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This book is dedicated to the memory of Wilhelm Eduard Weber (1804-
1891). He was one of the main pioneers in the subject developed here, the
study of surface charges in resistive conductors carrying steady currents. We
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Foreword

Is there an interaction - some reciprocal force - between a current-carrying
conductor and a stationary charge nearby? Beneath this simple question lie
some remarkable misunderstandings, which are well illustrated by the fact that
the answers to it commonly found in the scientific literature and also in many
text books are incorrect.

In case there is any uncertainty about the answer, all doubt will be eliminated
by this book. It tackles the question in a brilliant and comprehensive manner,
with numerous hints for relevant experiments and with impressive mathematical
thoroughness.

It is astonishing to learn that, as early as the middle of the 19th century, the
German physicists Weber and Kirchhoff had derived and published the answer
to this problem; however, their work was poorly received by the scientific com-
munity, and many rejected it as incorrect. The reasons behind this scientific
setback, which are presented in detail in this book and supported with numer-
ous quotations from the literature, represent a real treasure trove for readers
interested in the history of science.

It becomes clear that even in the exact science of physics people at times
violate basic scientific principles, for instance by referring to the results of ex-
periments which have never been carried out for the purpose under discussion.
This book helps readers not only to develop a detailed knowledge of a seriously
neglected aspect of the so-called simple electric circuit, but reminds us also that
even eminent physicists can be mistaken, that mistakes may be transferred from
one textbook generation to the next and that therefore persistent, watchful and
critical reflection is required.

A didactic comment is appropriate here. The traditional approach to teach-
ing electric circuits based on current and potential difference is called into ques-
tion by this book.

When dealing with electric current one usually pictures drifting electrons,
while for the terms “voltage” or “potential difference” one directly refers to the
abstract notion of energy, with no opportunity for visualization. Experience
shows that only few school students really understand what “voltage” and “po-
tential difference” mean. The inevitable result of failure to understand such
basic terms is that many students lose interest in physics. Those whose confi-
dence in their understanding of science is still fragile, may attribute failure to
grasp these basic concepts as due to their own lack of talent.
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Physics remains a popular and crucial subject, so the large numbers of stu-
dents who each year study the subject implies that the search for less abstract
and therefore more readily understood alternatives to traditional approaches is
urgent.

This book offers such an alternative. It shows that in respect to surface
charges there is no fundamental difference between an electrostatic system and
the flow of an electric current. It refers to recent curriculum developments
concerning “voltage” and “potential difference” and presents a comprehensive
survey of related scientific publications, that have appeared since the early pa-
pers by Weber and Kirchhoff.

Why should we refer to drifting electrons when we teach electric current
and yet not refer to drifting surface charges when teaching voltage or potential
difference?

The final objective of the curriculum when voltage is covered will certainly
be to define it quantitatively in terms of energy. For didactic reasons, how-
ever, it does not seem to be justifiable to omit a qualitative and more concrete
preliminary stage, unless there is a lack of knowledge about the existence of
surface charges. In the present market there are newly developed curriculum
materials that cover basic electricity, to which the content of this book relates
strongly. Comparison of the approach that this book proposes with more tra-
ditional approaches should dispel any doubts about the need for the methods
that it describes.

This book provides a crucial step along the path to a better understanding
of electrical phenomenon especially the movement of electrons in electic circuits.

Hermann Härtel
Guest scientist at Institut für Theoretische Physik und Astrophysik
Universität Kiel
Leibnizstrasse 15
D-24098 Kiel, Germany
E-mail: haertel@astrophysik.uni-kiel.de
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Vorwort

Gibt es eine Wechselwirkung zwischen einem stromführenden Leiter und einem
stationären Ladungsträger? Diese lapidare Frage enthält eine erstaunliche Bri-
sanz, zumal die Antworten, die man bis zu diesem Tag in der Fachliteratur und
auch in weit verbreitenden Lehrbüchern findet, häufig unzutreffend sind. Das
vorliegende Buch beantwortet die Eingangsfrage in brillanter Weise: umfassend,
mit zahlreichen Verweisen auf entsprechende Versuche und mit rigoroser, ma-
thematischer Gründlichkeit.

Sofern Zweifel an einer positiven Antwort vorhanden waren, sind diese nach
dem Studium des Buches ausgeräumt.

Erstaunlicherweise wurde bereits Mitte des 19 Jahrhunderts von den deut-
schen Physikern Weber und Kirchhoff eine zutreffende Antwort veröffentlicht,
die jedoch von der wissenschaftlichen Gemeinde kaum rezipiert, teilweise sogar
als unzutreffend zurückgewiesen wurde. Die Gründe für diesen wissenschaft-
lichen Rückschritt, die in dem Buch ausführlich dargestellt und mit zahlreichen
Literaturzitaten belegt werden, stellen eine wahre Fundgrube für wissenschafts-
historisch interessierte Leser dar.

Sie machen deutlich, daß auch in der Physik als exakte Wissenschaft manch-
mal gegen methodische Grundprinzipien verstoßen wird, in dem zum Beispiel ein
Verweis auf Experimente erfolgt, die nie gezielt durchgeführt wurden. So verhilft
dies Buch seinen Lesern nicht nur zu einer fundierten Kenntnis über einen stark
vernachlässigten Bereich des sogenannten einfachen elektrischen Stromkreises,
sondern bringt in Erinnerung, daß auch die führenden Vertreter unserer Diszi-
plin irren können, daß unter Umständen solche Irrtümer von einer Lehrbuch-
generation auf die nächste übertragen werden und somit beständige, wachsame
und kritische Reflexion geboten ist.

Eine didaktische Anmerkung erscheint angebracht. Die im Physikunterricht
übliche Vermittlung des elektrischen Stromkreis mit den Grundbegriffen Strom
und Spannung, wird durch den Inhalt des vorliegenden Buches grundlegend in
Frage gestellt.

