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Equivalence Between Ampere and 
Grassmann's Forces 

A. K. T. Assis and Marcelo A. Bueno 

Abstract-We calculate the force on part of a single closed 
circuit due to the remainin~ drcuit in four different I!;eometries 
according to the forces of Ampere and Grassmann. Aft analyt
ical calculations are performed using surface Of volume cunent 
elements in order to avoid the divergences which appear with 
linear current elements Hf zero diameter. We conclude that 
when we consider the action of a closed circuit as a whole and 
utilize only circuits with closed lines of current, there will be 
an equivalence hetween the expressions of Grassmann and Am
pere. This means that both of them are compatihle with the 
experimental findings related to Ampere's bridge, contrary 10 
the opinion of some authors. 

l. INTRODUCTION 

'"1 JHEN an electric current flows in two metallic cir
VV cuits, there is a ponderomotive force between them. 

This has been known since IS20. There are two main 
expressions from which this force can be calculated: the 
forces of Ampere and Grassmann. According to Ampere, 
the force d 2

Fji exerted by a current ei<:..,ment ~,d7J' located 
at rj , on another current clement l;d I i, located at ri, is 
given by II] 

3(f . d7,)(f d7)1 

(I) 

where 110 = 411" X lO-7 kgm/C 2 is the vacuum penne
ability, r == IT, - rjl is the distance between the ele
ments, and f == (r; - r)lr is the unit vector pointing 
fromjloi. 

On Ihe other hand, Grassmann's force (based on Biot
Savart's magnetic field) states that the force of jon i is 
given by [11, (2) 

f.d7. X iiiB - S = I dT. x (110 f. t})i x f) 
" ) " 411") r2 

110 II ........ ... .... 
- 411" '1 [(dl i • dl)f (dl i f)dl j ]. (2) 

Ampere's force (1) follows Newton's third law (action 
and reaction) in the strong form as the force is always 
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directed along the line joining the elements. Grassmann's 
force between current elements (2) does not obey New
ton's third law, with the exception of some particular sit
uations. This is not important, since current elements can
not exist in practice. We can only measure forces between 
closed circuits, or complementary parts of a closed cir
cuit. It has been known that the integrated force of a closed 
circuit on a current element of another circuit has the same 
value according 10 both expressions [3]. This means that 
Grassmann's force will also follow the action and reaction 
principle when applied to closed circuits. Moreover, this 
fact indicates that the two expressions cannot be distin
guished in experiments involving two or more closed cir
cuits. 

Recently, many experiments have been perfonned with 
a single closed circuit trying to distinguish between these 
two expressions 14)-[9}. The idea is to measure the force 
on part of a circuit due (0 the remaining parts of the cir
cuil. Experimentally, this can be done by connecting the 
two metallic parts by liquid mercury so that the ponder
amative force on part of a circuit can be measured without 
interrupting the currenl. Although most experiments seem 
to favor Ampere's force against Grassmann's one, this is 
still a controversial ~ubject (10]-( 121. 

If we approach this subject theoretically, we face prob
lems of divergence when trying to integrate (I) or (2) for 
a single circuit. In order (0 avoid this divergence, we can 
either utilize numerical integration using current elements 
of finite size (typically of the order of the interatomic lat
tice spacing) [S}, [IO], [13], [14) or we can perfonn an
alytical integrations using surface or volume current ele
ments [15]. In this work, we follow this last approach. 

II. CIRCUITS WITH SURFACE CURRENT ELEMENTS 

The first geometry we consider is {hat of Fig. 1. We 
have a circuit with surface current elements. We divide 
this circuit in 6 pieces and we suppose that the constant 
current in these pieces flows uniformly over their cross
sections. This means that the current in the whole piece 1 
(Ihe inferior rectangle with sides £3 and w) is supposed to 
be constant over its cross section and flowing along the 
positive x direction, and similarly for the other pieces. 
The bridge (B) is supposed to consist of pieces 3, 4, and 
5. 1 We call support (5) the remaining pieces 6, 1, and 2. 

