the Sphere and Cylinder, Measurement of a 
Circle, and On the Equilibrium of Planes. 

The last record of the second of the 9th and 10th century manuscripts 
was in the Vatican Library in the years 1295 and 1311. It is not known if 
this manuscript still exists. It contained the following works, in this or-
der: On Spirals, On the Equilibrium of Planes, Quadrature of the Pa-
rabola, Measurement of a Circle, On the Sphere and Cylinder, Euto-
cius’s commentaries on the Sphere and Cylinder, On Conoids and Sphe-
roids, Eutocius’s commentaries on the Equilibrium of Planes, On Float-
                                                                                                                                                                                                                                                                                                             

1 J.L. Heiberg, Archimedis Opera. Second edition, in 3 volumes (Leipzig: Teubner, 1910-
1915). 

2 T.L. Heath, ed., The Works of Archimedes (New York: Dover, 2002), E.J. Dijksterhuis, Ar-
chimedes (Princeton: Princeton University Press, 1987). 

3 C. Mugler, Les Oeuvres d’Archimède (Paris: Budé, 1970-2). Vol. 1-4. 
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ing Bodies. The latter work on floating bodies, in two parts, was not 
contained in the first manuscript. 

The work On Floating Bodies was only known until 1906 from a 
Latin translation made by the Flemish Dominican Willem van Moerbeke 
in 1269, based on the second 9th or 10th century manuscript. He trans-
lated all of Archimedes’s works to which he had access into Latin, and 
this was very important in spreading of Archimedes’s ideas. The original 
manuscript containing Moerbeke’s translation was found again in Rome 
in 1884, and is now at the Vatican Library. 

Archimedes wrote in the Doric dialect. In the manuscripts still ex-
tant his original language was transformed in some books totally, in oth-
ers only partially, into the Attic dialect common in Greece. In the 9th 
century some of his works were translated to Arabic. The first Latin 
translations of the works of Archimedes and of several scientists and 
philosophers of Greece were made during the 12th and 13th centuries. 
Gutenberg invented movable type for the printing press in Europe in the 
mid-15th century. The publication of Archimedes’s works in printed 
form began in the 16th century, the oldest being from 1503, containing 
the Measurement of a Circle and the Quadrature of the Parabola. 
Printed in 1544, the editio princeps contained the major known works 
by Archimedes, in Greek and Latin, with the exception of On Floating 
Bodies. The invention of the press was very important for the spread of 
his ideas. The first translations of some of his works to a living lan-
guage, German, were published in 1667 and 1670, by J.C. Sturm. In 
1807 the first French translation of all his known works was made by 
Peyrard. In 1897 and 1912 the first English translation was published by 
Sir T.L. Heath. 

2.1 Extant works 
We present here the extant works of Archimedes in the order in which 
they were written according to Heath.4 Much controversy surrounds this 
chronology. Knorr, for example, places The Method at the end of his 
works.5 

                                                                                                                                                                                                                                                                                                             

4 T.L. Heath, A History of Greek Mathematics, Vol. II: From Aristarchus to Diophantus (Ox-
ford: Clarendon Press, 1921), pp. 22-23. 

5 W.R. Knorr, “Archimedes and the Elements: Proposal for a Revised Chronological Ordering 
of the Archimedean Corpus,” Archive for the History of Exact Sciences 19 (1978/79): 211-290  
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On the Equilibrium of Planes, or 
The Centers of Gravity of Planes. Book I 
Archimedes derives the law of the lever theoretically utilizing the axio-
matic method and calculates the center of gravity of parallelograms, tri-
angles, and trapeziums. 

Quadrature of the Parabola 
Archimedes finds the area of a parabolic segment. Proposition 24: 
“Every segment bounded by a parabola and a chord Qq is equal to four-
thirds of the triangle which has the same base as the segment and equal 
height.”6 He presents two proofs of this result. In the first, he performs a 
mechanical quadrature, utilizing the law of the lever. In the second, he 
performs a geometric quadrature. 

On the Equilibrium of Planes, or 
The Centers of Gravity of Planes. Book II 
Archimedes finds the center of gravity of a parabolic segment. 

The Method of Treating Mechanical Problems, to Eratosthenes 
This work is usually called simply The Method. Archimedes presents a 
mechanical method to obtain geometrical results (calculation of areas, 
volumes and centers of gravity) utilizing the law of the lever and con-
cepts of the theory of the center of gravity. He presents several examples 
of this heuristic method which he created and employed, illustrating 
how to apply it. He thus obtains the quadrature of the parabola, the vol-
ume and center of gravity of any segment of a sphere, the center of 
gravity of a semi-circle, the center of gravity of a paraboloid of revolu-
tion, and several other results. This work will be discussed in more de-
tail in a later Section. 

On the Sphere and Cylinder, Books I and II 
Archimedes shows that the area of the surface of a sphere is equal to 
four times the greatest circle passing through the center of the sphere; 
finds the area of any segment of the sphere; shows that the volume of 
the sphere is equal to two-thirds the volume of the circumscribed cylin-
der, and that the surface of the sphere is equal to two-thirds the surface 
of the circumscribed cylinder, including the bases. In the second part of 
this work, the most important result is how to divide a sphere by a plane 
in such a way that the ratio of the volumes of the two segments has a 
given value. 

                                                                                                                                                                                                                                                                                                             

6 Heath, ed., The Works of Archimedes, p. 251. 
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On Spirals 
Archimedes defines a spiral through the uniform motion of a point along 
a straight line, this straight line rotating with a constant angular velocity 
in a plane. He establishes the fundamental properties of the spiral, relat-
ing the length of the radius vector to the angles of revolution that gener-
ate the spiral. He presents results related to the tangents of the spiral, 
and shows how to calculate areas of parts of the spiral. 

As a curiosity we quote here the first two propositions and the main 
definition presented in this work. This spiral is represented nowadays in 
polar coordinates by the relation ϕρ k= , where k  is a constant, ρ  is 
the distance to the z-axis (or from the origin, considering the motion in 
the xy plane) and ϕ  is the angle of the radius vector relative to the x 
axis. In this representation the time does not appear. On the other hand, 
the historical relevance of the original definition given by Archimedes is 
the introduction of the time concept in geometry. This was crucial for 
the later development of classical mechanics. 

Proposition 1: If a point move at a uniform rate along any line, 
and two lengths be taken on it, they will be proportional to the 
times of describing them.7 
Proposition 2: If each of two points on different lines respec-
tively move along them each at a uniform rate, and if lengths be 
taken, one on each line, forming pairs, such that each pair are de-
scribed in equal times, the lengths will be proportionals.8 
Definition: If a straight line drawn in a plane revolve at a uni-
form rate about one extremity which remains fixed and return to 
the position from which it started, and if, at the same time as the 
line revolves, a point move at a uniform rate along the straight 
line beginning from the extremity which remains fixed, the point 
will describe a spiral in the plane.9 

On Conoids and Spheroids 
Archimedes studies the paraboloids of revolution, the hyperboloids of 
revolution (conoids) and the ellipsoids (spheroids) obtained by the rota-
tion of an ellipse around one of its axes. The main goal of the work is to 
investigate the volume of segments of these three-dimensional bodies. 
He shows, for example, in Propositions 21 and 22, that the volume of a 
paraboloid of revolution is 2

3  of the volume of the cone which has the 
same base and the same height. Analogous, but more complex results, 
are obtained for the hyperboloid of revolution and for the ellipsoid. 
                                                                                                                                                                                                                                                                                                             

7 Heath, ed., The Works of Archimedes, p. 155. 
8 Ibid. 
9 Ibid, p. 165. 
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On Floating Bodies. Books I and II 
Archimedes establishes the fundamental principles of hydrostatics, giv-
ing the weight of a body immersed in a fluid. He also studies the condi-
tions of stability of a spherical segment floating in a fluid, and of a 
paraboloid of revolution floating in a fluid.  

In the first part of this work, Archimedes creates the entire science 
of hydrostatics. We know of no other author who worked with this sub-
ject prior to him. His basic postulate reads as follows:10 

Postulate: Let it be granted that the fluid is of such a nature that 
of the parts of it which are at the same level and adjacent to one 
another that which is pressed the less is pushed away by that 
which is pressed the more, and that each of its parts is pressed by 
the fluid which is vertically above it, if the fluid is not shut up in 
anything and is not compressed by anything else. 

Heath’s translation of this postulate reads as follows:  
Postulate 1: Let it be supposed that a fluid is of such a character 
that, its parts lying evenly and being continuous, that part which 
is thrust the less is driven along by that which is thrust the more; 
and that each of its parts is thrust by the fluid which is above it in 
a perpendicular direction if the fluid be sunk in anything and 
compressed by anything else.11 

Heath’s translation, published in 1897, was based on the Latin 
translation by Moerbeke in 1269, as the original text by Archimedes in 
Greek had been lost. In 1906, Heiberg found another manuscript con-
taining the original Greek text of this work. Some parts of this manu-
script remain undecipherable, and others are missing. In any event it 
contains this basic postulate, which clarifies the meaning of the last pas-
sage. Instead of Heath’s “and that each of its parts is thrust by the fluid 
which is above it in a perpendicular direction if the fluid be sunk in any-
thing and compressed by anything else,” the correct meaning is that of 
Dijksterhuis or Mugler, namely, “that each of its parts is pressed by the 
fluid which is vertically above it, if the fluid is not shut up in anything 
and is not compressed by anything else.” 

Beginning with this postulate he arrives at an explanation for the 
spherical shape of the Earth, supposing it to be wholly composed of wa-
ter. Then he proves the fundamental principle of hydrostatics, known to-
day as Archimedes’s principle, in Propositions 5 to 7. When he says that 
a solid is heavier or lighter than a fluid, he is referring to the relative or 
specific weight, that is, if the solid is more or less dense than a fluid. 
                                                                                                                                                                                                                                                                                                             

10 Dijksterhuis, Archimedes, p. 373; Mugler, Les Oeuvres d’Archimède, Vol. 3, p. 6. 
11 Heath, ed., The Works of Archimedes, p. 253. 
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Proposition 5: Any solid lighter than a fluid will, if placed in the 
fluid, be so far immersed that the weight of the solid will be 
equal to the weight of the fluid displaced.12 
Proposition 6: If a solid lighter than a fluid be forcibly immersed 
in it, the solid will be driven upwards by a force equal to the dif-
ference between its weight and the weight of the fluid dis-
placed.13  
Proposition 7: A solid heavier than a fluid will, if placed in it, de-
scend to the bottom of the fluid, and the solid will, when 
weighed in the fluid, be lighter than its true weight by the weight 
of the fluid displaced.14 

Based on these propositions at the end of the first book he deter-
mines the equilibrium conditions of a spherical segment floating in a 
fluid. In the second part, Archimedes presents a complete investigation 
of the conditions of equilibrium of a segment of a paraboloid of revolu-
tion floating in a fluid. His interest here seems very clear, namely, to 
study theoretically the stability of ships, although this is not explicitly 
mentioned. This is a work of applied mathematics, or theoretical engi-
neering. 

This is a monumental work which, for some two thousand years, 
was almost the only text on this topic. It was revived in the renaissance, 
influencing the works of Stevin (1548-1620) and Galileo (1564-1642). 

Measurement of a Circle 
This work does not come down to us in its original form. It is probably 
only a fragment of a larger text. Archimedes shows that the area of a cir-
cle is equal to the area of a right-angled triangle whose legs are the ra-
dius of the circle and the rectified circumference: “Proposition 1: The 
area of any circle is equal to a right-angled triangle in which one of the 
sides about the right angle is equal to the radius, and the other to the cir-
cumference, of the circle.”15 He also shows that the exact value of π is 
between 1408.33 71

10 =  and 1429.33 7
1 = . This he obtained by circum-

scribing and inscribing a circle with regular polygons of 96 sides. In his 
own words, “Proposition 3: The ratio of the circumference of any circle 
to its diameter is less than 7

13  but greater than 71
103 .”16 In the middle of 

this proposition he presents precise approximations for the square roots 
of many numbers, without specifying how he arrived at these results. He 

                                                                                                                                                                                                                                                                                                             

12 Heath, ed., The Works of Archimedes, p. 257. 
13 Ibid. 
14 Heath, ed., The Works of Archimedes, p. 258. 
15 Heath, ed., The Works of Archimedes, p. 91. 
16 Heath, ed., The Works of Archimedes, p. 93. 
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states, for example, that 780
1351

153
265 3 << , or, 1.7320261 <  

3 1.7320513< . 

The Sand-Reckoner 
Archimedes deals with the problem of counting the number of grains of 
sand contained in the sphere of the fixed stars, utilizing estimations by 
Eudoxus, his father Pheidias, and Aristarchus. He proposes a numerical 
system capable of expressing numbers equivalent to our 63108 × . It is in 
this work that Archimedes mentioned that the addition of the orders of 
the numbers (the equivalent of their exponents when the base is 810 ) 
corresponds to finding the product of these numbers.17 This is the prin-
ciple that led to the invention of logarithms many centuries later. 

Also in this work, Archimedes mentions the heliocentric system of 
Aristarchus of Samos (c. 310-230 B.C.). The work of Aristarchus de-
scribing his heliocentric system has not been preserved. Here we repro-
duce the introduction of the Sand-Reckoner. This introduction is the 
oldest and most important evidence concerning the existence of a helio-
centric system in antiquity. Due to this extremely important idea, Aris-
tarchus is often called the Copernicus of antiquity. At the end of the in-
troduction, Archimedes refers to a work called Principles, which is 
probably the title of one of Archimedes’s works containing a system of 
expressing numbers that had been sent to Zeuxippus, and is quoted in 
the introduction. This work is not extant. Archimedes writes: 

There are some, king Gelon, who think that the number of the 
sand is infinite in multitude; and I mean by the sand not only that 
which exists about Syracuse and the rest of Sicily but also that 
which is found in every region whether inhabited or uninhabited. 
Again there are some who, without regarding it as infinite, yet 
think that no number has been named which is great enough to 
exceed its multitude. And it is clear that they who hold this view, 
if they imagined a mass made up of sand in other respects as 
large as the mass of the earth, including in it all the seas and the 
hollows of the earth filled up to a height equal to that of the 
highest of the mountains, would be many times further still from 
recognising that any number could be expressed which exceeded 
the multitude of the sand so taken. But I will try to show you by 
means of geometrical proofs, which you will be able to follow, 
that, of the numbers named by me and given in the work which I 
sent to Zeuxippus, some exceed not only the number of the mass 
of sand equal in magnitude to the earth filled up in the way de-
scribed, but also that of a mass equal in magnitude to the uni-
verse. Now you are aware that ‘universe’ is the name given by 
most astronomers to the sphere whose centre is the centre of the 

                                                                                                                                                                                                                                                                                                             

17 Dijksterhuis, Archimedes, pp. 360-373. 
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earth and whose radius is equal to the straight line between the 
centre of the sun and the centre of the earth. This is the common 
account (τά γραφόμενα), as you have heard from astronomers. 
But Aristarchus of Samos brought out a book consisting of some 
hypotheses, in which the premises lead to the result that the uni-
verse is many times greater than that now so called. His hypothe-
ses are that the fixed stars and the sun remain unmoved, that the 
earth revolves about the sun in the circumference of a circle, the 
sun lying in the middle of the orbit, and that the sphere of the 
fixed stars, situated about the same centre as the sun, is so great 
that the circle in which he supposes the earth to revolve bears 
such a proportion to the distance of the fixed stars as the centre 
of the sphere bears to its surface. Now it is easy to see that this is 
impossible; for, since the centre of the sphere has no magnitude, 
we cannot conceive it to bear any ratio whatever to the surface of 
the sphere. We must however take Aristarchus to mean this: 
since we conceive the earth to be, as it were, the centre of the 
universe, the ratio which the earth bears to what we describe as 
the ‘universe’ is the same as the ratio which the sphere contain-
ing the circle in which he supposes the earth to revolve bears to 
the sphere of the fixed stars. For he adapts the proofs of his re-
sults to a hypothesis of this kind, and in particular he appears to 
suppose the magnitude of the sphere in which he represents the 
earth as moving to be equal to what we call the ‘universe.’ 
I say then that, even if a sphere were made up of the sand, as 
great as Aristarchus supposes the sphere of the fixed stars to be, I 
shall still prove that, of the numbers named in the Principles, 
some exceed in multitude the number of the sand which is equal 
in magnitude to the sphere referred to, provided that the follow-
ing assumptions be made(...)18 

It is also known that Archimedes wrote other works which exist to-
day only in fragments or in references by other writers: 

The Cattle-Problem 
This is contained in an epigram communicated by Archimedes to the 
mathematicians of Alexandria in a letter to Eratosthenes. It is a problem 
of algebra with 8 unknowns. The complete solution leads to a number 
with 206,545 digits. 

Book of Lemmas 
A collection of important lemmas relating to planimetric figures. 

Semi-Regular Polyhedra 
The regular polyhedra were known by Plato and are described by Euclid 
in his book The Elements of Geometry. Their faces are composed of 
                                                                                                                                                                                                                                                                                                             

18 Heath, ed., The Works of Archimedes, pp. 221-2. 
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regular equal polygons, equilateral and equiangular. There are only 5 
regular platonic solids: the tetrahedron, the cube, the octahedron, the 
dodecahedron and the icosahedron. 

In this work Archimedes describes the construction of the semi-
regular polyhedra which he discovered. Its faces are regular polygons, 
but with different numbers of sides, such as squares and equilateral tri-
angles. There are only 13 of these solids, all discovered by Archimedes. 
They are called Archimedian polyhedra. 

The Stomachion 
This is a game like tangram, with 14 pieces which together form a 
square. Archimedes probably tried to find the number of ways in which 
these 14 pieces can be put together in order to form a square. 

Area of the Triangle 
Some authors consider that Archimedes discovered the expression usu-
ally attributed to Heron in the first century A.D. for the area of a triangle 
in terms of its sides. 

Construction of a Regular Heptagon 
Archimedes presents the construction of a heptagon inscribed within a 
circle. 

Other works mentioned by Archimedes or by other authors are not 
extant. In some cases we know only the title, or have a general idea of 
their content. The same work may be cited with different names: 

Principles, or Naming of Numbers 
On how to express large numbers. 

On the Centers of Gravity 

Elements of Mechanics 
On the center of gravity and law of the lever. The work On the Equilib-
rium of Planes is probably only a small part of this larger work. 

Equilibria 
On the CG of solids. 

Book on Columns, or Book of Supports 
According to Heron, Archimedes dealt here with bodies supported by 
two or more columns. He solved the problem of finding which part of 
the total weight of the body was supported by each pillar. 
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On Balances, or On Levers 
On the center of gravity and the law of the lever. 

One work on optics 
Including the law of reflection and studies on refraction. 

On Sphere-Making 
A mechanical work describing the construction of a sphere representing 
the motions of the celestial bodies, probably a description of the famous 
planetarium built by Archimedes. 

On the Calendar 
On the length of the year. 

On Circles Touching One Another 

On Parallel Lines 

On Triangles 

On Properties of Right-Angled Triangles 

On the Assumptions for the Elements of Geometry 

Book of Data or Definitions 

2.2 The Method 
Of all the Archimedes’s works known today, the one that has received 
the greatest attention is The Method. One of the few things known about 
this work until 1906 was its title. Between 1880 and 1881 the Danish 
scholar J.L. Heiberg (1854-1928), a professor of classical philology at 
Copenhagen University, published the complete works of Archimedes 
then known, in Greek and Latin, in three volumes. This book was util-
ized as the basis for the modern translation of his works into many liv-
ing languages, such as the English made by T. L. Heath (1861-1940) and 
published in 1897. When he described the lost works of Archimedes, 
Heath quoted The Method in a single sentence:19 “7. έφόδιον, a Method, 
noticed by Suidas, who says that Theodosius wrote a commentary on it, 
but gives no further information about it.” Suidas was a Greek encyclo-
pedist who lived in the 10th century, when Theodosius (c. 160-90 B.C.) 
was a mathematician in Anatolia. But in 1899 Heiberg read about a pal-
impsest of mathematical content found in Constantinople. The word 
“palimpsest” means “scraped again.” Normally it is a parchment that 
                                                                                                                                                                                                                                                                                                             

19 Heath, ed., The Works of Archimedes, p. xxxvii. 
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has been used two or three times, after being scraped or washed each 
time, due to a shortage of parchment or to its high price. This specific 
parchment contained a Euchologion written in the 12th, 13th, or 14th, cen-
tury, over a mathematical manuscript of the 10th century. From a few 
specimen lines to which he had access, Heiberg suspected that it con-
tained an Archimedian text. He traveled to Constantinople and examined 
the manuscript twice, in 1906 and 1908. Fortunately the original text 
had not been completely washed out and Heiberg was able to decipher 
much of the contents by inspecting the manuscript and taking photo-
graphs. The manuscript contained 185 leaves with Archimedes’s works 
in Greek. Beyond the texts already known, it contained three treasures: 
(I) fragments of the Stomachion, (II) a large part of the Greek text of the 
work On Floating Bodies. (Until then it was believed to have survived 
only in the Latin translation made by Willem von Moerbeke in 1269 
from a Greek manuscript which is now believed lost.) (III) Most of The 
Method by Archimedes! A work that had been lost for two thousand 
years (the last person to study it seems to have been Theodosius), of 
which we did not know even the contents, appeared out of nowhere, 
greatly expanding our knowledge about Archimedes. Even the com-
ments on this work by Theodosius are no longer extant. 

In 1907 Heiberg published the Greek text of The Method, and a 
German translation with commentary by Zeuthen. In 1912 Heath pub-
lished a complement to his English translation of Archimedes’s works, 
now including The Method. Between 1910 and 1915 Heiberg published 
a second edition of the complete works of Archimedes, in Greek and 
Latin, in three volumes. This second edition is much better than the first, 
and was republished in 1972.20 Heiberg’s discovery was featured on the 
first page of The New York Times in 1907. 

But the story does not end here. In the period between 1908 and 
1930 the manuscript disappeared, probably having been stolen. Around 
1930 a French antiquities collector bought the manuscript, without the 
knowledge of the external world. In 1991 the collector’s family put this 
manuscript on sale in an auction. Only then was it realized this was the 
manuscript discovered by Heiberg in 1906 and which was supposed to 
have been lost. In 1998 it was sold by Christie’s, in New York. It was 
bought for 2 million dollars by an anonymous billionaire and lent to 
Walters Arts Gallery, of Baltimore, USA. A group of scholars, directed 
by Nigel Wilson and Reviel Netz, of Stanford University, are working 
on the restoration, digitization and publication of the manuscript, which 

                                                                                                                                                                                                                                                                                                             

20 Heiberg, Archimedis Opera 
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contains the only still surviving copy of The Method—a work that had 
been lost for 2,000 years! 

The work’s great importance is due to the fact that it contains prac-
tically the only report of a mathematician of antiquity describing the 
method he utilized in discovering his theorems. In all other surviving 
works we have only the theorems presented in final form, derived with a 
rigorous logic and with scientifically precise proofs, beginning with axi-
oms and other theorems. This dry presentation conceals the method or 
the intuition that led to the final result. The Method changed all this. For 
here, Archimedes describes the path he followed to arrive at several sig-
nificant results on quadrature and cubature (calculation of areas and 
volumes by integration), as well as the center of gravity of several im-
portant two- and three-dimensional geometric figures. Here are Ar-
chimedes’s own words:21 

Archimedes to Eratosthenes greeting.  
I sent you on a former occasion some of the theorems discovered 
by me, merely writing out the enunciations and inviting you to 
discover the proofs, which at the moment I did not give. The 
enunciations of the theorems which I sent were as follows.  
(...)  
The proofs then of these theorems I have written in this book and 
now send to you. Seeing moreover in you, as I say, an earnest 
student, a man of considerable eminence in philosophy, and an 
admirer [of mathematical inquiry], I thought fit to write out for 
you and explain in detail in the same book the peculiarity of a 
certain method, by which it will be possible for you to get a start 
to enable you to investigate some of the problems in mathematics 
by means of mechanics. This procedure is, I am persuaded, no 
less useful even for the proof of the theorems themselves; for 
certain things first became clear to me by a mechanical method, 
although they had to be demonstrated by geometry afterwards 
because their investigation by the said method did not furnish an 
actual demonstration. But it is of course easier, when we have 
previously acquired, by the method, some knowledge of the 
questions, to supply the proof than it is to find it without any 
previous knowledge. This is a reason why, in the case of the 
theorems the proof of which Eudoxus was the first to discover, 
namely that the cone is a third part of the cylinder, and the pyra-
mid of the prism, having the same base and equal height, we 
should give no small share of the credit to Democritus who was 
the first to make the assertion with regard to the said figure 
though he did not prove it. I am myself in the position of having 
first made the discovery of the theorem now to be published [by 

                                                                                                                                                                                                                                                                                                             

21 Heath, ed., The Works of Archimedes, Supplement, pp. 12-14. 
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the method indicated], and I deem it necessary to expound the 
method partly because I have already spoken of it and I do not 
want to be thought to have uttered vain words, but equally be-
cause I am persuaded that it will be of no little service to mathe-
matics; for I apprehend that some, either of my contemporaries 
or of my successors, will, by means of the method when once es-
tablished, be able to discover other theorems in addition, which 
have not yet occurred to me.  
First then I will set out the very first theorem which became 
known to me by means of mechanics, namely that  
Any segment of a section of a right-angled cone (i.e., a parabola) 
is four-thirds of the triangle which has the same base and equal 
height, 
and after this I will give each of the other theorems investigated 
by the same method. Then, at the end of the book, I will give the 
geometrical [proofs of the propositions]... 
[I premise the following propositions which I shall use in the 
course of the work.] (...) 

After this introduction about the life and work of Archimedes, we 
present several experiments that lead to a precise conceptual definition 
of the center of gravity of bodies. 
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Chapter 3 

The Center of Gravity 

3.1 Geometry 
We begin our work with a little mathematics. We will cut out some 
plane figures and find their main geometrical properties. Later we will 
utilize these figures in experiments. The dimensions we present here are 
adequate for individual activities. Larger sizes should be used for dem-
onstrations in the classroom, talks, and seminars. 

3.1.1 Materials 

Paper board, light cardboard, thick card, or pasteboard. Light 
wood/plastic/metal/styrofoam plane and rigid sheets can also be utilized. 

White sheets of paper. 
Ruler, pen, T-square and protractor. 

3.1.2 Finding the centers of circles, rectangles and parallelograms 

From a pasteboard we draw and cut out a circle 7 or 8 cm in diameter. If 
the circle is drawn with compasses, the center should be marked with a 
pen, and marked with an “X”. 

If the circle is drawn with a glass turned upside down, the center 
can be found by the intersection of two diameters. The diameters can be 
drawn with a ruler. But it is difficult to be sure if the ruler passes exactly 
through the center when we do not know exactly where the center is lo-
cated. 

An alternative procedure to find the diameter and center of the cir-
cle involves the paper. Later we will perform experiments with the 
pasteboards, so it is better not to fold them. For this reason the folding 
we discuss here should be done with similar figures made from sheets of 
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paper. For example, we place the pasteboard circle on a sheet of paper 
and cut out a similar circle of paper. We then fold the paper circle in two 
equal halves. We fold it once more so that it is divided into four equal 
parts, as in Fig. 3.1. We can then use a pen to draw the diameters in the 
paper circle. The center of the circle is the intersection of the diameters. 
A hole should be made at the center. By placing the paper circle on the 
pasteboard circle, we can mark the center of the circle on the paste-
board. 

We cut out a pasteboard in the shape of a rectangle with sides of 
6 cm and 12 cm. There are two ways to find the center. The simplest one 
is to connect the opposite vertices. The center of the rectangle is the in-
tersection of these diagonals, marked with the “X”. 

The other way is to find (with a ruler or by folding) the central 
point of each side. We then connect the middle points of opposite sides. 
The center is the intersection of these straight lines. 

The parallelogram is a plane quadrilateral in which the opposite 
sides are parallel to one another. A parallelogram is cut out from a 
pasteboard with sides of 6 cm and 12 cm, with the smallest internal an-
gle being 30º (or 45º). The center of this parallelogram can be found by 
the two methods we used for the rectangle, as in Fig. 3.2. 

3.1.3 The triangle centers 

There are three types of triangle: equilateral (three equal sides), isosce-
les (only two sides of the same length), and scalene (with three different 
sides). Every triangle has four special centers: circumcenter (C), bary-
center or triangle centroid (B), orthocenter (O), and incenter (I). We will 
find these four special points in the case of an isosceles triangle with a 
base of 6 cm and height of 12 cm. With these dimensions each one of 
the equal sides has a length of 12.37 cm. 

 
Fig. 3.1. Finding the center of a circle by paper folding. 

 
Fig. 3.2. Finding the center of a parallelogram. 
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We draw and cut out a triangle of this size from a pasteboard. We 
also cut out four equal triangles from a sheet of paper. Each one of these 
four paper triangles will be used to draw the straight lines and locate one 
of the special points. When necessary, also the folding should be done 
with these paper triangles. 

The circumcenter is the intersection of the perpendicular bisectors. 
A perpendicular bisector of a straight line AB is a straight line perpen-
dicular to AB and passing through its midpoint M. To find the midpoint 
of each side we can use a ruler. With a T-square or using the pasteboard 
rectangle we draw a straight line perpendicular to each side through its 
midpoint. The intersection of these lines is the circumcenter (C), as in 
Fig. 3.3. 

Another way of finding the midpoint of each side is by folding. In 
this case we only need to join the vertices two by two. The folding will 
be orthogonal to the side, passing through the midpoint.  

An important property of the circumcenter is that it is equidistant 
from the vertices. It is therefore the center of the triangle’s circumcircle, 
as in Fig. 3.3. 

In every acute triangle (a triangle in which all angles are acute, that 
is, smaller than 90º), the circumcenter is inside the triangle. In a right-
angled triangle the circumcenter is located at the midpoint of the hy-
potenuse. In every obtuse triangle (a triangle which has an obtuse angle, 
that is, larger than 90º), the circumcenter is outside the triangle. 

The barycenter or triangle centroid (B) is the intersection of the 
medians, which are the lines connecting the vertices to the midpoints of 
the opposite sides. It is also called the median center. The midpoint of 
each side can be found with a ruler or by folding. After finding them, all 
you need to do is join these midpoints to the opposite vertices. The in-
tersection of these medians is the centroid (B), as in Fig. 3.4. The bary-

 
Fig. 3.3. The circumcenter and the circumcircle. 
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center is always inside the triangle and has an important property. The 
distance from the vertex to the centroid is always twice the distance 
from the centroid to the midpoint of the opposite side. 

The orthocenter is the intersection of the altitudes of a triangle, 
which are the straight lines connecting the vertices to the opposite sides, 
orthogonal to them. The easiest way to find these lines is to use a T-
square or pasteboard rectangle. We slide the base of the T-square or the 
rectangle along one leg of the triangle until the perpendicular side of the 
T-square or the rectangle meets the opposite vertex of the triangle. At 
this point we draw the perpendicular to the leg, connecting it to the op-
posite vertex, as in Fig. 3.5. 

The orthocenter is the intersection of the altitudes, as in Fig. 3.5. 
The altitudes also represent the smallest distances between the vertices 
and the opposite sides. Depending upon the dimensions of the triangle, 
the orthocenter may be inside or outside the triangle. 

The incenter is the intersection of the angle bisectors of the trian-
gle, which are the straight lines dividing the vertices into two equal an-
gles. These lines can be obtained with a protractor. But the easiest way 

 

Fig. 3.4. The barycenter. 

 
Fig. 3.5. The orthocenter. 
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is by folding. In this case you only need to join the adjacent sides 
through the vertex. Folding divides each vertex into two equal angles. 
The intersection of the straight lines is the incenter (I), as in Fig. 3.6. 

The incenter is always located inside the triangle. It is equidistant 
from all sides of the triangle. It is thus also the center of the incircle (the 
inscribed circle of the triangle, tangent to all three sides), as in Fig. 3.6. 

After locating these four centers with the paper triangles, we make 
holes in the papers at these centers. We then superimpose each of these 
paper triangles upon the pasteboard triangle and mark these points. The 
final result in the case of an isosceles triangle with a 6 cm base and 
12 cm height is shown in Fig. 3.7. We can see that these four points are 
different from one another, with the orthocenter closer to the base, then 
the incenter, the barycentre, and the circumcenter. These four points are 
along a straight line which is the angle bisector, altitude, median, and 
perpendicular bisector. 

For an equilateral triangle these four centers superimpose on one 
another, as in Fig. 3.8. 

 
Fig. 3.6. The incenter and the incircle. 

 
Fig. 3.7. Isosceles triangle and its centers. 
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For an isosceles triangle with 12 cm base and 7 cm height the order 
of the centers relative to the base is opposite to the order for a 6 cm base 
and 12 cm height isosceles triangle, as in Fig. 3.8. 

For a scalene triangle these four centers are not along a single 
straight line. Moreover, they are not all necessarily inside the triangle. In 
Fig. 3.8 we show an obtuse triangle with sides of 7 cm, 10 cm and 14 
cm. We can see that the barycenter and the incenter are inside the trian-
gle, while the circumcenter and orthocenter are outside it. 

3.2 Experiments on and definition of the center of gravity 
Thus far we have dealt only with geometry. Now we will begin to per-
form experiments. The majority of the experiments described here were 
inspired by the excellent works of Ferreira and Gaspar, highly recom-
mended.1. 

We will use a few primitive concepts, that is, concepts that we can-
not define without avoiding vicious circles. These are: body, relative 
orientation of bodies (body B located between bodies A and C, for in-
stance), distance between bodies, change of position between bodies, 
and time between physical events.  

Experiment 
We hold a coin above the surface of the Earth and release it. We observe 
that it falls to the ground. The same happens with the pasteboard circles, 
rectangles and triangles. 

This is one of the simplest and most important experiments of me-
chanics. Not all bodies fall to the ground when released in air. A helium 
filled balloon, for example, rises when released in air, moving away 
from the surface of the Earth. On the other hand, if it is released in a 
high vacuum it also falls to the ground. In this work we will perform 
                                                                                                                                                                                                                                                                                                             

1 N. Ferreira, Mecânica, Projeto RIPE – Rede de Instrumentação para o Ensino (São Paulo: In-
stituto de Física, USP); N. Ferreira, Equilíbrio (São Paulo: Instituto de Física, USP). Available in 
2007 at: http://www.ludoteca.if.usp.br/; A. Gaspar, Experiências de Ciências para o Ensino Fun-
damental (São Paulo: Ática, 2003). 

 
Fig. 3.8. The triangle centers in some special cases. 
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experiments in open air. All the bodies we analyze here fall to the 
ground when released at rest. 

3.2.1 Definitions 

We now define a few concepts that will be employed throughout this 
work. 

Rigid body: Any body whose parts do not change their relative ori-
entations and distances when this body moves relative to other bodies. 
The triangle pasteboard, for instance, can be considered as a rigid body 
for the purposes of this book. Even when the triangle falls and rotates 
relative the surface of the Earth, the parts of the triangle remain fixed 
relative to one another (the distance between any two points belonging 
to the triangle remain constant in time). On the other hand, a cat walking 
on the sidewalk cannot be considered a rigid body. The distance be-
tween its feet, or between a foot and the tip of the tail, does not remain 
constant in time. Most experiments in the first part of this book will be 
performed with rigid bodies. When we say “body,” normally we refer to 
a “rigid body,” unless specified otherwise.  

Motion and rest: We say that two bodies A and B are in relative 
motion (or rest), when the distance between any particle i of body A and 
any particle j of body B does (does not) change with the passage of 
time. In this work we will often speak of the motion and rest of a body 
relative to the Earth. When we say simply that a body is at rest or in mo-
tion, we normally mean that it is at rest or in motion relative to the sur-
face of the Earth. The same should be understood for all the parts of a 
body in relation to all the parts of the Earth. 

Equilibrium: We will normally understand equilibrium of a body as 
its state of rest relative to the surface of the Earth. That is, when we say 
that a body is in equilibrium, we mean that all of its parts remain at rest 
relative to the Earth with the passage of time. When a triangle is in our 
hands, we say that it is in equilibrium. When it is falling to the ground, it 
is no longer in equilibrium. 

Gravity: Name given to the property which makes the bodies fall 
toward the surface of the Earth when released at rest. This can also be 
expressed by saying that gravity is the tendency of bodies to be attracted 
toward the center of the earth. 

Go down and up: When we say that a body is going down (up), we 
mean that it is moving toward (away from) the surface of the Earth. In-
stead of these verbs we can also employ analogous terms, like fall and 
rise. 
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On top and bottom, above and below: When we say that body A is 
above body B, we mean that B is between the Earth and body A. When 
we say that body A is below body B, we mean that A is between the 
Earth and body B. When we refer to the top (bottom) part of a body, we 
mean its part farthest (closest) to the surface of the Earth. 

Vertical: Straight line defined by the direction followed by a small 
dense body (like a metal coin) when it falls toward the Earth due to the 
action of gravity, beginning from rest. It is also the straight line followed 
by a body which moves upward when released from rest (like a helium 
balloon, in a region without wind). That is, the vertical is not an arbi-
trary straight line. It is a very specific straight line connected with the 
Earth’s gravity. Here we are neglecting the influence of wind. 

Horizontal: Any straight line or plane orthogonal to the vertical 
line. 

It should be stressed that all these concepts are connected to the 
Earth, indicating physical properties related to the gravitational interac-
tion of the bodies with the Earth. That is, they are not abstract or purely 
mathematical concepts. They are defined beginning from mechanical 
experiments performed at the surface of the Earth. 

