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Abstract The electromagnetic waves in a uniform, magnetized plasma,
bounded by a cylindrical waveguide are studied using warm plasma theory.
In the case of a cold plasma, backward electromagnetic waves are cbtained
which exhibit the phenomenocn of Faraday rotation, in contrast to the Trivel-
piece and Gould electrostatic modes which do not show this characteristic.
Numerical resulis are presented for the linear LISA machine. A general-
ization of the Ghosh and Pal dispersion relation for a warm, magnetized
plasma is derived.

1. Introduction

The study of the characteristic modes of electromagnetic oscillation in waveg-
uides has continued to be an imnportant research topic in the last few yvears!™2. A
global treatment of the problem is always necessary when the wavelength of the
perturbation is of the same order as the dimensions of the system.

The purpose of the present paper is to include the electron temperature in the
Trivelpiece and Gould problem*®. Moreover, the study will not be restricted to the
slow wave cases (w®/k? << ¢?) and a greater number of modes will be analysed.
We study a particular case of a slow electromagnetic wave in a cold plasma and
discuss its difference to the slow electrostatic wave obtained by Trivelpiece and

Gould in the same range of frequencies. We also generalize the dispersion relation
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of Ghosh and Pal®, which was obtained for a warm, magnetized plasma completely

filling a cylindrical waveguide of circular cross section.

2. The Basic Equations and the Dielectric Tensor

The Trivelpiece and Gould problem is studied including the electron temper-
ature and the perturbed part of the magnetic field. The plasma is then ireated as
an adiabatic flnid in which the ions are at rest. This approximation is valid in the
highfrequency limit,w >> wy; and w >> w,;, when the ions motion is completely
negligible. The presence of a constant external magnetic field along the waveguide,
By, is included in the model. A linearization process is applied, where we assume
small sinusoidal perturbations from steady state. This means that the perturba-
tions have an exp(—iwt) time-dependence, where w is the angular frequency of
the electromagnetic field. The equations are obtained in the absence of an equi-
librium electrostatic field, Ey = 0, and of an electron drift velocity, €5 = 0. The
first order equations which describe the system are the equations of continuity, of

momenturn transfer and Maxwell’s equations. With these assumptions they take

the form, respectively’ 10
twp, = nomUtV - iy, (1)
twngmily = noe[El + 1y % Eo) + Vo1, (2)
V x E1 = wwpoHy (3)
v * f?l = ——iweofh — noeﬁ.’l B {4)

where py,no,m,U(= (')'kBTg/m)%), ~, kg, To. @1, —e, E1, H1, so and € are, Te-
spectively, the perturbed pressure, fluid density, electron mass, electron thermal
velocity, ratio of specific heats (usually v = 5/3), Boltzmann’s constant, elec-
tron temperature, perturbed fluid velocity, electron charge, perturbed electric and
magnetic fields, vacuum magnetic permeability and vacuum dielectric constant.
To obtain these equations we assumed also that the electron collision frequency is
much smaller that the wave frequency w.

In this work the propagation of electromagnetic waves in a plasma-filled eylin-

drical waveguide of circular cross section is studied. We assume that By is in the
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direction of the waveguide axis, Z axis of the coordinate system, and suppose a
wave perturbation of the form exp(ikz — inf}. Applying eq. (1) and eq. (2) and
the result in eq. {4) yields

foﬂ:—e'w?-E‘l, (5)

where

> € 9 2. a4 _ard® 1d 1  wyld 1
A G AR =R =i e e | | B
3, =t [ 2We z(li_l_%]

()1 wz—wg[w”w nU rdr r? ri"w}’

-2 __m;.k.U2 d nw,

(13 = w? — w? (dr rw )’

B, ot [ 2w _ z[&(f_ 1£_1)_ 1d i)]}
(= wz—wf{w”w v W dr2+rdr r2 n(rd?“+‘r2 ’
Ho—_© fo2_ .3 2 2]We li_l)A;’i}}

(€)22 w2—w§{w wp —we +nl [w(rdr .l rzl]?