Während zum Begriff des elektrischen Stromes noch Bilder von driftenden
Elektronen angeboten werden, findet die Einführung der Spannung bzw. des
Potentials auf der abstrakteren Ebene der Energie statt und läßt daher keinerlei
Veranschaulichung zu. Wie die Erfahrung zeigt gelangen nur wenige Schüler
zu ein tieferes Verständnis des Spannungsbegriffs. Dagegen führt bei vielen
Schülern ein solches Scheitern gerade an einem so grundlegenden Begriff wie
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dem der Spannung zur Aufgabe des Interesses an physikalischen Inhalten. Vor
allem jüngere Schüler mit noch schwach entwickeltem Selbstvertrauen mögen
ein solches Scheitern sich selbst und dem eigenen Unvermögen zuschreiben?

Physik ist ein allgemein bildendendes und wichtiges Fach und da hiervon
größere Schülerpopulationen betroffen sind, stellt die Suche nach weniger ab-
strakten und damit verständlicheren Alternativen eine dringende Aufgabe dar.

Das vorliegende Buch verweist auf eine solche Alternative. Es zeigt auf, daß
es im Hinblick auf Oberflächenladungen keinen entscheidenden Unterschied gibt
zwischen einer elektrostatischen Anordnung und einem stationären Stromfluß.
Es verweist auf curriculare Neuentwicklungen zum Spannungsbegriff und gibt
einen umfassenden Überblick über die wissenschaftlichen Veröffentlichungen, die
seit den Arbeiten von Weber und Kirchhoff erschienen sind.

Warum sollte man also bei der Behandlung des Begriffs “elektrischer Strom”
auf das Driften von Elektronen verweisen, beim Begriff “elektrische Spannung”
aber nicht auf die Existenz driftender Oberflächenladungen?

Sicherlich wird es das Ziel des Unterrichts sein, den Spannungs- und Poten-
tialbegriff auf der Ebene der Ernergie quantitativ zu behandeln. Eine qualitative
und anschauliche Vorstufe auszulassen ist jedoch didaktisch nicht vertretbar, es
sei denn, man hat von der Existenz von driftender Oberflächenladungen keine
Kenntnis.

Es gibt curriculare Neuentwicklungen zur Elektrizitätslehre, in denen die
Inhalte dieses Buches ausführlich zur Sprache kommen. Vergleiche mit tradi-
tionellen Kursen hinsichtlich Lernerfolg und Lernmotivation sollten durchgeführt
werden, um letzte Zweifel an der Notwendigkeit einer eigenen curricularen Neuen-
twicklung zu beheben.

Auf dem Weg zu einem tieferen Verständnis elektrischer Phänomene, ins-
besondere der Bewegung von Elektronen in Stromkreisen liefert dieses Buch
einen entscheidenden Beitrag.
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The goal of this book is to analyze the force between a point charge and a
resistive wire carrying a steady current, when they are at rest relative to one
another and the charge is external to the circuit. Analogously, we consider
the potential and electric field inside and outside resistive conductors carrying
steady currents. We also want to discuss the distribution of charges along the
surface of the conductors which generate this field. This is an important subject
for understanding the flow of currents along conductors. Unfortunately, it has
been neglected by most authors writing about electromagnetism. Our aim is to
present the solutions to the main simple cases which can be solved analytically
in order to show the most important properties of this phenomenon.

It is written for undergraduate and graduate students in the following courses:
physics, electrical engineering, mathematics, history and philosophy of science.
We hope that it will be utilized as a complementary text in courses on elec-
tromagnetism, electrical circuits, mathematical methods of physics, and history
and philosophy of science. Our intention is to help in the training of critical
thinking in students and to deepen their knowledge of this fundamental area of
science.

We begin by showing that many important authors held incorrect points of
view regarding steady currents, not only in the past but also in recent years.
We then discuss many experiments proving the existence of a force between
a resistive conductor carrying a steady current and an external charge at rest
relative to the conductor. This first topic shows that classical electrodynamics
is a lively subject in which there is still much to be discovered. The readers can
also enhance their critical reasoning in respect to the subject matter.

Another goal is to show that electrostatics and steady currents are intrin-
sically connected. The electric fields inside and outside resistive conductors
carrying steady currents are due to distributions of charges along their surfaces,
maintained by the batteries. This unifies the textbook treatments of the sub-
jects of electrostatics and steady currents, contrary to what we find nowadays
in most works on these topics.

We begin dealing with pure electrostatics, namely, the force between a con-
ductor and an external point charge at rest relative to it. That is, we deal
with electrostatic induction, image charges and related subjects. In particular
we calculate in detail the force between a long cylindrical conductor and an
external point charge at rest relative to the conductor.

We then move to the main subject of the book. We consider the force
between a resistive wire carrying a steady current and a point charge at rest
relative to the wire, outside the wire. In particular, we deal with the component
of this force which is proportional to the voltage of the battery connected to
the wire (we discuss the voltage or electromotive force of a battery, together
with its distinction from the concept of potential difference, in Section 5.3).
We embark on this analysis by first considering straight conductors of arbitrary
cross-section in general and a general theorem on their surface charges. Next
we deal with a long straight conductor of circular cross-section. Then we treat
a coaxial cable and a transmission line (twin lead). We subsequently deal with
conducting planes and a straight strip of finite width.

3



In the third part we consider cases in which the closed current follows curved
trajectories through resistive conductors. Once more we are interested in the
force between this conductor and an external point charge at rest relative to it.
Initially we deal with a long cylindrical shell with azimuthal current. Then we
consider the current flowing in the azimuthal direction along a resistive spherical
shell. And finally we treat the case of a toroidal conductor with steady azimuthal
current. Although much more complicated than the previous cases, this last
situation is extremely important, as it can model a circuit bounded in a finite
volume of space carrying a closed steady current, like a resistive ring.