'The !lame bridge ha~ been ulilized in confonnily Wilh the ramou:. AIll' 
pere's bridge or hairpm experiment [81-
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Fig. I. Rectangular clfcuit with surface current density. The current is 
supposed 10 be uniform over each piece of the circuit, and Haws in the 
following directions: I -> +x,2 ---> +,9.3 ..... +y,4 --. --1:,5 ..... -jl,6 ..... 
-yo The bridge consists of pieces 3, 4. and 5; while the support is made 
of pieces 6,1, and 2. 

Our goal is to calculate the resultant force on the bridge 
using the forces of Ampere and Grassmann. 

As we have surface current clements, we will utilize a 
generalization of (I) and (2) which avoids the diver· 
gences. We only need to replace ldY by Kda, where K is 
the surface current density pointing along the current flow 
and da is the surface element. As we are supposing a uni. 
form current flow, we can write, following Fig. I: IKI = 
I/w, where I is the current crossing the width w of the 
circuit. In terms of Kda, (1) and (2) can be written as 

Jio f --> 
-- - [2(K, 

411' r2 K) - 3(f . K,W . K,)] da,da}. 

(3) 
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I on 4, I on 3, 2 on 5, and 2 on 4 yields (with (I) and 
(2)]0 

(5) 

(6) 

These calculations are straightforward and involve no 
subtleties. 

We must now calculate the force between pieces in con
tact. Let us calculate the force of 6 on 5 (Fig. I). It is 
easily seen that the x component of this resultant force is 
zero according to either Ampere's force or Grassmann's 
force. On the other hand, the y component of Ampere's 
force is given by 

- [(xs - xd + (Ys Y6)2]S/2' 
(7) 

Integrating in the order Y6 --+ X6 ---> Xs --+ Ys yields the exact 
result 

-A Jlol2 [ 2 2112 F 65 = . --2 2(11 - W)(12 - i l - w) + (/2 - II - w)(w + (12 - II - w) ) 
4~w 

(12 - 2w)(w2 + (12 - 2wi)112 + (11 - W)(WL + (II _ W)2)112 

, ,(.1,,-, _---.:Il-I _---.":w!.)_+'-'(,,(l"-, _-__ 1,-, _---.":w!.l'-'+--.::w_''-) '_" + w In-
w 

Jiol-- -
---[(K· K)f - (K 411' r2 'J , 

(4) 

We will perform the integrations supposing that the 
width of the circuit is much smaller than any character
istic length in the system. Relative to Fig. 1, this means 
that w« ll' w « '2, w « 12 -/1, and w « 13, This 
approximation is fulfilled in all the experiments we have 
seen on this subject. Due to this fact, we can calculate the 
forces between pieces not in contact using (I) and (2). 
Adding the forces of 6 on 4 (see Fig. 1),6 on 3, 1 on 5, 

(8) 

When we calculated the force between portions not in 
contact using (1) and (2), instead of (3) and (4), we im
plicitly'utilized that w « II, w« 12 - fl' and w« 
13, For the purpose of consistency, we must now expand 
(8) utilizing these approximations. This yields, neglecting 
terms of second order in wll], wll2, wli3, and above, 

F- A f1fJ2 [II l2 - II I] 
65 == - In - + In -- + In 2 + - y. 

41fw 12 2 (9) 

As F13 = Fts (Fig. I), we can get the resultant force 
on the bridge according to Ampere's force adding twice 
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(9) to the linear result (5). This yields y 

~ In -.1 _ In 2 2 3 "[ I I + ([2 + [2)'" 

211" W 13 

(/2 + 12)112 11 
+ ' I 3 + In 2 + - y. 