It is important to introduce all these concepts explicitly because 
they will be utilized throughout this book. Nevertheless, it should be 
stressed that they are idealizations which are never found exactly like 
this in nature. For example, no body is perfectly rigid. Even when a 
book is resting above a table, its molecules are vibrating. In this sense, 
no body is actually in equilibrium according to the definition above, as 
parts of this body will always be moving relative to the surface of the 
Earth, even when the body as a whole, macroscopically, is at rest. When 
we support a body from below with a stick, the body will suffer a small 
curvature, even if it is a metal plate. However, for phenomena at a mac-
roscopic scale, these details (the vibration of the molecules, or the small 
curvature of the body) are not easily observable, or may not be relevant 
for the case under consideration. For this reason the concepts already 
defined make sense at the macroscopic scale and should be understood 
as such. 

3.2.2 Support for the experiments 

After these definitions we can go on with the experiments. We concen-
trate on the phenomena leading to the definition of center of gravity. To 
this end we will need a stand to support the plane pasteboard figures we 
made earlier. There are several ways to make a stand. 
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A bamboo barbecue skewer: We use children’s modeling clay as a 
base and fix the bamboo skewer vertically, with the tip down, as in 
Fig. 3.9. It is important to stress that the tip should be pointing toward 
the Earth; otherwise it will be very difficult to perform the equilibrium 
experiments. The bamboo skewer can also be fixed in rubber or another 
appropriate base.  

A pencil stand: We fix a pencil vertically in a sharpener, with its tip 
down. 

A bottle stand: If the pasteboard figures are large (with lengths of 
the order of 20 cm or of 40 cm, an appropriate size for demonstrations 
in the classroom), you can use a glass or plastic bottle as a stand, with 
the pasteboard resting above the cover. If the bottle is made of plastic, it 
should be water filled to prevent if from falling over during the experi-
ments, as in Fig. 3.9. 

A wire stand: Another interesting possibility is to utilize a thick, 
solid vertical wire with a spiral base, as in Fig. 3.9. If the wire is rigid 
but thin, it may be difficult to balance the figures horizontally above it. 
Moreover, the wire could pierce a hole in styrofoam sheets, etc. As a re-
sult, a thick, rigid wire is preferred. 

A nail stand: In this case we only need a nail fixed in a cork, rub-
ber, wooden board, or other convenient base. The head of the nail 
should be horizontal, with the point fixed in the base.  

There are many other possibilities. The important points are that 
the stand should be rigid, fixed in an appropriate base, and remain verti-
cal, and its top should be flat and remain in a horizontal plane. More-
over, the size of the top should be small compared with the dimensions 
of the figure which that is balanced on it. But it cannot be extremely 
small, or pointed (such as, for instance, the bamboo skewer, pencil or 
nail with the tip pointing upward). The top end has to be small in order 

 
Fig. 3.9. Supports for the experiments. 
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to clearly locate the equilibrium point of the body, but should not be too 
small, otherwise many of the experiments will be impracticable. (If it 
has a negligible area, it is very difficult to keep a body at rest above it.) 
With a little practice we can easily find appropriate dimensions. 

3.2.3 First experimental procedure to find the CG 

Experiment 
We try to balance the circle, rectangle, and parallelogram pasteboards in 
a horizontal plane by supporting them on a vertical stand. We take the 
circle, for example, lay it horizontal, and place it with the stand under 
one of its points, releasing the circle from rest. We observe that it always 
falls to the ground except when the support is under the center of the 
circle. With all these plane figures we observe that there is a single point 
in each one which must be on the vertical stand in order for the figure to 
remain at rest after release. Experience teaches us that for the rectangle 
and parallelogram, this special point is also the center of these figures, 
as happened with the circle, as in Fig. 3.10. 

As an historical curiosity, it is worth noting that Archimedes was 
the first to prove theoretically that the center of gravity of a circle is its 
center, and that the center of gravity of a parallelogram is the intersec-
tion of its diagonals (rectangles and squares are particular cases of paral-
lelograms). Lemma 6 of The Method says: “The center of gravity of a 
circle is the point that is also the center [of the circle].”2 Proposition 9 of 
his work On the Equilibrium of Planes states: “The centre of gravity of 
any parallelogram lies on the straight line joining the middle points of 
opposite sides.”3 And finally, proposition 10 of the same work states: 
                                                                                                                                                                                                                                                                                                             

2 Heath, ed., The Works of Archimedes, p. 15. 
3 Heath, ed., The Works of Archimedes, p. 194. 

 
Fig. 3.10. The circle, rectangle and parallelogram only remain at rest 
when supported by their centers. 
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“The centre of gravity of a parallelogram is the point of intersection of 
its diagonals.”4 

These bodies are balanced only when the stand is under their cen-
ters. This equilibrium is connected with the Earth’s gravity. Our first re-
action would be to call the centers of these bodies their “centers of grav-
ity.” But from the result of the next experiment and its analysis, we will 
see that this definition has to be modified. But for the time being we can 
say from the experiments performed thus far that only when these spe-
cific bodies are supported by their centers do they remain in equilibrium 
when released from rest. We thus give a first provisional definition. 

Provisional definition CG1: We call the center of gravity of a body its 
geometric center. This point will be represented by the letters CG. 

Experiment 
We now equilibrate an arbitrary triangle (equilateral, isosceles or sca-
lene) in a horizontal plane above a vertical stand. As a concrete example 
we will consider the pasteboard isosceles triangle of base a and height b 
(a = 6 cm and b = 12 cm). This triangle has its four special centers (or-
thocenter, circumcenter, barycenter and incenter) well separated from 
one another. We utilize now a barbecue bamboo skewer as the vertical 
stand. In this way we can locate clearly the equilibrium point of the tri-
angle. That is, the point below which the bamboo skewer should be 
placed in such a way that the triangle remains in equilibrium, after 
placed in a horizontal plane and released from rest. Experiment teaches 
that the triangle always falls to the ground, except when supported by 
the barycenter, as in Fig. 3.11. Even when supported by the circumcen-
                                                                                                                                                                                                                                                                                                             

4 Ibid., p. 195. 

Fig. 3.11. We can only 
equilibrate an horizontal 
triangle by supporting it 
through its barycenter. 
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ter, by the orthocenter, by the incenter, or by any other point (except the 
barycenter), the triangle always falls after release from rest. 

Once more Archimedes was the first to prove theoretically that the 
center of gravity of any triangle coincides with the intersection of the 
medians. Proposition 13 of his work On the Equilibrium of Planes 
reads: “In any triangle the centre of gravity lies on the straight line join-
ing any angle to the middle point of the opposite side.”5 Proposition 14 
states: “It follows at once from the last proposition that the centre of 
gravity of any triangle is the intersection of the lines drawn from any 
two angles to the middle points of the opposite sides respectively.”6 

Can we say that the barycenter of a triangle is its geometric center? 
Does every triangle have a geometric center? In order to answer these 
questions we need to know what we mean by “geometric center.” Intui-
tively we think of a geometric center as a point of symmetry of the 
body. In order to quantify this qualitative idea of symmetry, we can 
think of the center X of a rectangle. Let us consider a straight line AXB 
passing by X, making an angle θ with the base, and dividing the rectan-
gle into two parts of areas A1 and A2, as in Fig. 3.12. 

There are two criteria by which we can say that X is the geometric 
center of the rectangle. (I) The straight line AXB is always divided in 
two equal segments by X. That is, AX = XB for every angle θ. (II) The 
straight line AXB always divides the rectangle into two equal areas. 
That is, A1 = A2 for any angle θ. These two properties will not be valid 
for any other point of the rectangle—only for its center X. Let P be an-
other point of the rectangle. A straight line APB may be divided in two 
equal segments AP = PB when it is inclined by a specific angle θI rela-
tive to the base of the rectangle, but this will no longer be valid when we 
                                                                                                                                                                                                                                                                                                             

5 Heath, ed., The Works of Archimedes, p. 198. 
6 Ibid., p. 201. 

 
Fig. 3.12. The geometric center X of a rectangle: The segment 
AX = XB and the area A1 = A2 for any angle θ. 
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change the angle θI. Another straight line CPD may divide the rectangle 
into two equal areas when it is inclined by an angle θII relative to the 
base of the rectangle. But once again, this will not be valid when we 
change the angle θII. We then conclude that the rectangle has only a sin-
gle geometric center, the same being true of a circle and some other 
symmetric figures, such as a parallelogram or an ellipse. 

On the other hand, criteria (I) and (II) in the previous paragraph 
will not be true for any point P of a given triangle. That is, given an arbi-
trary triangle, there is no point PI belonging to it such that all straight 
lines passing through PI will satisfy criterion (I). Moreover, there is no 
point PII belonging to it such that all straight lines passing through PII 
will satisfy criterion (II). In this sense we can say that no triangle has a 
geometric center. On the other hand, every triangle has four special cen-
ters (circumcenter, barycenter, orthocenter, and incenter). 

In order to illustrate this fact we consider the isosceles triangle 
V1V2V3 with base a and height b. The area of this triangle is ab/2. The 
median connecting the center of the base to the vertex V2 is divided into 
two equal parts by a point P located at a distance b/2 from the base and 
from the vertex V2. A straight line parallel to the base and passing 
through P and limited by the sides of the triangle is also divided into two 
equal parts by P. On the other hand, the straight line V1PQ (where the 
point Q is the intersection of the side V2V3 with the extended line V1P) 
is not divided into two equal parts by P, as in Fig. 3.13. That is, criterion 
(I) is not satisfied by P. The same is true for any other point on the trian-
gle. 

 
Fig. 3.13. Criteria (I) and (II) will not be true for any point P of a triangle. 
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Nor is criterion (II) satisfied by P. The straight line passing through 
V2 and P divides the triangle into two parts of equal area. On the other 
hand, the straight line parallel to the base and passing through P does 
not divide the triangle into two parts of equal areas, as in Fig. 3.13. The 
upper triangle has only a quarter of the total area, while the lower trape-
zium has three quarters of the total area. 

The barycenter B is located at a distance b/3 from the midpoint of 
the base and at a distance 2b/3 from the upper vertex. This shows at 
once that it does not satisfy the previous criterion (I). The extended 
straight lines connecting B to any one of the vertices divide the triangle 
in two parts of equal areas. But this will not be the case, for example, for 
a straight line parallel to the base and passing through B, as in Fig. 3.14. 

In this case the area of the upper triangle is equal to 4
9  of the total 

area, while the area of the lower trapezium is equal to 5
9  of the total 

area. In order to confirm this without performing the calculations, all we 
need to do is cut out nine equal isosceles triangles, each with a base of 
a/3 and height of b/3 (area of ab/18). We can fill the superior triangle 
with four of these small triangles, and the inferior trapezium with five of 
these small triangles, as in Fig. 3.14. 

Even the most symmetrical triangle, the equilateral triangle, has no 
geometric center that satisfies criterion (I) or criterion (II). In this case 
the four special centers coincide at the barycenter B of the triangle. And 
we just saw that the barycenter of an isosceles triangle does not satisfy 
any of these criteria. As the equilateral triangle is a particular case of an 
isosceles triangle, it follows automatically that the barycenter of an 
equilateral triangle will not satisfy any of these criteria. Nevertheless, 

 
Fig. 3.14. A straight line parallel to the base and passing through the bary-
center divides the triangle into two figures having different areas. 
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we can say that the equilateral triangle has a center of symmetry given 
by C = B = O = I. Although this point does not satisfy criteria (I) and 
(II), there is symmetry of rotation around an axis orthogonal to the plane 
of the triangle and passing through this point. That is, any characteristic 
of the triangle is repeated with a rotation of 120º around this point. For 
this reason it is possible to say that the barycenter of an equilateral tri-
angle is its center of symmetry, yet not its geometric center. 

We then conclude that a triangle has no geometric center defined 
according to criteria (I) and (II). Nevertheless, experience teaches us 
that every triangle can be balanced horizontally when supported by a 
thin vertical stand placed under its barycenter, but not when we place 
the support under any other point of the horizontal triangle. This sug-
gests that we should change our previous definition of center of gravity. 
We now give a second, more precise provisional definition of a CG. 

Provisional definition CG2: The center of gravity is a certain point in 
the body such that if the body is supported by this point and released 
from rest, it remains in equilibrium relative to the Earth. 

Later on we will need to change this definition yet again for a more gen-
eral concept. But for the time being it is a suitable definition. From the 
experiments performed thus far it follows that any body has only a sin-
gle point satisfying this definition. If the body is released from rest 
when supported by any other point, it does not remain in equilibrium, 
but falls to the ground. For circles and parallelograms the CG is the cen-
ter of these bodies, while for the triangles it coincides with the barycen-
ter. 

Another way of looking at CG has to do with the weight of the 
bodies. Later on in this book we will quantify this concept and show 
how it can be measured. But we all have an intuitive notion of the 
weight of a body as a quantitative measure of gravitational force. We 
say that body A is heavier than body B when it is more difficult to keep 
A at a certain height from the ground than it is to keep B at rest at the 
same height. This difficulty can be indicated by our sweat, by the fa-
tigue we feel in an outstretched arm, or by the deformation created by 
bodies A and B upon the body supporting them (in the case of a flexible 
support like a spring, for example). 

In the previous Figures we saw that the whole weight of the circle, 
rectangle, parallelogram or triangle was supported by the bamboo 
skewer placed at a single point below each of these bodies. We can then 
give a new provisional definition of the CG. 
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Provisional definition CG3: The center of gravity of a body is the point 
of application of the gravitational force acting upon it. That is, it is the 
point of the body upon which all the gravity acts when it is at rest, the 
point where the weight of the body is located or concentrated. It can also 
be called the center of weight of a body. 

As we have seen, a triangle has no geometric center. This leads to an 
important conclusion which will be explored in the following experi-
ment. 

Experiment 
We have seen that not all straight lines passing through the barycenter of 
a triangle divide it into two equal areas. As we are dealing with homo-
geneous plane figures, the weight of any part is proportional to its area. 
This fact suggests a very interesting experiment. We cut out a paste-
board triangle with base a and height b (for example, with a = 6 cm and 
b = 12 cm). The barycenter is located along the median connecting the 
superior vertex to the midpoint of the base, at a distance 2b/3 from the 
superior vertex. We can then cut this triangle in two parts with a pair of 
scissors, cutting a straight line parallel to the base and passing through 
the barycenter. We then connect the two parts only by the central region 
around the old barycenter utilizing a small piece of pasteboard. Alterna-
tively, we can remove two narrow strips parallel to the base on either 
side of the barycenter, keeping only a small region around the barycen-
ter, as in Fig. 3.15. 

We then try to equilibrate this figure horizontally above a vertical 
stand. We observe that the body only remains balanced horizontally 

 
Fig. 3.15. Although the upper triangle and the lower trapezium have differ-
ent areas and weights, this figure can be kept in horizontal equilibrium by a 
support passing through the barycenter. 
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when the stand is placed below the barycenter. That is, although the area 
and weight of the trapezium are larger than the area and weight of the 
small triangle (which goes from the superior vertex to the straight line 
passing through the barycenter), the system as a whole remains in equi-
librium. If these two parts were not rigidly connected, each one of them 
would fall to the ground after release. We then conclude that the CG is 
not, necessarily, the point which divides the body in two equal areas or 
in two equal weights. We will discuss this aspect in more detail in a later 
section. 

Experiment 
There is another way to perform this experiment without cutting the lar-
ger triangle. We take the original triangle of base a and height b and bal-
ance it horizontally by placing the triangle on the edge of a ruler in the 
vertical plane. The edge of the ruler should be parallel to the base of the 
triangle, passing through its barycenter. The extended vertical plane 
passing through the ruler divides the triangle into two different areas, 
that is, into two different weights. Nevertheless, the triangle remains in 
equilibrium when supported by this ruler, as in Fig. 3.15. 

3.2.4 Experiments with concave bodies or pierced bodies 

We now cut out some concave figures, such as a letter C, a first quarter 
Moon, a boomerang, etc. Some pierced bodies should also be prepared, 
such as a washer (a metal washer is easily found). To cut the interior cir-
cumference of a pasteboard washer, a radial cut can be made between 
the exterior and interior circles. But with a pair of pointed scissors this is 
unnecessary. The outside diameters of these figures can be 8 cm or 
10 cm, for instance. The interior diameters can be of the order of 4 cm 
or 6 cm. But these dimensions are not so important. For the following 
experiments you will need to cut out at least two equal figures of each 
model (two letters C of the same size and shape, two Moons, two wash-
ers, etc.). One set of these figures will be used in the next experiment, 
while the other set of identical figures will be used in later experiments 
(with sewing threads ttached to these figures with adhesive tape). 

Experiment 
We try to balance these figures in a horizontal plane by placing them 
above a vertical stand, as we did with the triangle. We observe that we 
cannot balance any of them. They always fall to the ground, no matter 
where we place the support, as in Fig. 3.16. 
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Even when we try to balance them on an edge, by placing the fig-
ures in a vertical plane above the support, we do not succeed; they al-
ways fall to the ground, as in Fig. 3.16. 

The only way to balance them is to hold the bamboo skewer hori-
zontally and the figures in a vertical plane, with the bamboo skewer 
passing through a hole in the bodies, or supporting the concave part of 
the figures, as in Fig. 3.16. 

There are different ways to analyze this experiment. The first is to 
conclude that some concave or pierced bodies do not have a specific 
center of gravity, but do have an entire line of gravity. The washer, for 
instance, can remain balanced in a vertical plane when supported by any 
point belonging to its interior circumference. On the other hand it cannot 
be balanced when the vertical bamboo skewer is placed exactly at the 
empty center of the washer, which is its geometric center. If we follow 
definition CG2 rigorously, we must say that the washer has a line of 
gravity, namely, its interior circumference. In this case we cannot say 
that it has a specific CG located at a single point. 

The same can be said of definition CG3. After all, the horizontal 
bamboo skewer in Fig. 3.16 is holding the whole weight of the vertical 
washer supported at a point on the interior circumference of the washer. 
But a vertical bamboo skewer cannot support a horizontal washer when 
the end of the bamboo skewer is located at the empty center of the 
washer. If we follow definition CG3 rigorously, we should say that the 
washer has a line of weight or a line of gravity, but not a specific point 
that could be called its CG. 

Another way to analyze this experiment is to say that the CG does 
not need to be located “in the body.” That is, we may say that it does not 
need to be located at any point coinciding with a material part of the 
body. The CG might then be located in empty space, at a point in some 
definite spatial relation with the body (like the geometric center of the 
washer, for instance), even though not physically connected to the body. 

 
Fig. 3.16. The washer falls to the ground when we try to support it horizon-
tally or vertically by an edge. But we can support it by a horizontal bam-
boo skewer passing through its hole. 
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If we adopt this alternative, we will need to change our definition 
CG2. We will also need to find another way of experimentally locating 
the CG in these special cases, as presented in the procedure of the next 
experiment. 

Experiment 
We attach two taught sewing threads to the washer with adhesive tape, 
as if they were two diameters intersecting each other at the center of the 
washer. Now we can balance the washer in a horizontal plane by placing 
the vertical support under the intersection of the threads, as in Fig. 3.17. 
We can also find a similar point for the Moon or for letter C, by trial and 
error, i.e., the intersection of two taught threads attached to the figures 
so that they remain in equilibrium horizontally when the support is 
placed vertically under this intersection. 

If we accept this second alternative, we need to generalize our 
definition CG2 to include these special cases. A more general definition 
is presented now. 

Provisional definition CG4: We call the center of gravity of a body a 
point in the body or outside it such that, if the body is supported by this 
point and released from rest, it remains in equilibrium relative to the 
Earth. When this point is located outside the body, a rigid connection 
must be made between this point and the body in order for the body to 
remain in equilibrium when released from rest. 

This definition has a problem. After all, when we make this material 
rigid connection (like the taught threads attached with adhesive tape) the 
original body has been modified. But provided the weight of this mate-
rial connection is small in comparison with the weight of the body, this 
is a reasonable procedure. 

 

Fig. 3.17. The washer can be sup-
ported by its center utilizing two 
stretched sewing threads. 
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Even so there is another problem with this definition, as we will see 
in the next experiments. 

Experiment 
We now attach two loose threads of the same length to the washer with 
adhesive tape. The length of each thread should be greater than the ex-
ternal diameter of the washer. They are attached as in the previous ex-
periment, at the same locations, i.e., the straight line joining the two 
pieces of adhesive tape attaching each thread passes through the center 
of the washer. The only difference is the length of the threads. In this 
case we can also balance the whole system on a support. But now the in-
tersection of the two threads touching the support is along the axis of 
symmetry of the washer, as in Fig. 3.18. It is no longer located at its 
geometric center. 

If we follow the second alternative discussed above (where the CG 
does not need to be located in the body, and could be located in empty 
space), we must conclude that the washer has not just one center of 
gravity, but an infinite set of them located along its axis of symmetry. 
That is, the whole axis of symmetry of the washer might be called its 
“axis or line of gravity.” This would be true both according to definition 
CG3, and according to definition CG4. 

Definition CG3 has also problems with concave or pierced bodies. 
According to this definition the CG is the point of application of the 
gravitational force, that is, the point where gravity acts. The problem 
with this definition is that we normally consider gravity to be a force 
acting upon material bodies due to an interaction between the body and 
the Earth. It would be difficult to say that the point of application of the 
gravitational force on a washer was acting on the empty space where its 
geometric center is located. The force of the Earth cannot act on empty 

 
Fig. 3.18. The washer can also be supported along its axis of symmetry 
utilizing loose threads. 
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space. As a result, definition CG3 will have to be modified. It might, for 
instance, go something like the following. 

Provisional definition CG5: The center of gravity is one point inside or 
outside the body which behaves as if all gravitational force where acting 
at this point. When this point is located outside the body, there must be a 
rigid connection between this point and the body in order to perceive or 
measure the entire gravitational force acting at this point. 

This is a very reasonable definition. The greatest difficulty we encounter 
when dealing with it is how to locate this point. Let us consider the 
washer with loose threads, for instance. It is supported by four pieces of 
adhesive tape attached to it. These pieces of tape are supported by two 
taught threads. These threads, meanwhile, are supported at their inter-
section by a base or hook. That is, the washer behaves as if all its weight 
were supported along its axis of symmetry, at the intersection of the 
threads, away from the geometric center of the washer, provided we util-
ize threads attached to the washer. So it would make more sense to talk 
of a line of gravity, or a line of weight, instead of a center of gravity or a 
center of weight. 

In the next experiments we will see another problem that arises 
even with the more general definitions CG4 and CG5. 

3.2.5 Experiments with three-dimensional bodies 

Thus far we have performed experiments with “plane” figures, or two-
dimensional bodies. However, every material body is three-dimensional. 
When we say that a figure is plane or two-dimensional, we mean that its 
thickness is much smaller than the other dimensions involved in the 
problem (the thickness d of the pasteboard rectangle, for example, is 
much smaller than the length of its sides a and b). We now perform ex-
periments with bodies in which all three dimensions are of the same or-
der of magnitude. 

The bodies we will consider are a cube or die with plane faces, a 
sphere, a metal screw-nut and an egg. For lighter bodies we use chil-
dren’s modeling clay and the barbecue bamboo skewer as support. For 
the egg (and other heavy spheres) we can use the table as a support, 
since it only touches the table in a small region due to its convex shape 
at all points. 

Experiment 
We release these bodies upon a horizontal support and observe the 
points at which they remain in equilibrium. In the case of the cube we 
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find six points of equilibrium, namely, the centers of the faces, as in 
Fig. 3.19. 

For the metallic screw-nut we also find six points of equilibrium, 
the centers of the six external faces. Moreover, using the procedure in-
volving the intersection of sewing threads (which we used above with 
the washer), it can be shown that all points along the axis of symmetry 
are also points of equilibrium of the screw-nut. It also remains balanced 
by any point along the internal circumference or cylinder surface if the 
barbecue bamboo skewer is fixed in a horizontal position, as was the 
case with the washer. 

The sphere remains in equilibrium at all points of its surface. 
Therefore it has an infinite number of equilibrium points. 

The most interesting case is that of the egg, which has a whole line 
of equilibrium. This line forms a circumference on the shell, such that 
the plane of this circumference is orthogonal to the axis of symmetry of 
the egg, as in Fig. 3.19. 

From this experiment we conclude that many geometric bodies 
have more than one center of gravity if we follow definitions CG2, 
CG3, CG4 or CG5. The cube, for instance, would have six centers of 
gravity, the egg would have a whole line and the sphere its entire sur-
face. The screw-nut would have six of these centers, the centers of the 
external faces, in addition to its internal circumference and to all points 
along its axis of symmetry. In order to be consistent with this discovery 
we should talk of points, lines or surfaces of gravity, instead of speaking 
of a single “center” of gravity for each body. 

Fortunately there is another experimental procedure involving 
gravity with which we can find a single and specific point in each rigid 
body related to its condition of equilibrium relative to the Earth. By util-
izing this second experimental procedure we can obtain another defini-
tion of the CG which avoids the previous problems and which has a 
relevant physical meaning. As this new procedure employs a plumb line, 
we first explain the instrument. 

 
Fig. 3.19. A cube and an egg. 
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3.2.6 Plumb line, vertical and horizontal 

Plumb line: This is the name given to any thread fixed at its upper end 
(this end remains at rest relative to the Earth) and which has a body 
fixed at its lower end. The plumb line must be free to oscillate around 
the extreme upper end. 

The point of suspension, represented in some Figures by the letters 
PS is the point at which the body is hanging or suspended, as we will 
see in the next experiments. (Often it will coincide with the location of 
the pin or needle holding the body and the plumb line.) 

The stand or aid point, represented in some Figures by the letters 
PA, is the upper end of a stand on which the body is supported, like the 
end of the bamboo skewer used as a support in some of the previous ex-
periments. 

The upper end of the plumb line can be held by our fingers, or tied 
to a bar or a hook, etc. In our experiments we will fix this top end to a 
rigid support at rest relative to the Earth. We stick a pin or needle into 
the upper part of our bamboo skewer placed in a vertical position, as in 
the experiments performed earlier. On the pin we will hang pierced 
pasteboard figures and also a plumb line. The plumb line will be a sew-
ing thread with a weight at the bottom. We could simply tie or fasten it 
to the pin, but we will need to remove and replace the plumb line on the 
pin several times. Therefore it is best to make a small loop at the top of 
the thread. At the bottom of the thread we tie a plumb or a piece of 
modeling clay. The device to be used in the experiments is shown in 
Fig. 3.20. 

One of the advantages of this device is that it allows us to repeat 
the previous experiments in which we supported pasteboard figures 
horizontally on a vertical bamboo skewer. In order to avoid the hin-
drance of the pin (touching the figure placed horizontally above it), the 
pin should be stuck in a little below the end of the bamboo skewer. In 

 
Fig. 3.20. Plumb line. 
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addition, the pin should not be perfectly horizontal, but inclined with its 
head a little above the point stuck in the bamboo skewer, in order to 
prevent the pasteboard figures from sliding off. 

If we wish to perform experiments only with the plumb line, a 
bamboo skewer should be tied to it, in a horizontal position. This way 
we avoid the pins, which can be dangerous if we perform these experi-
ments with children. The bamboo skewer is laid on a table, half of it ex-
tending beyond the table. The part on the table is kept in its place by a 
book or other weight on it. The plumb line hangs from the part of the 
bamboo skewer outside the table, free to oscillate, as shown in Fig. 3.20. 
The pierced pasteboard figure will also hang from the bamboo skewer, 
instead of being suspended by the pin. 

Another practical alternative is to use a thread or lace tied to a bar 
or broomstick fixed in a horizontal position. At the bottom of the thread 
we attach a hook, from which we will hang the plumb line and the 
pierced pasteboard figures, as in Fig. 3.21. 

Experiment 
We hang the plumb line from the support and wait until it reaches equi-
librium. Then we release a coin from rest close to the plumb line. We 
observe that the direction of fall is parallel to the plumb line, as in 
Fig. 3.22. 

This is the main function of a plumb line. When it is at rest relative 
to the Earth, it indicates the vertical direction. In this sense it is a better 
indicator than a falling body, as it has a visible line, permanent and sta-
ble (when there is no wind blowing, etc.) Bricklayers often use plumb 
lines to determine whether a wall is vertically true. 

There are three principal methods for finding the horizontal direc-
tion.  

A) We first find the vertical, V, with a plumb line. Then we 
place a large T-square parallel to the plumb line. The direc-

 
Fig. 3.21. Support with hook, plumb line and pierced pasteboard figure. 
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tion orthogonal to the line indicated by the T-square is then, 
by definition, the horizontal direction, H, as in Fig. 3.22. 

B) With a spirit level. Usually it has the shape of a small paral-
lelepiped with an internal cylindrical transparent vessel con-
taining a liquid with a bubble. There are two straight mark-
ing lines along the axis of the cylinder, symmetrically lo-
cated relative to the center. The spirit level is placed on a 
surface. When the bubble remains in the middle of the two 
marks the surface is horizontal, as in Fig. 3.23. 
When the bubble remains at one of the ends of the vessel, the 
surface is not horizontal. The side where the bubble is lo-
cated is higher than the opposite side. The spirit level works 
due to the action of gravity and the upward thrust exerted in 
a fluid (the principle of Archimedes). 

C) We use a transparent hose open at both ends and partially 
filled with a liquid, such as water. The hose is kept at rest 
relative to the Earth and we wait until the liquid reaches 
equilibrium. The straight line connecting the two free sur-
faces of liquid indicates the horizontal direction, as in 
Fig. 3.23. It works based upon the equilibrium of liquids un-
der the action of gravity. 

As a curiosity it is worth mentioning here how bricklayers build or-
thogonal walls. After finishing a wall, they mark two points on it 4 m 

 
Fig. 3.22. Finding the vertical (V) and the horizontal (H) with a falling 
body or with a plumb line. 

 
Fig. 3.23. Finding the horizontal with a spirit level and with a transparent 
hose. 
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apart horizontally, A and B. The first point, A, is at the end of the wall 
where the other wall is to be built. Next they find a third point C such 
that the distance between A and C is 3 m and the distance between B 
and C is 5 m. The straight line connecting AC is then orthogonal to the 
straight line connecting AB. Instead of these specific distances, any mul-
tiple of them can be used (30 cm, 40 cm and 50 cm, for instance). The 
principle behind this method is the theorem of Pythagoras. That is, in a 
right-angled triangle the square of the hypotenuse is equal to the sum of 
the squares of the other sides. And a triangle with sides 3 m, 4 m and 
5 m satisfies this theorem. The same holds for a triangle with sides of 
lengths proportional to these numbers. 

3.2.7 Second experimental procedure to find the CG 

The first method for finding the center of gravity was described in the 
previous experiments of balancing circles, parallelograms and triangles 
horizontally above a vertical bamboo skewer. This is the simplest and 
most intuitive way to understand the meaning of the center of gravity. 
With this procedure we can also perceive that it is a single point for each 
body. Experiment shows that these bodies only remain in equilibrium 
when supported by a single point called the CG. But there were concep-
tual problems with this approach, as we saw before. We return to these 
geometric figures and perform another set of experiments. 

We now present the second method for finding the CG of these fig-
ures, which avoids the problems already presented. We use plane paste-
board figures of the same shape and size as before. But now we make 
two or three holes in each figure with nails or a single-hole punch-pliers. 
The diameters of the holes should be small compared with the dimen-
sions of the figures (so that they will not change the weight or matter 
distribution of the figures appreciably), but large enough for these fig-
ures to hang freely on the pin or hook. That is, the friction between the 
pin and the figures should be very small, such that the figures can oscil-
late freely around the pin. Single-hole punch-pliers are very practical 
and work very well with pasteboard figures with dimensions larger than 
5 cm. The circular holes they make allow the figures to swing freely 
when they hang by a pin or even on a horizontal barbecue bamboo 
skewer. 

Experiment 
We make a small hole in a pasteboard circle equal to the one used be-
fore. The hole should be made in an arbitrary position which does not 
coincide with the center of the circle. We then hang this circle on a pin 
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stuck into a vertical bamboo skewer. That is, with a horizontal pin the 
plane of the circle will be vertical. The location of the pin will be repre-
sented in the next Figures by the letters PS, indicating that it is the point 
of suspension. The plumb line is also placed on the pin. We wait until 
the system reaches equilibrium. Experience shows that in equilibrium 
the center X of the circle will be vertically below the pin, as indicated 
by the plumb line, as in Fig. 3.24. 

This is also a preferential position in the sense that, if the circle is 
released from rest from this position, it remains in equilibrium. If the 
circle is released from rest with its center outside the vertical passing 
through the pin, we observe that the center of the circle swings around 
this vertical until it stops in the preferential position due to friction, as in 
Fig. 3.24. 

Instead of hanging the circle on the pin, we could also tie the 
pierced circle with a thread passing through its hole. The upper end of 
the thread is then attached to a support above the circle. We again ob-
serve the same phenomena as before, provided the circle is free to oscil-
late around the thread. That is, the downward extended vertical along 
the thread will pass through the center of the circle when it reaches equi-
librium. 

We can now present the second experimental procedure for finding 
the CG. 

We consider a pasteboard circle with two or three small holes 
pierced in arbitrary locations. We hang it with the pin passing through 
one of its holes, and release the circle from rest. Normally it oscillates 
and reaches equilibrium. We hang a plumb line by the pin and wait for 
the whole system to reach equilibrium. We then use a pencil to draw a 

 
Fig. 3.24. The circle remains at rest when released in the preferential posi-
tion, otherwise its center will oscillate around the vertical passing through 
the point of support until it stops in the preferential position due to friction. 
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straight line in the circle coinciding with the vertical indicated by the 
plumb line. We call it PS1E1, where PS1 is the point of suspension indi-
cated by the pin (these letters should be written at the side of the first 
hole) and E1 is the bottom end of the body along this vertical, as in 
Fig. 3.25. 

The plumb line and the circle are removed from the pin. We now 
repeat the procedure, this time hanging the circle by a second hole PS2. 
We hang the plumb line, wait for the system to reach equilibrium and 
draw a second vertical PS2E2, as in Fig. 3.25. 

Experience shows that the two straight lines PS1E1 and PS2E2 inter-
sect at a point which coincides with the center of the circle. If we repeat 
the procedure by hanging the circle and plumb line by a third hole PS3, 
the third vertical PS3E3 will also pass through the center of the circle. It 
is convenient to draw three or more lines like this in order to find the 
point of intersection with greater precision. This procedure also shows 
that all verticals intersect at a single point. 

But this coincidence of all points of intersection is not always per-
fect. One reason for this fact is the friction that always exists between 
the circle and the plumb line while the system is oscillating, before 
reaching equilibrium. Sometimes this friction prevents the plumb line 
from reaching a vertical direction when at rest, as the line can stick on 
irregularities in the pasteboard. But the main reason for a lack of coinci-
dence of all points is the difficulty in drawing the verticals upon the fig-
ure to coincide with the plumb line. We have to attach the thread with 
our fingers in order to draw the lines. At this point we could change the 
real direction indicated by the plumb line very slightly. 

 
Fig. 3.25. Second experimental procedure to find the CG of a circle. 
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But with a little practice and patience we can optimize this proce-
dure. Then we can say with certainty that all verticals intersect at the 
center of the circle. Remember that we are considering holes of small 
diameters as compared with the size of the figure. This means that these 
holes do not significantly disturb the weight or the matter distribution of 
the figure. 

Experiment 
This procedure is repeated with a rectangle and a parallelogram, by 
piercing two or three small holes in each figure. The verticals are drawn 
and we observe that their intersections coincide with the centers of these 
figures, as in Fig. 3.26. 

By repeating the same procedure with a triangle we find that the in-
tersection of the verticals coincides with the barycenter of the triangle, 
as in Fig. 3.26. 

Experiment 
We can repeat the procedure with a pasteboard washer by piercing two 
or three holes in it and hanging it by a pin. Alternatively the washer can 
be hung by its interior circumference, keeping the washer in a vertical 
plane. We then hang the plumb line by the pin and draw the first vertical 
line. By repeating the procedure with another point along the internal 
circumference, we find that the intersection of the verticals coincides 
with the center of the washer, as in Fig. 3.26. This agrees with the inter-
section of the two stretched threads performed before. We can also com-
pare the present experiment with the one in which we used two loose 
threads. In this case the vertical passing through the intersection of the 
loose threads coincides with the direction of the vertical bamboo skewer 
placed below them or with the downward projection passing through the 
hook holding the threads. That is, this vertical coincides with the axis of 
symmetry of the washer. And this axis of symmetry also passes through 

 
Fig. 3.26. Second experimental procedure to find the CG of a rectangle, of 
a parallelogram, of a triangle and of a washer. 
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the geometric center of the washer. This means that all verticals drawn 
in this experiment intersect at the center of the washer. 

Experiment 
We now repeat this procedure utilizing a pasteboard Moon in first quar-
ter or with a pasteboard letter C. Once more We observe that the inter-
section of all verticals coincides with the previous experiment per-
formed with stretched threads. 

Experiment 
We cut out a plane pasteboard figure of arbitrary shape, devoid of any 
symmetry. Two or three small holes are pierced in the figure. We then 
localize its CG by the first procedure. That is, we try to find the specific 
point at which the vertical stand must be placed in order for the figure to 
remain in equilibrium in a horizontal plane when released from rest. We 
mark this point with a pen in both sides of the pasteboard. Then we use 
the second procedure to locate the CG. That is, we hang the figure in a 
vertical plane by a horizontal pin passing through one of its holes and 
wait for equilibrium. We then draw a vertical line with the help of a 
plumb line. We observe that it passes through the CG obtained with the 
first procedure, although the figure lacks symmetry. The same happens 
when we hang the figure by the second or third hole.  