(Hzs = —“w_(—— - —) :

(a31 _ 1egk U (ri n 1)’

rwl dr
=S negkl/?
(s = ——
2 2 papre
- W — ws —~ kAU
_ P
(€)as = o7

Here wp and w, are, respectively, the electron plasma frequency and electron

cyclotron frequency given by

!
noe® 12 eBo
Wy : s We = m N (6]

In (5), £ is the warm plasma dielectric tensor. Due to the global treatment

of the problem its elements have spatial derivatives which operate on the electric
field components. The usual infinite warm plasma dielectric tensor is obained
from (5} to (6) imposing 1/r — 0 and d/dr -+ 1k, . The radial derivatives become
important when the wavelength of the perturbation is of the same order as the
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radius of the waveguide. In this case a global treatment is necessary!! and a plane
wave propagation cannot occur.
3. Equations for the Field Components

With (1) and {4) we obtain p; and ] in terms of By and H,. Applying this
result in (2) yields

3 te = = . (W2 —wg) — 12
VXHlZ—@(VXHl)XBU—SWEOTE‘* 1+ OE!XBO
&U? -
oG (v ). (7
Applying (3) in (7) yields
dE, dH,
GE, =B +nBiH, + Ci" % + D= Z (8)
. D dE dH,
-;GE,;:EEEE +f‘-—‘ff +rd; = (9)
dE, dH,
GHy = nsE; + nBall, + Co— =+ Dy * (10}
D dE; dH,
iGngﬁgiE +" 2H, +rA — ol (11)
where
2
74
G=ki— =Lk},
w? 172
kr= = &2
f (cg k ) y
3 g 1/2
ke ((w ) k’) ,
C
thwe | 4 AUt fro2 2
Ay = Tt w [wp+ ( 2_U2)k2(VJ_+kg) s
w i
By = po— {kf - (j) k“}] ,
_ 2 we 2,2 U*k? 2 2
Cy =ik [ke - (%) e+ AR
i lad
D, = -2
[ 4]
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el [, B v )
2 rw ¢ (WP -wd) (WP w)(? TP
kuwow?
By = —i—o?
Twe

o (WP —wp)  KJSUNTE + kD)

o2 - w2(e? — U?)

2
D, = ik {kf— (“’;) k}] ,
Vi< gn rdr  y2°

¥

Cy = —eque [ki - K:

Applying (8) to (11) and (1) in (2) yields

I —tew
T om(w? ~ wi)
wenetUHGE +ENE, QUG + K2} dE,
X |Ey —z—Eg— - L +1 L , (12)
[ w  rhwi(c? - U?) kw2{c? — U%} dr
vy — —tew
' mw? — w?
2[72( 2 2 2 2
We meU2(74 + kZ) wccU[v + k2) dE,
Y g, 1T e VAV T ) , (13
X {t ot By + kw2{e? — U?) Es - w kwi(c? —UE) dr (13)
: 2rr2 (2 2
te U2 (71 + kf)
= = 1= ¥ e . i4
e mw { w?{c? — U?) E: (14)

From (8)—(14) we see that all the transverse field components and all the
components of the fluld velocity are obtained in terms of E,; and H.,.

Applying the rotational operator to both sides of equation {7) and using (3)
yields

—teoctw, |w —k3U2 U2

k(< — U?)

(Vi +KD)H, = (72 +&2) + ”k2 E,. (15)

Applying the divergent operator to both sides of equation (7) and using the

rotational aperator of both sides of equation (3) yields
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(V2 + K H, = — Uty <
L+kD)  powe LY k=Y
U2 wl — Wl y?
x (S Vh k) (V2 + -k )]E (16)

From (15) we abtain the equations for H, when By = 0 and also the equation

for E; when By — oo, namely
(Vi + &2} H. =0, (17}

(Vi+KL)E, =0, (18).

where

1
H
W — K2R} (w? — K2U? — wh)
& (w? — K2U?)

kym =

From (16) we obtain the equation for H, when By — co and also the equation

for E, when Bg = 0, namely
(V4 + k%) Be =0, (19)

(VE+E)(Vi+E)E. =0, {20)

1
2 2 z
ks:(w _wp—fcf) .
U2

In the case of a nonzero and finite magnetic field we can combine equations

{15} and (18) to obtain

where

—~fedlJ2

Hz-_ gkwwz( Ug) (vJ_+k )(VJ_‘}‘kz)Ez, {21]
c
where
2 Ii(zz—-iy)%
ki =
2
wcsz_szz
Tkt -
K2p? _ (Ye [ yw? — kU g 362U
y=kek ( ) k, e +kwp TiE
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Equation (21) shows that E; and H, are coupled in the situation of a finite
magnetic field. As a consequence, the waves cannot be separated into TE and TM
modes and only hybrid modes can propagate.