2 2 
(10) 

Before proceeding, we should observe that we could 
also arrive at (9) using a different and simpler technique. 
Instead of integrating exactly and then expanding the final 
result, we could utilize a series expansion of the inte
grand. This means, in general, that 

j"'" 2 
I = f(x) dx ~ wf(a) + "'- !'Ca) + O(w') 

" 21 
(II) 

where w « a. Using this procedure, we checked the 
result of (9). 

We now calculate F6S using Grassmann's force. It can 
be easily shown that this is exactly zero, without any ap
proximations. So, it could be thought that the resultant 
force on the bridge using Grassmann's expression would 
be given by (6). But this is not correct. Grassmann's force 
does not follow the action and reaction law for current 
elements. This means that the force of the bridge on itself, 
-G 
F BB, does not need to be zero (see Section IV). As we 
shall see, this is indeed the case for Fig. 1. Obviously, 
this does not happen with Ampere's force because it fol
lows Newton's third law even for current elements, which 
means that the force of any portion of any circuit (even 
an open one) on itself will be always zero according lO 

Ampere's expression. This shows that always F~B = O. 
Calculating the force of any piece m on itself (Fig. I, 

m = 1, ... , 6) with Grassmann's force, F;;'m, yields 
zero. Observing also that (F¥3)" = -(F¥,)", (Fro), = -
-G --+G _ --+G -0 --+G -"0 

(~f1)'" (F 31)0 - (F 5,.4);" (F 43)y ~ (F 53)}' = (F 34)" = 
(F 54)" = (F 3S)y = (F 45\' = 0, Yields that the resultant 
force of the bridge on itself according to Grassmann's 
force is given by FgB = 2(F¥4)y y. This was calculated by 
both methods indicatcd above, and the approximate result 
is given by 

= J.toI
2 

[In 12 - II 
4~ w 

_ In (12 - [I) + ((12 - 11)2 + I~)112 
I, 

3 J2 11 + In 2 - - In (I + ..fi) + - + - . 
2 2 2 

(12) 

So, the resultant force of the bridge on itself according 
to Grassmann's expression is obtained adding (6) to twice 
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Fig. 2. Second rectangular circuit with surface currenl densily. Bridge; 3, 
4. and 5. SUPP0r1: 6, I, and 2. 
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Fig. 3 (a) A representation of the comers of Ihe circuit of Fig. I. The 
individual lines of current (indicated by the arrows) are not closed. (b) A 
representation of the corner, of the circuit of Fig. 2. The individual lines 
of ~urrcnt (lOdicat~d by the arrows) arc continuous and c1o>cd. 

(12), namely, 

G -G 
FSH + Faa 

_ ftOI2
1 1n !l _ In I, + (13 + 

211" _ W 13 

(12 + 11)'" 
+23 +ln2 

I, 

3 J2 I~ - - In (1 + J2) + - - - -. 
2 2 2 

(13) 

This is similar to (10), but there is a small difference in 
the numerical constants. Later on we will discuss this dif
feren..:e. 

Our second circuit is that in Fig. 2. The only differ
ences relativc to Fig. I are in the comers, because now 
each line of current is closed (Fig. 3). In Fig. 3(a), we 
have the corners of the circuit of Fig. I, while in Fig. 
3(b), we have the comers of the circuit of Fig. 2. The 
forces between the pieces not in contact are still given by 
(5) and (6), as once more we suppose w « Ib w « 11 
- II, and w « I). Thc only aspects which are now 
changed relative to the previoLls results arc the limits of 
integration in (7) and (12). 

For Ampere's expression in the case of Fig. 2, we uti
lize (7), but now with)'s going from II to 12 - XS,)'6 going 
from X6 to 1[, while Xs and X6 remain going from 0 to w. 



Perfonning the integration in the order (Y5 -.. Yr, -.. X5 -.. 
X6) and expanding the final result, or expanding the inte
grand from the beginning, yields the same result as (9). 
This means that the resultant force on the bridge of Fig. 
2 is given by (10) according to Ampere's force. For Am
perc's force. there was no difference in this approximation 
for the situations of Figs. 1 and 2. 