The essence of these experiments can be stated as follows. A rigid 
body hangs by a point of suspension PS1, such that it is free to rotate in 
all directions around this point. For each PS there will be a preferential 
position such that the body will remain in equilibrium when released 
from rest. If it is not let go in this preferential position, when released 
from rest it will oscillate around the vertical passing through PS, until it 
stops due to friction. After the body reaches equilibrium, a vertical is 
drawn passing through PS1. Choose a second point PS2 outside this ver-
tical. The body is suspended by PS2 and the procedure is repeated. Ex-
perience shows that the two verticals obtained in this way intersect at a 
single point. The same happens when the body is suspended by any 
other point PS. That is, all verticals passing through the points of sus-
pension intersect at a single point. 

Practical definition CG6 
These facts lead us to a more general definition of the CG: 

Practical Definition CG6: The center of gravity of a body is the in-
tersection of all verticals passing through the points of suspension 
when it is in equilibrium and is free to rotate around these points. 



 and the First Law of Mechanics 55 

 

The detailed procedure or finding the CG by drawing the verticals 
through the points of suspension has already been presented. It is illus-
trated in Fig. 3.27 for a body of arbitrary shape. 

Experience teaches us that the CG is unique for each body. More-
over, it does not need to coincide with any material part of the body, as 
we have seen with concave or pierced figures. It is important to empha-
size two points in this practical definition. (A) The body must be free to 
rotate around the point of suspension. We can keep a homogeneous ruler 
in equilibrium horizontally, for instance, by holding it at one end with 
our fingers, provided we press our fingers together to prevent the ruler 
from rotating. In this case we should not draw the vertical line through 
the point of suspension because the figure is not free to rotate. If we let 
the ruler oscillate around our fingers, it will not remain in this position 
when released. Instead it will oscillate, stopping with its larger axis in 
the vertical direction. (B) We should only draw the verticals in order to 
find the CG after the body has reached equilibrium, that is, when all its 
parts are at rest relative to the Earth. No vertical should be drawn while 
it is oscillating around the equilibrium position. 

This last definition of the CG is much more abstract than CG2. 
Definition CG2 is more intuitive and clearly indicates the existence of a 
single, specific point in each body, such that it remains in equilibrium 
under the action of gravity when supported by this point. But definition 
CG2 has problems when dealing with concave or volumetric bodies, as 
we saw before. Definition CG6 is more general and can be applied to all 
cases considered here. 

A three-dimensional body must be suspended by a thread attached 
to one of its external points PS1. We wait until the body reaches equilib-
rium. Then we must imagine the vertical extended downward through 
PS1 until it reaches the end E1 of the body. We then suspend the body by 

 

Fig. 3.27. Second experi-
mental procedure to find the 
CG of a figure with an arbi-
trary shape. 
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the thread attached to another external point PS2. We wait until the body 
reaches equilibrium and imagine the vertical extended downward 
through PS2, reaching another external point E2 of the body. The inter-
section of these two verticals is the CG of the body. This procedure is il-
lustrated for the case of a cube in Fig. 3.28. 

Now that we have a clear and general practical definition of the 
CG, we can clarify the concepts related to the support and suspension of 
a body. 

Definition: We say that a body in equilibrium is supported by a point 
(or by a small region or surface) when this point of support is below 
the CG of the body. This aid or support point will be represented by 
the letters PA. 
Definition: We say that a body in equilibrium is suspended by a 
point (or by a small region or surface) when this point of suspension 
is above the CG of the body. This point of suspension will be repre-
sented by the letters PS. 

3.2.8 Third experimental procedure to find the CG 

We now analyze the experiments performed earlier with three-
dimensional bodies. The cube or die remained in equilibrium when the 
vertical bamboo skewer was placed under the center of each one of its 
sides. By extending these six verticals upward from the support point PA 
(the center of each face), we find that they intersect at the center of the 
cube. The same happens with the verticals extended upward from the 
centers of the six external faces of the screw-nut: they intersect at the 
center of symmetry of the nut. The sphere remains in equilibrium when 
supported by any point on a flat table. The verticals extended upwards 
from these points of support all meet at the center of the sphere. The egg 

 
Fig. 3.28. Finding the CG of a cube by the second experimental procedure. 
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remained in equilibrium on a horizontal table when supported by any 
point along a specific circumference of its shell. By supporting the egg 
by two or three of these points belonging to this specific circumference 
and extending the verticals upward through these points of support, we 
can see that they all meet at a specific point inside the egg. 

We first support the body by a point of support PA1. We extend the 
vertical passing through PA1 upward to E1, where E1 is the upper end of 
the body along this vertical line. We then support the body by another 
point of support PA2 which is not along the first vertical line. We extend 
the second vertical passing through PA2 upward to E2, where E2 is the 
upper end of the body along this second vertical line. The intersection of 
these two verticals is the CG of the body, as in Fig. 3.29. 

That is, it is possible to locate the CG of a body both by the inter-
section of the downward verticals drawn from the points of suspension, 
and by the upward verticals drawn from the points of support.  

Practical definition CG7 
This suggests another practical way of finding the CG: 

Practical Definition CG7: The center of gravity of a body is the in-
tersection of the verticals extended upwards from the points of sup-
port when the body is in equilibrium and is free to rotate around 
these points. 

The center of gravity obtained by practical definition CG6 always 
coincides with the center of gravity obtained by practical definition 
CG7. This can be seen, for instance, by hanging any of these three-
dimensional bodies by threads connected to a rigid support. The thread 
can be tied to the bodies if they have holes, or attached to them with 
chewing-gum or with a piece of modeling clay. 

 
Fig. 3.29. Finding the CG of a cube and of an egg by the third experimental 
procedure. 
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Let us suppose, for instance, that we tie the upper end of a thread to 
a fixed support and attach the lower end to a sphere with chewing-gum. 
We release the system and wait until it reaches equilibrium. In this case 
the point of suspension (where the chewing-gum touches the sphere) 
will be vertically above the center of the sphere. The same is true for 
other bodies. 

3.2.9 Conditions of equilibrium for supported bodies 

We now conclude this initial section with a few more experiments. They 
are very simple but extremely important. We will work with bodies for 
which the centers of gravity have already been determined experimen-
tally. Some of these new experiments (or parts of them) were performed 
above. Here we will establish the conditions of equilibrium and motion 
for bodies supported from below, that is, for which the CG is above the 
PA. 

Experiment 
We will work with a triangle, but the experiment can be performed with 
any plane figure for which the CG coincides with one of its material 
points. We first use a pen to mark the CG (barycenter) of the triangle. 
We then try to balance it horizontally by placing it on several supports 
and releasing it from rest. We begin with a vertical bottle. Equilibrium 
occurs whenever the CG of the triangle is above the bottle cap. If the 
vertical through the CG falls outside the bottle cap, the triangle falls 
down, its CG approaching the surface of the Earth. Next we use a verti-
cal pencil placed standing on its tip inside a sharpener. Once more, equi-
librium occurs only when the CG of the triangle is above the horizontal 
end of the pencil. We now utilize a vertical bamboo skewer with its tip 
stuck in a clump of modeling clay. Once more we can balance the trian-
gle horizontally as before, but there is not much freedom left here. That 
is, any small horizontal motion of the CG which removes it from the 
upper end of the bamboo skewer makes the triangle fall to the ground. 
When we use a vertical bamboo skewer with its tip pointed upward as a 
stand, it is very difficult to balance the triangle. Any shaking of our 
hands when we release the triangle is enough to unbalance it and cause 
it to fall. The same happens with any leaning or quivering of the bam-
boo skewer due to wind or some other factor. Finally, it is extremely dif-
ficult to balance the triangle on the tip of a vertical pin or needle. Some-
times we can only succeed if we stick the pin in the pasteboard (finish-
ing with the experiment) or deform the triangle a little. Many people 



 and the First Law of Mechanics 59 

 

never succeed in balancing the triangle horizontally on the tip of a verti-
cal needle, no matter how long they try. 

Other examples of this fact can be found in one of the previous ex-
periments in which a cube or a metal screw-nut was balanced on a verti-
cal bamboo skewer with its tip downward. Equilibrium was achieved 
only when its CG (the center of symmetry of the cube or nut) was 
placed vertically above the upper horizontal surface of the bamboo 
skewer.  

We conclude that a body can only remain in equilibrium if its CG is 
vertically above the region of support. Moreover, it is extremely difficult 
to balance a body when its CG is vertically above the support in cases 
where the area of upper end of the support tends to zero, approaching a 
mathematical point. This can be shown clearly in the next experiment. 

Experiment 
We make a small circular hole in the pasteboard triangle of the previous 
experiment. We hang it on a pin stuck in a vertical bamboo skewer. The 
horizontal pin passes through the hole and the plane of the triangle is 
vertical. We turn the triangle in such a way that its CG and the pin are 
aligned vertically, with the CG above the pin. We release the triangle 
from rest, holding the base of the bamboo skewer firmly. Experience 
shows that the triangle does not remain in this position. Its CG begins to 
swing widely around the vertical extended downward through the pin, 
until the triangle reaches equilibrium, as in Fig. 3.30. In the final posi-
tion the pin and the CG are vertical, but with the CG below the pin. 

Experiment 
We now consider a homogeneous sphere on a horizontal table. We can 
release it from rest in any position, and it remains in equilibrium. If we 
give it a small horizontal motion, it rolls until it stops due to friction. 

Experiment 
An analogous experiment can be performed with any cylindrical homo-
geneous container with its CG along the axis of symmetry (a cylindrical 
metal can or plastic bottle, for instance). It remains in equilibrium when 
released from rest in any position. If it is given a small horizontal mo-
tion so that it begins to roll around the line of support, it moves until it 
stops due to friction. 

We now perform a series of three experiments analogous to what 
we did with the egg earlier, but now with a slightly different symmetry 
which shows more clearly what is happening. We will deal with a cylin-
drical shampoo bottle with an elliptical cross section (for which b is half 
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the large diameter or major axis and a is half the small diameter or mi-
nor axis, with b > a). The center of gravity is along the axis of symmetry 
of the bottle, passing through the center of the two elliptical bases. 

Experiment 
The shampoo bottle is set down on a horizontal surface and released 
from rest. We observe that it only remains in equilibrium when released 
in such a way that the line of support is along the end of the minor axis 
2a, as in Fig. 3.31. In this position the CG is vertically above this line of 
support. By definition we will call this configuration the preferential po-
sition of the vessel. 

Experiment 
If we turn the vessel slightly around this line and release it, it does not 
remain at rest. Instead, the straight line connecting the centers of the el-
lipses will begin to oscillate around the previous vertical line, as shown 
in Fig. 3.31, until the container reaches equilibrium after stopping due to 
friction. The final position it reaches is the preferential position. This 
experiment is analogous to what happens with a rocking chair. 

 
Fig. 3.31. The CG oscillates around the vertical through PA. 

 
Fig. 3.30. The barycenter of a triangle oscillates around the vertical passing 
through PS when the triangle is released from rest. 
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We can see in Fig. 3.32 that when we rotate the container around 
the line below the preferential position, the CG will no longer be along 
the vertical line passing through the new point or line of contact. More-
over, the CG will be higher in this new position than it was in the pref-
erential position. When the container is released from rest in this new 
position, the initial direction of motion (that is, the side toward which 
the vessel will turn) is such that the CG will approach the surface of the 
Earth. The final position reached by the container, which coincides with 
the preferential position, is the configuration for which the CG is in the 
lowest possible position. 

Experiment 
The container is now released from rest in a position for which the CG 
is vertically above the lower end of the major axis 2b. It is practically 
impossible to balance the container in this position if the floor is flat and 
smooth. The container always falls toward one or the other side. To find 
out the side toward which it will fall, we only need to release it from rest 
with the CG slightly away from the previous vertical line. In this case 
the initial direction of motion always causes the CG move closer to the 
ground, as in Fig. 3.33. The final position of equilibrium is once again 
the preferential configuration. 

These and other analogous experiments can be summarized as fol-
lows. Suppose a rigid body is placed on flat horizontal surface and re-
leased from rest. It will remain in equilibrium only if its CG is vertically 
above the surface of contact. If the downward projection of the CG lies 
outside the region of contact, the body will not remain at rest. The initial 

 
Fig. 3.32. When a body is released from rest the direction of motion is such 
that the CG moves downwards. The central position is that of stable equi-
librium. 

 
Fig. 3.33. The central position is that of unstable equilibrium. 
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direction of motion in this case is such that its CG will approach the 
ground. 

3.2.10 Definitions of stable, unstable and neutral equilibrium 

These experiments suggest the following definitions. 

Stable equilibrium: 
This occurs when the CG is vertically above the region of contact and, 
moreover, any perturbation in the position of the body increases the 
height of its CG. We call this configuration the preferential position of 
the body. It is observed experimentally in these cases that any perturba-
tion in the body will cause the CG to oscillate around the vertical pass-
ing through the region of support in the preferential configuration, with 
the body swinging until it reaches equilibrium, because friction will de-
crease the amplitude of oscillation. In the final position it returns to the 
initial configuration of stable equilibrium. 

Neutral equilibrium: 
This occurs when the CG is vertically above the region of support and, 
moreover, any perturbation in the position of the body does not change 
the height of its CG relative to the ground. In these cases the body re-
mains in equilibrium for any position in which it is released from rest. If 
the body is given a small push and begins to move, it will continue to 
move in this direction until it stops due to friction. 

Unstable equilibrium: 
This occurs when the CG is vertically above the region of support and, 
moreover, any perturbation in the position of the body decreases the 
height of its CG relative to the ground. Any perturbation in the position 
of the body will move its CG away from the initial position, and it will 
not returning to that position. 

Yet another property connected with the equilibrium of a body sup-
ported from below can be derived from these conditions of stable and 
unstable equilibrium. This property can also be verified experimentally. 
To do so, we use a rectangular parallelepiped of sides a, b and c. It can 
be a brick, a homogenous wood block, a match or shoe box, etc. We will 
always work with the surface bc in a vertical position. From symmetry 
considerations, and also experimentally, it is easy to verify that the CG 
of the homogeneous parallelepiped is located at its center. We place a 
plumb line at the center of the face bc. If the body is a homogenous 
wood block, the simplest procedure is to put a nail at the center of the 
surface and tie the thread attached to a plumb onto it. If the parallelepi-
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ped is a shoe box, we can pass a bamboo skewer through the centers of 
both parallel faces of sides b and c. We then tie a plumb line onto it. For 
a match box we can pass a pin or needle through the centers of both 
faces, and then tie a plumb line to it. To prevent the parallelepiped from 
falling to the ground due to the weight of the plumb line, it is important 
for the weight of the plumb line to be much smaller than the weight of 
the parallelepiped. The experiment does not work as well if the paral-
lelepiped is very thin, that is, if side a is much smaller than sides b and c 
(as is the case with a pasteboard rectangle, where the thickness of the 
rectangle is much smaller than its sides). In these cases it is difficult to 
balance the body with surface bc in a vertical plane. After everything 
has been prepared we begin the experiments. 

Experiment 
We begin with the parallelepiped at rest above a horizontal table, with 
side c vertical and side b horizontal. Surface ab is horizontal, together 
with its four vertices V1, V2, V3 and V4, as in Fig. 3.34. 

We define rotation in the vertical plane around the horizontal axis 
V1V2 when V5V6 moves down and V3V4 moves up as indicating a posi-
tive angle, as in Fig. 3.34. 

If we rotate the parallelepiped around the axis V1V2 of an angle θ 
and release it from rest, its initial motion is such that its CG falls, as we 
saw in the conditions for stable and unstable equilibrium. It is easy to 
see that there will be a critical angle θc for which the straight line pass-
ing through V1V2 and by the CG will be vertical, coinciding with the di-
rection of the plumb line, as in Fig. 3.34. In this situation the CG is in its 
highest position. If the parallelepiped is released at rest from an initial 
angle smaller than the critical angle, it will tend to return to the position 
with side c vertical and side b horizontal, θ = 0º, as a rotation in this 

 
Fig. 3.34. A brick, rotation of an angle θ and the critical angle θc for which 
the CG is in its highest position. 
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sense will lower the CG. If the initial angle is higher than the critical an-
gle, the body will tend to move away from the initial position, falling 
toward the side where c tends to a horizontal position and b tends to a 
vertical position, θ = 90º. The position of the critical angle is always un-
stable equilibrium. 

From Fig. 3.35 we can see that the tangent of the angle α between 
the base V1V4 and the straight line connecting the vertex V1 to the CG is 
given by c/b, tan α = c/b. The magnitude r is given by r = (c2 + b2)1/2/2. 

From Figs. 3.34 and 3.35 we can see that the critical angle θc is 
given by 90º – α. This means that tan α = tan (90º – θc) = c/b.  

From Fig. 3.35 we can see that in general the value of the height of 
the CG is given by hCG = r sin(α + θ). When θ = 0º we have hCG = c/2, 
when θ = 90º we have hCG = b/2. The highest value acquired by the CG 
relative to the ground happens for α + θ = 90º, when hCG = r = 
(c2 + b2)1/2/2. 

When c = b we have α = θc = 45º. In this case the smallest value for 
the height of the CG is given by hCG = b/2 = c/2 = 0.5c. The highest 
value is given by hCG = 21/2c/2 = 0.71c. If c = 3b, α = 71.6º and 
θc = 18.4º. In this case we have hCG = c/2 = 0.50c when θ = 0º, 
hCG = 101/2c/6 = 0.53c when θ = θc, and hCG = c/6 = 0.17c when θ = 90º. 
In the case for which c = b/3 we have α = 18.4º, θc = 71.6º, 
hCG = c/2 = 0.50c when θ = 0º, hCG = 101/2c/2 = 1.58c when θ = θc and 
hCG = 3c/2 = 1.5c when θ = 90º. 

From these conditions we see that the stability of a body supported 
from below in stable equilibrium increases when the height of its CG 
decreases. That is, the critical angle increases when we decrease the 
height of the CG. 

 
Fig. 3.35. Geometrical properties of a brick. 
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We can control this experiment by working with a body of the same 
weight and external shape, but for which we can change the position of 
its CG. The idea here is to use a hollow rectangular box of sides a, b and 
c which has the CG at the center of the box. We will suppose that the 
side bc is always vertical. We then place another body inside the box, 
suspended at a height h from the base, as in Fig. 3.35. 

What is important now is that we can control this height. For a 
match box, for instance, we can attach a number of fishing sinkers with 
modeling clay to the lower or upper part of the box. We can then check 
that the CG of the system box-sinkers is located at some intermediate 
point between the center of the box and the center of the sinkers. Let us 
suppose that it is at a height hCG from the base of the box over a horizon-
tal surface, situated along the axis of symmetry of the lower base b of 
the box, as in Fig. 3.35. 

Experiment 
We place sinkers inside a match box, along the bottom side, and place 
the match box on a horizontal surface. We rotate the system around one 
of the axes of the base, releasing it from rest. We observe that for some 
angles the system returns to the position for which θ = 0º, while for an-
gles greater than a certain critical angle θcI the box falls to the other side, 
towards θ = 90º, moving away from the initial position. We now invert 
the position of the shots, in such a way that they remain attached inter-
nally to the match box, but on its top side. We repeat the same proce-
dure, and now obtain another critical angle θcS. It is found experimen-
tally that this new critical angle is much smaller than the previous criti-
cal angle, or, θcS < θcI. 

By the previous definition of equilibrium we conclude that the 
match box is in a position of stable equilibrium whether the sinkers are 
below or above. The reason for this is that any small perturbation of this 
position, for clockwise and for anti-clockwise rotation with initial angles 
smaller than the critical angle, the box returns to the initial position 
when released from rest. Nevertheless, we can say that the box with the 
sinkers on the bottom is more stable than the box with the sinkers on the 
top, as the critical angle in the first case is much larger than the critical 
angle in the second case. The size of this critical angle can then be con-
sidered the degree of stability of the system. 

We now want to know the value of the critical angle θc for this sys-
tem. When the box rotates around the axis V1V2 of an angle θ, as in the 
previous experiment, it returns to the position for which θ = 0º when re-
leased from rest if θ < θc. If θ > θc, the box does not return to the posi-
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tion for which θ = 0º when released from rest, but falls to the opposite 
side, towards θ = 90º. Let α be the angle between the horizontal base b 
and the straight line connecting V1V2 to the CG. We then have 
tan α = hCG/(b/2) and α = arctan (2hCG/b), as in Fig. 3.36. 

At the critical angle we have α + θc = 90º. That is, θc = 90º – arctan 
(2hCG/b). If the height of the CG, hCG, is very small, much smaller than 
b, the critical angle will be very high, close to 90º, which indicates high 
stability of the body. If hCG is much larger than b, the critical angle will 
be very small, close to 0º. Any perturbation in the system will make it 
fall, moving away from the initial position. From this last equation we 
conclude that to increase the stability of a system we must decrease the 
ratio hCG/b. There are two basic ways to do this: (A) Decrease the height 
of the CG (as we saw for the match box with the sinkers in the lower 
side), and (B) Increase the base around which the system rotates. 

We can then define the stability of a system by its critical angle: 
the larger this critical angle, the greater the stability of the system. That 
is, for two systems in stable equilibrium, the system which has the 
greatest critical angle will be said to have greater stability. 

3.2.11 Conditions of equilibrium for suspended bodies 

We now consider the main conditions of equilibrium and motion for 
bodies suspended from above. That is, with the point of suspension PS 
above the CG of the body. We will consider convex bodies or bodies 
pierced so that they can hang from a pin passing through a hole or by a 
thread tied to a hole. Once again we will consider bodies whose centers 
of gravity we determined earlier, and those where the hole does not co-
incide with the CG. Some of these new experiments, or parts of them, 
have already been performed. But they will be repeated in order to 

 

Fig. 3.36. Conditions of sta-
bility for a body. 
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clearly establish the conditions of equilibrium and motion of suspended 
bodies. We will work with a triangle, but similar experiments can be 
performed with other bodies. 

Experiment 
We hang a triangle by a pin passing through one of its holes, releasing it 
from rest. We observe that it only remains in equilibrium if its CG is 
vertically below the PS. This configuration is called the preferential po-
sition of the suspended body. 

Experiment 
We now rotate the triangle around the PS a certain angle, such that the 
CG and the pin are no longer along a vertical line. The triangle is re-
leased from rest. We observe that the CG oscillates around the vertical 
passing through the PS, as shown in Fig. 3.37. The amplitude of oscilla-
tion decreases due to friction. When the triangle stops, it returns to the 
preferential position with the PS and CG along a vertical line. Moreover, 
in equilibrium the CG is below the PS. 

From this Figure we can see that the preferential position has the 
CG in the lowest position. Any clockwise or anti-clockwise rotation of 
the triangle around the PS increases the height of the CG. 

Experiment 
We begin with a symmetrical bicycle wheel (that is, one with the CG at 
the center of the wheel), at rest, suspended by a horizontal axis. The 
wheel is attached to the axis by a ball-bearing, in such a way that it is 
not loose on the axis. We could also use a pasteboard disc pierced at the 
center. We pass a nail through the center of the disc, with a diameter a 
little smaller than the diameter of the hole, in such a way as to leave lit-

 
Fig. 3.37. When released the CG oscillates around the vertical passing 
through PS until the body stops with the CG vertically below the PS. 
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tle room between them, only enough space for the disc to rotate around 
the axis. The plane of the disc or bicycle wheel should be vertical, with 
the axis horizontal. We can release the wheel or disc from rest in any 
position and it remains in equilibrium. If we rotate the wheel or disc 
slowly one way, giving it a small angular rotation, it continues to rotate 
in this sense, its angular velocity decreasing due to friction, until it 
stops. 

In these cases the wheel and the disc are suspended by the upper 
part of the axis, which is a little above the CG of the bodies (located at 
the center of the wheel or disc). Nevertheless, any rotation of the wheel 
or disc around the axis does not change the height of the CG relative to 
the ground. 

These experiments suggest the following definitions: 

Stable equilibrium: 
When the CG is vertically below the PS and, moreover, when any per-
turbation of this position moves the CG upwards. If this happens, ex-
perience shows that the body returns to the preferential configuration. 

Neutral equilibrium: 
This occurs when the CG is vertically below the PS and when any per-
turbation in this position does not change the height of the CG relative 
to the ground. In this case the body remains in equilibrium in any posi-
tion where it is released from rest. If it receives a small impulse and be-
gins to rotate around the PS, it will continue to turn in this direction un-
til it stops due to friction. 

 
Fig. 3.38. A pasteboard T with holes. 
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Before we move on, another experiment is worth performing. We 
cut out a pasteboard figure in the shape of the letter T. The length from 
the tip of one arm of the T to the tip of the other arm should be 15 cm. 
The height of the T should be 15 cm or 20 cm. The width of the arms 
and body of the T should be 2 cm. We pierce 10 or 11 holes along the 
axis of symmetry of the T. We call them F1 to F11, with F1 at the intersec-
tion of the arms and with F11 at the end of the figure. We can also make 
holes at the hands of the two arms, as in Fig. 3.38. 

Experiment 
To begin with, we locate the CG of the T. This can be done, for instance, 
by hanging it by the holes at the hands and drawing the verticals in equi-
librium. The CG is the intersection of these two verticals, which should 
be along the axis of symmetry of the T, closer to F1 than to F11. The T 
will then be released from rest, hung by a hole along its axis of symme-
try, with the arms horizontal and its body below the arms (that is, with 
F1 above F11). When it is suspended by holes above the CG, such as F1 
or F2, it remains in equilibrium at the position in which it was released. 
On the other hand, when it is released from rest by holes below the CG, 
such as F10 or F11, it turns to one side or the other, swings a few times 
with decreasing amplitude, and stops with F11 above F1. This experiment 
again illustrates that the configuration with the CG vertically above the 
PS is unstable if the area of support is very small, like a point. On the 
other hand, the configuration with the CG vertically below the PS is sta-
ble, even when the area of support is very small, like a point. Although 
the explanation for this experiment is based on principles we have al-
ready seen, it is very interesting. After all, all holes have the same di-
ameter and allow the same rotation around the PS. But only in certain 
cases will the body rotate when released from rest, inverting the position 
of the arms relative to the body of the T. 

3.2.12 Definitive definition of the center of gravity 

Cases in which the CG coincides with the PS 
It may be impossible to do a real experiment in which a body is sus-
pended or supported by a point which passes exactly through its CG, and 
is free to rotate around this point. Even when we try to approximate this 
situation from below, the CG will be always slightly above the point of 
support PA. This is the case, for instance, where the pasteboard triangle 
is horizontal and supported by a vertical base placed below the barycen-
ter of the triangle. Here the point of contact between the base and the 
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pasteboard is slightly below the CG of the triangle, which is located at a 
point at the middle of the pasteboard. When we try to approximate this 
situation from above, the CG will always be slightly below the PS. This 
is the case, for instance, of a triangle in the vertical plane suspended by 
a horizontal pin passing through a hole made at the barycenter of the tri-
angle. The diameter of the hole must be slightly larger than the diameter 
of the pin, in order to allow free rotation of the triangle. In this case the 
PS will be the point of contact between the pin and the upper part of the 
hole, while the CG will be at the center of the hole. 

Another difficulty arises for three-dimensional bodies. For in-
stance, if we have a solid parallelepiped, we can only support it by a 
stick touching its outside surface, or by a thread tied to its outside sur-
face. Its CG is located in the middle of the parallelepiped, inside the 
brick. In order to suspend or support it by this point we need to make a 
hole in the parallelepiped; and this would change its distribution of mat-
ter. But if the width of this hole is very small compared with the sides of 
the parallelepiped, we can neglect this modification to the matter of the 
brick. 

From what we have already seen, we can imagine what would hap-
pen if we could perform this experiment. We have already seen that the 
CG of any rigid body released from rest tends to move toward the sur-
face of the Earth. If the body is suspended exactly by the CG, being free 
to rotate around this point, any rotation of the body will not change the 
height of the CG relative to the ground. In this case the body would re-
main in equilibrium for all positions in which it was released, no matter 
what its orientation relative to the ground.  

Let us consider an idealized experiment with a triangle in a hori-
zontal plane suspended from above exactly by its barycenter by a verti-
cal string, or supported by a vertical stick under it. If released from rest 

 
Fig. 3.39. A body suspended exactly by the CG and free to rotate around 
this point does not move when released from rest, no matter its orientation 
relative to the Earth. 
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the triangle will remain in this position regardless of the orientation of 
any of its vertices relative to ambient objects (e.g., pointing toward a 
tree or a house, or pointing toward North or West).  

Let us now suppose that the triangle is released from rest in a verti-
cal plane with a horizontal axis orthogonal to its plane passing exactly 
through its CG and attached to the triangle. This axis is supported in 
both sides around the triangle by two vertical stands. The triangle is 
considered free to turn in any direction around this axis. After release 
the triangle will remain in its initial position regardless of the orientation 
of any of its vertices relative to a vertical passing through the CG.. Let 
us call V1 one of its vertices and α the angle between the segment con-
necting V1 and the CG with the vertical passing through the CG, as in 
Fig. 3.39. In other words, the vertical triangle supported by the CG and 
free to rotate around an axis passing through this point would remain at 
rest after release, regardless of the value of α. We can approximate this 
situation experimentally by passing a needle or toothpick through the 
barycenter of a triangle, orthogonally to its plane. It is difficult to pass 
the needle exactly through the CG. This means that in general there will 
be a preferential position for the stationary situation with the CG of the 
triangle below the needle. But we can then place a very small amount of 
modelling clay on the upper edge of the triangle vertically above the 
needle in order to adjust the CG of the whole system to coincide ap-
proximately with the needle’s axis. In this case we can obtain a result 
like that of Fig. 3.39 in which the triangle will remain at rest regardless 
of the angle α of release. 

Let us now consider an axis in the plane of the triangle and passing 
through its CG, rigidly connected to the triangle. We can imagine it ex-
tended on both sides beyond the edges of the triangle and supported 
horizontally at both ends by two rigid vertical stands placed under them. 
The plane of the triangle is free to rotate in any direction around this 
axis. The rigid triangle defines a plane. We consider a straight line or-
thogonal to the plane of the triangle and passing through its CG.. We call 
β the angle between this straight line and the vertical line passing 
through the CG, as in Fig. 3.39. If released from rest and supported by 
the CG, free to rotate around the horizontal axis passing through this 
point, the triangle should remain at rest in this position regardless of the 
value of β.  

We have seen from the previous real experiments that the CG of 
any rigid body tends to move closer to the surface of the Earth when it is 
released from rest. This means that if a body hung exactly by its CG 
were released from rest, being free to rotate about this point, it would 
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not move, no matter what its initial position or orientation relative to the 
ground. After all, if it did begin to rotate in any direction, the CG would 
remain at the same height. As the tendencies to rotate in opposite direc-
tions cancel one another, it will not begin to rotate when released from 
rest. This leads to a new and definitive definition for the CG. 

Definitive Definition CG8: The center of gravity of any rigid body 
is a point such that, if the body is suspended from that point, and is 
released from rest and free to rotate in all directions around this 
point, the body so suspended will remain at rest and preserve its 
original position, no matter what the initial orientation of the body 
relative to the ground. 

If this point is located in empty space, as for concave or pierced 
figures, we have to imagine a rigid structure connecting the body to this 
point, so that the body can be suspended from the point.  

Later on we will see that Archimedes seems to have defined the CG 
in this way. 

The main difference between definition CG8 and definition CG4 is 
that in CG8 we say that the body will remain in equilibrium when re-
leased from rest no matter what the initial orientation of the body rela-
tive to the ground. Let us consider a washer, for example. It can remain 
in equilibrium when released from rest in a vertical plane, suspended by 
any point on its internal circumference, as in Fig. 3.40. In this case the 
axis of the washer makes an angle θ = 90º with the vertical line. We de-
fine the angle θ as the smaller angle between the axis of the washer and 
the vertical line. 

 
Fig. 3.40. A washer can remain at rest when supported by its internal cir-
cumference. However, it does not remain in equilibrium for all orientations 
of release. If θ ≠ 90° its center will oscillate around the vertical passing 
through the point of support after release. 
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According to definition CG4, this point of suspension PS along the 
inside circumference could be considered a center of gravity for the 
washer. We now suppose that the washer is released from rest when sus-
pended by the same point, but with its axis no longer orthogonal to the 
vertical line. This means that the body will be released from rest with θ 
different from 90º. In this case the washer does not remain in equilib-
rium. After release the plane of the washer will oscillate around the ver-
tical line, until it stops due to friction. In the final position θ = 90º, as in 
Fig. 3.40. 

According to definition CG8, this point of support along the inter-
nal circumference cannot be considered the CG of the washer. We have 
already seen in the practical procedure given by CG6 that the real CG of 
the washer is its center of symmetry at the center of the washer. When 
the washer hangs by a point PS located on the inside circumference, the 
CG will be at its lowest position when it is vertically below this PS, 
where θ = 90º. This is a position of stable equilibrium. When we de-
crease the angle θ, the CG moves upward. If it is released from rest in 
this new position, gravity will cause it to move downward. 

Suppose now we attach some spokes in the washer, like the spokes 
of a bicycle wheel. This can be done with taught threads, or we can con-
sider a real bicycle wheel. Let us suppose the washer or wheel is sus-
pended by its center and is free to rotate in any direction around this 
point. If it is released from rest with its axis making an angle θ with the 
vertical line, it remains in equilibrium for any θ, as in Fig. 3.41. 

By definition CG8, we can now conclude that this is the real CG of 
the washer. The reason why it remains in equilibrium for any value of θ, 

 

Fig. 3.41. When supported 
by its CG a body remain in 
equilibrium no matter the 
orientation of release. 
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when suspended by its center, is that the height of the CG is independent 
of θ. And this is the main property of the neutral equilibrium.  

We called definition CG8 as definitive. The word definitive should 
be understood as between quotation marks. The reason is that it is 
strictly valid only in regions of uniform gravitational forces. These are 
the regions in which a certain test body is always under the action of the 
same gravitational force (in intensity and direction) at all points of the 
region. This is true for small bodies in the vicinity of the Earth. The 
gravitational forces acting upon each particle of the test body can be 
considered parallel to one another, and all vertical. 

But there are situations in which this is not valid. Let us present a 
specific example in which we make several assumptions: (A) The body 
exerting the gravitational force is like the Earth, but shaped like an ap-
ple, with the greatest distance between any two particles of this apple-
earth given by dE; (B) the body under the action of the gravitational 
force is like the moon, but shaped like a banana, with the greatest dis-
tance between any two particles of this banana-moon given by dM; (C) 
the distance between an arbitrary particle i of this apple-earth and an-
other arbitrary particle j of the banana-moon being given by 
dij = dE + dM + εij, with 0 < εij << dE + dM. In this case a unique center of 
gravity will not exist. Depending upon the relative orientation between 
the banana-moon and the apple-earth, there will be distinct lines of equi-
librium. In cases like this, the concept of a center of gravity looses its 
meaning. 

Still, definition CG8 may be used for a test body of small dimen-
sions when compared with the radius of the earth. 

3.2.13 Summary 

We now present the main conclusions we have reached thus far. 
Definitions: Equilibrium of a body is when the body and its parts 

do not move relative to the Earth. The vertical is the straight line traced 
by a body in free fall at the surface of the Earth, beginning from rest. 
The horizontal is any straight line or plane orthogonal to the vertical. 
The center of gravity of any rigid body is a point such that, if the body 
were to be suspended from that point, released from rest and free to ro-
tate in all directions around this point, the body so suspended would re-
main at rest and would preserve its original position, no matter what its 
initial orientation relative to the ground. The CG can be found in prac-
tice by the intersection of all the vertical lines passing through the points 
of suspension of the body when it remains in equilibrium, and is free to 
rotate around these points of suspension. 
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Experimental results: The CG is unique for each rigid body. Free 
bodies fall to the ground when released from rest. The direction of free 
fall coincides with the direction of a plumb line in equilibrium. Any 
body can remain in equilibrium after released from rest, provided it is 
supported from below with its CG located vertically above the surface 
of contact. Any body can also remain in equilibrium after released from 
rest if it is suspended by a point PS around which the body is free to ro-
tate, provided the CG is vertically below the PS. Equilibrium will be 
stable, unstable, or neutral, respectively, when any perturbation in the 
position of equilibrium of the body increases, decreases, or does not 
change the height of the CG relative to the ground. When there is stable 
equilibrium, any perturbation in the position of the body will cause it to 
oscillate around the position of equilibrium, with decreasing amplitude 
of oscillation due to friction, until it stops at the position of stable equi-
librium. When there is unstable equilibrium, any perturbation in the po-
sition of the body will move it away from this position. The initial direc-
tion of motion for the perturbed body released from rest will be such 
that its CG moves downward from its initial height in the position of un-
stable equilibrium.  

Until now we have only described these facts. We are not explain-
ing the experimental data; we are merely summarizing the main results. 
We will now utilize these basic experimental facts to explain other phe-
nomena that are more complex, but that can be derived from these ob-
servations. 

3.3 Fun activities with the equilibrist 
One of the most interesting classroom activities utilizes a pasteboard 
equilibrist. It makes the students assimilate and incorporate all the con-
cepts we have seen thus far. It is also fun, especially if performed with 
several people simultaneously. The idea is to give a problem to the stu-
dents and to let them solve it by themselves. The teacher should not tell 
them how to solve the problem and should not explain the causes of the 
phenomena observed. Only the sequence of tasks needs to be given. 
This activity should be performed after the students have performed the 
main experiments. Each student should prepare his own equipment 
(bamboo skewer, plumb line, a pasteboard equilibrist, etc.), and also 
perform all the procedures described here. At the end of the activity the 
students can keep their apparatus. 
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Materials: A support with a plumb line. A pasteboard equilibrist, as 
in Fig. 3.42, with the dimensions in centimeters. Some modeling clay. 
Single-hole punch-pliers. 