Applying the operator (7% + £?) to both sides of equation (21) and using (15)

vields
(V5 + 5 vl + b vl +8)E. =0, (22)
where .
wey % w? — k22
b1:2k§+k§—(ﬁ) el
Y 2,2 wey? 2 oy W — KEU2 2 2c2“U2
by =k} 4+ 2k2k2 — (:) [(ke +k}) —r e |
_ p4p2 weN2 o (a0 —~ KU 2, 26 —U?
b3_keks—(;~) A-.f(k, R )

Equation (22) can also be obtained directly using (3) and (5). This sixth order
equation for the longitudinal component of the electric field is more general than
that obtained by Ghosh and Pal® . Those auhors, beginning from the same set of
equations (1) to (4), arrived at a fourth order equation for E,, due to simplifying
assumptions (not specified). Moreover they only studied the circularly symmetric
waves, n = 0, while the analysis of this paper is valid for any mode n.

Equation (22) can be written in the form

(V3 + &)V +65) (V] + K)E. =0, (23)

where ky, ks and ki are analytic functions of b;, b; and b3, obtained by Cardan’s
formula. Cardan’s formula gives algebraically the values of the roots of a cubic

equation as a function of its coefficients!®.

4. Dispersion Relations

In order to obtain the dispersion relations we need to specify the boundary
conditions. Assuming a perfectly conducting metallic cylinder of radius R limiting

the plasma we havel®14 ;

E.(R) =0, Eg(R) =0, H,(R) =0, u(R) = 0. (24)
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These are the boundary conditions for this problem. They require that the tan-
gential components of the electric field and the normal component of the magnetic
field vanish at the perfectly conducting wall. They also require that the normal
component of the fluid velocity vanishes at the rigid metallic wall. It should be
noted that the boundary condition for the mjagnetic field in equation {24) is differ-
ent from the one utilized by Ghosh and Pal®, namely, H,(R) = 0. Our boundary
condition, H,{R) = 0, is justified because we have a metallic boundary?!.

The dispersion relations obtained in this paper are for the situation of a finite
magnetic field or for the situation when the magnetic field goes to zero. The
dispersion relation for the case of infinite magnetic field and a cold or warm plasma
can be easily obtained using (18) and (24). This is a known result'®, and will not

be presented here.

4.1 Case of Zero Magnetic Field

There are three regions in the w versus & plane. Region I: k% > 0 and kZ > 0.
Region II: k2 > 0 and k? < 0. Region III: k2 < 0 and k% < 0. These regions are
presented in Figure 1. The solutions of (20} and (17) which are finite at the axis

are
Region LE, = AypJu(rke) + BinJu(rk,} ,
H, = Cann(rke) ) (25)
Region TL:E, = Agn @y (rkez) + Bandynirk,) ,
H, = CZnIn.(rkez] f (26)
Region IILE, = AzeJu(rkes) + Banln(rks2) ,
H, = C3nIn(fkez]s (27)
where

1 R 1
w? — wi H Wt — wi H
kez - (k2 - TE) , ks? = k?' — Uz P ,

and where J;(z) and I,(z)} are, respectively, th nth-order Bessel function and
modified Bessel function of first kind.
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Wy

w2 oE +x5C?

4] k

Fig. 1 - Distinct regions in the W versus k diagram. Case of zero magnetic field.

Application of the boundary conditions yields the dispersion relations

Region I:
2 Ta(Rho) TRk | K JR(RE)  w( ~ iy (28)
Ju(Rk;)Jo(RE) * kok, J2(RK.) kok3cIR? '
Region II:
2 I ReNL (Bh) K] 2 (Rkea) | PP(W” —wilw] (29)
Jn(Rks) I (Rkos)  ksker I2{Rke2) kok3,c2R? ’
Region HI:
oL(Raly(Rha) _ K DHREg) | w2’ —wf)e )

InRkeaIn(Rkez)  ksokes 12(Rkez) ksa k3, cTR?