For Grassmann's expression, we need to calculate 

(Fr4),., and the approximate result is given by 

where the limits of the integrals in X4 andY4 were obtained 
considering that: when )'4 = 12 - W, X4 goes from w to 
13 - w; when Y4 = f2' X4 goes from 0 to /.3 (see Fig. 2). 
That is, let us consider piece 4 of Fig. 2. The straight line 
between pieces 4 and 5 passes through the points (0, '2) 
and (w, /2 - w). This means that it is given by y = -x 
+ '2, or x = 12 - y. We obtain, analogously, the equation 
describing the straight line between pieces 3 and 4, 
namely: Y = x + (l2 - 13) orx = y + 13 - 12 , Now, 
consider in piece 4 a straight line passing through Y4 

(where '2 - w ::5 .\'4 ::5 Y2) and parallel to the x-axis. By 
the previous results, the left and right limits of this line 
in piece 4 are given by, respectively, X4 = L2 - Y4 and X4 

= Y4 + [3 - 12 , To cover the whole area of piece 4, the 
limits of integration are then those given by (14). With 
the same reasoning, we obtained the limits of integration 
for X5 and )'5' 

This approximate result was obtained expanding the fi
nal exact result (which can be obtained in closed algebraic 
fonn imegrating in the order X4 -.. Y5 -.. Y4 -.. XS), or in
tegrating the expanded integrand. Adding twice this result 
to (6) yields 

"~1'12 23 " I 1 1 + ([2 + /2)'" 
-- n- - n 
21r w I) 

+ 2 3 + In 2 + _ y. (12 + /2)112 I] 
L2 2 

( 15) 

This result is exactly the same as (10). This shows that 
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Grassmann's expression predicts exactly the same force 
on the bridge as Ampere's, even for this single closed 
circuit! But, in order to arrive at this extremely important 
result, we needed to take care of two aspects. The first 
one was to include the force of the bridge on itself when 
working with Grassmann's force (see Section IV). The 
second one was to utilize a circuit with only closed and 
continuous lines of current. Because Wesley did not in
clude these two aspects in his calculations, he wrongly 

(14) 

concluded (15J that Ampere's force was the only one 
compatible with the experiments. Later on we will return 
to this point. 

It can be observed that (10) and (15) do not depend on 
I], which is the height of the bridge. We confirmed this 
result with the circuit of Fig. 4, which is similar to that 
of Fig. 2 in the limit II -.. 12 , In this circuit, the support 
is given by 1,2, and 4, while the bridge is only piece 3. 

By symmetry, or by direct calculation, it can be shown 
that the force of each piece on itself is zero according to 

"'A -G 
Ampere and Grassmann's forces, namely, Fmm = Fmm = 
0, m = 1,2,3, and 4 (see Fip'. 4). It can also be shown 

... A _ ~G _ 4',1 _ ... A -G _ 
that (F IJ), - (/" 13) ... - 0, (Fn), - -(F43} .. (Fn)", -

.... G -A _ -A .... G _ -G 
-(F d" (F 23)r - (F dY' (F 23»' - (F d)" Iherefore, the 
resultant force- on the bridge is given by F1B = [2(Ft),. 
+ (F1~»']Y, FrB = [2(F¥3\' + (F?3).I'lY. The forces (F~3)~' 
and (F?3)v can be obtained using (1) and (2) as we are 
supposing w « 12 and w « 13 , These forces are given 
by 

(16) 

(17) 

The forces between parts in contact are given by (ex
panding the integrand and integrating in the order X3 -.. 