The support with the plumb line could be a barbecue bamboo 
skewer with the tip stuck in modeling clay, with a pin or needle stuck in 
the top of the bamboo skewer. The plumb line can be made with sewing 
thread and a plumb or modeling clay at the bottom, as before. When the 
equilibrist becomes too heavy with the clay, so that the pin or needle 
slips out of the bamboo skewer, or the plumb slips off the needle, we 
can support it with a horizontal bamboo skewer on a table, sticking out 
from the table, with the plumb line tied to it. In this case the equilibrist 
will hang by the bamboo skewer itself passing through a hole in the 
pasteboard, instead of being suspended by the pin, as in the previous 
case. 

The exact dimensions of the equilibrist are not so relevant. The 
most important for the time being is that it should by symmetric around 
the body’s axis, with the arms pointing up and the legs down, as in 
Fig. 3.42. The arms should be longer than the legs, as in most situations 
the equilibrist will be upside down. The dimensions shown in the Figure 
are appropriate for the activities to be described, in which the paper 
puppet is balanced by hand by the students. 

Another very important property of the equilibrist is that it should 
be rigid, non-deformable. If we put a large amount of clay on it, a paste-
board equilibrist could bend. In order to prevent this, the pasteboard 
should be rigid. We can even have an equilibrist made of stiff plastic, 

Fig. 3.42. An equilibrist 
with dimensions in centime-
ters. There are holes in the 
hands and feet. 
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which is not so difficult to obtain. If the equilibrist is bent by the clay 
used in this experiment, what is described will not be observed in some 
cases.  

Initially several identical equilibrists should be cut out from a 
pasteboard, so that each student receives a figure. The students should 
pierce the hands and feet of the equilibrist with single-hole punch-pliers, 
as shown in Fig. 3.42. After this the first task is to locate the CG of the 
puppet using the two procedures already learnt. (I) We find the point on 
which the equilibrist should be supported so that it remains in equilib-
rium horizontally above a vertical stand after released from rest. (II) We 
suspend it by a needle passing through its two hands, drawing the verti-
cals in each case with the help of a plumb line. The CG should be 
marked on the pasteboard, preferably on the front and back sides, as in 
Fig. 3.43. 

We then begin with the most interesting part of the game. We ask 
the students to try to balance the puppet upside down, by placing it 
above the pointing finger. The finger should be extended horizontally, 
below the head of the equilibrist. After a few minutes of trials, no one 
succeeds. Some think that the problem is the curved shape of the head.  

We then ask the students to try to balance the puppet with the head 
upwards and the pointing finger extended horizontally, as if the puppet 
was sitting on the finger. After several trials, no one succeeds, although 
now the line of contact is straight and horizontal. For the time being we 
should not try to explain why they have failed. The idea is to go on with 
the game. 

 
Fig. 3.43. Finding the CG of the equilibrist by the first and second experi-
mental procedures. 



78 Archimedes, the Center of Gravity, 

 

We now ask them to balance the puppet in a horizontal position, 
placing the pointing finger vertically below it. Now all of them succeed. 
They easily observe that the puppet’s CG is above the finger.  

After this we again ask them to balance the puppet horizontally, but 
now with the pointing finger placed vertically below the head of the 
puppet. Once more no one succeeds. 

Now comes the most stimulating part of the game. We give a piece 
of modeling clay to each student. We again ask them to try to balance 
the puppet upside down, on the horizontal pointing finger placed below 
the puppet’s head. We tell them that they can now attach the clay any-
where on the puppet, except on the “hair” of the puppet, that is, on the 
lower part of the head, to prevent it from sticking to the finger. They can 
put it on the CG, on the hands, on the legs or wherever they wish. We 
also tell them that the clay can be attached to the equilibrist as a single 

 
Fig. 3.44. We can keep an equilibrist upside down in our finger by placing 
enough modeling clay on both of the puppet’s hands. 

 
Fig. 3.45. Equilibrating the puppet in a vertical plane with the head on top 
or in a horizontal plane by placing the pointing finger vertically below the 
head. In both cases the trick is where to put the modeling clay and how 
much to use. 
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whole, or in two or more pieces. The idea here is to encourage the stu-
dents to experiment, without giving recipes for the solution to the prob-
lem. They are shy and leery about what to do at first. But little by little 
they begin to relax and play the game. After a few minutes one or two 
students succeed in balancing the puppet upside down on their fingers. 
The others begin to see what they have done, and in a short time all of 
them succeed. The secret of success is to place enough clay on both of 
the puppet’s hands, until it remains upside down balanced on our hori-
zontal pointing finger, as in Fig. 3.44. 

When an equilibrist does not stay exactly on the vertical, all we 
have to do is move the clay away from the head (placing it at the tips of 
the hands, or even hanging from the hands), or increase the amount of 
clay on the hands. Eventually it will hang vertical and upside down.  

After all the students have managed to do the experiment, we ask 
them to remove the clay and put it somewhere else on the puppet until it 
stands vertical with the head on top, sitting upon the horizontally ex-
tended pointing finger. One or two students will managed this more 
quickly than before. The others see what they have done and sooner or 
later all have managed to get the puppet vertical. The secret of success is 
to place the clay on the feet of the equilibrist, as in Fig. 3.45. 

We then ask them to change the position of the clay again until the 
puppet remains balanced horizontally, supported on the pointing finger 
extended vertically, placed under the head of the puppet. We ask them to 
avoid placing clay on the head of the puppet, to prevent it from sticking 
to the pointing finger. After some effort all of them succeed. (Some stu-
dents need to see what the others have done before they pick up the 
trick.) In this case they can attain the final result in several ways, as 
there is more than one possibility. A common technique is to place clay 
on the hands and feet in the right amounts until the equilibrist remains 
horizontal, as in Fig. 3.45. 

After this part of the game, we again ask them to change the loca-
tion of the modeling clay until the puppet remains upside down verti-
cally, supported on the pointing finger extended horizontally under the 
head of the puppet. Now they will all quickly place enough clay on the 
hands of the puppet until it reaches the desired position. To show that 
the equilibrium in this position is very stable, we ask them to rock or 
blow the equilibrist gently. We can also ask them to balance it over the 
flat tip of the bamboo skewer, then raise everything with their hands un-
til the arms are stretched. We can even balance the puppet upside down 
supported on the horizontal needle attached to the bamboo skewer! Even 
in this case they can rock or blow air on the puppet gently, and it will 
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not fall, but only oscillate around the equilibrium situation, always re-
turning to its vertical position upside down. Everyone admires this. This 
is a remarkable experience that gives a deep impression. The stability of 
this equilibrist is really amazing. 

We then ask them about the location of the center of gravity in this 
new situation (equilibrist upside down with clay on the hands). A few of 
them may think it is located in the same place as before (in the middle 
of the chest), but the majority will believe that it is located in the head of 
the puppet, more specifically in its hair. In other words, they believe it is 
located at the point where the head touches the finger. Without giving 
the correct answer, we ask them to locate the CG exactly using the sec-
ond method mentioned above, by suspending the equilibrist (with clay 
on his hands) through the needle in the support. We first suspend it by 
the hole in one foot and draw the vertical line with the help of a plumb 
line. Then we suspend it by the hole in the other foot and draw the sec-
ond vertical, as in Fig. 3.46. We must tell the students that it is important 
to locate the CG precisely. This should be done carefully. When they try 
to do this, some of them say that the method “does not work,” because 
the vertical lines do not seem to intersect (that is, they do not intersect 
where they expected). Despite this initial reaction, we ask them to con-
tinue with the experiment. The final result, when the verticals are care-
fully drawn, is something like the result shown in Fig. 3.46. 

If we extend these two verticals, we see that they intersect outside 
the head, at a point along the axis of symmetry of the puppet, between 
the head and the hands (or between the hair and the lower part of the 
clay). 

 
Fig. 3.46. Finding the CG of the equilibrist with modeling clay in both 
hands. 
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It is interesting to ask the students to make a drawing like this in 
their notebooks, full size, utilizing their own puppet with clay on the 
hands as a model. In order to locate the CG of the puppet with clay on 
the hands exactly, we ask the students to balance the puppet sideways, in 
a vertical plane, resting some point of the arm on the horizontal needle, 
until the body of the puppet stays parallel to the floor. The CG is located 
at the intersection of the axis of symmetry of the body with the vertical 
line passing through the needle, obtained with the help of a plumb line, 
as in Fig. 3.47. 

Only after the students have performed all these activities should 
the teacher explain what has happened. The explanation is that in the 
cases without clay it was not possible to equilibrate the puppet upside 
down, nor seated upon the finger with the head at the top, because the 
CG located at the chest of the equilibrist was always above the point of 
support PA. And these are conditions of unstable equilibrium. Any shak-
ing of the finger or puppet causes the equilibrist to fall to the ground, 
because the tendency of the CG is always to approach the surface of the 
Earth, as in Fig. 3.48. By the same token, it was not possible to balance 
the puppet horizontally with the vertical finger under its head, because 
there was no support below the CG located in the middle of the chest. 
Therefore, when the puppet was released, the CG always fell to the 

 
Fig. 3.47. Another way of finding the CG of the equilibrist with modeling 
clay in both hands. 

Fig. 3.48. Unstable equilibrium. 
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ground. 
On the other hand, when clay was placed on the hands of the pup-

pet and it was balanced upside down on a finger placed under its head, 
the CG was located below our finger. That is, below the point of suspen-
sion, PS. This is a position of stable equilibrium. If we turn the puppet 
clockwise or anti-clockwise, we raise the CG relative above its height in 
the position of equilibrium, as in Fig. 3.49. 

The same happens when we lean the puppet forward or backward, 
that is, with the nose or the back of the neck approaching the ground. 
Again we are raising the CG. This means that any rotation of the puppet 
around the point of suspension PS increases the height of the CG. As the 
tendency of the CG is always to fall due to gravity, the puppet tends to 
return to the position of stable equilibrium after it is released. In this up-
side down configuration the CG is in its lowest possible position. 

When the puppet is sitting on our finger with modeling clay on the 
feet, the CG is again located between the bottom of the clay and the 

 
Fig. 3.49. Stable equilibrium. 

 

Fig. 3.50. Another situation of 
stable equilibrium. 



 and the First Law of Mechanics 83 

 

point of suspension PS (point of contact between our finger and the 
puppet), as in Fig. 3.50. 

Any rotation of the puppet around the PS raises the CG. Gravity 
causes the CG to fall to the ground, with the puppet seated on our finger 
once more. 

When we put clay on the hands and feet of the puppet, so that it 
stays lying down in a horizontal position, supported by our vertical 
pointing finger under its head, the CG is also located vertically below 
the point of suspension. In this case it is difficult to locate the CG ex-
actly. But in Fig. 3.51 we show a deformed puppet in order to illustrate 
the location of the CG. 

The body is horizontal, the head is raised a little, the arms are in-
clined downward a little, and the clay is placed on the hands and feet. 
The point of suspension PS is represented by a small triangle placed be-
low the head. The CG is located vertically below the PS. 

All the phenomena observed with the equilibrist can be explained 
with the basic experimental data and properties of the CG we have al-
ready presented. But it is extremely important that all students perform 
these experiments themselves in the classroom, each with his own equi-
librist and clay, because this creates a deep impression upon them. The 
feelings of mystery and awe stimulated by this experiment are really 

 
Fig. 3.51. A horizontal puppet in stable equilibrium with modeling clay in 
both hands and feet. 

 

Fig. 3.52. A female equilibrist. 
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remarkable. With this playful experiment they learn the main concepts 
relating to the CG. 

3.4 Equilibrium toys 
In addition to a male equilibrist, we can also make a female equilibrist, 
as in Fig. 3.52. Instead of using modeling clay on the hands and feet, we 
can also use fishing sinkers or other appropriate material. For a more 
durable figure, it is best to use thin sheets of wood or plastic instead of 
the pasteboard. 

Other symmetric figures can also be made, such as a butterfly, a 
parrot or a frog. The black points in these Figures represent extra 
weights (modeling clay, for example), as in Fig. 3.53. 

Some shops sell the bird equilibrist supported by its beak. Nor-
mally it is made of plastic, with shot hidden in the wings, and some-
times in the tail. It can also be made of pasteboard, as in Fig. 3.54. 

In this case we put clay or small shot in the wings and tail until it 
remains in equilibrium horizontally, supported on a vertical stand under 
the beak. Most people believe that in this case the CG is on the end of 
the beak, where it touches the vertical stand. But as we have already 

 
Fig. 3.53. A butterfly, a parrot and a frog. 

 
Fig. 3.54. A bird equilibrist. 
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seen, in a situation of stable equilibrium the CG is not exactly at the 
beak, but a little below it, between the beak and the lower part of the 
shot in the wings. When we remove the bird from this equilibrium posi-
tion (by raising or lowering one of its wings, or by lifting or bringing 
down its tail), releasing it from rest, it oscillates around the equilibrium 
position, its amplitude of oscillation decreasing due to friction, until it 
returns to the horizontal position. In this stable position the CG is in its 
lowest possible location. 

The pasteboard equilibrist works exactly like this bird when the 
puppet is balanced horizontally with the pointing finger placed verti-
cally under its head. The appropriate weights placed at the hands and 
feet of the puppet lower the CG of the system, so that in horizontal equi-
librium it is vertically below the head. The advantage of the pasteboard 
equilibrist as compared with the bird bought in shops is that by changing 
the amount and location of the clay we can use the equilibrist both hori-
zontally, like the bird, and sitting on our hands with the head at the top, 
or upside down balanced vertically on our finger. 

There are also equilibrium figures made of homogeneous sheets of 
wood or plastic which do not require any additional weights. Some of 

 
Fig. 3.55. The macaw and the toucan. 

 
Fig. 3.56. The roly-poly doll. 
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the most interesting examples are the macaw and toucan, as in Fig. 3.55. 
These figures can also be made of rigid pasteboard. The foot can be 

a toothpick or a needle. In the toucan, the foot is only the pasteboard in 
the shape of a triangle. The important thing is that the macaw and tou-
can should have a large tail, such that the CG is located in the empty 
space between the foot and the tail. When this happens, the toucan re-
mains balanced vertically supported by the tip of its foot. Any perturba-
tion causes it to oscillate around this situation of stable equilibrium in 
which the CG is in its lowest position. 

Another toy that is known to everyone is the roly-poly doll. It is 
based on the same principles that we have seen thus far. To build a roly-
poly we need only two hemispheres or styrofoam spherical shells, plus 
some shot, modeling clay, or another weight. The CG of the homogene-
ous sphere is located at the center of the sphere. The CG of the extra 
weight is located at the center of the extra weight, assuming it is spheri-
cal in shape. When we place the shot at the bottom of one of the hemi-
spheres, the CG of the whole system is located between the shot and the 
center of the sphere, as in Fig. 3.56. 

This is the position of stable equilibrium for the roly-poly doll, as 
the CG for the whole system is at its lowest position. By tipping the 
roly-poly clockwise or anti-clockwise, we shift its CG away from the 
vertical, passing through the new point of support, raising the CG. Grav-

 
Fig. 3.57. Stable equilibrium of the roly-poly doll. 

 
Fig. 3.58. The flip-flop turtle. 
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ity returns the doll to its stable position, as in Fig. 3.57. 
The flip-flop turtle is another interesting toy, as in Fig. 3.58.7 It is a 

different type of roly-poly in which the extra weight is placed asymmet-
rically relative to the equator of one hemisphere. 

In this case we use only one hemisphere, the extra weight and a 
plane pasteboard figure having the same diameter as the hemisphere, but 
with four legs and a head simulating the shape of a turtle. The weight 
should be placed opposite to the head. We can hold the turtle upside 
down with its legs in a horizontal plane, pressing it by its chin. When we 
release it in this position, it turns over, returning to upright position, as 
in Fig. 3.59. 

The reason for this is that the initial position is not a situation of 
equilibrium, because the CG is not in its lowest location. In the position 
of stable equilibrium the plane of the base and legs remains inclined 
relative to the vertical line. Small perturbations around this position 
cause the turtle to wobble around it. When we place it upside down with 
its base horizontal and release it from rest, it begins to move, lowering 
its CG. But as it acquires enough kinetic energy and we have only one 
hemisphere (unlike the roly-poly doll which has an external spherical or 
symmetrical shape relative to the position of equilibrium), the turtle 
turns over when the plane of the base and legs go beyond the vertical 
line. 

3.4.1 Equilibrium games in the pub 

Equilibrium games are often found in pubs and bars. All of them can be 
explained by the principles presented here. Even so the observed effects 
are very surprising and remarkable. 

One of the most common is a needle or toothpick passing through 
the axis of a cork.8 We then stick two metal forks in the cork, inclined 
                                                                                                                                                                                                                                                                                                             

7 Gaspar, Experiências de Ciências pp. 151-153. 
8 Gaspar, Experiências de Ciências pp. 144. 

 
Fig. 3.59. The flip-flop turtle in action. 
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downward toward the tip of the needle. The whole system can be bal-
anced by placing the tip of the needle above a bottle, as in Fig. 3.60. 

Most people think that the CG is at the tip of the needle. However, 
as a matter of fact, the tip of the needle is only the point of suspension 
PS of the system. In stable equilibrium, as we saw before, the CG is lo-
cated vertically below the PS. In order to show that this is a condition of 
stable equilibrium, we can blow lightly on one of the forks so that the 
system turns around the vertical axis. It is also possible to blow verti-
cally from top to bottom on one of the forks (or to lower it a little with 
our finger, releasing it from rest). The system will oscillate around the 
horizontal plane, finally stopping at the equilibrium configuration. 

Another interesting situation is a full bottle, with cap, supported at 
the edge of a thin table by a bottle opener, as in Fig. 3.60.9 The PS along 
the plane of the bottle opener is once again vertically above the CG 
along the axis of symmetry of the bottle. To try this experiment, it is 
wise to place a pillow or cushion below the bottle. This will prevent it 
from breaking if it falls to the ground while we are performing the ex-
periment. 

One of the most remarkable experiments utilizes a metal fork with 
its teeth connected to a spoon. A toothpick is passed partly through the 
teeth of the fork. At this point we can equilibrate the system by placing 

                                                                                                                                                                                                                                                                                                             

9 Gaspar, Experiências de Ciências pp. 144. 

 
Fig. 3.61. Another curious equilibrium situation. 

 
Fig. 3.60. Two interesting equilibrium situations.
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our pointing finger vertically under the toothpick, as in Fig. 3.61. 
This localizes the appropriate PS for the toothpick. We can then go 

on with the game. We now support a second toothpick in the mouth of 
an open bottle. Supporting it firmly with our hands, we place the first 
toothpick with the PS above the upper tip of the second toothpick. With 
a little practice we can then finally release the system so that it remains 
in equilibrium, as shown in Fig. 3.61. 

Once more the CG of the system is located vertically below the PS. 
The amazing fact about this game is that the PS is supported by a single 
point, namely, the upper tip of the second toothpick. Many people are 
surprised by this equilibrium, because they incorrectly believe that the 
CG is exactly at the point of contact of the two toothpicks. Moreover, 
this is a highly stable equilibrium. In order to show this, we only need to 
blow on the spoon horizontally, so that the system turns around the ver-
tical direction passing through the PS. It is also possible to blow on the 
spoon from above (or lower it slightly with our finger, releasing it from 
rest). In this case the system oscillates around the horizontal plane, com-
ing back to the original position of equilibrium. 

3.4.2 Equilibrium of the human body 

Several interesting experiments can be made on equilibrium of the hu-
man body. The legs and arms of a person can move independently from 
the rest of the body, moving forwards, backwards, upwards or down-
wards. All these movements change the location of the person’s CG. 

Let us consider initially the situation in which a person is standing 
above a flat surface. The CG is located above the ground. As we have 
seen before, equilibrium is only possible in this case when the CG is 
vertically above the region of support. When a person is standing, the 
CG is approximately at the center of the chest. The person can then re-
main in equilibrium in this situation provided the vertical projection of 
the CG falls inside the region bounded by the feet, as in Fig. 3.62. 

 
Fig. 3.62. Region of equilibrium for a standing person. 
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When the person stands with feet spread apart (wide support base), 
this region expands, as in Fig. 3.62. 

In the first game we ask the person to bend at the waist, keeping 
knees straight, and touch the toes. Once this has been done, we ask the 
person to repeat the procedure, but this time, standing with the back up 
against a wall, with buttocks and heels touching the wall. This time it 
can’t be done, as in Fig. 3.63. In order to understand what happens, it is 
best to ask the student to stand at the side of the classroom, in profile. 
The situation can be depicted on the blackboard. When the person is 

Fig. 3.63. Equilib-
rium of the human 
body. 

 
Fig. 3.64. Another situation of equilibrium of the human body.
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standing, the downward vertical projection of the CG passes through the 
feet. The person can only touch the toes by moving the buttocks back-
ward and the head forward, in such a way that the projection of the CG 
continues to fall through the region enclosed by the feet. Now suppose 
the person stands with the back up against a wall. The person can no 
longer bend fully at the waist. When the arms and waist are lowered, the 
vertical projection of the CG falls outside the region between the feet, 
because the wall prevents the buttocks from moving backwards. The 
person looses equilibrium and falls forward. 

Another game involves raising the left foot to the side while stand-
ing on the right foot. Everyone can do this. We then ask for the person to 
repeat the procedure, but now standing with the right shoulder and right 
foot against the wall. No one can raise the left foot and stand on the 
right foot for a few seconds in this new situation, as in Fig. 3.64. The 
explanation is the same as in the previous case. When the person is 
standing with both feet on the ground, the vertical projection of the CG 
falls between the feet. The person can only balance on the right foot 
while raising the left foot to the one side by leaning to the opposite side, 
in such a way that the vertical projection of the CG falls over the foot 
which is on the ground. Now let us consider the case in which the per-
son is standing with the right shoulder and right foot against the wall. 
When the person lifts the left foot, the body has a tendency to move to 
the opposite side, in order to maintain balance. But the rigid wall pre-
vents the upper part of the body from moving. The vertical projection of 
the CG when the left foot is raised to the side now falls outside the re-

Fig. 3.65. Equilibrium by standing 
on the toes. 
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gion of the right foot. The CG then starts moving toward the ground, the 
person looses balance, and cannot complete the movement. 

A third game is based on the same principle. We ask the person to 
stand on the toes. Everyone can do this. We then ask the person to repeat 
the procedure, but now standing facing a wall, keeping the nose and toes 
touching the wall. Now the person cannot remain in equilibrium while 
standing on the toes, as in Fig. 3.65. The explanation is the same as in 
the other cases, but now with movements of smaller magnitude. That is, 
the wall prevents the forward motion of the body. When the person 
stands on the toes, the vertical projection of the CG falls behind the toes. 
The person looses equilibrium and can no longer stand on the toes for a 
few seconds. 

One of the most interesting experiments of this kind shows a dis-
tinction in the location of the CG for men and women of the same 
height. As women have larger hips than men, their CG is a little lower 
than the CG of men. We ask a woman to kneel down and touch the el-
bows with the knees, with the hands on the ground, as if praying. We 
place a match box on the ground, touching the tip of her fingers. We 
then ask the woman to place her hands at the back and to try and knock 
down the match box with her nose, and then to come back to her initial 
position without touching the ground with her hands, as in Fig. 3.66. 

The majority of women can do this after a few trials. But men can-
not normally do this. Let us consider the situation where the woman 

 
Fig. 3.67. Acrobat on a tightrope. 

 
Fig. 3.66. Equilibrium by kneeling down. 
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touches the match box with her nose. The vertical projection of her CG 
falls over the region occupied by her knees and feet. The CG of standing 
men is normally higher than the CG of standing women of the same 
height. If we suppose a man touching the match box with his nose, the 
vertical projection of his CG falls outside the region occupied by his 
knees and feet, and inside the region between the knees and the match 
box. As the tendency of the CG is to fall when there is no support below 
it, the man looses balance and cannot knock the match box down. If he 
tries to do this, he will fall to the ground and will not come back to his 
original position with his hands at his back, without first touching the 
ground with his hands. 

Other situations of equilibrium occur when the CG is below the 
point of suspension PS. The most interesting example is an acrobat on a 
tightrope in a circus. The CG of a person is normally in the middle of 
the chest. If the person is standing above a tight rope, it is difficult to 
keep the projection of the CG from falling above the small region occu-
pied by the feet. Normally this is done by a continuous deformation of 
the body in order to achieve balance. An alternative procedure is to hold 
a long curved stick with weights at the tips, as in Fig. 3.67. 

The goal of this curved stick is to lower the CG of the system (per-
son plus stick) below the feet. Any disturbance in the person’s position 
will raise the CG. This will happen not only for clockwise and anti-
clockwise rotations, but also when the person leans forward or back-
ward. As the tendency of the CG is to fall, the equilibrist ends in stable 
equilibrium, in which the acrobat stands vertically above the CG. 

This is the ideal situation of equilibrium for rigid bodies, as in 
some toys. For a real acrobat in a circus, the stick is sometimes straight 
and the CG of the system may be located above the feet of the tumbler. 
The person tends to fall after any disturbance. In order to maintain bal-
ance, the acrobat needs to be constantly in motion, bending and stretch-
ing his body in order to keep changing all the time the position of his 
CG. When the person is falling to one side, he moves the stick to the 
other side. The person and stick need to stay constantly in motion. 

The fun game we played with the pasteboard equilibrist presents a 
situation analogous to this for a rigid body. Normally we cannot keep 
the pasteboard in balance seated on our finger. But when we place 
enough clay on the feet of the equilibrist, we can keep it balanced on our 
finger, with the body of the equilibrist in a vertical plane. No matter 
which direction it wobbles, it always returns to the position of stable 
equilibrium. In this condition the CG is in the lowest position, vertically 
below the PS. 
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3.4.3 The ET 

Another curious toy is the ET.10 It can be made with two corks, two 
toothpicks, and four bamboo barbecue skewers, pieces of pasteboard for 
the hands and feet, plus a vertical stand to support it. Instead of the 
toothpicks we can also employ nails or needles. 

The ET has two independent parts. If one of the corks is smaller 
than the other, it should be utilized in the upper part. We pass a tooth-
pick, nail or needle through the axis of the cork. The bamboo barbecue 
skewers will form the arms of the ET, when inserted into the cork. They 
should be inclined downward, to the same side where the toothpick is 
pointing outward. This will also be the general shape of the body and 
legs of the ET, as in Fig. 3.68. 

On the outer tips of the bamboo skewers we attach pieces of paste-
board in the shape of hands. After finishing the upper part of the ET, we 
try to balance it on our finger placed under the toothpick. If it falls to 
one side, we can increase the weight or size of the hands, or we can 
change the inclination of the bamboo skewers by placing them closer to 
the vertical direction (in order to lower the CG of the upper part). The 
important point is that the CG of the upper part should be below the 
lower tip of the toothpick in order to achieve stable equilibrium. 

The lower part of the ET is made similarly. We may have to in-
crease the weight of the feet relative to the weight of the hands in order 
to significantly lower the CG of the whole system. Once more, the lower 
part should be well balanced in a vertical plane before we proceed with 
the experiment. 

We can then support the upper part of the ET on the lower part, by 
balancing the upper toothpick on the lower cork. We next support the 
                                                                                                                                                                                                                                                                                                             

10 Ferreira, Equilíbrio  

 
Fig. 3.68. The ET. 
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lower toothpick on a rigid support. The final setup should be similar to 
Fig. 3.68. 

This puppet is not a rigid body, as its two parts are free to wobble 
and turn independently of one another. Nevertheless each part of the ET 
can be considered, separately, a rigid body. By rocking or blowing the 
ET we produce some very curious motion. 

Each one of these parts will only be balanced if its CG is below the 
upper tip of its toothpick. Moreover, the CG of the whole ET must be 
located below the bottom tip of the lower toothpick. Nevertheless, there 
are two possible alternatives. In the first, the CG of the upper part is be-
low the bottom tip of the lower toothpick. In the second, the CG of the 
upper part is above the bottom tip of the lower toothpick. 

This is an amusing toy that can raise many questions from the stu-
dents. 

In the next Chapter of this book we will see several definitions of 
the CG that have been presented through the centuries. We will see that 
it has always been difficult to find appropriate words to define the CG in 
a general way. Several important authors have dealt with this subject. In 
a latter Chapter of this book we will deal with the theoretical calculation 
of the CG. For the time being it is important to keep in mind the general 
definition CG8 and the practical procedures to locate the CG given by 
CG6 and CG7. 
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Chapter 4 

Historical Aspects of the Center 
of Gravity 

We now discuss a few historical aspects of the concept of center of grav-
ity, CG. In particular, we will analyze how the concept was defined and 
how it was obtained experimentally. We are interested in the period in 
which this concept originated and was established. The information here 
is drawn essentially from the original works of Archimedes, Heron and 
Pappus, and from the books by Heath, Duhem and Dijksterhuis.1 

The observation that bodies fall to the ground when released from 
rest above the Earth is extremely old. The same can be said of the fact 
that rigid bodies can remain in equilibrium after release when they are 
supported by a rigid stand placed below some specific point. It is prob-
able that all ancient civilizations knew this. Nevertheless, the systematic 
and scientific treatment of the conditions which determine the equilib-
rium of bodies upon the surface of the Earth originated in Greece. At 
least Greece is the origin of the oldest documents dealing with the CG 
that give theoretical results on the subject. 

Archimedes is the main person who investigated this concept in 
ancient Greece. The CG is also called barycenter. The prefix “bary” is a 
Greek root meaning weight or heavy. The literal meaning of the word 
barycenter is “center of weight.” The simplest way to understand this 
expression and the concept behind it is to observe the experiment where 
we supported a pasteboard triangle in a horizontal plane, standing on a 
                                                                                                                                                                                                                                                                                                             

1 T.L. Heath, ed., The Works of Archimedes (New York: Dover, 2002); T.L. Heath, A History 
of Greek Mathematics, Vol. II: From Aristarchus to Diophantus (Oxford: Clarendon Press, 1921); 
C. Mugler, Les Oeuvres d’Archimède (Paris: Budé, 1970-72). Vol. 1-4; Pappus d’Alexandrie, La 
Collection Mathématique (Paris: Blanchard, 1982); Héron d’Alexandrie, Les Mécaniques, ou, 
L’Élévateur des Corps Lourds (Paris: Les Belles Lettres, 1988); E.J. Dijksterhuis, Archimedes 
(Princeton: Princeton University Press, 1987); P. Duhem, The Origins of Statics (Dordrecht: 
Kluwer, 1991). 



98 Archimedes, the Center of Gravity, 

 

vertical support placed under its centroid. The triangle only remains in 
equilibrium after released from rest when supported by this point. The 
whole weight of the figure is supported by this point, as if it were con-
centrated in it. It is then natural to call this specific point the center of 
weight, or barycenter, of the triangle. 

The oldest extant work of Archimedes is called On the Equilibrium 
of Planes, or On the Center of Gravity of Planes.2. The center of gravity 
appears in postulates 4 to 7, without any prior definition:  

Postulate 4: When equal and similar plane figures coincide if ap-
plied to one another, their centres of gravity similarly coincide. 
Postulate 5: In figures which are unequal but similar the centres 
of gravity will be similarly situated. By points similarly situated 
in relation to similar figures I mean points such that, if straight 
lines be drawn from them to the equal angles, they make equal 
angles with the corresponding sides. 
Postulate 6: If magnitudes at certain distances be in equilibrium, 
(other) magnitudes equal to them will also be in equilibrium at 
the same distances. 
Postulate 7: In any figure whose perimeter is concave in (one 
and) the same direction the centre of gravity must be within the 
figure.3 

In all likelihood the CG had been defined by Archimedes in one of 
his other works on mechanics that is no longer extant, namely, On the 
Centers of Gravity, Elements of Mechanics, On Equilibria, On Balances 
or On Levers, and Book of Supports. 

In Proposition 6 of his work Quadrature of the Parabola, Ar-
chimedes writes:4 “Every body, suspended by any point, assumes an 
equilibrium state when the point of suspension and the center of gravity 
are on the same vertical line. This has been demonstrated.” This shows 
that Archimedes’s knew the practical procedure CG6 of how to find the 
CG experimentally. That is, we suspend the rigid body by a point of 
suspension PS1, wait until the body reaches equilibrium and draw the 
vertical passing through the PS1 with the help of a plumb line. We sus-
pend the body by another point of suspension PS2 which is not along the 
first vertical, wait until it reaches equilibrium, and draw a second verti-
cal through PS2. The intersection of the two verticals is the CG of the 
body. But it is important to emphasize that to Archimedes this was not a 
definition of the CG. Instead, he proved this result theoretically utilizing 
                                                                                                                                                                                                                                                                                                             

2 Heath, ed., The Works of Archimedes, p. 189; Dijksterhuis, Archimedes, p. 286. 
3 Heath, ed., The Works of Archimedes, pp. 189-190. 
4 Mugler, Les Oeuvres d’Archimède, Vol. 2, p. 171; Duhem, The Origins of Statics, p. 463. 
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a previous definition of the CG of a body, as well as some postulates 
that are now unknown.  

The crucial sentence in the previous paragraph does not appear in 
its full generality in Heath’s translation of Archimedes’s work. Heath’s 
work is a paraphrase, that is, it conserves Archimedes original ideas, but 
rephrases them in modern notation and omits parts of the text which he 
did not consider essential. Here is Heath’s presentation of Archimedes’s 
key Propositions 6 and 7 of his work Quadrature of the Parabola.5 In 
these Propositions the expression ΔBCD means the area of the triangle 
BCD, which is supposed to have uniform density. That is, its weight is 
proportional to its area, the same holding for the area P of the rectangle, 
which he will use in this Proposition. 

Propositions 6, 7* 
Suppose a lever AOB placed horizontally and supported at its 
middle point O. Let a triangle BCD in which the angle C is right 
or obtuse be suspended from B and O, so that C is attached to O 
and CD is in the same vertical line with O. Then, if P be such an 
area as, when suspended from A, will keep the system in equilib-
rium, 

1 BCD
3

= ΔP . 

Take a point E on OB such that BE = 2OE, and draw EFH paral-
lel to OCD meeting BC, BD in F, H respectively. Let G be the 
middle point of FH. 
Then G is the centre of gravity of the triangle BCD. 
Hence, if the angular points B, C be set free and the triangle be 
suspended by attaching F to E, the triangle will hang in the same 
position as before, because EFG is a vertical straight line. “For 
this is proved†.” 
Therefore, as before, there will be equilibrium. 
Thus 

: BCD OE : AO 1: 3Δ = =P , 
or 

1 BCD
3

= ΔP . 
                                                                                                                                                                                                                                                                                                             

5 Heath, ed., The Works of Archimedes, p. 238. 
* Note by Heath: In Prop. 6 Archimedes takes the separate case in which the angle BCD of the 

triangle is a right angle so that C coincides with O in the figure and F with E. He then proves, in 
Prop. 7, the same property for the triangle in which BCD is an obtuse angle, by treating the triangle 
as the difference between two right-angled triangles BOD, BOC and using the result of Prop. 6. I 
have combined the two propositions in one proof, for the sake of brevity. The same remark applies 
to the propositions following Props. 6, 7. 

† Note by Heath: Doubtless in the lost book περί ζυγων. Cf. the Introduction, Chapter II., ad 
fin. 
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Eutocius of Ascalon (480-540) wrote commentaries on three works 
by Archimedes: Measurement of a Circle, On the Sphere and Cylinder, 
and On the Equilibrium of Planes. Apparently he did not know the other 
works. In his comments on book I of the equilibrium of planes, Eutocius 
clarifies a few points regarding the CG. These ideas are from Eutocius, 
not Archimedes, but are interesting nevertheless. We translate them from 
the French version published by Charles Mugler in 1972, which is a lit-
eral translation from the Greek:6 

Commentaries of Eutocius relative to Book I of Archimedes’s 
work On the Equilibrium of Plane Figures. Introduction to book 
I. (...) In this work Archimedes defines the center of motion of a 
plane figure as the point such that, when we suspend the figure 
by this point, it remains parallel to the horizon, and defines the 
center of motion or of gravity of two or of several plane figures 
as the point such that, when we suspend the figures by this point, 
the beam (connecting the figures) remains parallel to the horizon. 
Let, for instance, ABΓ be the triangle and inside it the point Δ, 
such that when the triangle is suspended by this point, it remains 
parallel to the horizon. Therefore, it is clear that the parts B and 
Γ of the triangle balance one another and that none of them in-
clines more than the other relative to the horizon. In the same 
way, let AB be the beam of a balance and A and B the magni-
tudes suspended by it. If the beam, being suspended by Γ, keeps 
A and B in equilibrium, and remains parallel to the horizon, Γ 
will be the point of suspension of the magnitudes A and B. 

These are clear and intuitive definitions, as we saw in the experi-
ments presented earlier. But they are limited, because they do not deal 
with concave or pierced figures, for which the CG is located in empty 
space. Moreover, they do not apply to three-dimensional bodies. In spite 
of this, they illustrate many important aspects of the CG. It is also inter-
esting to see the alternative expressions utilized for the CG: center of 
motion and point of suspension. 

                                                                                                                                                                                                                                                                                                             

6 Mugler, Les Oeuvres d’Archimède,Vol. 4, pp. 166-7. 
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To form an idea how the concept of CG might had been defined by 
Archimedes, we quote here a few passages from the work Mechanics by 
the mathematician Heron (first century A.D.), from the Mathematical 
Collection by the mathematician Pappus (fourth century A.D.), and from 
the Commentaries of the philosopher Simplicius (sixth century A.D.), 
about On the Heavens, of Aristotle (384-322 B.C.). These authors dis-
cussed Archimedes’s works, quote some of his works no longer extant 
and, probably, follow his concepts and lines of reasoning when dealing 
with the barycentric theory. 