where J),(z) and I}, (z) mean derivatives with respect to the argument. Figures
(2) and (3) show the graphs of frequency versus wavenumber for (28) to (30). The
values of the density, guide radius and plasma temperature are those of the linear
LISA machine, of Universidade Federal Fluminense, Brazil'®17. In regions I and II
there are infinitely many curves and from Figure 2 we see that they pass smoothly
from region I to region II. In region III there is only one dispersion curve for each
temperature, which tends asymptoticaily to the plasma frequency for & — oco.
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a Fr. 10 ) . . - ten B
3 |00l s Fig. 2 - Dispersion relation when Dg =
3 e P:'? 0,n =0, kpTy = 40eV, wp =
ooz ' 5.040 x 10'° 57!, R = 0.085m.
o Modes p1,1; P1,5; P1,10i P1,15 and
P1,20.  Imitial polnts obtained from
10008 Ji(Rk;) = 0. Region w > wp.
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RAak
Fig. 3 - Dispersion relation when By = 0, n = 0, w, = 5.040 x
100 s~ R = 0.085m. Region w < wp. The lower curve is for the LISA
temperature: £gTy = 40eV. The upper curve is for kpTh = 1.3TkeV .
Results (28) to {30) are a generalization of the results obtained by Ghosh and
Pal®. Their dispersion relation is only valid for the lowest circularly symmetric
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mode, n = 0. When n # 0 only hybrid modes can propagate because the TE
and TM modes cannot satisfy simultaneously all the boundary conditions (24).
This case of zero DC magnetic field was also studied by Azakami, Narita and Aye
Thein!®, who showed that when n = 0 the waves can be separated into transverse

electric and transverse magnetic modes.

4.2 Case of a Cold Magnetized Plasma

From (21) and (22} we obtain, in the limit Ty — 0:

(w — w2 — wk)
Hy= g P77 k2 3
z I-‘-Okwcwg (\7J_ + ]Eza ( ]
(V1 + K)o + kB E: =0, (32)

where

1
o = wz—wg wzkf—wfk? z
B = L
[

»

b A—D3)*
A= F 3

"
b = | AT DI
B = F L]
A=— {w + kZe?) + 20 (w? — g—kzcz}(w wz—wc)
D—f-‘-"*"f’wg( k262) +4w2k202(w2~—w§)] : .

F =220 (wz—wg—wf) .

Accepting complex arguments, the solution of {32) which is finite at the axis

is given by
E, = A,J, [rkA) + By Jp (rch) - (33}

Applying (24) in (33), (9) and {12) yields the dispersion relation

JL( Rk 4) J! (Rkp) nD7
—kp - =0. (34)
Jr(Bka) Jo(Rkp) wwiw.RkZc?
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This is the dispersion relation for a hybrid electromagnetic mode. As thisis an
odd function of n, Faraday rotation of the plane of polarization will happen. This is
due to the different phase velocities of the n = + N and n = — N modes, where N is
any natural number. A superposition of these two modes yields a composite wave
in which the direction of polarization will be rotated as a function of distance along
the guide!'®. Trivelpiece concluded that an electrostatic wave does not present
Faraday rotation when excited in a cold plasma-filled waveguide, although it will
present this rotation if the cold plasma only fills the waveguide partially®. Here
we see that an eleciromagnetic wave in a cold plasma-filled waveguide presents
Faraday rotation.

In the imit of slow waves (w/k << ¢}, eq. (84) yields

JI(RT) L(Rk) nw.
TJn(RT) - k},,(mc) T Re O (85)

where

S PIEERJC RO
. wHw? — wg —w?)

Here we see that Faraday rotation will also be present for these slow electro-
magnetic waves. A qualitative graph of this dispersion relation is presented in
Fig. 4 for te case w, < wy. Tﬁere we can see that backward electromagnetic
waves are predicted in the region wy < w < wyg, where wyg = (Wi + wf]% This
is confirmed in the numerical compﬁtation presented in Figs. 5 and 6 with the
values of the density, guide radius and DC magnetic field of the linear machine
LISA'S!7 There are infinitely many curves in the region w < w, and in the region
wp < w < wyy, but we only present 5 curves in Fig. 5 and 3 curves in Fig. 6. If
wp < w, then the backward waves will be in the region w. < w < wys, while the
passband for the forward waves will be in the region 0 < w < wy.