Our intention in including analytical solutions of all these basic cases in a
single work is to make it possible to utilize this material in the undergraduate
and graduate courses mentioned earlier. Although the mathematical treatments
and procedures are more or less the same in all cases, they are presented in
detail for conductors of different shapes, so that the chapters can be studied
independently from one another. It can then easily be incorporated in standard
textbooks dealing with electromagnetism and mathematical methods for scien-
tists. Part of the material presented here was previously discussed in textbooks
and research papers. We feel that the reason why it has not yet been incorpo-
rated into most textbooks, which actually present false statements related to
this topic, is that all these simple cases have never been assembled in a coherent
fashion. We hope to overcome this limitation with this book.

At the end of this work we present open questions and future prospects. In an
Appendix we discuss an important work by Wilhelm Weber where he presented a
calculation of surface charges in resistive conductors carrying a steady current, a
remarkable piece of work which has unfortunately been forgotten during all these
years. We also discuss Kirchhoff’s work on surface charges and the derivation
by Weber and Kirchhoff of the telegraphy equation.

A full bibliography is included at the end of the book. In this work we
utilize the International System of Units SI. When we define a concept, we
utilize the ≡ symbol to denote a definition. We represent the force exerted by
body j on i by ~Fji. When we say that a body is stationary or moving with
velocity ~v, we consider the laboratory as the frame of reference, unless stated
otherwise. The laboratory is treated here as an approximately inertial frame of
reference, for the purpose of experiment. When we say that a “charge” exerts
a force, creates an electric field, or is acted upon by an external force, we mean
a “charged body,” or a “body with the property of being electrically charged.”
That is, we consider charge as a property of a body, not as a physical entity. We
consider the concepts of electric and magnetic fields to be mathematical devices
embodying the physical forces between charged bodies, between magnets or
between current carrying conductors. That is, it is possible to say that a current-
carrying wire generates electric and magnetic fields, as usually expressed by most
authors. In this sense an alternative title of this book might be “The electric field
outside resistive wires carrying steady currents.” But the primary reality for
us is the force or interaction between material bodies (generating their relative
accelerations relative to inertial frames), and not the abstract field concepts
existing in space independent of the presence of a charged test particle which
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can detect the existence of these fields.
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Chapter 1

Main Questions and False

Answers

1.1 Simple Questions

Consider a resistive circuit as represented in Figure 1.1.

Figure 1.1: A battery supplying a constant voltage V between its terminals
generates a steady current I in a uniformly resistive wire. Is there a force
between the circuit and an external point charge q at rest relative to the wire?
Is any component of this force proportional to the voltage of the battery?

A stationary, homogeneous and isotropic wire of uniform resistivity con-
nected to a battery (which generates a voltage V between its terminals) carries
a steady current I. The main questions addressed in this work are the following:

a) Will the resistive wire carrying a steady current exert a force on a station-
ary charge q located nearby? Will any component of this force depend upon the
voltage generated by the battery? This is the most important question discussed
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in this work.

b) A related question is the following: Will this wire exert any action upon
a conductor, or upon neutral dielectrics placed nearby? In particular, will the
resistive wire carrying a steady current electrically polarize a neutral conductor
placed nearby, attracting the conductor?

We can also rephrase these questions utilizing the concepts of electric and
magnetic fields. In this case we can say that the current-carrying wire creates
a magnetic field outside itself. This magnetic field will act upon mobile test
charges. We can then rephrase our question in terms of an electric field:

c) Does a resistive wire connected to a battery and carrying a steady current
produce an external electric field? If so, is this electric field dependent upon the
voltage V generated by the battery?

Other related questions:
d) Is the resistive wire carrying a steady current electrically neutral along its

surface? If not, how does the density of surface charges vary along the length
of the wire? That is, how does it change as a function of the distance along the
wire from one of the terminals of the battery? Is this density of surface charges
a function of the voltage of the battery?

e) Does the wire carrying a steady current have a net distribution of charges
inside it? That is, is it electrically neutral at all internal points? If it is not
neutral, does this volume density of charges depend upon the voltage of the
battery? Will this volume density of charges vary along the length of the wire,
i.e., as a function of the distance along the wire from one of the terminals of
the battery?

f) Where are the charges which produce the internal electric field in a current-
carrying wire located? This electric field is essentially parallel to the wire at
each point, following the shape and curvature of the wire, according to Ohm’s
law. But where are the charges that create it? Are they all inside the battery
(or along the surface of the battery)?

These are the main questions discussed in this work1 [1].
One force which will be present regardless of the value of the current is that

due to the electrostatically induced charges in the wire. That is, the external
point particle q induces a distribution of charges along the surface of the con-
ducting wire, and the net result will be an electrostatic attraction between the
wire and q. Most authors know about this fact, although the majority forget
to mention it. Moreover, they neither consider it in detail nor give the order of
magnitude of this force of attraction.

Is there another force between the wire and the stationary charge? In par-
ticular, is there a force between the stationary charge and the resistive current
carrying wire that depends upon the voltage of the battery connected to the
wire? Many physicists believe the answer to this question is “no,” and this
opinion has been held for a long time. There are three main reasons for this
belief. We analyze each one of them here. The quotations presented herein are
not intended to be complete, nor as criticism of any specific author, but only to

1All papers by Assis can be found in PDF format at: http://www.ifi.unicamp.br/˜assis/
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indicate how widespread false beliefs about basic electromagnetism really are.