There is much controversy about the period in which Heron of Al-
exandria lived, but nowadays it is agreed that he flourished in the first 
century A.D. There are only fragments of his book Mechanics, in three 
parts, in Greek. But a complete Arabic translation of this work has been 
preserved. Translations have been made to other modern languages 
(French, in 1893, and German, in 1900) from this Arabic version. 

Heron presents a definition of the CG as given by the stoic Posei-
donius, who probably lived before Archimedes: “The center of gravity 
or of inclination is a point such that, when the weight is suspended by 
this point, it is divided in two equivalent portions.”7 Heath translates this 
sentence as: “The centre of gravity or of inclination is a point such that, 
if the body is hung up at it, the body is divided into two equal 
parts.”8This definition is vague and problematic. In the first place it is 
difficult to know how a point, or even a vertical line passing through 
this point (if we interpret Poseidonius sentence thus) can divide a three-
dimensional body into two parts. Even if the body is a plane figure, a 
point will not divide it into two parts. And a straight line will only di-
vide a plane figure into two parts if it lies in the same plane as the fig-
ure. Therefore, we would need to imagine a triangle, for instance, sus-
pended in a vertical plane. But even in this case not all verticals passing 
                                                                                                                                                                                                                                                                                                             

7 Héron d’Alexandrie, Les Mécaniques, ou, L’Élévateur des Corps Lourds (Paris: Les Belles 
Lettres, 1988), Chap. 24, p. 93. 

8 Heath, A History of Greek Mathematics, p. 350. 
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through the CG will divide the triangle into two parts with equal area or 
with equal weight. Let us suppose a homogeneous triangle suspended in 
a vertical plane. We have seen before that a straight line passing through 
the CG and through a vertex divides the triangle into two parts with the 
same area and the same weight. On the other hand, a straight line paral-
lel to the base of the triangle and passing through the CG does not di-
vide the triangle into two equal parts. Despite this fact, a triangle hang-
ing in a vertical plane will remain in equilibrium after being released 
from rest if it hangs by the CG or by any other point which is vertically 
above the CG. The same problem will arise with Poseidonius’s defini-
tion even if we interpret it as saying that the CG is a point such that, if 
the body is suspended from it, the body is divided by any vertical plane 
through the point of suspension into two equal parts. In this case we can 
imagine a triangle equilibrated in a horizontal plane, supported on a ver-
tical plane placed below it (as a matter of fact the support needs to have 
a small thickness, like the edge of a ruler). If the vertical plane passes 
through a vertex and the CG, the body will remain in equilibrium and 
the upward projection of this plane will divide the triangle into two 
equal areas or into two equal weights. On the other hand, if the vertical 
plane is parallel to the base of the triangle and passes through the CG, its 
upward projection will not divide the triangle into two equal areas nor 
into two equal weights. Yet the triangle will also remain in equilibrium 
after being released from rest. 

Another expression utilized by Heron to designate the CG, apart 
from “center of gravity,” is “center of inclination” or “center of fall.” 
This expression was probably also utilized in ancient Greece. This is a 
very interesting and instructive expression. We saw that any body heav-
ier than air tends to fall toward the ground when released from rest. If 
the body is suspended by a PS and released from rest, so that it can turn 
around this point, the initial motion of the CG (supposing that it does 
not coincide with the PS) is toward the ground. Therefore, it behaves as 
if the tendency to fall were concentrated at the CG of the body. 

Heron then says that Archimedes distinguished between the “center 
of inclination” and the “point of suspension.” Heron continues: “The 
point of suspension is a point on the body or on a non corporeal figure 
such that, if the body is hung up at this point, its parts remain in equilib-
rium, that is, the body does not oscillate or incline in any direction.”9 
The expression “non corporeal figure” may mean the cases in which the 
CG is located in empty space, like the CG of a ring. What is called the 
                                                                                                                                                                                                                                                                                                             

9 Héron d’Alexandrie, Les Mécaniques, Chap. 24, p. 93; Heath, A History of Greek Mathemat-
ics, p. 350. 
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“point of suspension” here and the definition Heron gave of it may have 
been how Archimedes defined the center of gravity. Later on we will see 
an analogous definition by Pappus. 

Heron also writes: “The center of inclination in each body is one 
single point to which converge all the vertical lines through the points of 
suspension. The center of gravity in certain bodies is outside the sub-
stance of these bodies; this is what happens, for instance, in arches and 
in bracelets. All the lines following the projections of the ropes converge 
at a common point.”10 Here he seems to be describing the practical pro-
cedure CG6, i.e., to find the CG through the intersection of all verticals 
passing through the points of suspension when the body is in equilib-
rium, at rest relative to the Earth. This is the most important practical 
way to locate the CG. Heron mentions that this CG may be located in 
empty space, outside the substance of the bodies, as is the case for rings 
or wheels.  

Heron mentions that Archimedes solved problems like the follow-
ing in his book On Columns or On Supports:11 A heavy beam or a wall 
supported on a number of pillars, equidistant or not, even or not even in 
number, and projecting or not projecting beyond one or both of the ex-
treme pillars, finding how much of the weight is supported on each pil-
lar. Heron also says that the same principles can be applied when the 
body (beam or wall) is suspended by cables. In another part of his book 
Heron considers the problem of a triangle of uniform thickness, with its 
plane horizontal, supported by a pillar under each vertex. He then finds 
the weight supported by each pillar in several cases: (a) when they sup-
port only the triangle, (b) when they support the triangle plus a given 
weight placed at any location over the triangle. Then Heron finds the 
CG of the system when known weights are placed over the vertices of 
the triangle. He then extends his analysis to polygons. 

Pappus presents an explicit definition of the CG, namely: “We say 
that the center of gravity of any body is a point within that body which is 
such that, if the body be conceived to be suspended from that point, the 
weight carried thereby remains at rest and preserves its original posi-
tion.”12 In another context he writes: “It is also clear that, if we imagine 
the body suspended by its center of gravity, it will not turn and will re-
main at rest preserving the initial position it acquired by the solicita-

                                                                                                                                                                                                                                                                                                             

10 Héron d’Alexandrie, Les Mécaniques, Chap. 24, p. 95. 
11 Héron d’Alexandrie, Les Mécaniques, Chaps. 25-31; Heath, A History of Greek Mathemat-

ics, p. 350. 
12 Pappus d’Alexandrie, La Collection Mathématique, Book 8, p. 815; Dijksterhuis, 

Archimedes, p. 299. 
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tion.”13 By solicitation here he means tendency to fall toward the Earth 
due to gravity. 

Simplicius quotes a similar definition by Archimedes: “The centre 
of gravity is a certain point in the body such that, if the body is hung up 
by a string attached to that point, it will remain in its position without 
inclining in any direction.” (quoted by Heath)14 

We can illustrate this definition with a triangle suspended by its 
CG. This is a thought experiment, as it may be impossible to suspend a 
body exactly by its CG, allowing the body to simultaneously rotate 
around this point in any direction. In any event, the idea is that if we 
could perform an experiment like this, what would happen is that the 
body would remain in equilibrium for all orientations in which it was re-
leased from rest. In the first situation we have a triangle in a vertical 
plane. The segment connecting one of its vertices and the CG makes an 
angle α with the vertical through the CG. If the triangle is released from 
rest, it will remain in equilibrium no matter the value of α. In the second 
situation the plane of the triangle (or a straight line orthogonal to it) is 
inclined relative to the vertical line. Let us call β the angle between the 
previous segment and the vertical through the CG. If the triangle is re-
leased from rest suspended by its CG, it will remain in equilibrium no 
matter what value β takes. 

In a real experiment in which the body is suspended by a point of 
suspension PS which does not coincide with the CG, being free to rotate 
around the PS, the body will only remain in equilibrium after being re-
leased from rest if it is in the preferential position in which the PS and 
the CG are along a vertical line. If this is not the case, the body will turn 
                                                                                                                                                                                                                                                                                                             

13 Pappus d’Alexandrie, La Collection Mathématique, Book 8, p. 818. 
14 Heath, A History of Greek Mathematics, p. 350. 

 
A vertical triangle suspended through its CG remains in equilibrium what-
ever the angle α. The same happens for any angle β when the plane of the 
triangle is inclined relative to the ground in an arbitrary manner, provided 
it is suspended by the CG. 
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around the PS after release in such a way that the CG approaches the 
ground. In equilibrium the PS and the CG will be along a vertical line, 
with the CG below the PS. 

Pappus describes a practical procedure for locating the CG.15 He 
imagines a rectangular vertical plane over which a body will be sus-
pended, balanced on the upper horizontal edge of the plane. The plane 
extended upwards divides the body into two parts which equilibrate one 
another. Next the body is supported over the same upper horizontal edge 
of the plane again, but this time with the body in a different orientation 
relative to the ground. The plane extended upward again divides the 
body into two parts which equilibrate one another. These two planes ex-
tended upward meet at a single vertical line. The body also remains in 
equilibrium when supported by a vertical line extended upward, as if it 
were supported at a point by a vertical stick. He repeats the procedure of 
balancing the body over the vertical rectangle in two new orientations of 
the body and obtains another vertical line (the intersection of these two 
new planes extended upwards). The intersection of both vertical lines is 
the CG of the body. According to Pappus, this is the most essential part 
of the barycentric theory. Moreover, Pappus says that the points demon-
strated by this experiment were given in Archimedes’s book On Equilib-
ria and in Heron’s book Mechanics. The procedure described by Pappus 
is analogous to our practical definition CG7. In other words, if a rigid 
body is supported at a point PA1 by a vertical stick, the line of the stick 
extended upward (that is, the vertical V1 passing through PA1) must pass 
through the CG. We now imagine that the body with a new orientation 
relative to the ground is balanced at another point PA2 by the same stick. 
The line of the stick extended upward is another vertical V2 passing 
through PA2. The intersection of these two verticals is the CG. This is 
analogous to the intersection of two verticals extended downward by 
two points of suspension, described by the practical procedure CG6. 

Everything we have seen so far suggests that Heron, Pappus and 
Simplicius directly consulted certain treatises by Archimedes that are no 
longer extant. The underlined definitions by Heron, Pappus and Sim-
plicius are analogous to our definition CG8. These authors also pro-
posed practical procedures for locating the CG analogous to our CG6 
and CG7. 

                                                                                                                                                                                                                                                                                                             

15 Pappus d’Alexandrie, La Collection Mathématique., Book 8, pp. 816-818. 
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Chapter 5 

Theoretical Values of Center 
of Gravity Obtained by 

Archimedes 

Here we cite the theoretical values obtained by Archimedes for the cen-
ters of gravity of several one-, two- and three-dimensional figures. 
There are proofs of most of these results in the known works of Ar-
chimedes. In some cases, such as the CG of the cone, Archimedes gives 
only the results, stating that they had been proved previously. However, 
the calculations are not to be found in any of his extant works. It is pre-
sumed that he calculated them in another work which has been lost dur-
ing the last two thousand years. 

5.1 One-dimensional figures 
A) “The centre of gravity of any straight line is the point of bisection of 
the straight line.” (The Method)1 In Heath this is Lemma 3, while in 
Mugler it is Lemma 4. 

5.2 Two-dimensional figures 
B) “The centre of gravity of a parallelogram is the point of intersection 
of its diagonals.” (On the Equilibrium of Planes, Book I, Prop. 10)2 
“The centre of gravity of any parallelogram is the point in which the di-
agonals meet.” (The Method)3 In Heath this is Lemma 5, while in 
Mugler it is Lemma 6. 
                                                                                                                                                                                                                                                                                                             

1 Heath, ed., The Works of Archimedes, Supplement, p. 14; Mugler, Les Oeuvres d’Archimède, 
Vol. 3, p. 85. 

2 Heath, ed., The Works of Archimedes, p. 195. 
3 Heath, ed., The Works of Archimedes, Supplement, p. 14; Mugler, Les Oeuvres d’Archimède, 

Vol. 3, p. 85. 
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C) “The centre of gravity of any triangle is at the intersection of the 
lines drawn from any two angles to the middle points of the opposite 
sides respectively.” (On the Equilibrium of Planes, Book I, Prop. 14)4 
“The centre of gravity of any triangle is the point in which the straight 
lines drawn from the angular points of the triangle to the middle points 
of the (opposite) sides cut one another.” (The Method)5 In Heath this is 
Lemma 4, while in Mugler it is Lemma 5. 

D) “In any trapezium having two parallel sides the centre of gravity 
lies on the straight line joining the middle points of the parallel sides, in 
such a way that the segment of it having the middle point of the smaller 
of the parallel sides for extremity is to the remaining segment as the sum 
of double the greater plus the smaller is to the sum of double the smaller 
plus the greater of the parallel sides.” (On the Equilibrium of Planes, 
Book I, Prop. 15)6 Heath presents this proposition as: “If AD, BC be the 
two parallel sides of a trapezium ABCD, AD being the smaller, and if 
AD, BC be bisected at E, F respectively, then the centre of gravity of the 
trapezium is at a point G on EF such that GE: GF = 
(2BC + AD) : (2AD + BC).”7 

E) “The centre of gravity of a circle is the point which is also the 
centre [of the circle].” (The Method)8 In Heath this is Lemma 6, while in 
Mugler it is Lemma 7. 

F) In Proposition 12 of The Method Archimedes finds the center of 
gravity of half a cylinder, that is, of a cylinder divided into two equal 
parts by a plane passing through the center of the cylinder. This result is 
analogous to obtaining the CG of a semicircle. See the discussion by 
Heath.9 

G) “The centre of gravity of any segment comprehended by a 
straight line and an orthotome [parabola] divides the diameter of the 
segment in such a way that the part towards the vertex of the segment is 
half as large again as the part towards the base.” (On the Equilibrium of 
Planes, Book II, Prop. 8)10 Heath states this Proposition as follows: “If 
AO be the diameter of a parabolic segment, and G its centre of gravity, 
then AG = ( 3

2 )GO.”11 Here A is the vertex of the parabolic segment. 
                                                                                                                                                                                                                                                                                                             

4 Heath, ed., The Works of Archimedes, Supplement, p. 201. 
5 Heath, ed., The Works of Archimedes, Supplement, p. 14; Mugler, Les Oeuvres d’Archimède, 

Vol. 3, p. 85. 
6 Dijksterhuis, Archimedes, p. 312. 
7 Heath, ed., The Works of Archimedes, p. 201. 
8 Heath, ed., The Works of Archimedes, Supplement, p. 15; Mugler, Les Oeuvres d’Archimède, 

Vol. 3, p. 85. 
9 Heath, ed., The Works of Archimedes, Supplement, pp. 38-40. 
10 Dijksterhuis, Archimedes, p. 353. 
11 Heath, ed., The Works of Archimedes, p. 214. 
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5.3 Three-dimensional figures 
H) “The centre of gravity of any cylinder is the point of bisection of the 
axis.” (The Method)12 In Heath this is Lemma 7, while in Mugler it is 
Lemma 8. 

I) “In any prism the center of gravity is the point of bisection of the 
axis.” (The Method)13 In Mugler this is Lemma 9. This lemma does not 
appear in Heath.14 The “axis” here refers to the line segment joining the 
centers of gravity of the two bases, as appears from the application of 
this lemma in Proposition 13 of The Method.15 A prism is a solid figure 
with similar, equal and parallel ends, and with sides which are parallelo-
grams.  

J) “The centre of gravity of any cone is [the point which divides its 
axis so that] the portion [adjacent to the vertex is] triple [of the portion 
adjacent to the base].” (The Method)16 In Heath this is Lemma 8, while 
in Mugler it is Lemma 10. 

K) “Let the axis of the segment of the paraboloid [of revolution] be 
AN (...) Let C be the centre of gravity of the paraboloid BAB′ (...) Then, 
since AN = ( 3

2 )AC (...)” (On Floating Bodies, Book II, Prop. 2)17 “The 
centre of gravity of a segment of a right-angled conoid (i.e., a parabol-
oid of revolution) cut by a plane at right angles to the axis is on the 
straight line which is the axis of the segment, and divides the said 
straight line in such a way that the portion of it adjacent to the vertex is 
double of the remaining portion.” (The Method, Prop. 5)18 This is also 
discussed by Dijksterhuis.19 That is, if the paraboloid of revolution has 
an axis of symmetry AN, with A being the vertex, the center of gravity C 
is located along AN in such a way that AC = 2CN, or AN/AC = 3

2 . 
L) “The centre of gravity of any hemisphere [is on the straight line 

which] is its axis, and divides the said straight line in such a way that the 
portion of it adjacent to the surface of the hemisphere has to the remain-
ing portion the ratio which 5 has to 3.” (The Method, Prop. 6)20. That is, 
if the hemisphere has a radius R and its plane face is along the xy plane, 

                                                                                                                                                                                                                                                                                                             

12 Heath, ed., The Works of Archimedes, Supplement, p. 15; Mugler, Les Oeuvres d’Archimède, 
Vol. 3, p. 85. 

13 Mugler, Les Oeuvres d’Archimède, Vol. 3, p. 85. 
14 Heath, ed., The Works of Archimedes, Supplement. 
15 Dijksterhuis, Archimedes, p. 316, note 1. 
16 Heath, ed., The Works of Archimedes, Supplement, p. 15; Mugler, Les Oeuvres d’Archimède, 

Vol. 3, p. 85. 
17 Heath, ed., The Works of Archimedes, Supplement, pp. 264-5. 
18 Heath, ed., The Works of Archimedes, Supplement, p. 25. 
19 Dijksterhuis, 1987, p. 326. 
20 Heath, ed., The Works of Archimedes, Supplement, p. 27. 
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centered at the origin, the center of gravity will be along the z-axis (axis 
of symmetry) at a point zCG such that zCG = 3R/8. 

M) “The centre of gravity of any segment of a sphere is on the 
straight line which is the axis of the segment, and divides this straight 
line in such a way that the part of it adjacent to the vertex of the segment 
has to the remaining part the ratio which the sum of the axis of the seg-
ment and four times the axis of the complementary segment has to the 
sum of the axis of the segment and double the axis of the complemen-
tary segment.” (The Method, Prop. 9)21 

N) Archimedes finds in Proposition 10 of The Method the center of 
gravity of any segment of an ellipsoid. 

O) Archimedes finds in Proposition 11 of The Method the center of 
gravity of any segment of a hyperboloid of revolution. 

The only point to be emphasized here is that all of these results 
were derived theoretically by Archimedes, beginning from his postu-
lates. In other words, they were derived mathematically. In an earlier 
section of this book we saw how to obtain some of these results (such as 
the CG of a circle, rectangle, and triangle) experimentally. At the end of 
the book we will discuss how Archimedes calculated the CG of the tri-
angle, as well as a modern mathematical definition of the CG. 

                                                                                                                                                                                                                                                                                                             

21 Heath, ed., The Works of Archimedes, Supplement, p. 35. 
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Chapter 6 

Balances and the Measurement 
of Weight 

By now we have arrived at a definition of the CG given by CG8, and 
two practical ways of finding it experimentally, CG6 and CG7. But 
these formulations do not enable us to calculate theoretically the CG of 
any discrete nor continuous distributions of matter. In order to do this 
we will need the concept of weight, a procedure to measure it, and also 
the law of the lever. This is our goal here. 

We have seen in the experiments with the triangle in equilibrium, 
and in the geometrical analysis following it, that not all straight lines 
passing through the CG of a plane homogenous figure divide it into two 
equal areas. In the experiments with the pasteboard equilibrist we saw 
that by changing the location of the modeling clay attached to the equi-
librist we could change the position of the CG of the whole system 
(pasteboard plus clay). This suggests that the CG has to do not only with 
the weight of the body, but also with the distribution of the matter 
around the body. 

We will arrive here at a mathematical expression with which we 
can calculate the CG of any distribution of matter. To this end we need 
first to quantify the intuitive concept of weight. That is, to find a clear 
and objective way of measuring the weight of a body. This is the subject 
of the next few Sections. 

6.1 Building a balance 
The more basic or fundamental quantitative concepts we have in physics 
are those of the size of a body (or the distance between bodies), time be-
tween physical events, and weight of a body. 
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In order to measure the size of a body, or the distance between two 
bodies, we utilize essentially a rigid standard of length. By definition we 
say that two bodies have the same size when their extremities coincide. 
For example, we say that person A has the same height as person B if, 
when they are placed back to back, the heels and heads coincide with 
one another. By definition we say that body A is N times the size of 
body B if it is possible to superimpose in linear sequence N times body 
A between the extremities of body B. The simplest example of this is a 1 
meter ruler divided into centimeters. We see that the ruler has 100 units 
of 1 cm between its ends, with these units stamped along the ruler. Util-
izing a graduated ruler we can also measure the length of a body, or the 
distance between small bodies. 

Time is the concept created by man in order to measure the changes 
which happen in nature. Any standard that repeats itself periodically can 
be utilized as a measure of time. Historically the most important and 
precise clock utilized in astronomy was the rotation of the Earth in rela-
tion to the background of stars seen with the naked eye. These stars are 
usually known as fixed stars, because they do not change noticeably 
their relative positions between one another while the Earth rotates rela-
tive to them. This leads to the definition of the unit of a sidereal day. 
Other astronomical clocks are given by the rotation of the Earth relative 
to the Sun, yielding the unit of a solar day, the phases of the Moon, or 
the variation of the position of the sunset in relation to the mountains 
and other terrestrial bodies, yielding the unit of a solar year. There are 
clocks with different degrees of precision. The simplest distinguish be-
tween darkness and light; others, the phases of the Moon, or the shad-
ows of a gnomon. A gnomon is a vertical stick fixed in the ground 
which measures the height of the Sun in the sky through the orientation 
and size of its shadow. It is the basis of the construction of the sundials. 
Several other periodic phenomena have been utilized through the centu-
ries to measure time: water clocks, mechanical clocks (based on a pen-
dulum or a spring), electromagnetic clocks, atomic clocks, etc. 

But the main concept we want to analyze in more detail here is the 
weight of a body. We all have an intuitive notion of the weight of a body 
as a quantitative measure of the gravitational force. We say that body A 
is heavier than body B if it is more difficult to keep body A in our hands 
at a certain height from the surface of the Earth than to keep body B at 
the same height. This difficulty can be indicated by our sweat, or by the 
fatigue we feel in our outstretched arm. We also say that body A is heav-
ier than body B when we need to make a larger physical effort to raise 
body A to a certain height h than to raise body B to the same height h. 
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This sensorial and subjective notion can also be indicated by certain 
phenomena affecting other material bodies. For instance, the deforma-
tion caused by body A upon a material support holding it at rest relative 
to the ground. Let us suppose that this support is a spring. We can say 
that body A is heavier than body B if the same spring is more com-
pressed supporting A than supporting B. In this case we would utilize a 
flexible and deformable body such as a spring as a weight indicator. It is 
better to use an objective phenomenon like the deformation of a spring 
in order to quantify the notion of weight than to use a subjective phe-
nomenon like our sensation of fatigue. 

But historically the oldest and most important instrument utilized to 
quantify the notion of weight was the equal arm balance. Balance is the 
name given to any instrument which determines quantitatively the 
weight of a body. The equal arm balance has been known since ancient 
Egypt, if not longer. In Fig. 6.1 are paintings from the time of the Phar-
aohs showing balances in use around 1500 B.C. It is interesting that 
three paintings show people holding a plumb bob to measure when the 
beam of the balance is horizontal. 

According to Steve Hutcheon (private communication, which he 
obtained from Thompson1), the earliest record of the balance in Astron-
omy is from circa 1350 B.C. when the Akkadians of Mesopotamia 
                                                                                                                                                                                                                                                                                                             

1 G.D. Thomson, The origin of the Zodiac, available in 2007 at: 
http://members.optusnet.com.au/~gtosiris/page9a.html. 

 

  
Fig. 6.1. Balances in ancient Egypt. 



114 Archimedes, the Center of Gravity, 

 

called a star group Zibanitum (the scales). These stars later became 
known as the Zodiac constellation Libra. In that period Zibanitum gave 
the location of the Sun at sunrise on the Autumnal Equinox when the 
lengths of day and night, and the seasons, were in balance.  

The main components of a balance are: (A) a homogeneous rigid 
beam free to rotate around a horizontal axis which is orthogonal to the 
beam, located halfway between the extremities of the beam (this axis is 
sometimes called the fulcrum of the balance), (B) a rigid support which 
keeps the fulcrum of the balance at rest relative to the ground, and (C) 
two scale pans, suspended at equal distances to the vertical plane pass-
ing through the fulcrum. An example is given in Fig. 6.2. The objects to 
be weighed are placed in these pans. The fulcrum may be part of the 
support, such as a horizontal needle fixed to the support, with the beam 
hanging from the needle. Or the fulcrum may be part of the beam, such 
as a horizontal needle fixed to the beam, with the needle supported by 
the fixed stand. We call the arm of the balance, the horizontal distance, 
d, between the point of suspension of the pan from the beam and the 
vertical plane passing through the fulcrum of the balance. In some bal-
ances we will build, no scale pans will be employed, as the bodies to be 
weighed will be suspended directly from the beam of the balance. 

Before weighing any body, the balance must be adjusted in such a 
way that its beam is horizontal without the scale pans. If necessary, this 
can be done by changing the location of the fulcrum on the beam, or the 
length of the arm on one side of the beam. In addition, the beam must 
remain horizontal with the scale pans added. If necessary, this can be ad-
justed by changing the exact location of the nails where the scale pans 
are hanging. If the beam does not remain horizontal after these adjust-
ments, we can sometimes succeed by placing a small counterweight at 

 
Fig. 6.2. Components of a balance. 
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some point on one side of the beam. This counterweight can be a piece 
of thread, wire, or clay. 

We have seen that by definition the direction followed by a falling 
body is called vertical, which coincides with the direction of a plumb 
line in equilibrium. Horizontal is any straight line or plane perpendicular 
to the vertical. We also defined the equilibrium of a body as the situation 
in which the body and all its parts remain at rest relative to the Earth.  

Definition of a balance in equilibrium:  
We define the meaning of the expression “balance in equilibrium” as the 
situation in which its arms remain at rest horizontally. This is the mean-
ing given by most people to the equilibrium of balances, and we adopt it 
here. That is, even when the beam and scale pans are at rest relative to 
the ground, we will not say that the balance is in equilibrium if the beam 
is not horizontal. 

Before utilizing the balance to measure weights, we must build it 
and to place it in equilibrium without the bodies to be weighed, only 
with its arms and scale pans. It is also important to verify that the 
threads holding the pans to the arms of the balance are at the same hori-
zontal distance to the vertical plane passing through the fulcrum. In or-
der to have a sensitive and precise balance, it is essential for it to be free 
to rotate around the fulcrum, without the hindrance of friction. 

We have seen before that a rigid body suspended by a point is in 
stable equilibrium when the point of suspension PS is vertically above 
the CG of the body. If the CG is above the point of support PA, the equi-
librium tends to be unstable, unless the PA is not a point but an area of 
support. For the time being we will deal only with balances suspended 
by a fulcrum located vertically above the CG of the empty balance. In 
some figures we will represent this fulcrum by the letters PS. One of the 
most important points in the construction of a balance is that the fulcrum 
must be vertically above the CG of the beam (without the scale pans and 
weights to be measured). This will guarantee the stable equilibrium of 
the beam. That is, it will return to the horizontal position after release 
from rest, no matter what the initial inclination of the beam relative to 
the horizontal. 

The beam of the balance can be made of any rigid material like 
wood, plastic, metal, or even pasteboard. It can be cylindrical (a bamboo 
barbecue skewer or a broomstick), rectangular (a ruler or a rectangular 
pasteboard), or like a parallelepiped (a lath of wood). Close to the ex-
tremities of the beam, at equal distances to the vertical plane passing 
through the fulcrum, we can fix two equal nails, two needles or two 
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hooks, which will support the scale pans by the threads. Instead of this, 
we can also make two equal holes at the extremities of the beam, where 
we will hang the pans (utilizing hooks). The pans of the balance may be 
two small bottle lids, two small plastic cups, or any other adequate sup-
ports for the bodies. We should make three holes symmetrically located 
around the edges of the lids or cups, where the threads will be tied. The 
threads holding the pans on each side of the beam should have the same 
length and should be made of the same material. Instead of lids or cups, 
we could also use small plastic or cloth bags suspended from the beam. 
Inside the bags we place the bodies to be weighted. 

Here we present several types of equal arm balances that are very 
sensitive and precise, even though they are made with cheap and easy to 
find materials. They illustrate different possibilities, and can also be 
adapted to levers.  

There are many ways in which the balance can have freedom of ro-
tation around the fulcrum. One possibility is to have a hook on the upper 
part of the beam, above its midpoint. Another possibility is to make a 
horizontal hole halfway between its extremities, with the hole above the 
CG of the beam. In these two cases the balance hangs by a nail, needle, 
or bamboo skewer fixed horizontally in the rigid support, passing 
through the hook or hole made in the beam, as in Fig. 6.2. 

One of the simplest balances found in every home is the coat-
hanger. The cylindrical horizontal bar holding the coat-hanger is the ful-
crum of the balance, and we can hang objects to be measured on the 
beam of the coat-hanger: 

A simple and instructive balance model which we will utilize for 
some activities is made with a pasteboard in the form of the letter T. It 
has several holes along the body, as well as holes symmetrically located 
along the arms of the T, as in Fig. 6.3. By the method of the plumb line 

 

Fig. 6.3. A pasteboard 
balance. 
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we can easily find the CG of the pierced figure. The T should be sus-
pended by a fulcrum passing through a hole located above its CG. The 
scale pans can be suspended by any two holes along the arms, provided 
they are at equal distances from the vertical plane passing through the 
axis of symmetry of the T. 

Another way to reduce friction from the wobbling of the balance is 
to use a horizontal stick fixed to the beam, orthogonal to it, supported on 
both sides by rigid, smooth stands of the same height. One example is 
made of a short cork (that is, a cork cut in half on a plane parallel to its 
faces), a needle (or toothpick), and a bamboo barbecue skewer. Initially 
we pass a nail longitudinally through the cork, parallel to its axis of 
symmetry, but outside it. We represent the axis of symmetry of the cork 
by the letter E. We remove the nail and pass the bamboo barbecue 
skewer through this hole. We then remove the tip of the bamboo skewer 
so that it becomes symmetrical. We then pass a needle or toothpick 
through the cork. The needle should be perpendicular to the bamboo 
skewer and parallel to the faces of the cork. We represent the needle by 
the letter A. The center of the cork must be located between the center of 
the bamboo skewer and the center of the needle. The bamboo skewer 
and the axis of the cork should be parallel, with the needle orthogonal to 
the plane formed by the axis and the bamboo skewer, as in Fig. 6.4. 

We support both sides of the needle on the back of a chair, above 
two cans or over another appropriate stand. We adjust the center of the 
bamboo skewer in relation to the center of the cork in such a way that 
the bamboo skewer remains horizontal. We then make two cuts on the 
upper part of the bamboo skewer, perpendicular to its axis, symmetri-
cally located relative to the needle. The scale pans should be hung from 
these cuts. The friction of the needle rotating over the smooth stands is 
very small and this balance allows good precision. The needle works as 
the fulcrum of the balance, that is, the horizontal axis around which it 
can turn, as in Fig. 6.5. 

Another way to reduce friction during the oscillation of the balance 
is to fix vertical nails or needles in the beam, which will be supported 

 
Fig. 6.4. The beam of a balance made with a bamboo barbecue skewer, 
a cork and a needle. 
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over smooth stands. Fig. 6.6 illustrates a balance of this kind made with 
cork, bamboo barbecue skewers, and pins or needles.  

Initially we use a knife to cut equal pieces of the cork from both 
ends, each one ⅓ of the length of the cork, in such a way as to remove ¾ 
of the circular part of the cork. Then we pass a bamboo barbecue skewer 
through the lower part of the cork, orthogonal to its axis of symmetry E. 
The bamboo skewer should be in a plane parallel to the plane of the lon-
gitudinal cuts of the cork, parallel to its axis of symmetry, but below the 
axis. We then remove its tip to make it symmetrical. Before passing the 
bamboo skewer through the cork we can pass a nail of the same thick-
ness through the cork, in order to facilitate the insertion the bamboo 
skewer. We attach two vertical pins or needles in such a way that their 
tips are above the original axis of symmetry E of the cork. The bamboo 
barbecue skewer is set to horizontal, with the tips of the pins supported 
over appropriate stands of the same height. In order to stabilize the bal-
ance it is crucial that the tips of the pins be above the CG of the system 
composed of cork, pins and bamboo skewer. We can make small cuts 
close to the extremities of the bamboo skewer, perpendicular to the 
beam and on its upper side, in order to attach the threads for the scale 
pans. 

There are several other possibilities, but what we have shown here 
should give a good idea how to build sensitive balances. 

 
Fig. 6.5. A complete balance on its support. 

 
Fig. 6.6. Another kind of balance with very small friction. 
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6.2 Measurement of weight 
We now show how to utilize a balance to weigh bodies. We will suppose 
that we have already built our equal arm balance and that it is com-
pletely free to turn around the fulcrum. Moreover, we will assume that it 
is in equilibrium; i.e., the beam is horizontal without other bodies, only 
with the scale pans suspended at equal distances to the vertical plane 
passing through the fulcrum. 

Experiment 
We place body A (for example, a large paper clip) in the left pan of the 
balance and a sequence of N other bodies B (for example, a small paper 
clip, a large paper clip, a coin, a piece of modeling clay, etc.) in the right 
pan of the balance. In each trial we place only one of the N bodies B in 
the right pan, always releasing the balance from rest with its beam in a 
horizontal position. We observe that in some cases A goes up while B 
goes down, in other cases both bodies remain at rest with the beam hori-
zontal, and in other cases A goes down while B goes up. 

Definition: We say that bodies A and B have the same weight P if, 
when A is placed on one pan of this balance and B is placed on the 
other pan, and the beam is released from rest horizontally, it remains 
at rest, as in Fig. 6.7. 

In order to obtain better precision with the balance, it is important 
to swap the position of the bodies on the scale pans. If it remains in 
equilibrium, we can say that the two bodies really have the same weight. 
There is one main reason for this precaution. It may happen that one of 
the arms (let us call it arm 1) is shorter than arm 2, this difference in 
lengths being difficult to detect with the naked eye. That is, the distance 
between the thread on arm 1 and the vertical plane passing through the 
fulcrum may be larger than the distance between the thread on arm 2 

 
Fig. 6.7. A balance in equilibrium with equal weights. 
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and the fulcrum. Let us suppose that these arms have different lengths. 
We further suppose that body A placed on pan 1 balances body B placed 
on pan 2. If the arms have different lengths, then body A placed on pan 2 
will not balance body B placed on pan 1. The scale will only balance in 
both cases (A on pan 1 with B on pan 2; and A on pan 2 with B on pan 
1) if the two arms are at the same distance from the vertical plane pass-
ing through the fulcrum. Switching the objects between scale pans is 
also necessary in the other cases where an equal arm balance is used. We 
will not mention this again, and simply suppose it is implied in other 
definitions and procedures. 

We said before that body A (or B) has weight P, as if the weight be-
longed to it or were a property of the body A. However, as a matter of 
fact, the weight arises from an interaction of A with the Earth (or B with 
the Earth). We call this interaction gravity. The tendency of gravity is to 
unite the bodies with the Earth. Therefore, it would be more appropriate 
to say that when the balance remains in equilibrium, the interaction of A 
with the Earth has the same value P as the interaction of B with the 
Earth. In any case, we will keep the previous definition of the weight P 
of A and B, as this is the usual way of expressing it. But it should not be 
forgotten that weight is really an interaction of each body with the Earth. 

The previous definition is an operational procedure for finding two 
bodies of the same weight. But it is not an experimental law. We are 
merely utilizing an empirical observation (the equilibrium of the balance 
supporting two bodies A and B) in order to arrive at a conceptual (or op-
erational) definition.  

This could only be an experimental law if we had some other way 
of knowing when two bodies have the same weight. If this were the 
case, then we could say that experiment teaches us that two bodies of 
the same weight keep an equal arm balance in equilibrium. But histori-
cally it was with the equal arm balance that we first found an objective 
procedure for quantifying the notion of weight. Therefore, the equality 
of weight of two bodies by this first procedure must be established by 
definition. Once we know one procedure for defining the equality of 
weight of two bodies, we can apply it to obtain other experimental laws. 
For instance, suppose we utilize the previous experimental procedure 
with an equal arm balance to find two bodies A and B of equal weight. 
Then we can raise to an experimental law the empirical result that these 
two bodies compress a spring by the same amount when each one of 
them remains at rest above the ground and above a vertical spring sup-
ported from below.  
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The previous definition is the main operational procedure for quan-
tifying the equality of weight of two bodies. We might think of an alter-
native procedure such as: we define two bodies made of the same mate-
rial and having the same size and shape as having the same weight. But 
this alternative procedure has problems and limitations, for two princi-
pal reasons. The first is that it is difficult to know in practice if the two 
bodies are really made of the same material. After all, microscopic dif-
ferences may arise during the manufacturing process (impurities, inter-
nal bubbles, etc.) which are difficult to detect. Even disregarding this 
prospect, there is a second, even more serious problem. There is not the 
slightest possibility of comparing the weights of two bodies made of dif-
ferent materials, such as iron and wood, or corn and water, by this alter-
native definition. That is, when we have bodies of different chemical 
composition, we cannot compare their weights by this alternative defini-
tion. 