Waves in these ranges of frequenc.ies were detected experimentally by Triv-
elpiece and Gould*®. They interpreted their result as being electrostatic waves

satisfying the dispersion relation

J.(BRT) =0, (36)
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C\J“
o \
Wp =

\

¥ig. 4~ Dispersion relation for slow electromagnetic waves in a cold plasma-filled

]' .
waveguide. Wy = (wl + w?) 2. Case in which we < wy. Whistler waves in
the region W < w, and backward waves in the region Wy < W < Wy -

35T —

—  2F
) F

306 |-

2.55 —

2.04 -

A
3
Y
3 s -

1,02 — (N
28
3B

0.5 |—

0.00 | | | | | |

4] 6.3 17T 255 34 42.5 51

Rak
Fig. 5 - Dispersion relation for kgTh = 0, R = 0.085m, w, = 1.57 X
1010 671, wy, = 5.04 x 1010 571, wyy = 5.28 x 101% 571, n = 0.
that 15, RT = pn,. But some remarks should be made. The first is that (36) was
obtained by Trivelpiece applying the boundary condition ¢;(R) = 0, where ¢y is

the electrostatic potential (for electrostatic waves the electric field is derived from
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3.35

33z
|7
3
e,
3 229
326
3.23
320 ! l | | | |
0 8.5 I g 255 34 425 51
Rxk

Fig. 6 - Backward waves for kpTy = 0, B = 0.085m, n = 0, wp, =

5.04 x 107 57} wpg = 5.28 x 1019 571,
a scalar potential). This yields E,(R) = 0 and Ey4(R) = 0, as can be seen from
equations (II1.23) to (II1.26) of Trivelpice’s work (1967). But ¢, (R) = 0 does not
yield u,(R) = 0 as can be seen from equation (IIL.6) of his work. However, it was
shown by Ferrari?® that the electrostatic approximation is reasonably accurate and
can describe the waves very well.

Ouwr interpretation is that the waves detected were slow electromagnetic waves
satisfying (36) and not slow electrostatic waves satisfying {35). Eq. (35) satisfies
all the boundary conditions (24), while (36) does not. We suggest a way to resolve
this question: the measurement of Faraday rotation for the backward and forward
waves, Trivelpiece and Gould did not report any measurement of this kind in the
experiment in which the plasma completely fills the cylindrical wavegnide. The
dispersion relation ‘[36) does not predict any Faraday rotation when the modes
n = +1 are excited simultaneously. But according o (35) this should happen.
However, the magnitude of this Faraday rotation, if it exists, should be quite
small in most cases.
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4.3 Case of a Warm Magnetized Plasm

The solution of (23) which is finite at the axis is
E:= A0, (l’k]) + BuJs (?’kg} + C’an(rk;;} . (37)

Applying (37) in (21) yields

_ —ie??
pokw wl{c? — U?) '

+ Bu{k% — K2) (k% — k2) T (rk2)

+ Ol — KE) (K ~ k) Ja(rks)] - (38)

H.

[An (2~ KD — kD) Ja(rk)

Applying (37), (38) and (8)-(14) in (24) yields

n?(Fy(Ly — Ls) + Fa(La — L1) + Fa(Ly — L2)] + n[Py(F3 — F2) + Q1(L2 — L3)]
I (REy) Jy (Rkz)

X T.(BR) T (Rks)

+ n{Py(Fi — F3) + Qa(Ls — I4)]

+ 1 [Py{Fy — Fy) + Qa(Ly — Ly)] %
Jr(Bk1) Iy (REy)
Jn(RE ) o (RE)
Jrn(Bkg)Jy (Rk3)
Jn{Rka)Jo (RE3)
Jn(Rka) T (Rk1) 0
T (Bs) I (REr)

+ (@1 - PiQ2)
+ (@2 P3 ~ P2@a)

+{Qs P — Pagh) (39)

ki

where
UPRZ (k2 — k3) + (k2 — k3 (k2 — k1))
P Ri(c? — U?) ’

— —kj
- kwlwiG(c? — U?)
+ EPwp{e® — U)Wk} — wlk}) + U} (kS — kD) (k2 — k7))

P, WHUR(R: — K6 + KEd)

U2
L; =
7 RkwwwlG(ct — U?)
x [wi(k? — kDG + kwl) + Hwk? — Ik (K — K1) (R — k)],
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—k;
@ = 2{c? - Uz)wgkwwc
X [KPwlwi{e? ~ U?) + wfk}Ugwgcz{kf ~ k%)

+ AU WS — WBRD) (K — KD (R — kD)

and where j = 1,2 or 3.

This is the dispersion relation for a warm magnetized plasma completely filling
a cylindrical waveguide. Eq. (39) is the most general result of this paper.

As this equation has odd powers of »n the phenomenon of Faraday rotation
appears again. Another point to note is that this dispersion relation refers to the
hybrid modes due to the coupling between H, and F; in eq. (21).