1.2 Charge Neutrality of the Resistive Wire

The first idea relates to the supposition that a stationary resistive wire carrying
a steady current is essentially neutral in all its interior points and along its
entire surface. This leads to the conclusion that a resistive wire carrying a steady
current generates only a magnetic field outside it. Many scientists have held this
belief, for more than a century. Clausius (1822-1888), for instance, based all his
electrodynamics on this supposition. In 1877 he wrote ([2] and [3, page 589]):
“We accept as criterion the experimental result that a closed constant current
in a stationary conductor exerts no force on stationary electricity.” Although
he stated that this is an experimental result, he did not cite any experiments
that sought to find this force. As we will see, he based his electrodynamics on
an untenable principle, as a force between a stationary wire carrying a steady
current and an external stationary charge does exist. This force has been shown
to exist experimentally, as we discuss below. We confirm the existence of this
force with calculations.

Recently the name “Clausius postulate” has been attached by some authors
to the following statements: “Any current element of a closed current in a
stationary conductor is electrically neutral” [4]; “For a stationary circuit the
charge density ρ is zero” [5]; “Φ = 0,” namely, that the potential generated by
a closed circuit carrying a steady current is null at all external points [6, 7].

We even find statements like this in fairly recent electromagnetic textbooks.
As we will see, the electric field inside and outside a resistive wire carrying a
steady current is due to surface charges distributed along the wire. On the
other hand, Reitz, Milford and Christy, for instance, seem to say that no steady
surface charges can exist in resistive wires [8, pp. 168-169]: “Consider a con-
ducting specimen obeying Ohm’s law, in the shape of a straight wire of uniform
cross-section with a constant potential difference, △ϕ, maintained between its
ends. The wire is assumed to be homogeneous and characterized by the constant
conductivity g. Under these conditions an electric field will exist in the wire,
the field being related to △ϕ by the relation △ϕ =

∫

~E · d~ℓ. It is evident that
there can be no steady-state component of electric field at right angles to the
axis of the wire, since by Eq. ~J = g ~E this would produce a continual charging
of the wire’s surface. Thus, the electric field is purely longitudinal.” Although
Russell criticized this statement as it appeared in second edition of the book
(1967) [9], the third and fourth editions were not changed significantly on this
point. Here we show that there is a steady surface charge in this conductor,
and that there is a steady-state component of electric field at right angles to the
axis of the wire, contrary to their statement.

In Jackson’s book we find the following statement ([10, exercise 14.12, page
503] [11, exercise 14.13, page 697]): “As an idealization of steady-state currents
flowing in a circuit, consider a system of N identical charges q moving with
constant speed v (but subject to accelerations) in an arbitrary closed path. Suc-
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cessive charges are separated by a constant small interval △. Starting with the
Liénard-Wiechert fields for each particle, and making no assumptions concern-
ing the speed v relative to the velocity of light show that, in the limit N → ∞,
q → 0, and △ → 0, but Nq = constant and q/△ = constant, no radiation is
emitted by the system and the electric and magnetic fields of the system are the
usual static values. (Note that for a real circuit the stationary positive ions in
the conductors will produce an electric field which just cancels that due to the
moving charges.)”

Here Jackson refers to the second order electric field and the lack of radiation
produced by all the electrons in a current carrying resistive wire, even though the
electrons are accelerated. However, a casual reader of this statement, specially
the sentence in parenthesis, will conclude that Clausius was right. However,
we will see here that there is a net nonzero electric field outside a stationary
resistive wire carrying a steady current. Despite the wording of this exercise, it
must be stressed that Jackson is one of the few modern authors who is aware
of the electric field outside wires carrying steady currents, as can be seen in
his important work of 1996 [12]. In the third edition of this book the sentence
between parenthesis has been changed to [13, exercise 14.24, pages 705-706]:
“(Note that for a real circuit the stationary positive ions in the conductors
neutralize the bulk charge density of the moving charges.)” In this form the
sentence does not explicitly mention whether or not an external electric field
exists. But even the statement of charge neutrality inside a wire carrying a
steady current is subject to debate. See Section 6.4.

Edwards said the following in the first paragraph of his 1974 paper on the
measurement of a second order electric field [14]: “For over a century it has
been almost axiomatic in electromagnetism that the electric field produced by a
current in a stationary conductor forming a closed circuit is exactly zero. To be
sure the first order field, dependent upon the current I, is experimentally and
theoretically zero, but several early electromagnetic theories, including Weber’s,
Riemann’s and Ritz’, predict a second order effect dependent upon I2 or v2/c2

where v is the charge drifting velocity.” We will see here that there is an electric
field outside a resistive wire carrying a steady current. This external electric
field is proportional to the voltage of the battery, or to the potential difference
acting along the wire.

Edwards, Kenyon and Lemon had the following to say about first order
terms, i.e., to forces proportional to the current due to a resistive wire carrying
a steady current, or forces proportional to vd/c, where vd is the drifting velocity
of the moving charges in the wire and c is the light velocity [15]: “It has long
been known that the zero- and first- order forces on a charged object near a
charge- neutral, current-carrying conductor at rest in the laboratory are zero in
magnitude.” The experiments discussed below and the calculations presented
in this book show that a normal resistive wire carrying a steady current cannot
be electrically neutral at all points. Moreover, it will generate a zeroth order
force upon a charged body placed in proximity. It will also generate a force
proportional to the voltage or electromotive force of the battery connected to
the wire. This force will act upon any charged body brought near the wire. It
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will also polarize any neutral conductor that is brought near the wire.
A similar statement can be found in Griffiths’s book [16, p. 273]: “Within

a material of uniform conductivity, ∇ · E = (∇ · J)/σ = 0 for steady currents
(equation ∇ · J = 0), and therefore the charge density is zero. Any unbalanced
charge resides on the surface.” We will show that there is also an unbalanced
charge in the interior of a resistive wire carrying a steady current.