Let us illustrate this point with a specific example, as this is a rele-
vant issue that is rarely discussed in textbooks. When we buy a box of 
paper clips we observe visually that they have the same shape and size. 
As they are made of the same material, it is reasonable to suppose that 
they have the same weight. Despite this fact, there are always some mi-
croscopic variations between two clips which are difficult to detect mac-
roscopically. In any event, even forgetting this fact, there is not the 
slightest possibility of visually comparing the weight of one of these 
clips with a certain amount of clay. After all, the clip and the clay have 
different shapes, sizes, volumes, textures, colors, etc. But the main dif-
ference is that they are made of different chemical substances. The only 
way of knowing if they have the same weight or not is to utilize a meas-
urable effect arising from the gravitational interaction. The first quanti-
tative instrument that was devised historically to determine the weight 
of bodies was the equal arm balance. Therefore, we say, by definition, 
that a clip and a certain volume of clay have the same weight if, when 
released at rest on the pans of the balance, the beam remains horizon-
tally at rest. 

In principle the previous definition is only strictly valid when the 
balance is placed in a high vacuum. The reason is that if bodies A and B 
are immersed in a fluid like air, an upward force will be exerted upon 
them by the air. And this force is equal to the weight of the displaced air, 
as discovered by Archimedes himself. Therefore, the body with the lar-
ger volume will receive a larger upward force from the air. This force of 
the air will distort the comparison of weights of A and B. In our previ-
ous definition we are neglecting the effect of this upward force, consid-
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ering only the downward forces upon A and B due to their interaction 
with the Earth. 

Definition: We place two bodies A and B on different pans of a equal 
arm balance, with the beam initially horizontal, releasing the system 
from rest. If the balance does not remain in equilibrium, but inclines 
towards one of the sides, we say that the body which moves toward 
(away from) the ground is the heavier (lighter). 

Experiment 
We utilize an equal arm balance with threads of equal length holding the 
two pans. We find two bodies A and B which keep the balance in equi-
librium. We then shorten one of the threads, placing the excess thread on 
the pan to which it belonged, and again release the beam from rest with 
bodies A and B on the two pans. We observe that the balance remains in 
equilibrium as in Fig. 6.8. In other words, experimentally the weight of 
a body does not depend on its height above the ground. 

Since Newton’s theory of universal gravitation we have known that 
this result is only an approximation, since the gravitational force be-
tween two spherical bodies falls as the inverse square of the distance be-
tween their centers. But due to the huge radius of the Earth, compared 
with the difference in length between the two threads in this experiment, 
the change of weight is negligible. Thus, it cannot be detected in this 
kind of experiment. We can therefore assume as an experimental result 
that the weight of a body upon the surface of the Earth does not depend 
upon its height above the ground. 

Now that we have defined the equality and inequality of weight be-
tween two bodies, we can continue to quantify the notion of weight with 
another definition. 

 
Fig. 6.8. The weight does not depend upon the height of the body. 
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Definition: We say that N bodies of the same weight placed together 
on a scale pan have N times the weight of one of these bodies. 

For example, suppose that with a equal arm balance we discover that the 
bodies A, B, C and D all have the same weight P (PA = PB = PC = 
PD ≡ P). Suppose we place these four bodies over one of the pans of a 
balance and verify that they equilibrate another body E placed on the 
other pan. Then we say, by definition, that the weight of E is four times 
the weight of A, or, PE ≡ 4PA. 

This may seem a trivial definition. But this is not the case. In order 
to see this, let us compare it with the temperature of a body. We define 
two bodies as having the same temperature T if, when they are placed in 
contact, they remain in thermal equilibrium. That is, their macroscopic 
variables, like the pressure or volume in the case of gases, do not change 
with the passage of time. But if we place N bodies together at the same 
temperature T, the system as a whole will also have the same tempera-
ture T, and not a temperature N times higher than T. The same holds for 
density. That is, when we place N cubic solid homogeneous bodies of 
the same density ρ together, the system as a whole will have the same 
density ρ. The system will not have N times this density. 

Based on this definition we can prepare a set of standard weights. 
We choose a specific object, such as a small paper clip, as our standard, 
and define its weight as 1. With a balance we can find many other ob-
jects (e.g., pieces of clay) which have the same weight. We then put five 
of these equal weights on one side of a balance and on the other side we 
place an appropriate amount of clay to balance these 5 objects. This clay 
will have, by definition, weight 5. We can mark this number in the clay. 
We can find other standards of weight: 10, 50 and 100, for instance. 
Now suppose we want to weigh an apple. We put it on one side of the 
balance and find how many units we need to place on the other side to 
balance it. If it is 327 units, we will say that the weight of the apple is 
the same as the weight of 327 paper clips, or simply 327 units. 

We now present a series of experiments that show how to improve 
the sensitivity of balances. 

6.3 Improving balance sensitivity 
We now perform four experiments. Their results will show how to build 
balances with greater sensitivity.2 All of them utilize pasteboard figures 
in the shape of the letter T, as in Fig. 6.3. This pierced pasteboard T will 
                                                                                                                                                                                                                                                                                                             

2 N. Ferreira, Equilíbrio (São Paulo: Instituto de Física, USP). Available in 2007 at: 
http://www.ludoteca.if.usp.br/. 
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function as a balance. Its arms of equal length will be the beam of the 
balance. We will suppose that when we hang the T by the hole located at 
the intersection of the arms with its body, supporting it on a horizontal 
pin fixed in a vertical stand, the arms of the balance remain horizontal 
after the T stops swaying. We then find two bodies that keep the T in 
equilibrium when they are placed on opposite sides at equal distances 
from the axis of symmetry of the T. The balance is being utilized here to 
determine the equality of weight of these two bodies. But we can also 
use a balance to determine whether two bodies A and B have different 
weights. How should we build a balance capable of distinguishing, for 
instance, a difference in weight of 1% between A and B? We are inter-
ested here in finding the main features that increase the sensitivity of a 
balance, so that it can easily show that two bodies A and B have differ-
ent weights. This is the goal of the next experiments. 

Suppose we hang two bodies A and B, having different weights, 
from opposite arms of a balance 1 and a balance 2. We will say that bal-
ance 1 has a higher sensitivity than balance 2 if we can more easily dis-
tinguish the difference of weight in balance 1 than in balance 2. The 
sensitivity of a balance can be established quantitatively by the angle θ 
its arms make with the horizontal when it holds bodies A and B at equal 
distances to its fulcrum. The greater the value of θ, the greater the sensi-
tivity of the balance. 

In order to unbalance the beam we will use a paper clip placed on 
one of its arms. We want to know what makes the disequilibrium more 
visible, that is, what increases the angle θ indicated by the T. 

The dimensions of the T do not need to be exactly as indicated. In 
the model used here, the length between the end of one arm and the end 
of the other arm is 15 cm. The height of the T is 16.5 cm. The width of 
the arms and body of the T is 3 cm. Holes separated by 1.5 cm are made 
along the axis of the arms and along the axis of symmetry of the T. Let 
us call the 10 holes along the axis of symmetry V1 to V10, with V1 at the 
intersection of the arms with the body, and V10 at the bottom end of the 
body. The holes along the arms are called H1 to H8, with H1 at the left of 
Fig. 6.3 and H8 at the right.  

After making these holes we locate the CG of the T. The simplest 
way to do this is to hang it by a pin passing through H1, and draw the 
vertical with the help of a plumb line after the system has reached equi-
librium. This procedure is repeated with the T hanging by H8. The inter-
section of the two verticals is the CG of the T. With the previous dimen-
sions it is located between V3 and V4, as indicated in Fig. 6.3. 
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Experiment 
Initially we have a balance in equilibrium, with its arms horizontal, sus-
pended by hole V1. We now disturb this equilibrium by placing a small 
piece of paper or clay, or a paper clip, at the end of one of the arms. The 
system turns around V1, oscillates a few times, then stops with the extra 
weight lower than the opposite arm. Let us call the smaller angle be-
tween the horizontal and the arm with the extra weight when the T is at 
rest θ1, as in Fig. 6.9. We repeat the experiment, but now with the T sus-
pended by V2. Initially the system is in equilibrium with the arms hori-
zontal. We then disturb this equilibrium by placing the same extra 
weight in the same place as before. After the system has come to rest we 
measure the angle between the horizontal and the arm with the weight, 
calling it θ2. We repeat the procedure with the T suspended by V3. In this 
case, the angle when the system is at rest is called θ3. Experimentally it 
is found that the smaller the distance between the point of suspension (in 
this case, the pin) and the CG of the T, the greater the final angle when 
the system is at rest. That is, experiment shows that θ1 < θ2 < θ3. 

If we try to keep the T in its normal position (with the arms above 
the body) by suspending it by holes which are below the CG, we do not 
succeed. In other words, if we try to suspend it by V4, V5, ..., V10, the 
system turns and remains at rest only with the horizontal arms below the 
body of the T. But even in these cases we can break the equilibrium as 
before, and obtain the same experimental results. That is, if we suspend 
the T by V10 and place an extra weight at the end of one of its arms, the 
system will reach a new position at rest with the arm inclined by an an-
gle θ10 from the horizontal, as in Fig. 6.10. We now hang the T by V9, ..., 
V4, then put the same extra weight at the end of its arm, and wait until 
the system reaches equilibrium. In these cases the smaller angle between 

 
Fig. 6.9. The greater the distance between the point of suspension 
PS and the CG, the smaller the sensitivity of the balance. 
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the horizontal and the arm with the extra weight is given by θ9, …, θ4, 
respectively. Experimentally it is found that θ10 < θ9 < ... < θ4. 

In all these cases we placed the same weight acting at the same dis-
tance from the vertical plane passing through the fulcrum of the balance. 
And we discovered experimentally that the smaller the distance between 
the PS and the CG, the greater the angle of inclination of the beam with 
the horizontal after the system reached rest. Therefore, the sensitivity of 
a balance increases with decreasing distance between the PS and the CG. 
As the distance between the PS and the CG gets smaller, it is easier to 
perceive that the beam is unbalanced, supporting different weights on 
both arms. 

This experiment suggests that balances should be built to allow a 
variable distance between the PS and the CG, in order to control sensi-
tivity. An example of a balance of this kind utilizes a cork, two bamboo 
barbecue skewers and two pins or needles. Initially we pass a bamboo 
skewer through the cork, orthogonally to its axis, at a distance of ⅓ of 
its length from one end. We remove the tip of the bamboo skewer and 
make two cuts on the upper face of the bamboo skewer, at the same dis-
tance from its center, in order to support the threads fixed to the scale 
pans. We then pass another bamboo skewer at a distance of ⅓ of its 
length from the other end, in such a way that it remains orthogonal to 
the axis of the cork and the first bamboo skewer. This second bamboo 
skewer will work as the pointer of the balance. We place a pin parallel to 
this second bamboo skewer, passing close to the center of the cork, to 
serve as the fulcrum of the balance. In order to prevent the beam from 
falling toward the ground when we place the threads and scale pans, 
raising the pointer, we place another pin parallel to the first one, this 
time in the front part of the cork, after the horizontal bamboo skewer. 

 
Fig. 6.10. The same result as before with the T upside down. 
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We then have along the length of the cork, from back to front: a vertical 
pointer, a vertical pin, the horizontal beam and another vertical pin, as in 
Fig. 6.11. We fix the two scale pans and adjust the arms so that the beam 
becomes horizontal when supported by the two pins. We then support 
the balance with the two pins on the lid of a can or other convenient 
support. The balance is then complete. By raising or lowering the verti-
cal bamboo skewer we can change the height of the CG of the balance. 
In this way we can change its sensitivity, as desired. This vertical bam-
boo skewer works as well as the pointer of the balance. For example, 
when the balance is equilibrated with its arms horizontal, we can make a 
small mark on the stand parallel to the location of the pointer indicating 
the zero (0) of the balance. 

Another extremely creative idea to connect two bamboo skewers or 
two plastic straws, without a cork, is to make a loop out of pieces of a 
plastic straw.3 To do this, we cut three small pieces of straw, one 4 cm in 
length and two 5 cm in length. The larger pieces are folded in two and 
we introduce them into the smaller piece. The angle between the planes 
of the two loops should be 90º, as in Fig. 6.12. We pass a whole straw or 
bamboo skewer through each loop and stick two pins or needles in the 
4 cm long straw. The two bamboo skewers or whole straws should be 
orthogonal to one another. The bamboo skewer parallel to the two pins 
or needles will be the pointer of the balance. In this way we can support 
the two pins over a rigid stand. The horizontal bamboo skewer will be 
the beam of the balance. The length of its two arms should be adjusted 
with the beam remaining horizontal at rest. After this we draw one mark 
on each arm at equal distances from the point of intersection. On these 
                                                                                                                                                                                                                                                                                                             

3 N. Ferreira, Equilíbrio. 

 
Fig. 6.11. A balance with variable distance between the PS and the CG. 
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marks we hang the threads with scale pans. The vertical bamboo skewer 
(the pointer) can be adjusted at will, so that we can change the distance 
between the points of suspension (lower tip of the pins) and the CG of 
the system (composed of bamboo skewers, pieces of straw, pins and 
scale pans). In this way we can control the sensitivity of the balance. In 
order to prevent the balance from falling when we put objects on the 
scale pans, the objects should be very light, with a weight no larger than 
the weight of the system. If we wish to balance heavier bodies, then we 
will need to put extra weights over the pointer in order to prevent the 
whole balance from falling. 

It is important to improve the sensitivity of a balance. But this has a 
side effect. When we remove a balance from its position of stable equi-
librium and release it from rest, it oscillates a few times until it stops 
due to friction, returning to its position of stable equilibrium. But the 
smaller the distance between the PS and the CG, the longer will be the 
period of oscillation. It will therefore take a longer time for the balance 
to complete each oscillation. When the PS is very close to the CG, we 
sometimes need to wait a long time until the balance stops swinging. 
This creates problems because it takes a long time to make each reading 
of the balance. This makes certain measurements impractical, as small 
perturbations in the position of the beam are inevitable (due to air cur-
rents, tremors of the room, perturbations when we place bodies over the 
scale pans, etc.) To prevent this problem some balances have a damper 
or shock-absorber (such as a pointer inside a vessel of oil) which 
quickly decreases the amplitude of oscillations. In this way we can 
move the CG close to the PS, increasing the sensitivity of the balance, 

 

Fig. 6.12. A balance with 
variable distance between 
the PS and the CG made of 
plastic straws. 
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without significantly increasing the time for each reading of the balance 
due to perturbation. 

In the next experiment we analyze another effect which shows how 
to increase the sensitivity of a balance. 

Experiment 
In this experiment we always hang the T by the same hole, such as V1. 
Let us suppose that it remains at rest in this position with its arms hori-
zontal. We now disturb this equilibrium by placing an extra weight (a 
piece of paper or clay, or a paper clip) over the hole H8, releasing the 
system from rest. The T oscillates a few times, stopping with H8 below 
H1. Let θ8 be the smaller angle between the horizontal and the beam in 
this final position. We now remove the extra weight from H8, and place 
it over H7, releasing the beam from rest in a horizontal position. After a 
few oscillations the system stops with H7 below H1. Let θ7 be the 
smaller angle between the beam and the horizontal in this final position. 
The procedure is repeated with the extra weight over H6 and over H5. 
These experiments show that θ8 > θ7 > θ6 > θ5, as in Fig. 6.13. 

We can imagine that in these four situations we have the same bal-
ance, but with the scale pans hanging by equal arms of different lengths 
in each instance (by H1 and H8 in one situation, by H2 and H7 in another 
situation, by H3 and H6 in another situation, and by H4 and H5 in another 
situation). We conclude that the longer the arms of a balance, the greater 
its sensitivity. That is, by comparing two balances with the same dis-
tance between the PS and CG, the more sensitive balance is the one with 
the longer arms. After all, the longer the arm with the extra weight, the 
more visible will be the lack of equilibrium of this balance caused by 
objects A and B of different weight. This lack of equilibrium is indicated 
by the angle of inclination of the beam with the horizontal. 

 
Fig. 6.13. The longer the arms of a balance, the greater its sensitivity. 
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The results of these two experiments can be combined in a single 
expression. Let h be the vertical distance between the PS and the CG of 
the balance. Let d be the arm of the balance (horizontal distance be-
tween the point of suspension of the scale pans and the vertical plane 
passing through the fulcrum). The larger the ratio d/h, the greater the 
sensitivity of the balance. Or the larger the angle θ of inclination of the 
beam to the horizontal when there are different weights on the scale 
pans. 

Experiment 
A third effect that illustrates how to improve the sensitivity of a balance 
can also be easily seen with a pasteboard T. In this case we cut out three 
or four equal T figures, of the same size and shape. Two or three of them 
should be glued together, making a T of the same size as the original 
one, but now two or three times thicker than a single T. The two systems 
(the single T and the thick T) have holes in the same locations (V1 to V10 
and H1 to H8). We can determine the CG of both systems experimen-
tally. They coincide with one another, being located between holes V3 
and V4. We hang the single T by V1 and wait until the system reaches 
equilibrium with its arms horizontal. We then suspend an extra weight, 
like a paper clip, at the extremity of one of its arms. We wait until the 
system stops its oscillations, with the arm containing the extra weight 
lower than the other arm. We measure the angle θS between the horizon-
tal and this arm. We remove the T from the support and hang the thick T 
by V1. We suspend the same extra weight at the end of one of its arms. 
We wait for the system to stop moving and measure the angle θE be-
tween the horizontal and this arm. Experimentally we observe that 
θS > θE, i.e., the heavier the beam of a balance in comparison with the 
extra weight, the less sensitive it will be. In this experiment the distance 
between the PS and the CG of the balance was the same, and the extra 
weight always hung at the same distance from the vertical passing 

 
Fig. 6.14. The lighter a balance is, the greater its sensitivity. 
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through the fulcrum. The different sensitivity of the two balances can 
only be due to the difference in their weights. We conclude that the 
lighter a balance is; the more sensitive it will be to distinguish the same 
difference of weight between two bodies, as illustrated in Fig. 6.14. 

Experiment 
It is also easy to observe experimentally that the greater the extra weight 
placed upon one of the arms of a balance, the more inclined the beam 
will be from the horizontal. For example, we hang an extra weight upon 
one of the arms of a balance and wait until the system stops its oscilla-
tions. Let θL be the angle between the horizontal and this arm. We now 
place two extra weights upon the same arm, at the same distance from 
the fulcrum. Once again, we release the balance from rest, with its beam 
horizontal, waiting until it stops its oscillations. Let θP be the new angle 
between the horizontal and this arm. Experimentally it is found that 
θL < θP, as in Fig. 6.15. This means that the greater the difference in 
weight between the bodies on the two equal arms of the balance, the 
more easily we will notice it, or, the greater the final angle of inclination 
between the beam and the horizontal. 

Once more we can combine the results of these last two experi-
ments in a single expression. Let ΔP ≡ |PA – PB| be the magnitude of the 
difference of weight between A and B. Let us represent the weight of the 
beam by PA. Therefore, the greater the value of ΔP/PA, the greater will 
be the sensitivity of the balance, or, the greater the angle θ of inclination 
of the beam from the horizontal when ΔP is different from zero. If ΔP is 
the same for two different balances, the balance with a lighter beam will 
be more sensitive. 

 
Fig. 6.15. The greater the difference in weight between the two 
bodies, the more easily we will notice it. 
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6.4 Condition of equilibrium of a suspended body 
Before studying levers it is worth making another experimental observa-
tion. Let us consider the balance with bamboo skewer, needle (A) and 
cork, where the axes of symmetry of these three bodies are in the hori-
zontal position, as in Figs. 6.4 and 6.5. 

Experiment 
The balance is in stable equilibrium when the needle is above the center 
of the cork and above the center of the bamboo skewer, with or without 
the scale pans. That is, when we lower one of the sides of the bamboo 
skewer and release it from rest, the balance sways a few times, stopping 
with its arms horizontal (supposing there are equal weights on its scale 
pans suspended at equal distances from the fulcrum). It is easy to under-
stand this fact by observing that in the position of stable equilibrium the 
CG of the system is in its lowest possible position, below the needle, 
along the vertical line passing through the center of the needle. Any per-
turbation raises the CG. Therefore, if the system is free to rotate after re-
lease, it will return to the position of stable equilibrium. 

Experiment 
We now consider the opposite case in which the center of the needle is 
below the center of the cork and below the center of the bamboo skewer. 
Let us suppose initially that there are no scale pans on the beam, as in 
Fig. 6.16. In this case the equilibrium is unstable with the horizontal 
needle. In other words, we cannot keep the balance at rest in this posi-
tion after release; it tends to turn in the clockwise or in the anticlockwise 
direction after being released from rest. If the balance can make a com-
plete turn, it will end up in the previous position of stable equilibrium. It 
is also easy to understand the phenomenon by observing that in the posi-
tion of unstable equilibrium the CG of the system is in its highest possi-
ble position, above the needle, along the vertical line passing through 
the center of the needle. Any perturbation in the system tends to lower 
its CG. Therefore, if the balance begins to turn in the clockwise direction 

 
Fig. 6.16. A beam with its CG above the fulcrum (needle A). 
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after being released from rest, it will continue to turn in this direction, as 
the tendency of the CG is to fall toward the ground. 

Experiment 
The most curious situation is when the center of the needle is in the pre-
vious position, below the center of the cork and below the center of the 
bamboo skewer, but now with equal weights M and N placed on arms of 
equal length. Let us suppose that the balance has the bamboo skewer 
(the beam) initially horizontal. Moreover, let us suppose that the weight 
of the set of threads and scale pans, together with objects M and N 
placed on these pans (CG of this first set located at P) is larger than the 
weight of the set of cork, needle and bamboo skewer (CG of this second 
set located at T), in such a way that the CG of both systems together is 
located at C, below the needle A, as in Fig. 6.17. Even in this case the 
system is in unstable equilibrium in this initial configuration. That is, if 
released from rest it tends to turn in the clockwise or in anticlockwise 
direction. The beam of the balance does not remain in this initial posi-
tion if there is any perturbation in the system. 

Let us try to understand what is happening here. We first analyze 
the situation for which the beam has turned an angle θ from the horizon-
tal, in such a way that body M moves downward and body N upward, as 
in Fig. 6.17. Body M, together with its pan and thread, fell a distance 
H(θ) relative to its original height above the ground. At the same time 
body N rose, together with its pan and thread, a distance h(θ) relative to 
its original height above the ground. As the center of the cork also fell 
below original height, we have H(θ) > h(θ). This means that the CG of 
the first set (bodies M and N, together with their plates and threads) fall 
relative to its original height above the ground, from P to P′. The same 
happened with the CG of the second set (cork, needle and bamboo 

 
Fig. 6.17. A balance in unstable equilibrium. 
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skewer), moving from T to T′, and with the CG of the whole system, 
which moved from C to C′. This means that the tendency of the system 
will be to increase the angle θ even more, as this will lower the CG of 
the whole system.  

If the system had turned an angle θ relative to the horizontal in 
such a way that N went downwards and M upwards, the CG of the 
whole system would have again moved downward relative to its original 
position. And the system would tend to increase angle θ even more. And 
this explains the unstable equilibrium in this case. 

We call attention to this case because it brings something new. 
When we were considering the equilibrium of rigid bodies, we could 
only obtain unstable equilibria with the CG above the point of support 
PA (as, for instance, the case of the parallelogram turning around one of 
its edges). This happened when any perturbation in the position of the 
body lowered its CG. On the other hand, we had seen stable equilibrium 
with the CG above the PA (as, for instance, a rocking chair oscillating 
on a flat surface). We had also seen stable equilibrium with the CG be-
low the PS (plane figures suspended by a needle passing through one of 
their holes). In these latter two cases the stable equilibria arose when 
any perturbation in the position of the body raised its CG.  

In the present case we no longer have a rigid body. When the beam 
turns by an angle θ relative to the horizon, the angle between the beam 
and the threads supporting the scale pans is modified (it is no longer a 
right angle). Moreover, the distance between the center of each pan and 
the center of the beam has also been changed. We are now seeing a new 
kind of unstable equilibrium, a case where the CG of the whole system 
is below the PS. And we again conclude, but now in a more general 
situation not restricted to rigid bodies, that there will be stable (unstable) 
equilibrium whenever the CG of the whole system rises (falls) when 
there is any perturbation in the configuration of the system. There will 
be neutral equilibrium when the CG of the system remains at the same 
height for any perturbation of the system. 

The key to obtaining stable equilibrium of a balance which is free 
to turn around a horizontal axis is that the PS should be located verti-
cally above the CG of the beam. We mentioned this earlier, but it is im-
portant to emphasize it here once more. For example, if the beam is a 
rectangular beam of wood or a cylindrical rod, the fulcrum should not 
be placed at the center of the beam or cylinder. In order to obtain stable 
equilibrium, the fulcrum or PS of the balance should be located above 
the center of the beam. This will guarantee the stability of the balance 
when it is placed with its beam horizontal. If the fulcrum is placed ex-
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actly at the center of the beam, a procedure that will produce stable 
equilibrium is to fix an extra weight on the beam, located vertically be-
low the fulcrum. This will lower the CG of the beam, in such a way that 
the new CG will be lower than the fulcrum (or PS). 

6.5 Balances with the center of gravity above the fulcrum 
Before moving on, we briefly mention balances which have the CG of 
the beam above the fulcrum. As there is unstable equilibrium in this 
case, the only way to build a working balance is to support it on a sur-
face, not on a point or single horizontal line without thickness. An ex-
ample of a balance of this kind is a horizontal ruler supported by a dom-
ino piece placed below its center, as in Fig. 6.18. The ruler can only re-
main at rest if the width of the domino touching the ruler is not too 
small in comparison with the thickness of the ruler. For example, it is 
extremely difficult to balance a horizontal ruler on the edge of a vertical 
razor blade. In this case the ruler falls to one side or another even before 
we put the weights on it. 

This setup limits the precision or sensitivity of the balance. After 
all, the surface on which the beam is supported does not allow a single 
distance between the weights above the pans and the vertical plane pass-
ing through the fulcrum. The distance of each arm from the vertical 
plane passing through the fulcrum can take any value between a mini-
mum and a maximum. As a result, with this apparatus we can balance  
bodies of the same weight and bodies of different weights (as estab-
lished by the precise balances already presented, for which the fulcrum 
was above the CG of the beam). 

Another problem with these balances is that the supports for the 
weights to be measured (small cups, bottle caps, etc.) are normally at-
tached to the beam. Therefore, the weights are not supported by a single 
point, as they are spread over a small region. This is another reason why 
it is difficult to find a single distance between each arm (or each weight) 
and the vertical passing through the fulcrum. 

 
Fig. 6.18. A balance with its CG above the fulcrum. 
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6.6 Other types of balance 
Apart from the equal arm balance there are other types which utilize 
other measurable effects due to the action of gravity. A common balance 
for home use is made of springs. It utilizes the compression of a spring 
due to a body at rest in a pan as a weight indicator. Some high-precision 
piezoelectric balances utilize a phenomenon observed in anisotropic 
crystals as a weight indicator. Some crystals, when mechanically com-
pressed, become electrically polarized in certain directions. This can be 
measured and calibrated to indicate the weight compressing the crystal. 
Some electronic balances transform mechanical deformations arising 
from the weight of a body into electrical voltage, which is measured 
electronically. There are several other kinds of balance, but we will not 
consider them here. 

6.7 Using weight as a standard of force 
It is possible to keep the beam of an equal arm balance horizontal by 
placing a body of weight P on one side, while on the other side, at the 
same distance from the vertical plane passing through the fulcrum, an-
other mechanism sets the balance. In order to simplify the analysis we 
will suppose that the balance has no scale pans, in such a way that the 
weight P is suspended directly by the beam. The mechanism which 
counterbalances the weight P can be, for instance, the finger of a person 
exerting a downward force. It can also be a tensed spring fixed at the 

 
Fig. 6.19. Utilizing the weight as a force standard. 

 
Fig. 6.20. Different ways of equilibrating a weight. 
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ground below the balance, or a taught thread fixed to the ground, as in 
Fig. 6.19. Several other mechanisms can operate on the other side to the 
weight P in order to equilibrate it (mechanisms depending upon electric 
or magnetic effects, for instance). This leads to an important definition. 

Definition: Suppose body A of weight P acting at a distance d from 
the fulcrum of a balance, being equilibrated by a second body B act-
ing on the other side of the balance, at the same distance d from the 
fulcrum. We define that this second body B exerts a force of magni-
tude F equal to the weight P of the body A, regardless of the nature 
of this force (it can be elastic, electrical, magnetic, etc.) That is, 
F ≡ P. 

In this case we stipulate that the finger (or spring, or thread, or magnet, 
etc.) exerts a force of magnitude F equal to the weight P of the body. As 
a result, we can calibrate or measure forces of different kinds, not neces-
sarily gravitational, by comparing them quantitatively with the force due 
to the weight. 

This concept does need not be limited to an equal arm balance. We 
have seen that when we release a body from rest above the surface of 
the Earth, it falls to the ground. But this can be prevented by different 
means, for instance, by placing a rigid support or spring under the body, 
or suspending it by a thread or spring, etc. Fig. 6.20 illustrates a few 
possibilities.  

Let us consider a spring at rest vertically, fixed at its upper end, 
with a total length L0 in this vertical position, as in Fig. 6.21. When a 
body of weight P is suspended and kept at rest at the lower end of this 
spring, the spring acquires a length L1 > L0. Another way to keep this 
body at rest relative to the ground is to support it on the upper end of a 
vertical spring, which has its bottom end fixed on the ground. In this 
case, the spring is compressed to a length L2 < L0. By definition we say 
that in these cases the tensed or compressed spring exerts an upward 
force F upon the body of weight P given by F ≡ P. This also holds if, in-
stead of the spring, the body is suspended by a thread, supported by a 

 
Fig. 6.21. A stretched or compressed spring balancing a weight. 
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stick or a person’s hands, etc. 
We have seen that if an object A is released from rest, it falls to the 

ground. In the previous experiments we saw that we can prevent this by 
connecting this body to an equal arm balance and placing another body 
B on the other side of the balance. We define that these two bodies have 
the same weight if the balance remains in equilibrium. But body A is not 
connected directly to body B, as it is in contact only with the pan of the 
balance. We can then see that the downward weight acting upon A, due 
to the Earth’s gravity and acting as if it were concentrated at the CG of 
A, is balanced by a normal upward force of magnitude N exerted by the 
pan of the balance acting upon A at the region of contact. That is, N ≡ P, 
as in Fig. 6.22. This normal force N has its origin in the downward 
weight of body B, being transmitted by the curved pan and taught thread 
holding B, by the curved rigid beam, and then by the taught thread and 
curved pan holding A. The threads holding the scale pans are taught 
(that is, under tension) due to the gravity acting upon A and B. The scale 
pans are also under stress or tension, with the threads forcing them up-
ward, while A and B force them downward. We can then say that a first 
condition of equilibrium in order for a body to remain at rest relative to 
the ground is that the downward weight P must be counterbalanced by 
an upward force N of the same magnitude as the weight. 

We can also investigate weight and forces in general by considering 
algebraic magnitudes, that is, positive and negative. We deal here with 
forces along the vertical direction and choose the downward direction as 
positive. In other words, forces exerted toward the Earth, such as the 
weight, are considered positive, while upward acting forces are consid-
ered negative. We can also choose, for instance, the right and forward 
directions as positive, while the left and backward directions will be 
negative. We then postulate that a body is in equilibrium when the sum 
of all forces acting upon it, in all directions, goes to zero. If this sum is 
different from zero, we postulate that the body will move toward the di-
rection of the net force. 

 

Fig. 6.22. The weight of the 
body equilibrated by the 
normal force exerted by the 
pan. 
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Chapter 7 

Levers and the First Law 
of Mechanics 

7.1 Building and calibrating levers 
The lever is one of the simple machines studied in ancient Greece. The 
other simple machines were the windlass, the pulley, the wedge and the 
screw. The lever consists of a rigid body, normally linear, the beam, ca-
pable of turning around a fixed axis horizontal to the ground. This axis 
is called the fulcrum or point of suspension, PS, of the lever. This axis is 
orthogonal to the beam. The lever is like a balance, but now with the 
possibility of placing weights at different distances from the fulcrum. 
The models which we will consider here are analogous to the balances 
built earlier. We will consider only levers in stable equilibrium for 
which the fulcrum is vertically above the CG of the beam when it is at 
rest horizontally. We will suppose that the lever is symmetrical about the 
vertical plane passing through the fulcrum, with the beam horizontal and 
orthogonal to this vertical plane when there are no bodies supported by 
the lever. As we did with the balance, we will define the expression 
“lever in equilibrium” when its beam remains at rest horizontally rela-
tive to the ground. We call the arm of the lever the horizontal distance d 
between the point of suspension of a body upon the beam and the verti-
cal plane passing through the fulcrum. For brevity we sometimes say, 
simply, “distance between the body and the fulcrum;” but in general this 
should be understood as meaning the horizontal distance between the 
point of suspension of the body upon the beam and the vertical plane 
passing through the fulcrum. When we talk about the two arms of a 
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lever, these should be understood as the opposite sides in relation to the 
vertical plane passing through the fulcrum. 

In order to arrive at the first law of mechanics in a precise and 
quantitative way we need a sensitive lever. The conditions to obtain this 
are the same as for the balance: freedom of rotation around the fulcrum; 
a high ratio ΔP/PA (where ΔP is the difference of weight between the 
bodies suspended on the two sides of the lever, and PA is the weight of 
the lever); and a high ratio d/h (where h is the vertical distance between 
the PS and the CG of the beam, while d is the smaller arm of the lever). 

We also need to mark precisely upon the two arms several points at 
equal distances from the vertical plane passing through the fulcrum. 
There are two ways to do this. (A) The first is to establish the fulcrum of 
the lever (by making a hole or attaching a hook from which it will hang; 
or passing a needle through the beam, in such a way that it is attached to 
the beam so it can be supported over a stand, etc.) After this, we adjust 
the beam so that it lies horizontal without additional weights. We then 
make marks upon both sides of the beam, at equal distances from the 
vertical plane passing through the fulcrum. (B) The second is to make 
the marks on the beam initially. This can easily be done, for instance, by 
utilizing a graduated ruler as the beam, or by attaching graph paper to a 
strip of wood, or by marking points equally spaced on a broomstick or 
bamboo stick, etc., with a pen and ruler. We then fix the nails or hooks 
above these marks. And finally we place the fulcrum on the plane of 
symmetry that divides the beam into two equal parts. As we saw before, 
the fulcrum should not be at the center of the beam. The best place for 
the fulcrum is along the plane of symmetry, but above the center, in such 
a way that it is vertically above the CG of the beam, in order to produce 
a stable equilibrium. After this we must check that the beam remains 
horizontal when the lever is free to rotate around the fulcrum. If this is 
not the case, we can attach an appropriate extra weight (a piece of wire, 
thread or clay) at some point along one of the arms in order to make the 
beam horizontal. 

In Fig. 7.1 we present several kinds of lever, analogous to the bal-
ances already built. 

Before experimenting with the lever we must test it in order to see 
if it is calibrated. Let us suppose that it remains horizontal after release 
without any bodies upon it. We then suspend two equal weights 
(PA = PB = P) over two equal arms of the lever (dA = dB = d). The lever 
must remain in equilibrium when released from rest horizontally. After 
this, as we did with the balance, the positions of bodies A and B must be 
swapped and the lever must remain in equilibrium after release. More-
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over, equilibrium must be maintained for all marks on the lever, that is, 
for all values of d. From now on we will assume that we are working 
with calibrated levers. 

7.2 Experiments with levers and the first law of mechanics 
We now begin experimenting with levers. 

Experiment 
We place a paper clip at the distance of 4 cm from the vertical plane 
passing through the fulcrum of the lever and another clip of the same 
weight at a distance of 6 cm from the fulcrum, on the other side of the 
lever. After the lever is released from rest horizontally, the clip at the 
larger distance from the fulcrum is observed to fall, while the other 
rises, as in Fig. 7.2. 

The same phenomenon happens for other distances. That is, we 
place equal weights on arms of different lengths of the lever, D > d, re-
leasing the lever from rest horizontally. We again observe that the 
weight at the larger distance, D, falls, while the other weight rises, as  in 

 
Fig. 7.1. Examples of levers. 

 
Fig. 7.2. A weight at a greater distance from the fulcrum has a larger power 
to turn the lever than an equal weight at a smaller distance from the ful-
crum. 
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Fig. 7.2. 
This experiment shows that in order to obtain equilibrium, it is not 

enough to have equal weights on both sides of the fulcrum of a lever. 
The experiment shows that another relevant factor is the horizontal dis-
tance of the weights from the vertical plane passing through the fulcrum. 
Only experience tells us this; it does not come from theory. That is, ex-
perimentally we learn that for the equilibrium of two bodies on a lever 
the relevant factors are their weights and distances from the fulcrum. On 
the other hand, other factors do not affect the equilibrium of the lever. 
Experience teaches that these other irrelevant factors are their colour, 
shape, texture, chemical composition, volume, etc. 

This is one of the simplest and most intriguing experiments in me-
chanics. After all, there are equal weights on both sides of the lever. In 
spite of this, we observe that the weight at a larger distance from the ful-
crum has a greater tendency or power to rotate the lever than the weight 
at a smaller distance. Although this fact is observed in everyday life, it is 
still extremely curious. 

Experiment 
We place 4 paper clips of the same weight at a distance of 6 cm from the 
fulcrum, equilibrating 4 other identical clips placed at 6 cm from the 
fulcrum on the other side of the lever. Experience shows that this equi-
librium is not disturbed if on one of the sides we place 2 clips at a dis-
tance of 4 cm from the fulcrum, and the other 2 clips at a distance of 
8 cm from the fulcrum. Equilibrium remains if one of the clips is at a 
distance of 3 cm from the fulcrum, another at the distance of 5 cm from 
the fulcrum, while 2 clips remain at a distance of 8 cm from the fulcrum, 
as in Fig. 7.3. 