Y4 -.. Y3 -+ X4): 

1 + (1 2 + (2)'" 
I 2 2 3 - n (18) + In 2 + ~ 1 I, 

In 2 + ~J (19) 
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Fig. 4, Third rectangular circuit with surface current density. Bridge: 3, 
Support: 4, I, ami 2_ The corner:. urc like those of Fig. 3(b) 

where we have considered that X3 goes from w to 13 - w 
when Y3 = 12 - w, and from ° to l3 when Y3 = 11 
(Fig. 4). 

Adding twice (18) with (16) yields (10). Adding twice 
(19) with (17) yields (10) or (15). Again, Ampere and 
Grassmann's forces agree exactly on their predictions. We 
now pass to integrations with volume current elements. 

III. CIRCUIT WiTH VOLUME CURRENT ELEMENTS 

We now study the circuit represented in Fig. 5. As we 
have volume current elements, we must replace (1) to (4) 
by 

(20) 

where J is a volume current density and dV a volume 
clement. As we are supposing a uniform flow over each 
piece of the circuit, we can write 1 J 1 = Ilw 2

, where I is 
the current flowing through the cross section of the wire 
(supposed to be a square with side w). See Fig. 5. 

We continue supposing w « II> w « 12 - II and 
w « l3' The forces between the parts not in contact are 
given by (5) and (6). In this case, it can also be shown 

~A ~G A that F",m = Fm", = 0, m = 1, ... ,6. Moreover, (F I5),,, 

A A FA FA FA (F' = -(F u )., (F64 )x = -( 14)n ( 25)x = -( 63)"" 15»' = 
(F13»', (Ftt)y = (F~4»)" (F~5)y = (Ft})", (F14)x = 0, (FtS)", 
= -(F13)x, (F25)y = (F13)\', (F¥3)x ~ -(F¥5)n (Ft,}" = 

G G G'G G G 
-(F~5)x, (F 34 )" = (F 54 )1" (F4,)" = (F53)Y = (F 34 ), = 

G G - G - G - . 
(FS4)x = (Fd,. = (F4S »)' = (F 65 »), = 0. 

This means- that the resultant -forces on the bridge will 
. ~ A .... A .A A --+G --+G --+G 

be given by FSB = F + 2(}6S),Y and FSB + FBB = F 
+ 2(Ff4M', where FA and pG a-re given by (5) and (6), 
respectively. Using the expansion of the integrands we 
obtain, integrating in the order Y6 --+ Ys --+ Xo --+ X5 --+ Z5 
----;. Z6 (see Fig. 5), 

, , / , , 
, , 

,~ ) I- 9, 

, , , 
, , '. , w 

o w o w 

Fig. 5. Rectangular circuit with volume current density. Bridge: 3, 4, and 
5. Support: 6, I, and 2_ Uniform direction of the current in each piece: 
I --+ +_t.2 .... +.9,3 .... +.9,4----> -i.5 .... -)'.6 --+ -)'. 

[(x, - X6)2 + (Ys - Y6)2 + (Z, - Z6)2]3/2 

3(Y5 - Y6)3 -J 

[(X5 - x6i + (Y5 - Y6)2 + (Z5 z6/f/2_ 

== t-tJz [In Iz -II + In!.! + ~ln2 + 1
1
3
2 

- "3] 
41f [z w3 

(22) 

where we have considered that Ys goes from [I to 12 while 
X5 = 0, and from [I to 12 - w while Xs = w, We also 
considered that )'6 goes from ° to II while X6 = 0, and 
from w to II while X6 = w. 

Twiee this value added to (5) yields the resultant force 
on the bridge according to Ampere's expression 

I'l I I + ([2 + e)'" A ~ In 2 -ln' , 3 FsB ==-· 
21f W 13 

+ 2 3 + _ In 2 _ - + _ . (12 + 12)112 2 1f 13] 

~ 3 3 12 
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Twice this value with (6) yields the resultant force on 
the bridge according to Grassmann's expression 

F SB + F BB == -'- In --.3. _ In 2 2 3 
-->G -G /.t [2 [- I I + (12 + [2)112 

211" _ W 13 

(12 + 12)112 2 
+ 2[3 +-ln2 

, 3 
(25) 

which is exactly equal to (23). 