And similarly [16, p. 196] (our emphasis in boldface): “Two wires hang from
the ceiling, a few inches apart. When I turn on a current, so that it passes up
one wire and back down the other, the wires jump apart – they plainly repel one
another. How do you explain this? Well, you might suppose that the battery
(or whatever drives the current) is actually charging up the wire, so naturally
the different sections repel. But this “explanation” is incorrect. I could hold
up a test charge near these wires and there would be no force on it,
indicating that the wires are in fact electrically neutral. (It’s true
that electrons are flowing down the line - that’s what a current is –
but there are still just as many plus as minus charges on any given
segment.) Moreover, I could hook up my demonstration so as to make the
current flow up both wires; in this case the wires are found to attract! ” Here we
show that the statement in boldface is wrong.

Despite these statements it should be mentioned that Griffiths is aware of
the surface charges in resistive conductors with steady currents and the related
electric field outside the wires [16, pp. 279 and 336-337].

A similar statement is made by Coombes and Laue [17]: “For a steady
current in a homogeneous conductor, the charge density ρ is zero inside the
conductor.”

Lorrain, Corson and Lorrain, meanwhile, state that [18, p. 287]: “A wire
that is stationary in reference frame S carries a current density J . The net
volume charge density in S is zero: ρ = ρp + ρn = 0.” Here ρp and ρn refer to
the positive and negative volume charge densities, respectively.

Although aware of the distribution of charges along the surface of resis-
tive conductors carrying steady currents and the corresponding external elec-
tric field, Seely also believed that the internal density of charges is zero [19, p.
149]: “Note that the net charge in any element of volume inside a conductor
must be zero in either the static case or the electron-flow case. That is, the net
charge per unit volume when the electrons and the ions of the metal lattice are
considered just balance. Otherwise, an unstable component of an electric field
will be developed. Hence, all net electric charge in a conductor resides on the
surface of the conducting material. It is the function of the generator to pile up
electrons on one end of the conductor and to remove them from the other end.
The internal field is thus produced by a density gradient of the surface charges.”

Like Seely, Popovic was also aware of the surface charges and external elec-
tric field of resistive wires with steady currents, and he even presents a qual-
itative drawing depicting them [20, pp. 201-202]. But in the next section he
“proves” that the volume density of free charges ρ goes to zero at all internal
points of a homogeneous conductor [20, p. 206]: “ρ = 0 (at all points of a
homogeneous conductor). This is a very important conclusion. Accumulations
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of electric charges creating the electric field that maintains a steady current in
homogeneous conductors cannot be inside the conductors. Charges can reside
only on the boundary surfaces of two different conductors, or of a conductor
and an insulator.”

The flaw in all these statements is that the authors have forgotten or ne-
glected the azimuthal magnetic field inside conductors with steady currents
which is created by the longitudinal current. The magnetic force due to this
field acting upon the conduction electrons will lead to an accumulation of neg-
ative charges along the axis of the conductors, until an electric field is created
orthogonal to the conductor axis. This will exert an electric force on the mobile
electrons, balancing the magnetic force. As a consequence, a steady current
conductor must have a net negative volume density of charges in its interior, as
we will discuss quantitatively in Section 6.4.

Despite this shortcoming, Popovic’s important work is one of the few text-
books that calls attention to the external electric field of current carrying resis-
tive wires, and that even presents a qualitative drawing of this field in a generic
circuit.

One of us (AKTA) also assumed, in previous publications, that a resistive
wire carrying a steady current was essentially neutral at all points. On the topic
of positive qi+ and negative qi− charges of a current element i, we wrote [21]:
“In these expressions we assumed qi− = −qi+ because we are considering only
neutral current elements.” The same assumption was made a year later [22]:
“We suppose this current distribution to have a zero net charge q2− = −q2+.”
In 1994 we wrote [23, p. 85]: “To perform this summation we suppose that the
current elements are electrically neutral, namely dqj− = −dqj+, dqi− = −dqi+.
This was the situation in Ampère’s experiments (neutral currents in metallic
conductors), and happens in most practical situations (currents in wires, in
gaseous plasmas, in conducting liquid solutions, etc.)” And similarly, in a Section
entitled “Electric Field Due to a Stationary, Neutral and Constant Current” we
wrote [23, p. 161]: “In this wire we have a stationary current I2 which is
constant in time and electrically neutral.” Here we show in detail that these
statements are not valid for normal resistive wires carrying steady currents.
When we wrote these statements we were not completely aware of the external
electric field proportional to the voltage of the battery, which is the main subject
of this book, nor of its related surface charges. We were following most other
textbook authors in assuming resistive wires carrying steady currents to be
essentially neutral at all points. We were concerned only with the second order
electric field, a subject which we also discuss in this work. It was around 1992
that we began to be aware of the surface charges in resistive wires and the
corresponding external electric field proportional to the voltage of the battery,
due to a study of Kirchhoff’s works from 1849 to 1857 [24, 25, 26]. All three of
these important papers by Kirchhoff exist in English translation [27, 28, 29]. We
tried to understand, repeat and extend Kirchhoff’s derivation of the telegraphy
equation based on Weber’s electrodynamics. We suceeded in 1996, and the result
of our labours was published in 2000 [30] and 2005 [31]. Simultaneously for
several years we sought a solution for the potential outside a straight cylindrical
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resistive wire carrying a steady current, until we found the solution in 1997,
presented here in Chapter 6. In the same years we discovered Jefimenko’s book
and papers with his experiments, and also many papers by other authors cited
earlier. In the following Chapters we show how much have we learned from
important recent authors who studied surface charges and related topics in
specific configurations. We quote them in the appropriate sections. Our first
paper on this subject was published in 1999 [1]. Since then we have published
other works dealing with several other spatial configurations. We only became
aware of Weber’s 1852 work [32] dealing with related subjects in 2001-2002
during our research in Germany quoted in the Acknowledgments. In the period
from 2004 to 2006 we had the opportunity to study Weber’s work in greater
detail, and we present a discussion of it in the first Appendix of this book.