We can generalize this result as follows. We place N bodies of the 
same weight at a distance d from the fulcrum, and N other identical bod-
ies at the same distance d from the other side of the fulcrum. The lever 
remains in equilibrium. Experimentally it is shown that it remains in 

 
Fig. 7.3. The equilibrium of the lever is not disturbed when we move si-

multaneously a weight to the right and an equal weight to the left. 
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equilibrium when we divide one of these groups into two or three parts, 
with M bodies at the distance d from the fulcrum (M can be equal to 
zero in the special case), (N – M)/2 bodies at a distance d – x from the 
fulcrum and (N – M)/2 of these bodies at a distance d + x from the ful-
crum. On the other hand, equilibrium will not occur if we place (N –
 M)/2 bodies at a distance d – x1 from the fulcrum and (N – M)/2 of 
these bodies at a distance d + x2 from the fulcrum, if x1 is different from 
x2. Equilibrium will remain in the first case if we can divide one or more 
of the first groups of (N – M)/2 bodies into two or three sub-groups, by 
placing Q of them at the distance d – x from the fulcrum, while ((N –
 M)/2 – Q)/2 are placed at a distance (d – x) – y from the fulcrum and 
((N – M)/2 – Q)/2 are placed at a distance (d – x) + y from the fulcrum. 
And so on. In the previous example we had N = 4, M = Q = 0, d = 6 cm, 
x = 2 cm and y = 1 cm. 

This experiment is not trivial. It shows that a weight P placed at a 
distance d from the fulcrum is equivalent to a weight P/2 placed at a dis-
tance d – x from the fulcrum, together with another weight P/2 at a dis-
tance d + x from the fulcrum. That is, these two weights P/2 on one side 
of the fulcrum, at distances d + x and d – x from it, equilibrate a weight 
P on the other side of the fulcrum at a distance d from it. This experi-
ment indicates that, as regards the rotation of the lever, the weights act 
independently of one another, following the principle of superposition, 
with a linear influence of their distances from the fulcrum. If the influ-
ences of their distances to the fulcrum were not linear but followed an-
other law (quadratic, cubic, inverse of the distance, inverse square, sinu-
soidal, logarithmic, etc.), then the equivalence already observed would 
no longer hold. Once more, this comes from experiment; no logical ar-
gument obliges nature to behave like this. 

We now analyze the equilibrium of a lever with different weights 
on its two arms. 

Experiment 
We take 5 paper clips of the same weight. We place 2 of these clips at a 
distance of 6 cm from the vertical plane passing through the fulcrum. 
We place the other 3 clips at a distance of 6 cm from the other side of 
the vertical plane passing through the fulcrum, releasing the lever from 
rest horizontally. We observe that it turns around the fulcrum, with the 3 
clips falling downward and the 2 clips rising upward, as in Fig. 7.4. 

This experiment can be generalized to other cases. That is, suppose 
we have N bodies of equal weight P at a distance d from one side of the 
vertical plane passing through the fulcrum of a lever, and M other bodies 
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of equal weight P at the same distance on the other side of the fulcrum, 
with M > N. If we release the lever from rest horizontally, it turns 
around the fulcrum, with the set of M bodies falling downward and the 
set of N bodies rising upward. By the definitions we introduced earlier, 
we say that the set of M bodies is heavier than the set of N bodies. 

Now comes one of the most important experiments of all. 

Experiment 
We consider 5 clips of the same weight. We place 2 of these clips at the 
same distance of 6 cm from the vertical plane passing through the ful-
crum. We want to find the distance from the other side of the fulcrum at 
which we should place the 3 other clips together in order to place the 
lever in equilibrium (that is, at rest horizontally after released). Experi-
ment shows that this only happens when they are at a distance of 4 cm 
from the vertical plane passing through the fulcrum, as in Fig. 7.4. 

If we place the 2 clips at the same distance dA from the vertical 
plane passing through the fulcrum, we observe that the balance only re-
mains in equilibrium after release if the other 3 clips acting together on 
the other side of the fulcrum are located at a distance dB as given by the 
following table. 

dA (cm) 2 3 4 5 6 7 8 
dB (cm) 4/3 2 8/3 10/3 4 14/3 16/3 

7.2.1 First part of the law of the lever 

The result of this experiment is also verified in other cases. We place NA 
bodies of the same weight P together on the arm of length dA of a lever. 
Their total weight is given by PA ≡ NAP. We place NB other bodies of the 
same weight P together on the other side of the lever at a distance dB 
from the fulcrum, releasing the lever from rest horizontally. Experiment 
shows that it only remains in equilibrium if  
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Fig. 7.4. Equilibrium of different weights. 
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This is the initial part of the first law of mechanics. Sometimes it is 
called the law of the lever. Archimedes expressed it as follows in Propo-
sition 6 of the first part of his work On the Equilibrium of Planes: 
“Commensurable magnitudes are in equilibrium at distances recipro-
cally proportional to the weights.”1 

By “magnitudes” we understand that Archimedes was referring to 
physical bodies. The idea behind commensurable magnitudes is meas-
urement by comparison. That is, to measure two or more magnitudes 
with the same unit or standard of measure. If the ratio between the 
weights of two bodies is equal to the ratio of two integers, like 5

3 , we 
say that the weights are commensurable. The reason for this is that in 
this case it is possible to find a common measure, so that the weight of 
each one of these bodies is an integer multiple of this common measure. 
The body A might measure, for instance, 5 N (five Newtons), while 
body B might measure 3 N. In this example the unit of measure might 
be one Newton = 1 N, or 0.01 N, or ... The same ratio of 5

3  would occur 
if the weight of A was 20 N and that of B was 12 N. Also in this case the 
unit of measure might be 1 N, or 0.01 N, etc. If the ratio of the weights 
of two bodies is equal to the ratio between an irrational number (like the 
square root of 2, or like the number π) and an integer, we then say that 
these two weights are incommensurable. In this case it is not possible to 
find a common measure such that the weight of each one of these bodies 
would be an integer multiple of this common measure. The length of the 
diagonal of a square, for instance, is incommensurable with the length 
of a side of the square. The same holds for the ratio between the area of 
a circle of unit diameter and the area of a square of unit sides. 

Archimedes generalized this result for incommensurable magni-
tudes in Prop. 7 of this work: “However, even if the magnitudes are inc-
ommensurable, they will be in equilibrium at distances reciprocally pro-
portional to the magnitudes.”2 

In his English translation of Archimedes’s work, Heath combined 
these two propositions in a single one, namely: “Propositions 6, 7. Two 
magnitudes, whether commensurable [Prop. 6] or incommensurable 
[Prop. 7], balance at distances reciprocally proportional to the magni-
tudes.”3 

As this is one of the most important laws of classical mechanics, it 
is worth while calling attention to some experimental errors which pre-
vent the verification of this result. 
                                                                                                                                                                                                                                                                                                             

1 E.J. Dijksterhuis, Archimedes (Princeton: Princeton University Press, 1987), p. 289. 
2 E.J. Dijksterhuis, Archimedes, p. 305. 
3 T.L. Heath, ed., The Works of Archimedes (New York: Dover, 2002), p. 192. 
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Let us suppose that the lever remains initially at rest horizontally 
without the scale pans and also without bodies A and B. Let us suppose 
that both scale pans and their threads have the same weight. The most 
frequent mistake is to place weight PA on one of the scale pans at a dis-
tance dA from the fulcrum, and another weight PB on the other scale pan 
at a distance dB on the other side of the fulcrum. In this case, the lever 
does not remain in equilibrium after release even if dB/dA = PA/PB. What 
happens is that the larger arm moves downward (assuming a lever with 
high sensitivity, with negligible friction, totally free to rotate around the 
fulcrum), as in Fig. 7.5. 

The explanation of this phenomenon is related to the law of the 
lever itself. Although bodies A and B balance one another when placed 
at distances inversely proportional to their weights, the same does not 
hold for the two equal scale pans. Here we have two scale pans of the 
same weight placed at different distances from the fulcrum. By the pre-
vious experiments we know that they do not balance one another. In-
stead of this, the larger arm moves downward. In order to prevent this 
common mistake, we did not employ any scale pans in the experiments 
with levers performed thus far. Instead, we suspended the bodies di-
rectly from the beam. But it is possible to utilize scale pans in a lever, 
provided they are equal in number on both sides, with each pair of equal 
scale pans placed at the same distance from the fulcrum. For example, 
we can have 6 equal scale pans, three of them placed at distances of 
2 cm, 4 cm and 6 cm from one side of the fulcrum, and the other three 
placed at the same distances on the other side. In this case the lever re-
mains in equilibrium even after A and B are placed on the scale pans, 
provided dB/dA = PA/PB, as in Fig. 7.5. 

Another common mistake that is made even without scale pans is 
as follows. Suppose that a lever remains in equilibrium when the verti-
cal plane passing through the fulcrum divides the homogeneous beam 
into two equal parts. We now place two bodies of different weights at 
the extremities of the beam and change the location of the fulcrum in 
such a way that dB/dA = PA/PB. The lever does not remain in equilibrium 

 
Fig. 7.5. How to observe the law of the lever correctly. 
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in this case. Instead of this, the side with longer arm falls downward, as 
in Fig. 7.6. 

Once more, the explanation for this behaviour is related to the law 
of the lever itself. Let us suppose that there are no scale pans and that 
the bodies A and B are suspended directly from the beam following the 
previous relation. Therefore they balance the fulcrum in its new position 
because they satisfy the relation dB/dA = PA/PB. But the beam itself is not 
in equilibrium for the new position of the fulcrum. When we changed 
the position of the fulcrum in relation to the center of the beam, the 
beam became unbalanced, regardless of the positions of bodies A and B. 
The longer arm of the homogeneous beam tends to fall downward, as it 
is heavier than the other side, which moves upward. Even placing bod-
ies A and B on the beam satisfying the previous relation does not bal-
ance the beam. In order to avoid this mistake, the correct procedure is to 
balance the beam without bodies A and B, adjusting the fulcrum over 
the CG of the beam in such a way that it remains horizontally at rest 
relative to the ground. After this, without changing the position of the 
fulcrum in relation to the beam, we can place bodies A and B. In this 
case it will be seen that they will keep the beam in balance provided that 
dB/dA = PA/PB. 

These two mistakes are related to the fact that the scale pans and 
the beam itself are material bodies with weight. Therefore, they may 
also influence the equilibrium of the lever. This aspect cannot be ne-
glected when we work with sensitive levers and wish to identify pre-
cisely which quantitative factors determine the equilibrium of bodies. 

Suppose now that PA/PB is different from dB/dA. In this case there 
will be no equilibrium when the lever is released from rest. One of the 
bodies will move downward, and the other, upward. The experimental 
results already presented can be summarized by saying that if 

 
Fig. 7.6. This is not the correct way to observe the law of the lever. 
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(PA/PB)(dA/dB) > 1, then A will fall and B will rise. If (PA/PB)(dA/dB) < 1, 
then A will rise and B will fall. 

7.2.2 Second part of the law of the lever 

Experiment 
We take 16 paper clips of the same weight. On one side of the lever we 
place 1 clip at a distance of 10 cm from the fulcrum, 2 clips at 8 cm 
from the fulcrum, and 3 clips at 4 cm from the fulcrum. On the other 
side of the lever we put 1 clip at 2 cm from the fulcrum and 9 clips at 4 
cm from the fulcrum. It is observed that the lever remains in equilib-
rium, as in Fig. 7.7. 

This experiment shows that as regards rotation of the lever, the 
weights act independently of one another, proportionately to their dis-
tances to the fulcrum. That is, the rotation effects due to the weights fol-
low the law of addition. This is expressed in physics by saying that the 
law of the lever follows the principle of superposition. 

The result of this specific experiment is also true in other cases, and 
can be generalized as follows. We place N weights P1, P2, ..., PN on one 
side of the lever, at distances d1, d2, ..., dN, respectively, from the vertical 
plane passing through the fulcrum. We place M other weights PN+1, PN+2, 
..., PN+M on the other side of the fulcrum, at distances dN+1, dN+2, ..., dN+M, 
respectively, from the vertical plane passing through the fulcrum. We 
observe that the system only remains in equilibrium after release from 
rest horizontally if 

 ∑∑
+

+==

=
MN

Ni

ii
N

i

ii

d
d

P
P

d
d

P
P

1 001 00

.  

Here P0 and d0 are a weight and a distance, chosen arbitrarily. We can 
have, for instance, P0 = P1 and d0 = d1. Or we can choose P0 = P2 and 
d0 = d2, and so on.  

 
Fig. 7.7. Principle of superposition. 
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This is the final part of the first law of mechanics, i.e., the law of 
the lever combined with the principle of superposition. 

To illustrate, in the previous example let P0 be the weight of a clip 
and d0 = 1 cm. The left side the previous relation yields: 

384382101 =×+×+× . On the right side we have: 384921 =×+× . 
This demonstrates the state of equilibrium. 

Experiment 
We suspend a lever by the fulcrum on one of the sides of a balance with 
equal arms, in such a way that the lever remains horizontal without extra 
weights. On the other side of the balance we suspend a weight Ptr equal 
to the weight of the lever, such that the balance remains in equilibrium 
horizontally. We then take 10 paper clips of the same weight. We place 3 
of them on one arm of the lever at a distance of 4 cm from the fulcrum, 
and 2 of them on the other side of the lever at a distance of 6 cm from 
the fulcrum. We then try to find how many clips of the same weight we 
need to suspend on the other side of the balance in order to keep it in 
equilibrium. Experimentally it is found that this only happens by hang-
ing 5 clips, as in Fig. 7.8. 

This and other analogous experiments show that the fulcrum of a 
balance in equilibrium with weights PA and PB at the distances dA and 
dB, respectively, on opposite sides of the fulcrum, in such a way that 
PA/PB = dB/dA, supports a total weight of Ptr + PA + PB. Here Ptr is the 
weight of the lever. We can then see that there are four forces acting 
upon the beam of a lever in equilibrium: (A) the downward weight of 
the beam acting as if it were concentrated at the CG of the beam; (B) the 
downward weight of body A acting at a distance dA from the fulcrum; 
(C) the downward weight of body B acting at a distance dB from the 
other side of the fulcrum; and (D) the normal upward force N acting 
along the fulcrum, as in Fig. 7.9. 

The weights of the beam and of bodies A and B are due to their 
gravitational interactions with the Earth. The normal upward force is ex-

 
Fig. 7.8. Levers in equilibrium. 
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erted by the support upon the beam and arises due to the tension or 
compression of the support. The support will be stretched or under me-
chanical tension when it is a hook (or a thread, or a spring) attached to a 
rigid support at its upper end, holding the fulcrum of the lever at its 
lower end, as in the previous experiment. The support will be com-
pressed when it is a rigid stand or a spring placed below the fulcrum, as 
in the majority of the situations considered up to now. We then see that 
there are two conditions for a balanced lever: 
 BATr PPPN ++= , 
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The latter relation needs to be generalized if the fulcrum is not along the 
same vertical plane passing through the CG of the beam. Let us suppose 
that the CG of the lever is along the same side of the vertical plane pass-
ing through the fulcrum as the body B, at a distance dTr from this plane, 
as in Fig. 7.10. 

In this case the conditions for balancing the lever are given by: 
 BATr PPPN ++= , 
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Once more, P0 and d0 are a weight and a distance, chosen arbitrarily. 
If dTr = 0, or if we can neglect the weight of the lever in comparison 

with the weights of bodies A and B, we return to the previous case. 
When we have several bodies acting on the lever we can utilize the 

principle of superposition given earlier in order to establish the equilib-
rium conditions. 

 
Fig. 7.9. Conditions of equilibrium for a lever. 
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Complement to the law of the lever: The downward force exerted 
by the fulcrum upon the support when the lever is in equilibrium is 
given by the sum of the weights of the suspended bodies, plus the 
weight of the lever (that is, of its beam, threads, and scale pans). 

7.3 Types of levers 
We saw earlier how to utilize a balance of equal arms in order to com-
pare the force due to weight with other forces of any nature (contact 
forces, elastic forces, electromagnetic forces, etc.) That is, a force F act-
ing on one side of a balance and equilibrating a weight P on the other 
side is defined as equal to this weight. This operational definition of 
force, together with the law of the lever, is related to the utilization of 
the lever as a simple machine. The law of the lever shows that a small 
weight can equilibrate a large weight provided it is at a greater distance 
from the fulcrum than the large weight. A simple machine is a device 
that can multiply the intensity of a force in order to do work. 

In this section we will neglect the weight of the lever as compared 
with the other forces acting upon it. 

The law of the lever states that a weight PA located at distance dA 
from the vertical plane passing through the fulcrum equilibrates another 
weight PB at distance dB from the vertical plane passing through the ful-
crum if PA/PB = dB/dA. When we utilize a lever as a simple machine, it is 
more convenient to talk of forces than of weights, as the forces acting 
upon the lever do not need to be gravitational in origin. Let FA be the 
force exerted upon the machine by the operator (a man, an animal, or a 
mechanical device) and FR be the resistive force. That is, FR is the force 
exerted by the machine upon the load (weight to be raised or pushed, 
body to be compressed or stretched, figure to be cut out, etc.) To sim-

 
Fig. 7.10. Conditions of equilibrium for an asymmetrical 
lever. 
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plify the analysis we will suppose that the points of application of FA 
and FR are aligned with the fulcrum of the lever, and that these two 
forces act orthogonally to this straight line. The arms of the lever (that 
is, the distances between the points of application of these forces and the 
fulcrum) will be represented by dA and dR, respectively. The equilibrium 
of the lever is then given by FA/FR = dR/dA. 

We can see that there are three main elements to a lever working as 
a simple machine: the applied force (the effort), the resistive force (the 
load) and the fulcrum, which remains at rest relative to the Earth. De-
pending upon the position of the fulcrum in relation to the applied and 
resistive forces, there will be three basic kinds of lever, as in Fig. 7.11. 

A. Lever of the first class, with the fulcrum between the load and 
the effort. 

B. Lever of the second class, with the load between the effort and 
the fulcrum. 

C. Lever of the third class, with the effort between the fulcrum and 
the load. 

Up to now we have worked only with levers of the first kind. Ex-
amples of this kind of lever are the equal arm balance, Roman balance, 
seesaw, the crowbar, salad tongs, pair of pliers, scissors, handle of a wa-
ter pump, hammer used to pull a nail out of wood, etc. 

Examples of levers of the second class are the wheelbarrow, bottle 
opener, door, pair of nutcrackers, punching machine, paper cutter, etc. 

Examples of levers of the third class are a pair of tweezers, broom, 
pair of barbecue tongs, forceps, jaws, the human forearm, fishing pole, 
stapler, etc. 

 
Fig. 7.11. Types of lever. 
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Chapter 8 

Mathematical Definition of 
Center of Gravity 

The law of the lever and the principle of superposition allow a mathe-
matical definition of the center of gravity of a body or of a system of 
bodies. We saw earlier that the condition of equilibrium of any body 
suspended by a horizontal axis (the fulcrum or PS) is that this axis and 
the CG of the body should be along a vertical. The equilibrium will be 
stable (unstable) if any perturbation in the position of the body raises 
(lowers) the CG from its previous position.  

We now consider a lever in stable equilibrium with its beam resting 
horizontally, without other bodies suspended on it. We imagine a homo-
geneous beam in such a way that the vertical plane passing through the 
fulcrum divides it into two equal halves. The CG of the beam is verti-
cally below the fulcrum. We have seen that this equilibrium is not dis-
turbed if two bodies A and B of weights PA and PB, respectively, are 
suspended on opposite sides of the fulcrum, provided that dB/dA = PA/PB. 
Here dA and dB are the horizontal distances between the points of sus-
pension of A and B, respectively, and the vertical plane passing through 
the fulcrum. This means that the CG of these two bodies is also along 
the vertical plane passing through the fulcrum. If the ratio dB/dA is dif-
ferent from PA/PB, the beam does not remain in equilibrium after being 
released. 

In order to find an algebraic expression yielding the location of the 
CG of the bodies A and B we can imagine a horizontal axis x along the 
beam. The origin x = 0 can be chosen at any point, arbitrarily. Let us 
suppose that the ends of the beam of length L are located at xE and 
xD = xE + L. Let xA and xB be the points of suspension of bodies A and B 
along the x axis, respectively, as in Fig. 8.1. Moreover, let us assume 
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that the lever continues in equilibrium after being released from rest 
horizontally with A and B acting upon these points. 

The CG of this system must be along the vertical plane passing 
through the fulcrum, in such a way that dB/dA = PA/PB. Let xCG be the lo-
cation of the CG of bodies A and B along the x axis. From Fig. 8.1 we 
have dA = xCG – xA and dB = xB – xCG. From the law of the lever we can 
then define, mathematically, the position xCG of the center of gravity of 
this system of two bodies along the x axis as given by 
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That is, 
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where PT ≡ PA + PB is the total weight of the two bodies. 
This theoretical definition of xCG is made in such a way that it coin-

cides with the previous experimental results on the CG of rigid bodies. 
In other words, in equilibrium the CG of the system of two bodies stays 
along the vertical plane passing through the fulcrum of the lever. If 
PA = PB, we can see from this expression that xCG will be at the midpoint 
between xA and xB. On the other hand, the larger (smaller) the value of 
PA/PB, the closer (farther) xCG will be from body A. 

From now on we will use the approximation of particles or point 
bodies. We consider bodies A and B as particles when the greatest di-
mensions of either (their diameters, or the greatest distance between any 
material points belonging to each one of these bodies) are much smaller 
than the distance between A and B. In this case we can treat the bodies 

 
Fig. 8.1. Finding an algebraic expression for the center of gravity. 
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as being concentrated in small regions as compared to the distance be-
tween them, as if they were concentrated into mathematical points. 

Let us now imagine a rigid system of orthogonal axes xyz with ori-
gin O at x = y = z = 0. The spatial location of body A will be represented 
by (xA, yA, zA), and that of body B by (xB, yB, zB). In this way we can gen-
eralize the previous relation for the CG of the system for the y and z 
axes. We then define the y and z coordinates of the CG, yCG and zCG, re-
spectively, by the relations 
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In this way we can also utilize vector notation. We call ( )AAAA zyxr ,,=  
the position vector of body A, as in Fig. 8.2, and ( )BBBB zyxr ,,=  the po-
sition vector of body B.  

The position vector of the CG, CGr , is defined by: 
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By the principle of superposition these relations can be extended to a set 
of N particles. Let Pi be the weight of body i located at (xi, yi, zi), with 
i = 1, 2, ..., N. The x component of the CG of this system of particles is 
defined by (with TP  being the total weight of this system of particles) 
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Analogous expressions are defined for the y and z components of the 
CG. 

 

Fig. 8.2. Finding the CG 
with vector notation. 
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The position vector of the CG of this system of point particles is 
defined by 

 ∑
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This is the modern mathematical definition of the CG of a system of 
particles. It makes a theoretical calculation of the CG possible, if the lo-
cations of particles and their weights are known. 

If we have continuous distributions of matter, as in the case of one-, 
two- and three-dimensional bodies, the procedure is the same. In the 
first place we replace the summation by line, surface or volume inte-
grals. And instead of the weight Pi of particle i we utilize an infinitesi-
mal element of weight, dP, located at ( )zyxr ,,= . This element of 
weight dP represents the weight contained in an infinitesimal element of 
length, area or volume. The total weight is given by ∫∫∫= dPPT . In this 
case the position vector of the CG can be defined by 

 ∫∫∫≡
T

CG P
dPrr . 

These volume integrals should be performed over the whole space oc-
cupied by the body. If we have matter distributed continuously along a 
line or surface, we replace these volume integrals by line or surface in-
tegrals, respectively. 

If we have combinations of discrete and continuous distributions of 
matter, we only need to add the corresponding expressions in order to 
obtain the CG of the system as a whole, because the CG follows the 
principle of superposition. 

We will not go into mathematical details here, nor will we calculate 
the location of the CG for any distribution of matter, as this is not the 
goal of this book.  

We can summarize the modern mathematical definition of the CG 
as follows. 

Mathematical definition CG9:  
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or 
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These are the theoretical definitions in current use to calculate the CG of 
discrete and continuous distributions of matter, when the weights and 
locations of the bodies are known. 

An important theorem which simplifies the location of the center of 
gravity states the following, adapted by Symon.1 If a body is composed 
of two or more parts whose centers of gravity are known, then the center 
of gravity of the composite body can be calculated by regarding its 
component parts as single particles located at their respective centers of 
gravity. It was essentially this theorem that Archimedes utilized to cal-
culate the centers of gravity of many geometric homogeneous figures. 
He considered it a postulate, as we will see later on. 

A proof of this theorem, beginning with definition CG9, can be 
given as follows. Let a body be composed of N parts of weights P1, …, 
PN. Let any part Pk be composed of Nk parts of weights 1kP , …, 

kkNP , 
whose centers of gravity are located at the points 1kr , …, 

kkNr . Then the 
center of gravity of the part Pk is located at the point 
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The center of gravity of the entire body is located at the point 
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This means that the center of gravity of the entire body can be written as 
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where the total weight can also be written as 
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These two last equations embody the mathematical statement of the 
theorem to be proved. 

                                                                                                                                                                                                                                                                                                             

1 K.R. Symon, Mechanics (Reading: Addison-Wesley, 1971), third edition, p. 221. 
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Chapter 9 

Explanations of and Deductions 
from the Law of the Lever 

9.1 Law of the lever as an experimental result 
What we have seen so far constitutes the most important aspects of stat-
ics. We can summarize the subject as follows: 

Definitions: We say that an equal arm balance and a lever are in 
equilibrium when their arms remain at rest horizontally, with the beam 
free to rotate around the fulcrum. Two bodies A and B have the same 
weight P if they keep this balance in equilibrium after being placed on 
its separate scale pans and released from rest. The body which equili-
brates N other bodies of the same weight P on an equal arm balance has 
N times the weight P. 

Experimental results: Two bodies of weights PA and PB equilibrate 
one another on opposite sides of a horizontal lever which has the CG of 
the beam along the vertical plane passing through the fulcrum, if 
PA/PB = dB/dA. Here dA and dB are the horizontal distances between the 
points of suspension bodies A and B, respectively, and the vertical plane 
passing through the fulcrum. If we have N bodies acting upon one side 
of the lever and M bodies acting on the other side, the equilibrium can 
be obtained by the principle of superposition, assuming that the weights 
act independently of one another in such a way that we can add their in-
dividual contributions. This means that there will be equilibrium if the 
following relation is valid: 
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Here 0P  and 0d  are a weight and a distance, chosen arbitrarily. We can 
derive an interesting result from this latter condition of equilibrium. Let 
us suppose that on one of the sides of a lever in equilibrium we have 
two equal weights P1 = P2 = P acting at distances d1 = d – x and 
d2 = d + x from the fulcrum. It is easy to see that 
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These two weights P1 and P2 are equivalent to a single weight P3 = 2P 
acting at a distance d3 = d from the fulcrum, or to a single weight P4 = P 
acting at a distance d4 = 2d from the fulcrum. The equivalence here re-
fers to the tendency to rotate the lever. In other words, if P1 and P2 keep 
the lever in equilibrium, then P3 = 2P acting at d3 = d will also keep it in 
equilibrium. The same is valid for PP =4  acting at dd 24 = . Later on 
we will see that we can invert this situation. We can begin with the 
equivalence of P3 to the set P1 and P2, and arrive at the law of the lever. 

With the previous mathematical law of the lever we can explain the 
experimental result that in equilibrium, the CG of a rigid body is along 
the vertical line passing through the PS. Because the mathematical ex-
pression of the CG, i.e., CG9, was defined according to the law of the 
lever, this result follows automatically.  

It is possible to utilize the law of the lever to deduce more complex 
situations. That is, we do not need to explain the law of the lever; we 
can simply accept it as an empirical fact of nature. We postulate the 
mathematical relation by saying that it agrees with the experimental 
data. We then utilize this law in order to explain the mechanism behind 
many types of toys and simple machines (such as the equilibrist and toys 
we saw earlier, or levers of the first, second and third classes). This is 
the simplest procedure, and there are no problems in assuming this point 
of view. 

Another alternative is to try to derive the law of the lever experi-
mentally or theoretically. For this, we need to begin with other experi-
mental results, or we need to create other concepts and theoretical postu-
lates. One motivation for following this route is that we want to find a 
simpler way to arrive at the law of the lever. An opposite motivation 
might be to begin with something more complex or more abstract than 
the law of the lever itself, in order to arrive not only at this law but also 
at other relevant results. For instance, it may be possible to utilize these 
new concepts and postulates to also arrive at results which are inde-
pendent of the law of the lever, like the law of the inclined plane. An-
other reason to follow this new procedure is that we can utilize these 
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new concepts and postulates in order to arrive at other laws and physical 
results which are valid not only in conditions of equilibrium but also, for 
instance, when the bodies are in motion in relation to the Earth. This 
might be the case, for instance, if we were studying the more general 
laws that govern the rotation and acceleration of rigid bodies relative to 
the Earth.  

Whenever we follow this alternative procedure, it should be kept in 
mind that we cannot explain everything. We can postulate the law of the 
lever (L) without explaining it and derive consequences (C1), (C2), etc., 
from it. Or, alternatively, we can postulate some other law (P) without 
explaining it and derive the results (L), (C1), etc., from it. The crux is 
that in all procedures we always need to begin with some axiom or pos-
tulate (which has no explanation) in order to explain other things from 
it. The only justification of the basic axioms or postulates may be that 
they agree with experimental data or that they lead to verifiable experi-
mental data. 

In the next Sections we will see different ways to derive the law of 
the lever from other experimental results, or from other theoretical pos-
tulates. There are still other ways to derive this law which will not be 
considered here. 

9.2 Deriving the law of the lever from the torque concept 
Earlier we saw the first condition of equilibrium for a body to remain at 
rest relative to the Earth, in the presence of gravity. This condition is 
that the downward weight P acting upon the body must be counterbal-
anced by another upward force N, of the same magnitude as the weight. 
This prevents the motion of the body as a whole relative to the ground, 
if it begins from rest. In the case of the balance or lever, we have a hori-
zontal axis fixed relative to the ground, its fulcrum. Therefore, the 
weight of the bodies placed upon the beam, together with the weight of 
the beam itself, must be counterbalanced by an upward normal force N 
acting at the fulcrum, exerted by the support of the lever. Nevertheless, 
the balance or the lever can turn around the fulcrum. 

We have seen that the concept of weight is not sufficient for the 
equilibrium of the lever. After all, two bodies of the same weight but 
placed on opposite sides of the fulcrum, at different distances from it, 
disturb the equilibrium of the lever. In this case the body acting at a lar-
ger distance from the fulcrum will fall toward the ground, with the other 
weight moving away from it, even though the fulcrum remains at rest 
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relative to the ground. This shows that equal weights acting at different 
distances from the fulcrum tend to turn the lever. 

Due to this fact we conclude that we need another concept, beyond 
the net force acting upon a rigid body, in order to establish the condi-
tions of equilibrium of this body. This rigid body could be, for instance, 
the beam of a lever. We can utilize the lever in order to define this new 
concept related to the rotation of a rigid body around a horizontal axis 
which is fixed relative to the ground. Let us suppose the simplest case in 
which the fulcrum of the lever (that is, the horizontal axis around which 
it can turn) is vertically above the CG of the lever. We then suppose two 
new forces FA and FB acting in the same sense, vertically downwards, at 
horizontal distances dA and dB, respectively, from the vertical plane pass-
ing through the fulcrum. The experimental law of the lever informs us 
that if this lever is released from rest horizontally, being free to rotate 
around the fulcrum, it will remain at rest under the action of these two 
forces only if FA/FB = dB/dA. 

We then define what causes the rotation of a rigid body around a 
horizontal axis which is fixed in relation to the ground as the “torque or 
moment of a force.” We will represent this torque or moment by the let-
ter T. The experimental law of the lever allows us to define the quantita-
tive ratio TA/TB between the magnitudes of the torques exerted by the 
two forces FA and FB already mentioned as 
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This definition was suggested by an experimental result. But now that 
we have this definition, we can reverse the argument. The usual proce-
dure is to postulate that the lever will remain in equilibrium if TA = TB. 
This postulate and the previous definition of the ratio of the magnitudes 
of two torques leads to the law of the lever, namely, (FA/FB)(dA/dB) = 1. 
If TA/TB > 1 and the lever is released from rest horizontally, we postulate 
that body A will move towards the ground and body B will move away 
from it. If TA/TB < 1 and the lever is released from rest horizontally, we 
postulate that body A will move away from the ground and body B will 
move towards it. 

It may seem that we do not gain anything with this theoretical de-
duction. After all, we are defining the ratio of torques according to the 
law of the lever. And in the end we are arriving at the law of the lever it-
self, by postulating that in equilibrium the torques acting on both sides 
of the lever have the same magnitude. But as already mentioned, this 
procedure may have some advantages if we utilize this concept not only 
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for the case of a lever in equilibrium, but also as a basis for the study of 
more complex phenomena like the rotational motion of rigid bodies, etc. 

With this torque concept we can also derive the empirical result 
that in equilibrium the CG of a rigid body must be along the vertical line 
passing through the point of suspension. To this end we need to postu-
late that the weight of any body behaves as if it were concentrated at its 
CG, acting downwards. As the force exerted upon the fulcrum or PS 
does not exert any torque upon the lever (because it acts at zero distance 
to the support and, therefore, has an arm of zero length), there remains 
only the torque exerted by the body. And this torque only goes to zero 
when the PS and the CG are along a vertical line. 

We can also deal with the torque algebraically. In this case we de-
fine a tendency to rotate in one direction (for instance, the rotation of the 
lever in the vertical plane lowering body A and raising body B at the 
other side of the lever) as due to a positive torque. We also define a ten-
dency to rotation in the opposite direction as due to a negative torque. In 
the case of the Fig. 9.1, for instance, the weight of A would exert a posi-
tive torque upon the lever, while the weight of B would exert a negative 
torque. In this case the fundamental postulate might be expressed as fol-
lows: The algebraic sum of all torques acting upon a rigid body must be 
null in order for the body to remain in equilibrium after release from 
rest, without rotation around a fixed axis. 

If we have N bodies on one side of the lever and M bodies on the 
other side, the basic postulate can be generalized by the principle of su-
perposition. That is, we postulate that the lever will remain in equilib-
rium if 
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Here Pi is the weight of body i acting at a horizontal distance di from the 
vertical plane passing through the fulcrum of the lever. In addition, P0 
and d0 are a weight and a distance chosen arbitrarily. We can choose, for 

 
Fig. 9.1. Algebraic torque. 
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instance, P0 = P1 and d0 = d1, etc. If one of these sums is bigger than the 
other, we postulate that the side with the greater sum will move toward 
the Earth if the lever is released from rest, with the other side moving 
away from it. 

Although this theoretical deduction of the law of the lever begin-
ning with the previous definitions and postulates is correct, it should be 
emphasized that the concept of torque of a force was suggested histori-
cally by empirical knowledge of the law of the lever. That is, it was the 
experimental fact that two bodies equilibrate one another upon a lever 
when the ratio of their distances to the fulcrum is inversely proportional 
to the ratio of their weights which suggested the creation of the torque 
concept. Suppose, for instance, that nature behaved in such a way that 
the experimental law of the lever were given by the relation 
PA/PB = (dB/dA)m, with m = 2 or another value. In this case it would be 
natural to define another magnitude proportional to (Pi/P0)(di/d0)m, in-
stead of the usual torque proportional to (Pi/P0)(di/d0). We could then 
postulate that the net algebraic value of this new magnitude must go to 
zero in order to have equilibrium. In this case we could derive the new 
law of the lever theoretically. 

What we want to emphasize is that the traditional definitions of 
torque and center of gravity (as proportional to the distance between the 
fulcrum and the point of application of the force), together with the pos-
tulate that the algebraic sum of all torques acting upon a body in equilib-
rium must be zero, are only justifiable because they lead to the correct 
law observed in nature. These definitions and postulates were suggested 
by the experimental law. When we discover the limits of validity of any 
specific law, the relevant concepts and postulates must be modified or 
generalized in order to adapt to the new experimental knowledge. 

9.3 Law of the lever derived from the experimental result 
that a weight 2P acting at a distance d from the fulcrum 
is equivalent to a weight P acting at a distance d – x, 
together with another weight P acting at a distance d + x 
from the fulcrum 

A very simple way to arrive at the law of the lever utilizes two basic in-
gredients: (I) Equal weights on opposite sides of the lever equilibrate 
one another when they act at equal distances from the fulcrum. (II) A 
weight 2P acting at an horizontal distance d to the vertical plane passing 
through the fulcrum is equivalent to a weight P acting at a distance d – x 
from the fulcrum, together with another weight P acting at a distance 
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d + x from the fulcrum, as in Fig. 9.2. Here we are utilizing a coat-
hanger as a lever. In this case the fulcrum or PS is the horizontal axis 
passing through the hook of the hanger. We assume that in equilibrium 
this axis is vertically above the CG of the hanger and above the center 0 
of the horizontal section of the hanger. The equivalence mentioned in 
ingredient (II) refers to the tendency of the lever to rotate around the 
fulcrum. Ingredient (I) may be considered a definition of equality of 
weights, while ingredient (II) may be considered an experimental result, 
or a theoretical postulate. For the moment, we will utilize it as an ex-
perimental result. We will treat it as a primitive experimental fact, with-
out trying to explain it. 

Ingredient (I), a definition of equality of weights, is represented in 
the middle of Fig. 9.2. The experimental condition (II) is represented at 
the right of Fig. 9.2. Experience teaches us that this situation is also a 
condition of equilibrium. 