IV. DISCUSSION AND CONCLUSION 

Results (5), (22), and (23) had been obtained by Wes
ley 115], and we checked them by these independent cal
culations (he did not consider any circuit with surface cur
rent elements). On the other hand, he considered only (6) 
as the resultant force on the bridge according to Grass
mann's expression. But, as we have seen, this is not cor
rect because it is essential to calculate also the force of 
the bridge on itself, and he did not consider this contri
bution. Obviously this is not necessary with Ampere's 

~, 

force because, as we have seen, F BB = 0 for any kind of 
bridge. So, his conclusions that Ampere's force is the only 
one compatible with the experiments of Moyssides and 
Pappas l6] is not correct. If Ampere's force explains them 
correctly as he has shown, then Grassmann's force will 
have exactly the same perfonnance, as we have seen here. 

His claim that Grassmann's force predicls bootstrap ef
fect is untenable, when we consider the action of the cir
cuit on itself as a whole. Grassmann's force on a part of 
the closed circuit results from the action of the whole cir
cuit (support + bridge) on that part. So, when calculating 
the force on the bridge due to the whole circuit, we also 
have to take into account the force exerted by the bridge 
on itself. This was not taken into account in Wesley's 
work. The division of the circuit in support and bridge is 
merely for mechanical distinction (these are two mechan
ically independent parts that could move relative to one 
another). Electrically it is one closed circuit. For more 
discussion about this, see [10, p. 4310]. 

If we speak in tenns of the magnetic field, the conclu
sion of this work is that we must consider the whole mag
netic field created by both parts (support + bridge) since 
we have one electrically closed circuit. Therefore, in this 
case, since Grassmann's force predicts magnetic fields, 
the magnetic field of the bridge (along with that of the 
support) contributes to the net force or motion of the 
bridge, as a whole. 

Moreover, we showed that it is necessary to consider 
all the lines of current to be continuous and closed, as is 
the case in all real experiments, in order to obtain correct 
results. Obviously, the situation of Fig. 2 is idealized. It 
represents better the experimental situation than the cir
cuit of Fig. 1 with its open lines of current. As we showed 
in Section II, the correct representation of the lines of cur
rent in the circuits will have an important influence on the 
values predicted by the forces, especially with Grass
mann's expression. 
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Olher calculations of which we have knowledge, and 
which compare Ampere's force and Grassmann's force, 
are based on numerical integrations [10], [141 or calcu
lating the force via self-inductance [1IJ. Whenever they 
considered the action of the closed circuit as a whole and 
closed lines of current, the result was the same as ours: 
Ampere and Grassmann's expressions predict the same 
resultant force on the bridge. As Ampere's force agrees 
quantitatively with Ampere's bridge experiments, the 
same happens with Grassmann's [IOJ, [II}. 

Our work is complementary to that of Moyssides [10]. 
What he proved numerically in some geometries was 
proved here algebraically in other situations. 

There is another aspect to be touched upOn. If we make 
w ~ 0, then (10), (13), (15), (18), (19), (23), end (25) 
will go to infinity. These are the divergences which ap
pear in Ampere's force when we utilize (1) to calculate 
F~5 (Figs. 1,2, 5), or F13 (Fig. 4). With Grassmann's 
force, these divergences appear when we calculate F~4 
(Figs. 1,2,5) or Ff3 (Fig. 4) using (2). This shows why 
we needed to utilize surface and volume current elements 
to avoid these divergences. 

In this work we have showed the equivalence between 
Ampere and Grassmann's expressions in Ampere's bridge 
experiment, for the resultant force on the bridge due to 
the whole circuit. It is not our goal to discuss here the 
stress distribution caused by these forces. Further re
search is necessary on the subject [16]-[18]. 
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