Our hope in publishing this book is that others will not need to follow this
tortuous path of discovery. In the bibliography at the end of the book, we have
collected many important references by recent authors who have dealt with the
subject of this book. We hope that others can draw on these works to achieve
new results in a more efficient manner.

1.3 Magnetism as a Relativistic Effect

The second idea leading to the conclusion that a normal resistive current-
carrying wire generates no electric field outside it arises from the supposition
that magnetism is a relativistic effect. A typical statement of this position can
be found in Feynman’s Lectures on Physics, specifically in Section 13-6 (The rel-
ativity of magnetic and electric fields [33, p. 13-7]) (our emphasis in boldface):
“We return to our atomic description of a wire carrying a current. In a normal
conductor, like copper, the electric currents come from the motion of some
of the negative electrons - called the conduction electrons - while the positive
nuclear charges and the remainder of the electrons stay fixed in the body of the
material. We let the density of the conduction electrons be ρ− and their velocity
in S be v. The density of the charges at rest in S is ρ+, which must be equal
to the negative of ρ−, since we are considering an uncharged wire. There is
thus no electric field outside the wire, and the force on the moving particle
is just F = qvo × B.” The statement that there is no electric field outside a
resistive wire (like copper) carrying a constant current is certainly false. One
of the main goals of this book is to calculate this electric field and compare the
theoretical calculations with the experimental results presented below.

In Purcell’s Electricity and Magnetism we find the same ideas [34]. In Section
5.9 of this book, which treats magnetism as a relativistic phenomenon, he models
a current-carrying wire by two strings of charges, positive and negative, moving
relative to one another. He then considers two current carrying metallic wires
at rest in the frame of the laboratory, writing (p. 178): “In a metal, however,
only the positive charges remain fixed in the crystal lattice. Two such wires
carrying currents in opposite directions are seen in the lab frame in Fig. 5.23a.
The wires being neutral, there is no electric force from the opposite wire on the
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positive ions which are stationary in the lab frame.” That is, he believes that a
resistive wire carrying a steady current generates no external electric field. For
this reason he believes that this wire will not act upon an external test charge
at rest relative to the wire. This is simply false. A normal resistive stationary
metallic wire carrying a steady current cannot be neutral at all points. It must
have a distribution of surface charges which will produce the electric field driving
the current inside it, and which will also exert net forces upon the stationary
charges of the other wire.

Other books dealing with relativity present similar statements connected
with Lorentz’s transformations between electric and magnetic fields, about mag-
netism as a relativistic effect, about a normal resistive wire carrying a steady
current being electrically neutral, etc. For this reason we will not quote them
here. The examples of Feynman, Leighton, Sands and Purcell illustrate the
problems of these points of view.

It is important to recall here that Jackson [11, Section 12.2, pp. 578-581]
and Jefimenko [35] have shown that it is impossible to derive magnetic fields
from Coulomb’s law and the kinematics of special relativity without additional
assumptions.

1.4 Weber’s Electrodynamics

The third kind of idea related to this widespread belief is connected with the
electrodynamics developed by Wilhelm Eduard Weber (1804-1891), in particular
his force law of 1846.

Weber’s complete works were published in 6 volumes between 1892 and 1894
[36, 37, 38, 39, 40, 41]. Only a few of his papers and letters have been translated
into English [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

The best biographies of Weber are those of Wiederkehr [56, 57, 58]. Some
other important biographies and/or discussions of his works can be found in
several important publications and in the references quoted in these works [3,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77].

Modern applications, discussions and developments of Weber’s law applied
to electrodynamics and gravitation can be found in several recent publications
[23, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133]. Several other works and authors are quoted in these books and
papers.

Weber’s force is a generalization of Coulomb’s law, including terms which
depend on the relative velocity and relative acceleration between the interacting
charges. Charges q1 and q2 located at ~r1 and ~r2 move with velocities ~v1 and
~v2 and accelerations ~a1 and ~a2, respectively, relative to a frame of reference O.
According to Weber’s law of 1846 the force exerted by q2 on q1, ~F21, is given by
(in the international system of units and with vectorial notation):
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~F21 =
q1q2
4πε0

r̂12
r212

(

1 − ṙ212
2c2

+
r12r̈12
c2

)

= −~F12 . (1.1)

Here ε0 = 8.85 × 10−12 C2N−1m−2 is called the permittivity of free space,
r12 ≡ |~r1 − ~r2| is the distance between the charges, r̂12 ≡ (~r1 − ~r2)/r12 is the
unit vector pointing from q2 to q1, ṙ12 ≡ dr12/dt = r̂12 · (~v1 − ~v2) is the relative
radial velocity between the charges, r̈12 ≡ dṙ12/dt = d2r12/dt

2 = [(~v1−~v2)·(~v1−
~v2)− (r̂12 · (~v1−~v2))2 +(~r1−~r2) · (~a1−~a2)]/r12 is the relative radial acceleration
between the charges and c = 3 × 108 m/s is the ratio between electromagnetic
and electrostatic units of charge. This constant was introduced by Weber in
1846 and its value was first determined experimentally by Weber and Kohlrasch
in 1854-55 [62, 134, 135, 136]. One of their papers has been translated into
English [55]. In the works quoted above there are detailed discussions of this
fundamental experiment and its meaning.

The first point to be mentioned here is that the main subject of this book can
be derived from Weber’s law. As a matter of fact, we are mainly concerned with
the force between a resistive wire carrying a steady current and an external point
charge at rest relative to the wire. To this end we employ essentially Coulomb’s
force between point charges or, analogously, Gauss’s law and Poisson’s law. And
these three expressions (the laws of Coulomb, Gauss and Poisson) are a special
case of Weber’s law when there is no motion between the interacting charges
(or when we can disregard the small second order components of Weber’s force,
which are proportional to the square of the drifting velocity of the charges, in
comparison with the coulombian component of Weber’s force).