Assuming condition (II), it is easy to arrive at the law of the lever 
without imposing any limit upon the possible values of x. To see this we 
begin with two equal weights P acting at the same distance d on one 
side of the fulcrum, equilibrated by two other equal weights P acting at 
the same distance d on the other side. By moving one of the weights on 
the right hand side to the position d – x and the other weight on the right 
hand side to the position d + x, with x = 2d, we end up with the situation 
shown in Fig. 9.3: i.e., a lever in equilibrium with a weight 3P at the dis-
tance d from the fulcrum, together with a weight P at the distance 3d in 
the other side of the fulcrum. This is a particular case of the law of the 

 
Fig. 9.2. Experimental condition of equilibrium for a lever. 

 
Fig. 9.3. A particular case of the law of the lever for which 
PA/PB = dB/dA = 3. 
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lever, since we have PA/PB = dB/dA = 3. 
If we had made x = d we would arrive at the equilibrium situation 

shown on the left side of Fig. 9.4. As one of the weights is along the ver-
tical plane passing through the fulcrum and CG of the lever, it can be 
removed without affecting the equilibrium. In this case we end up in the 
situation of equilibrium shown on the right hand side of Fig. 9.4. That 
is, a lever in equilibrium with a weight 2P at the distance d from the ful-
crum, together with another weight P at the distance 2d on the other side 
of the fulcrum. And this is another particular case of the law of the lever 
for which PA/PB = dB/dA = 2. 

We now begin with three bodies of equal weight P acting at the 
same distance d on one side of the fulcrum, equilibrated by three other 
bodies of equal weight P acting at the same distance d on the other side 
of the fulcrum. We do not touch the bodies on the left side and consider 
only the bodies on the right side. We can preserve equilibrium by mov-
ing one of these bodies to the right, away from the fulcrum by a distance 

 
Fig. 9.4. A particular case of the law of the lever for which 
PA/PB = dB/dA = 2.  

 

Fig. 9.5. A particular case of 
the law of the lever for 
which PA/PB = dB/dA = 2. 
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x = 2d, provided that we move one of these bodies to the left by the 
same distance 2d at the same time, while the third body remains fixed in 
its present position. We end up in the intermediate case shown in 
Fig. 9.5, i.e., a weight 4P at the distance d on one side of the fulcrum, a 
weight P at the distance d on the other side of the fulcrum, and a weight 
P at a distance 3d on the same side of the fulcrum. We can preserve 
equilibrium by joining the latter two bodies at their midpoint, as in the 
last situation of Fig. 9.5. We then end up with another special case of the 
law of the lever for which PA/PB = dB/dA = 2. This is the same value ob-
tained before, although this time we did not need to remove a body from 
the lever. 

We now begin once more with three bodies of equal weight P on ei-
ther side of the lever, acting at a distance d from the fulcrum. By mov-
ing one of the bodies on the right hand side to the distance d – x = 0 
from the fulcrum and another one to the distance d + x = 2d from the 
fulcrum (x = d), we end up in the equilibrium situation shown in 
Fig. 9.6. As the body which is along the vertical plane passing through 
the fulcrum and CG of the lever does not disturb the equilibrium, we can 
remove it from the system. By joining the two weights on the right hand 
side at their midpoint, we end up with the third case of equilibrium 
shown in Fig. 9.6, i.e., a weight 3P acting at a distance d from the ful-
crum and another weight 2P acting at a distance 1.5d on the other side 
of the fulcrum. This is another special case of the law of the lever for 
which PA/PB = dB/dA = 3/2 = 1.5.  

 

Fig. 9.6. A particular case of 
the law of the lever for 
which PA/PB = dB/dA = 1.5. 
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If we had begun with 5 equal clips in either side of the lever, acting 
at the same distance from the fulcrum, we could have arrived at the 
same relation without removing a body from the lever. 

It is easy to extend this analysis to other cases. This shows how to 
derive the law of the lever starting from the experimental result that a 
weight 2P acting at an horizontal distance d to the vertical plane passing 
through the fulcrum is equivalent to a weight P acting at a distance d – x 
from the fulcrum, together with another weight P acting at a distance 
d + x from the fulcrum. 

9.4 Law of the lever as derived by Duhem utilizing a 
modification of work attributed to Euclid 

The previous procedure seems to be at the origin of one of the oldest 
theoretical proofs of the law of the lever known to us. This information 
is taken from Duhem and Clagett.1 The main idea here is to consider the 
experimental condition (II) introduced above as a theoretical postulate. 

Here we present the main elements of a work of mechanics attrib-
uted to Euclid, the famous author of the book The Elements of Geome-
try, who lived in Alexandria around 300 B.C. Although no works on 
mechanics were attributed to Euclid in Antiquity, many Arabic authors 
mention works by Euclid on this subject. Three fragments which sur-
vived are attributed to him. The titles given to these works are: Book on 
the Balance; Book on the Heavy and Light; and Book on Weights Ac-
cording to the Circumference Described by the Extremities. What inter-
ests us here is the first of these books, which was translated into French 
in 1851 from its Arabic version (there is no known version of this book 
in Greek or in Latin). An English translation of this work has been 
made.2 

The book begins with a definition and two axioms.3 Text between 
square brackets is Clagett’s: 

1. [Definition] Weight is the measure of heaviness and lightness 
of one thing compared to another by means of a balance. 
2. [Axiom I] When there is a straight beam of uniform thickness, 
and there are suspended on its extremities two equal weights, and 
the beam is suspended on an axis at the middle point between the 
two weights, then the beam will be parallel to the plane of the 
horizon. 

                                                                                                                                                                                                                                                                                                             

1 P. Duhem, The Origins of Statics (Dordrecht: Kluwer, 1991), Chap. V; M. Clagett, The Sci-
ence of Mechanics in the Middle Ages (Madison: The University of Wisconsin Press, 1979), Chap. 
I and Document I.I. 

2 Clagett, The Science of Mechanics, Document I.I, pp. 24-30. 
3 Ibid., p. 24. 
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3. [Axiom II] When two weights – either equal or unequal – are 
placed on the extremities of a beam, and the beam is suspended 
by an axis on some position of it such that the two weights keep 
the beam on the plane of the horizon, then if one of the two 
weights is left in its position on the extremity of the beam and 
from the other extremity of the beam a straight line is drawn at a 
right angle to the beam in any direction at all, and the other 
weight is suspended on any point at all of this line, then the beam 
will be parallel to the plane of the horizon as before. 
This is the reason that the weight is not changed when the cord of 
one of the two sides of the balance is shortened and that of the 
other is lengthened. 
[Propositions] (...) 

The author of this work demonstrates four propositions. The last 
one contains the law of the lever. In the next section we will discuss this 
procedure. 

For the time being we will follow a modification of this argument 
which was proposed by Pierre Duhem when he analyzed this work.4 
Duhem postulates two extra axioms, namely (text between square 
brackets is ours): 

Axiom III. If the weights are maintaining the beam of a balance 
parallel to the horizon and if one suspends an additional weight 
to the beam’s point of suspension, the beam remains parallel to 
the horizon. 
Axiom IV. If any number of weights maintain the beam of a bal-
ance parallel to the horizon, and if Z and D are two of these 
weights [equal to one another] suspended from the same arm of 
the beam and if one moves weight Z by a given length away 
from the point of suspension of the balance and if one moves 
weight D by the same length towards the point of suspension, 
then the beam will remain parallel to the horizon. 

These axioms lead to an elegant demonstration of the law of the 
lever. It can be summarized as follows. Let BD be the beam of a lever 
with C being its fulcrum or point of support, and BC = CD. Suppose 
four equal bodies of weight P, one suspended at B, another at D, and two 
at C, as in Fig. 9.7. By axioms I, II and III, the lever will remain in equi-
                                                                                                                                                                                                                                                                                                             

4 Duhem, The Origins of Statics, pp. 47 to 51. 

 
Fig. 9.7. Duhem’s proof of the law of the lever. 
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librium, with its beam at rest horizontally. We divide CD into three 
equal parts by the points A and E, such that CA = AE = ED = CD/3. We 
now move one of the bodies which was at C to the point A, while simul-
taneously moving the body which was at D to the point E, as in the mid-
dle of Fig. 9.7. By axiom IV the lever will remain in equilibrium hori-
zontally. By axiom IV it will remain in equilibrium if we move the body 
that remained in C to the point A, provided we simultaneously move the 
body that was at E to the point A, as in Fig. 9.7. We then see that the 
lever in its final configuration of equilibrium will have a weight P at a 
distance d from the fulcrum and another weight 3P at a distance d/3 on 
the other side of the fulcrum. In other words, we arrive at a particular 
case of the law of the lever. It is easy to generalize this demonstration. 

This demonstration of the law of the lever depends both upon the 
condition of equilibrium given by equal weights acting at equal dis-
tances on opposite sides of the fulcrum, and upon axiom IV. And this is 
not an obvious axiom. It is justified only because it is in agreement with 
experimental results. Suppose that nature behaved in such a way that 
equilibrium resulted when  
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with 1≠α . In this case axiom IV would no longer hold. 
As we will see in the next Section, the original procedure attributed 

to Euclid contains only the first two axioms. Euclid derived an analo-
gous to Duhem’s axiom IV as proposition 2 of his work, based on the 
first two axioms. 

9.5 Proof of the law of the lever by an experimental 
procedure suggested by a work attributed to Euclid 

We present here some experiments which illustrate how to derive the 
law of the lever in a very interesting way. These experiments were sug-
gested by the Book on the Balance, attributed to Euclid. 

Up to now we have been dealing with levers composed of horizon-
tal beams which can turn in a vertical plane around a horizontal axis 
which is orthogonal to the beam. The procedure we will assume here is 
a different one. We now use a homogeneous rigid rectangle (or square) 
which remains in equilibrium in a horizontal plane, supported on a ver-
tical stick placed under the center of the rectangle. We place three equal 
bodies upon this horizontal plane, studying the conditions in which the 
plane remains in equilibrium. We should attach a sheet of graph paper to 
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the rectangle. This simplifies the analysis as we have now a Cartesian 
plane above it. We place two orthogonal axes, x and y, parallel to the 
sides of the rectangle and to the lines of the sheet of paper. We choose 
the origin of the coordinate system, (0, 0), to be at the center of the rec-
tangle. 

Materials: The rectangle can be made of pasteboard and the lines 
drawn upon it. An alternative procedure is to attach a sheet of graph pa-
per to the pasteboard. The three bodies to be placed upon the rectangle 
should have the same size and weight. For instance, they could be three 
equal screw-nuts. During the experiments these nuts will slide over the 
plane and fall to the ground many times. To prevent this hindrance we 
should place some glue under the nuts, or attach a thin layer of modeling 
clay below them, so that they can be attached to any point of the rectan-
gle. Another very interesting alternative is to utilize a metal rectangle 
(like the picture frame). In this case the three bodies can be small mag-
nets like the ones used to attach the pictures to these frames. The size of 
the rectangle could be, for instance, 10 cm × 15 cm. The separation be-
tween the lines of the graph paper can be 0.5 cm or 1 cm. The vertical 
stick to be placed below the center of the rectangle can be a bamboo 
barbecue skewer with its tip stuck in a piece of clay. Any other appro-
priate stand can be used. The important point is that the upper plane sur-
face of the support (bamboo stick, bottle cap, etc.) should not be too 
small or too large. If it is too small, the equilibrium becomes too unsta-
ble and it may be difficult to balance the rectangle on it. If it is too large, 
it will be very easy to balance the rectangle on it, but it will be difficult 
to establish the precise conditions which yield the equilibrium of the 
three equal bodies. As a convenient measure we can use a support such 
that, when the rectangle remains in equilibrium with the three pieces in 
adequate positions above it, this equilibrium will be disturbed when a 
single body moves one or two units of length along the x or y axes, i.e., 
in such a way that the rectangle falls to the ground with this change of 
configuration, so that the lack of equilibrium can be easily perceived. 

Let us then suppose that we have our graph paper rectangle. The 
first thing to do is to balance it horizontally, supporting it upon the stick 
placed under the origin (0, 0) of the rectangle. Next, we equilibrate the 
rectangle with the three pieces of equal weight placed above it. Let us 
call them P1, P2 and P3. Initially we put them at (x, y) = (–5, 0), (0, 0) 
and (5, 0), respectively, as in Fig. 9.8. Because this is a symmetrical 
configuration around the origin, equilibrium must be established. If this 
does not happen we must first find the reason before we proceed. It may 
be due to the fact that the three pieces do not have exactly the same 
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weight; or the stick may not be placed exactly below the center of the 
rectangle; or it is not vertical; or its upper surface is not horizontal, etc. 

We are now ready to begin the main experiments. 

Experiment 
We move piece P2 to the location (x, y) = (0, 2). It should be observed 
that the system falls to the ground, with this piece moving toward the 
Earth. On the other hand, when we move P2 to (x, y) = (0, 2) and P1 to 
(x, y) = (–5, –2), leaving P3 at (x, y) = (5, 0), the system remains in equi-
librium horizontally after being released from rest, as in Fig. 9.9. 

The result of this experiment can be generalized to other cases. 
Suppose that we have a set of bodies in equilibrium above a horizontal 
plane supported by a vertical stick placed below one of its points. We 
consider the position of this stick the origin of an orthogonal system of 
coordinates (x, y). If we move one of the bodies from position (x1, y1) to 
position (x1 + d, y1) and, simultaneously, move another body of equal 
weight from position (x2, y2) to position (x2 – d, y2), the system will re-
main in equilibrium. It will also remain in equilibrium when we move 
two pieces of the same weight the same distance in the opposite direc-
tion along the y axis, or in any other direction. 

 
Fig. 9.8. Another procedure to obtain the law of the lever. 

 
Fig. 9.9. Experimental condition of equilibrium when this rectangle 
is supported by a vertical stick below the origin. 
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Experiment 
Let us now invert the order of the movements. We again begin with the 
three bodies P1, P2 and P3 located at (x, y) = (–5, 0), (0, 0) and (5, 0), re-
spectively. We now move only piece P1 to (x, y) = (–5, –2), holding the 
rectangle in place with our hands. We now look carefully at the rectan-
gle. When we release the system slowly from rest, what is observed is 
that the whole side with y < 0 tends to fall to the ground, while the side 
y > 0 moves away from the Earth. On the other hand, we perceive no 
difference between the sides with x > 0 and x < 0. In other words, none 
of these sides tends to fall, as indicated by Fig. 9.10. And this is some-
what surprising because body P1 is not located symmetrically in relation 
to the origin of the axis x, as it is offset from the vertical extended up-
wards through the stick. 

We can express this finding as follows. Suppose we have a rigid 
system in equilibrium in a horizontal plane, capable of turning in any di-
rection around a vertical stick, with several bodies on the horizontal 
plane. If only one of these bodies is moved in a certain direction on the 
horizontal plane, the system looses equilibrium only in this direction, 
tending to move closer to the ground, without disturbing the equilibrium 
in any direction orthogonal to this displacement. For instance, in the 
previous example the body P1 moved along the negative y direction. The 
side of the rectangle characterized by y < 0 tended to fall to the ground, 
while the side y > 0 tended to move upwards. This experiment gives 
empirical support to the second axiom of Euclid presented above. 

Experiment 
We draw two circles of the same radius on the rectangle in such a way 
that they touch one another at a single point. If the circles have a radius 
of 5 units, for instance, the centers of the circles can be located at 
(x, y) = (–5, 0) and (5, 0). In this case the point of contact is the origin 

 
Fig. 9.10. Direction of rotation of the plane. 
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(0, 0). Let ACB be the straight line passing through the points A = (8, –
4), C = (0, 0) and B = (–8, 4). Let H and T be the edges of the circles 
along the x axis, that is, with H = (–10, 0) and T = (10, 0). We draw 
three parallel straight lines HB, CE, and AT, with E = (2, 4). The projec-
tions of E and of A on the x-axis are called Z and W, respectively, such 
that Z = (2, 0) and W = (8, 0), as in Fig. 9.11. Experiment shows that 
this rectangle remains in equilibrium horizontally when supported on a 
stick placed under its origin. This can be understood by considerations 
of symmetry. 

Experiment 
We place three bodies P1, P2, and P3 of equal weight at positions B, C, 
and A, respectively. Experiment shows that this rectangle remains in 
equilibrium after being released from rest when supported under its ori-
gin (0, 0), as in Fig. 9.11. This can also be understood by considerations 
of symmetry. 

We now move P1 from B to H and, simultaneously, P2 from C to E, 
while keeping P3 at A. As these displacements were orthogonal to the 
straight line BCA, were of the same length, in opposite directions and, 
moreover, as P1 and P2 have the same weight, the system remains in 
equilibrium, based on what we discussed earlier, as in Fig. 9.12. 

 
Fig. 9.11. Euclid’s procedure to derive the law of the lever. 

 
Fig. 9.12. Second step to derive the law of the lever. 
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Experiment 
We now consider the straight line HCT. We begin with the previous 
equilibrium configuration with the three equal bodies at H, E, and A. We 
now move P2 from E to Z, while simultaneously moving P3 from A to 
W, keeping P1 at H. Once more the system remains in equilibrium. After 
all we have displaced two equal weights by the same amount in opposite 
directions along the straight line HCT. We end up in the equilibrium 
configuration shown in Fig. 9.13, in which the three equal weights are 
located at H = (–10, 0), Z = (2, 0), and W = (8, 0). 

By changing the inclination of the straight line BCA to the x-axis 
and repeating the previous procedure, we will end up with the three 
equal bodies at the following positions: P1 = (–10, 0), P2 = (a, 0), and 
P3 = (10 – a, 0), where magnitude a can have any value between 0 and 
10. We conclude that a weight at a certain distance d from the origin is 
balanced by two other equal weights placed on the other side of the ful-
crum at the following distances from the origin: a and d – a. 

As we saw previously, from this last result it is possible to derive 
the law of the lever experimentally. A particular example is where 
a = d/2. In this case we arrive at the equilibrium condition of a body P at 
a distance d from the fulcrum equilibrated by another weight 2P at a dis-
tance d/2 on the other side of the fulcrum, which is a particular case of 
the law of the lever. 

The interesting aspect of this experimental procedure utilizing a 
rectangle in horizontal equilibrium is that we did not need to begin with 
this last result. Rather than start from it, we derived this result beginning 
from the fact that when we displace a body over a system which was 
originally in equilibrium supported on a vertical stick, the plane looses 
equilibrium only in this direction. That is, this displacement does not af-
fect the equilibrium of the plane in directions orthogonal to the dis-
placement. 

 
Fig. 9.13. Third step to derive the law of the lever. 
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9.6 Theoretical proof of the law of the lever attributed to 
Euclid 

In the theoretical work attributed to Euclid, available in English,5 the 
law of the lever is derived from the theoretical postulate of the previous 
experimental result. This is the essence of the second postulate pre-
sented earlier, namely: 

2. [Axiom I] When there is a straight beam of uniform thickness, 
and there are suspended on its extremities two equal weights, and 
the beam is suspended on an axis at the middle point between the 
two weights, then the beam will be parallel to the plane of the 
horizon. 
3. [Axiom II] When two weights—either equal or unequal—are 
placed on the extremities of a beam, and the beam is suspended 
by an axis on some position of it such that the two weights keep 
the beam on the plane of the horizon, then if one of the two 
weights is left in its position on the extremity of the beam and 
from the other extremity of the beam a straight line is drawn at a 
right angle to the beam in any direction at all, and the other 
weight is suspended on any point at all of this line, then the beam 
will be parallel to the plane of the horizon as before. 
This is the reason that the weight is not changed when the cord of 
one of the two sides of the balance is shortened and that of the 
other is lengthened. 
[Propositions] (...) 

The main aspect of this second axiom is the postulate that the equi-
librium of a horizontal beam is not disturbed when a body moves or-
thogonally to this beam “in any direction at all.” Suppose the beam is 
along the x-axis in horizontal equilibrium, supported by a vertical stick 
placed under one of its points. In this case a body suspended on the 
beam can move a distance d in the vertical z direction, or along the hori-
zontal y axis, or in any direction in the yz-plane, without disturbing the 
equilibrium of the beam along the x-axis. That is, displacement of the 
body along the yz-plane will not cause the side x > 0 of the beam to 
move upward or downward, the same being true for the side x < 0. 

These two postulates are presented as follows in the English trans-
lation of Duhem’s book:6 

Axiom I. When two equal weights are suspended from the two 
extremities of a straight beam of uniform thickness which, in 
turn, is suspended at the midpoint between the two weights, the 
beam remains parallel to the plane of the horizon. 

                                                                                                                                                                                                                                                                                                             

5 Clagett, The Science of Mechanics, Document I.I, pp. 24-30. 
6 Duhem, The Origins of Statics, p. 50. 
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Axiom II. When two equal or unequal weights are attached to the 
two extremities of straight beam which at one of its points is sus-
pended from a fulcrum so that the two weights maintain the 
beam parallel to the horizon, and if then, we leave one weight in 
its place at one extremity and draw a straight line from the other 
extremity of the beam which forms a right angle to the beam on 
either side of the beam and if one suspends the other weight from 
any point at all on this line, the beam will remain parallel to the 
plane of the horizon. This is the reason why the weight does not 
change if one shortens the strings of one of the two scale pans or 
lengthens the strings of the other. 

The crucial words “in any direction at all” are replaced in this 
translation by “on either side of the beam.”  

As it is an axiom, we cannot derive it from other axioms. We sim-
ply postulate it, without explaining the axiom. And we derive conse-
quences from it.  

This theoretical axiom can be visualized by the experiments pre-
sented earlier. From this axiom we can derive theoretically that a weight 
P at the position x = – d on one side of the fulcrum, located at x = 0, is 
equilibrated by two other equal weights placed at positions x = a and 
x = d – a. And from this result we can derive the law of the lever, as is 
done in the work attributed to Euclid. 

9.7 Archimedes’s proof of the law of the lever and 
calculation of the center of gravity of a triangle 

9.7.1 Law of the lever 

Archimedes presented a theoretical deduction of the law of the lever in 
his works On the Equilibrium of Planes, and The Centres of Gravity of 
Planes. It is available in English.7 

What has reached us seems to have been only a part of a larger 
work. His proof of the law of the lever is based upon the concept of the 
center of gravity, which does not appear explicitly defined in any of his 
works now extant. But from what we have seen in the quotations of 
Heron, Pappus and Simplicius, who had access to works of Archimedes 
that are no longer extant, he seems to have defined the CG along the 
lines of CG8, namely: The center of gravity of any rigid body is a point 
such that, if the body were to be suspended from that point, released 
from rest and free to rotate in all directions around this point, the body 

                                                                                                                                                                                                                                                                                                             

7 T.L. Heath, ed., The Works of Archimedes (New York: Dover, 2002), pp. 189-220; E.J. 
Dijksterhuis, Archimedes (Princeton: Princeton University Press, 1987), pp. 286-313 and 346-360. 
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so suspended will remain at rest and preserve its original position, no 
matter what its initial orientation relative to the ground. 

In Proposition 6 of his work Quadrature of the Parabola, he men-
tion the following:8 “Every body, suspended by any point, assumes an 
equilibrium state when the point of suspension and the center of gravity 
are on the same vertical line. This has been demonstrated.” The proof of 
this proposition was probably included in his lost work On Balances or 
On Levers. This proposition offers a practical procedure for finding the 
CG of a body, as we saw in CG6 and CG7. 

In order to prove the law of the lever in his work On the Equilib-
rium of Planes, Archimedes begins with seven postulates, namely:9 

I postulate the following: 
1. Equal weights at equal distances are in equilibrium, and equal 
weights at unequal distances are not in equilibrium but incline 
towards the weight which is at the greater distance. 
2. If, when weights at certain distances are in equilibrium, some-
thing be added to one of the weights, they are not in equilibrium 
but incline towards the weight to which the addition was made. 
3. Similarly, if anything be taken away from one of the weights, 
they are not in equilibrium but incline towards the weight from 
which nothing was taken. 
4. When equal and similar plane figures coincide if applied to 
one another, their centres of gravity similarly coincide.  
5. In figures which are unequal but similar the centres of gravity 
will be similarly situated. By points similarly situated in relation 
to similar figures I mean points such that, if straight lines be 
drawn from them to the equal angles, they make equal angles 
with the corresponding sides.  
6. If magnitudes at certain distances be in equilibrium, (other) 
magnitudes equal to them will also be in equilibrium at the same 
distances.  
7. In any figure whose perimeter is concave in (one and) the 
same direction the centre of gravity must be within the figure. 

The fundamental postulate which allows Archimedes not only to 
derive the law of the lever, but also to theoretically locate the CG of 
many two-dimensional (triangles, parallelograms, trapeziums, circles, 
semi-circles, parabolic segments) and three-dimensional figures (cones, 
hemispheres, semi-ellipsoids, paraboloids of revolution, hyperboloids of 
revolution), is his sixth postulate.  
                                                                                                                                                                                                                                                                                                             

8 C. Mugler, Les Oeuvres d’Archimède (Paris: Budé, 1971). Vol. 2, p. 171; Duhem, The Ori-
gins of Statics, p. 463. 

9 Heath, ed., The Works of Archimedes, pp. 189-190. 
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The meaning of this crucial postulate has been clarified by Vailati, 
Toeplitz, Stein and Dijksterhuis.10 By “magnitudes equal to other magni-
tudes,” Archimedes wishes to say “magnitudes of the same weight.” 
And by “magnitudes at certain distances,” Archimedes wishes to say 
“the centers of gravity of the magnitudes are at the same distances from 
the fulcrum.” Suppose a system of bodies keeps a balance in equilib-
rium. According to this postulate, Archimedes can replace a certain body 
A suspended by the beam through its center of gravity located at a hori-
zontal distance d from the vertical plane passing through the fulcrum, 
with another body B which has the same weight as A, without disturbing 
equilibrium, provided it is also suspended by the beam at its CG which 
is at the same horizontal distance d from the vertical plane passing 
through the fulcrum. Instead of bodies A and B, we can also think of a 
set of N bodies Ai and M bodies Bi. Equilibrium will not be disturbed 
when we replace the N bodies Ai with the M bodies Bi, if the total 
weight of the two sets is the same and if the CG of the set of M bodies 
Bi acts at the same distance from the fulcrum as the CG of the N bodies 
Ai.  

The algebraic statement of this theorem was given after the mathe-
matical definition CG9. Utilizing this mathematical definition, we can 
derive this result. In this case it would no longer be a postulate. This 
theorem can also be stated as: If a body is composed of two or more 
parts whose centers of gravity are known, then the center of gravity of 
the composite body can be calculated by regarding its component parts 
as single particles located at their respective centers of gravity. 

A particular example of this postulate is the replacement of a body 
of weight P located at the distance d from the vertical plane passing 
through the fulcrum of a lever in equilibrium by a set of two other bod-
ies, namely: a weight P/2 located at the distance d + x from the vertical 
plane passing through the fulcrum, and another weight P/2 located at the 
distance d – x from the vertical plane passing through the fulcrum. In 
this case the two systems have the same total weight P. Moreover, the 
centers of gravity of the two systems are located at the same distance d 
from the vertical plane passing through the fulcrum. In the case of the 
second system composed of two weights P/2, this was proved by Ar-
chimedes in the fourth proposition of this work: “If two equal weights 
have not the same centre of gravity, the centre of gravity of both taken 
together is at the middle point of the line joining their centres of grav-
ity.”11 From this particular example we can arrive at the law of the lever, 
                                                                                                                                                                                                                                                                                                             

10 Dijksterhuis, Archimedes, pp. 289-304 and 321-322. 
11 Heath, ed., The Works of Archimedes, p. 191. 
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as we saw earlier in the procedure attributed to Euclid. Archimedes pre-
sented a general proof of the law of the lever which is valid for com-
mensurable magnitudes as well as incommensurable magnitudes. 

The advantage of the postulate due to Archimedes as compared 
with the analogous postulate from Euclid is the generality implied by 
Archimedes’s approach. Using this postulate, he derived both the law of 
the lever and the correct calculation of the CG of all one-, two-, and 
three-dimensional figures, as discussed above. 

We now present the main elements of his proof of the law of the 
lever. He considers three situations, namely: (A) A set of 2N1 magni-
tudes of the same weight P suspended by their centers of gravity along a 
rectilinear lever, with these magnitudes evenly spaced. We present a 
concrete example with N1 = 3 and with the spacing between adjacent 
magnitudes given by the length w. The CG of this system of magnitudes 
is the point E, which is at the midpoint of these magnitudes, as in the 
first situation in Fig. 9.14. (B) A system of 2N2 magnitudes of the same 
weight P suspended by their centers of gravity along a rectilinear lever, 
with these magnitudes evenly spaced. We present a concrete example 
with N2 = 2 and with the spacing between adjacent magnitudes given by 
w. The CG of this system of magnitudes is the point Δ, which is at the 
midpoint of these magnitudes, as in the second situation in Fig. 9.14. (C) 
A system of 2N1 + 2N2 magnitudes of the same weight P suspended by 
their centers of gravity along a rectilinear lever, with these magnitudes 
evenly spaced. We present a concrete example with N1 = 3, N2 = 2 and 
with the spacing between adjacent magnitudes given by w. The CG of 
this system of magnitudes is the point Γ, which is at the midpoint be-
tween these magnitudes, as in the last situation in Fig. 9.14. 

 
Fig. 9.14. Archimedes’s procedure for deriving the law of the lever. 
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That the CG of these three situations are located at the points E, Δ 
and Γ, respectively, was proven by Archimedes in Corollary II of Propo-
sition 5 of his work: “If there be an even number of magnitudes with 
their centres of gravity situated at equal distances on one straight line, 
and if the two middle ones be equal, while those which are equidistant 
from them (on each side) are equal respectively, the centre of gravity of 
the system is the middle point of the line joining the centres of gravity 
of the two middle ones.”12 But this fact does not depend upon the linear 
aspect of the usual law of the lever. That is, this result can be proved by 
considerations of symmetry, even if the law of the lever were given by  
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with 1=α  or with 1≠α . That is, suppose that it is found experimentally 
that a lever only remained in equilibrium when the previous relation was 
valid with a specific value of α. Even if this were the case, the CG of the 
three situations presented earlier would be located at the points E, Δ, and 
Γ, regardless of the value of α. 
                                                                                                                                                                                                                                                                                                             

12 Ibid. 

 
Fig. 9.15. Second and third steps in Archimedes’s procedure for 
deriving the law of the lever. 
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But now we must appeal to the crucial postulate 6. It stipulates that 
in the third situation already presented the set of 2N1 bodies can be re-
placed by a single body A of weight PA = 2N1P acting at point E, as 
shown in the first situation of Fig. 9.15, which we will call situation (D). 
That is, if situation (C) was an equilibrium situation, then postulate 6 
guarantees that situation (D) will also be an equilibrium situation. It is 
also possible to replace the set of 2N2 bodies with a single body B of 
weight PB = 2N2P acting at point Δ. This is shown in the second situa-
tion of Fig. 9.15, which we will call situation (E). That is, postulate 6 
guarantees that situations (D) and (E) will be equilibrium situations, as 
was the case with situation (C).  

This is the law of the lever, because the weight PA is to the weight 
PB as the distance ΔΓ is to the distance EΓ. 

Suppose now that nature behaved in such a way that the law of the 
lever were of the type 
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with 1α ≠ . That is, suppose that a lever only remained in equilibrium 
when this equation was satisfied. In this case situation (C) would still be 
an equilibrium configuration. But when we tried to go to situations (D) 
and (E), equilibrium would be disturbed. These two configurations 
would not remain in equilibrium when the system was released from 
rest. This shows that in this hypothetical situation Archimedes’s postu-
late 6 would no longer be valid. 

9.7.2 CG of a triangle 

We now analyze certain aspects of the calculation of the CG of a trian-
gle given by Archimedes. This CG coincides with the intersection of the 
medians, which are the straight lines connecting the vertices to the mid-
points of the opposite sides. The importance of this result is that it is 
only valid for a law of the lever which is linear with distance. On the 
other hand, the CG of a circle or rectangle would still be the geometric 
centers of these figures even if the law of the lever were quadratic or 
cubic in distance, as can be seen by arguments of symmetry. This means 
that the calculation of the CG of a triangle is the first non trivial result 
for the CG of a two-dimensional figure. 

Archimedes considers a generic scalene triangle ABΓ. In Proposi-
tion 13 he then shows that the CG must be along the straight line con-
necting any vertex to the midpoint of the opposite side: “In any triangle 
the centre of gravity lies on the straight line joining any angle to the 
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middle point of the opposite side.”13 In Proposition 14 he concludes that 
“the centre of gravity of any triangle is at the intersection of the lines 
drawn from any two angles to the middle points of the opposite sides re-
spectively.”14 If Δ is the midpoint of the side BΓ in the next triangle, this 
means that the CG must be at some point G along the straight line AΔ, 
as in Fig. 9.16. Archimedes presents two proofs of this fact. The two 
proofs suppose that the CG is not along this line AΔ, which leads to a 
logical contradiction. This means that the CG must be along the line AΔ, 
which is what he wanted to prove. 

Here we explore the opposite viewpoint. We begin supposing that 
the CG of the triangle is at some point G along the line AΔ connecting 
the vertex to the midpoint of the opposite side. We then show that we do 
not arrive at any logical contradiction with this reasoning. Moreover, we 
arrive at the ratio between AG and GΔ. With this simplified analysis we 
can make comprehension of Archimedes’s original proof easier. We pre-
sent all the postulates which used in the proof explicitly.  

From Postulate 7 we conclude that the CG must be inside the trian-
gle ABΓ. We then suppose that it is at a point G along the straight line 
AΔ, where Δ is the midpoint of the side BΓ. Let E be the midpoint of the 
side AB and Z the midpoint of the side AΓ, as in Fig. 9.17. We join the 
segments EΔ, ZΔ, and EZ. The segment EΔ is parallel to the side AΓ; 
the segment EZ is parallel to the side BΓ; and the segment ΔZ is parallel 
to the side AB. This leads to the result that BΔ = ΔΓ = EZ = BΓ/2, 
BE = EA = ΔZ = BA/2, AZ = ZΓ = EΔ = AΓ/2. We then obtain four 

                                                                                                                                                                                                                                                                                                             

13 Heath, ed., The Works of Archimedes, p. 198. 
14 Ibid., p. 201. 

 

Fig. 9.16. Center of gravity 
of a triangle. 

Fig. 9.17. Step in finding the 
CG of a triangle. 
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equal triangles: EBΔ, ZΔΓ, AEZ, and ΔZE, as in Fig. 9.17. These four 
triangles are similar to the original triangle ABΓ. The area and weight P 
of each one of them are equal to a quarter of the area and weight of the 
original triangle PEBΔ = PZΔΓ = PAEZ = PΔZE = PABΓ/4. 

Let M be the midpoint of the segment EZ, which is also the mid-
point of the segment AΔ. Let M1 be the midpoint of the segment BΔ and 
M2 be the midpoint of the segment ΔΓ. We join EM1, ZM2 and AΔ. By 
postulate 5 the centers of gravity of the triangles EBΔ, ZΔΓ, AEZ and 
ΔZE will be at the points G1, G2, G3, and G4 along the straight segments 
EM1, ZM2, AM, and ΔM, respectively, situated in such a way that 
EG1 = ZG2 = AG3 = ΔG4 = AG/2, as in Fig. 9.18. 

By postulates 1 and 6 we conclude that if the original triangle ABΓ 
was in equilibrium when supported by point G, then it will remain in 
equilibrium supported by G when we replace the two triangles EBΔ and 
ZΔΓ by a single body of weight equal to the sum of the weight of these 
two smaller triangles, acting at the midpoint of the straight line G1G2. 
Let S be this midpoint, located along AΔ. As a matter of fact, in Proposi-
tion 4 of this work Archimedes proves the following result: “If two 
equal weights have not the same centre of gravity, the centre of gravity 
of both taken together is at the middle point of the line joining their cen-
tres of gravity.”15 

By the same token, we can replace the two triangles AEZ and ΔZE 
with a single body of weight equal to the sum of the weights of these 
two smaller triangles, acting at the midpoint of the segment G3G4, i.e., at 
the point M. This means that the system will remain in equilibrium sup-
ported by G after this replacement. 

We then have only two equal weights acting at M and S. Once 
again we can replace these two weights with a single body having the 
total weight of the original triangle, acting at the midpoint of the seg-
ment MS. And this midpoint of MS must be the CG of the original tri-
angle, the point G. By postulate 5 we have SΔ = G1M1 = G2M2 = 
G3M = G4M = GΔ/2. As G is the midpoint of the segment MS, we have 
                                                                                                                                                                                                                                                                                                             

15 Heath, ed., The Works of Archimedes, p. 191. 

 

Fig. 9.18. Final step in find-
ing the CG of a triangle. 
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GΔ = (MΔ + SΔ)/2. Combining the last two equalities, we obtain: 
GΔ = (MΔ + GΔ/2)/2. As a result, 2GΔ – GΔ/2 = 3GΔ/2 = MΔ. Since 
MΔ = AΔ/2, we obtain finally AΔ = 3GΔ. Since AΔ = AG + GΔ we also 
find that AG = 2GΔ. 

We can then conclude that the supposition that the CG of the trian-
gle is along the straight line joining each vertex to the midpoint of the 
opposite side is a coherent supposition. Moreover, this procedure shows 
that the CG given by the point G will divide this straight line AΔ in such 
a way that AG = 2GΔ. 

On the other hand, as ΔG4 = AG/2, we deduce from the last result 
that ΔG4 = (2GΔ)/2 = ΔG. In other words, the CG of the triangle ΔZE, 
which is located at the point G4, coincides with the CG of the original 
triangle ABΓ, which is located at the point G. 

We consider these achievements of Archimedes to be some of the 
greatest scientific accomplishments humankind has produced. 
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Page 7, the 14th line should read: 
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during 
 
Page 8, the 27th line should read: 
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outside the body which behaves as if all gravitational force were 
acting 
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fulcrum may be smaller than the distance between the thread on 
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