This dispersion relation is more general than that obtained by Ghosh and Pal®,
Eq. {39) is valid for any integer n and was obtained without further simplifications
besides those required by the model. Eqs. (1) to {4), solution {37) and boundary
conditions (24) yield, after a long algebraic manipulation, the dispersion relation
(39. No other simplifications were made. Applying the limit Ty — 0 in (39) yields
(34), as expected.

The main point of this section was to obtain the general dispersion relation
eq. {39). In Figures figs. 7 to 9 we present the dispersion relations, eq. (39), for
modes with n = 0, n = 1, n = —1, respectively. We present in each figure the
six lowest modes in each case. The parameter £ indicates the number of times the
component E,(r] goes to zero for 0 < r < R. We utilized the following parameters:
kpTo = 40 eV, w, = 1.20 x 10'° 571, w, = 1.50 x 10'° s™1.

In Fig. 10 we plotied the Faraday rotation for the case n = £1, eq. (39).
This was obtained for £ = 1 (see above). From it we can see that although “the
elecirostatic theqry_ is reasonably accurate”?® ;| our model indicates that Faraday
rotation at this temperature can be detected in the laboratory. For instance, for
a frequency w = 1.14 w, we expect a Faraday rotation of ~ 3 rad if the waveguide
length is ten times its radius.
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Fig. 7 -Backward waves for kpTy =
40 ¢V, R = 0.085m, n = 0,
wp =1.20 %100 571, w, = 1,50 %
10'° 51, The parameter £ indicates

the number of times E,(r) = 0 for
0<r <R

Fig. 8 - Backward waves for kT =
40 ¢V, B = 0.085m, n = 1,
wp = 1.20 x 101° g7 w, = 1.50 x
161° s71. The parameter £ indicates
the number of times Ez('r] = 0 for
0<r< R.
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106 Fig. O - Backward waves for kgJp =
. 40 ¢V, R = 0.085mn = -1,
Losk wyp = 1.20 x 1019 s71, w, = 1.50
- 10!° g1, The parameter £ indicates
10O ] L L 1 f«p the number of times Ez(r) = 0 for
Yo 3 & 5 12 15 |1a 21 0<r< R,
Rxh
Conclusions

In this paper we studied the propagation of electromagnetic waves in a plasma-
filled cylindrical waveguide of circular cross section. We obtained the global dielec-
iric tensor of a warm magnetized plasma and showed that its elements have spatial
derivatives which operate on the electric field components. With the solution of
the equa.tiéns for E, and H,, together with the appropriate boundary conditions
we obtained the dispersion relations in several situations.

In the case of zero magnetic field we concluded that only hybrid modes can
propagate when n #£ 0. In the case of a cold magnetized plasma we obtained a
dispersion relation which is an odd function of n, indicating Faraday rotation for
the electromagnetic waves. For slow waves we arrived at two passbands where
excitation of the modes can oceur: if w, < wp when the passbands are w < w, and

wp < w < wygp; if wp < w, then the passbands are w < wp and w, < w < wyp. We
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witde

Fig. 10 - Faraday rotation for kgTy — 40 eV, R = 0.085m, n = X1,
wp = 1.20 X 1019 571, w, = 1.50 x 100 671, £ = 1,

then showed numerically that in the upper passbands we have backward waves.
To distinguish what the waves detected experimentally by Trivelpiece and Gould
in this range of frequencies were, i.e., to determine if they were electrostatic or
eleciromagnetic in nature, we propose the measurement of the Faraday rotation
of these waves. A rotation of the plane of polarization would indicate that they
were electromagnetic waves while a fixed polarization would indicate that they
were electrostatic waves. Finally, in the case of a warm magnetized plasma we
generalized the results of Ghosh and Pal. The general dispersion relation came
from a sixth order equation and is valid for any angular mode n.

We presented three curves for this general dispersion relation and also one

curve for Faraday rotation indicating its magnitude in a typical situation.
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Resumo

840 estudadas as ondas eletromagnéticas em um plasma uniforme, magne-
tizado e limitade por uma guia de onda cilindrica usando a teoria de plasma
morno. No caso de um plasma frio, sio obtidas ondas eletromagnéticas retrégadas
que exibem o fenémeno de rotagiao de Faraday, em contraste com os modos elet-
rostaticos de Trivelpiece e Gould que nio apresentam esta caracteristica. Resul-
tados numeéricos sdo apresentados para a maquina linear LISA. E derivada uma
generalizagdo da relag@o de dispersao de Ghosh e Pal para um plasma magnetizado
€ morno.
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