With this force Weber succeeded in deriving from a single expression the
whole of electrostatics, magnetostatics, Ampère’s force between current elements
and Faraday’s law of induction.

When he presented his fundamental force law in 1846, Weber supposed that
electric currents in normal resistive wires are composed of an equal amount
of positive and negative charges moving relative to the wire with equal and
opposite velocities, the so-called Fechner hypothesis [137, pp. 135 and 145 of
the Werke]. This model of the electric current had been presented by Fechner in
1845 [138]. Ideas of a double current of positive and negative charges somewhat
similar to these had been presented before by Oersted [139, 140] and by Ampère
[141, 142]. At that time no one knew about electrons, they had no idea of the
value of the drifting velocities of the mobile charges in current-carrying wires,
etc. Later on it was found that only the negative electrons move in metallic
wires carrying steady currents, while the positive ions remain fixed relative to
the lattice. Despite this fact, in his own paper of 1846 Weber already considered
that Fechner’s hypothesis might be generalized considering positive and negative
charges moving with different velocities. Specifically, larger particles might flow
slower, while smaller particles might move faster [137, p. 204 of the Werke].
That is, the particle with a larger inertial mass would move slower inside a
current carrying wire than the particle with a smaller inertial mass. In his
paper of 1852 which we analyse in the Appendix, Weber even considers the
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situation in which the positive charges were fixed in the conductor while only
the negative charges did move relative to it! He was certainly one of the first to
explore this possibility, being much ahead of his time.

Two main criticisms were made against Weber’s electrodynamics after it was
discovered that Fechner’s hypothesis is wrong. The first is related to Ampère’s
force between current elements and the second is related to the force between a
current-carrying wire and an external point charge at rest relative to the wire.
We will discuss each one of these criticisms separately.

Ampère’s force d2 ~F21 exerted by the current element I2d~ℓ2 upon the current
element I1d~ℓ1 (located at ~r2 and ~r1 relative to a frame of reference O) is given
by (in the international system of units and with vectorial notation):

d2 ~F21 = −µ0

4π

r̂12
r212

[

2(d~ℓ1 · d~ℓ2) − 3(r̂12 · d~ℓ1)(r̂12 · d~ℓ2)
]

= −d2 ~F12 . (1.2)

Many recent publications deal with Ampère’s work and his force law [103,
114, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157].
Further papers are quoted in these books and works.

Weber knew Ampère’s force and derived it from his force law, assuming
Fechner’s hypothesis. However, many people believed wrongly that without
Fechner’s hypothesis it would be impossible to derive Ampère’s law from Weber’s
force. For this reason they criticized Weber’s law as experimentally invalidated.
But it has been shown recently that even without Fechner’s hypothesis it is
possible to derive Ampère’s law from Weber’s force [78, 21, 23, 92, 103, 114].
That is, even supposing that the positive ions are fixed in the lattice and that
only the electrons move in current-carrying wires, we derive Ampère’s force
between current elements beginning with Weber’s force between point charges.
This overcame the first criticism of Weber’s law discussed here.

The second criticism is connected with the main subject of this book, the
force between a stationary charge and a current carrying resistive wire. Sup-
posing Fechner’s hypothesis, we conclude that there would be no force between
a stationary current-carrying wire and an external charge at rest relative to the
wire (apart from the force of electrostatic induction), if the wire were neutral
in its interior and along its surface. This has been known since Weber’s time.
Later on people began to doubt the validity of Fechner’s hypothesis. It was
with the utilization of the Hall effect in the 1880’s and with the discovery of the
electron in 1897 that the order of magnitude of the drifting velocity of the con-
duction charges inside metals was determined. The sign of mobile charges was
also discovered [63, pp. 289-290] [3, Chapter XI: Weber-Ritz, Section 2: The
electronic theory of conduction, pp. 512-518]. As a result, it was found that
Fechner’s hypothesis was wrong and that only negative charges move relative
to the lattice in normal resistive metallic conductors carrying steady currents.
Supposing (a) that only one kind of charge (positive or negative) moves in a
current-carrying wire, (b) Weber’s force, and (c) that the wire is neutral in its
interior and along its surface, people concluded that there would be a net force
between this stationary current-carrying wire and a stationary charge nearby.

16



This force is proportional to v2
d/c

2, where vd is the drifting velocity of the con-
duction charges and c = 3 × 108 m/s. Based on the erroneous belief that a
current carrying resistive wire exerts no force on a stationary charge nearby,
unaware even of the larger force between the wire and the charge, which is
proportional to the voltage of the battery connected to the wire, many authors
condemned Weber’s law as experimentally invalidated.

This trend goes back at least to Maxwell’s Treatise on Electricity and Mag-
netism (1873). He considered the force between a conducting wire carrying a
constant current and another wire which carries no current, both of them at
rest in the laboratory. He then wrote [158, Volume 2, Article 848, page 482],
our words between square brackets: “Now we know that by charging the sec-
ond conducting wire as a whole, we can make e′ + e′1 [net charge on the wire
without current] either positive or negative. Such a charged wire, even without
a current, according to this formula [based on Weber’s electrodynamics], would
act on the first wire carrying a current in which v2e + v2

1e1 [sum of the pos-
itive and negative charges of the current-carrying wire by the square of their
drifting velocities] has a value different from zero. Such an action has never
been observed.” As with Clausius’s comment mentioned earlier, Maxwell did
not quote any experiments which tried to observe this force and which failed to
find the effect. Nor did he calculate the order of magnitude of this effect. This
calculation would determine whether it was feasible to try to detect the effect in
the laboratory. Maxwell does not seem to have been aware of the surface charge
distribution in wires carrying steady currents, a subject which had already been
extensively discussed by Weber twenty years before, as we discuss in the first
Appendix of this book.

Clausius’s work of 1877 (On a deduction of a new fundamental law of electro-
dynamics) was directed against Weber’s electrodynamics [2]. To the best of our
knowledge this paper has never been translated into English. What we quote
here is our translation. Clausius supposes only one type of mobile charge in a
closed stationary current-carrying wire. He integrates Weber’s force exerted by
this wire on an external stationary charge and shows that it is different from zero
(in his integration he does not take into account the surface charges generating
the electric field inside the resistive current-carrying wire). He then writes, our
words between square brackets: “Then the galvanic current must, like a body
charged with an excess of positive or negative charges, cause a modified distribu-
tion of electricity in conducting bodies placed in its neighbourhood. We would
obtain a similar effect in conducting bodies around a magnet, when we explain
the magnetism through molecular electric currents. However these effects have
never been observed, despite the various opportunities we have had to observe
it. We then accept the previous proposition, which states that these effects do
not occur, as an acknowledged certain experimental proposition. Then, as the
result of Equation (4) [Weber’s force different from zero acting upon a station-
ary external charge, exerted by a stationary closed current-carrying wire with
only one kind of mobile charges] is against this proposition. It follows that We-
ber’s fundamental law is incompatible with the point of view that in a stationary
conductor with galvanic current only the positive electricity is in motion.” He

17



also mentions that this conclusion was reached independently by Riecke in 1873,
which he became aware of only in 1876. It seems that he was also unaware of
Maxwell’s previous analysis. In the sixth Section of his paper he once again
emphasizes his fundamental theorem, namely, “that there is no force upon a
stationary charge exerted by a stationary closed conductor carrying a constant
galvanic current.”

The first two paragraphs of the seventh Section of this paper are also relevant.
We quote them here with our words between square brackets:

“To deal with the quantity X1 we can utilize a similar experimental propo-
sition, namely: a stationary quantity of electricity exerts no force upon a sta-
tionary closed conductor carrying a constant galvanic current.”

“This proposition needs clarification. When there is accumulation of one
kind of electricity at any place, for example positive electricity, then this elec-
tricity exerts the effect of electrostatic influence [or electrostatic induction] upon
conducting bodies in its neighbourhood, and this effect will also affect the con-
ductor in which there is a galvanic current. The previous proposition says only
that beyond this effect there is no other special effect depending upon the cur-
rent, and therefore dependent upon the current intensity. It should also be
remarked that if a closed galvanic current did suffer such an effect, then a mag-
net would also suffer the effect. However it has always been observed, that
stationary electricity acts upon a stationary magnet only in the same way as
it acts upon a nonmagnetic piece of metal of the same form and size. For this
reason we will accept the previous proposition without further consideration as
a firm experimental proposition.”

Clausius shows here that he is completely unaware of the electric field outside
resistive wires carrying steady currents, which is proportional to the voltage
of the battery. This electric field originates from surface charges which are
maintained by the electromotive force exerted by the battery. For this reason
it is probable that no analogous electric field should exist outside a magnet.
Therefore, Clausius’s conclusion that if an electric field existed (as we know
nowadays it really exists) outside resistive wires carrying steady currents, then,
necessarily, it would also exist outside a permanent magnet, also seems incorrect.

In this paper Clausius obtains a new fundamental law of electrodynamics
which does not lead to this force exerted by a closed stationary resistive con-
ductor carrying a steady current upon an external charge at rest relative to the
conductor, even if only one kind of electricity is in motion in current-carrying
wires. His electrodynamics led to this prediction: “The fundamental law formu-
lated by me leads to the result, without the necessity to make the supposition
of double current, that a constant stationary closed galvanic current exerts no
force on, nor suffers any force from, a stationary charge” [159] [3, page 589].

Clausius’s work was not the first to criticize Weber’s electrodynamics in this
regard; after all, Maxwell had done so before. Despite this fact his work was
very influential and is quoted on this point by many authors.

Writing in 1951 Whittaker criticized Weber’s electrodynamics along the same
lines [63, page 205] (our emphasis in boldface): “The assumption that positive
and negative charges move with equal and opposite velocities relative to the
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matter of the conductor is one to which, for various reasons which will appear
later, objection may be taken; but it is an integral part of Weber’s theory, and
cannot be excised from it. In fact, if this condition were not satisfied, and if the
law of force were Weber’s, electric currents would exert forces on electrostatic
charges at rest (...)”. Obviously he is here expressing the view that there are
no such forces. As a consequence, Weber’s electrodynamics must be wrong in
Whittaker’s view, because we now know that only the negative electrons move
in metallic wires. And applying Weber’s electrodynamics to this situation (in
which a current in a metallic conductor is due to the motion of conduction
electrons, while the positive charges of the lattice remain stationary) implies
that a conducting wire should exert force on a stationary electric charge nearby.
Whittaker was not aware of the experimental fact that electric currents exert
forces on electrostatic charges at rest. See the experiments discussed below.

To give an example of how this misconception regarding Weber’s electrody-
namics has survived we present here the only paragraph from Rohrlich’s book
(1965) where he mentions Weber’s theory [160, p. 9]: “Most of the ideas at that
time revolved around electricity as some kind of fluid or at least continuous
medium. In 1845, however, Gustav T. Fechner suggested that electric currents
might be due to particles of opposite charge which move with equal speeds in
opposite directions in a wire. From this idea Wilhelm Weber (1804 - 1891) de-
veloped the first particle electrodynamics (1846). It was based on a force law
between two particles of charges e1 and e2 at a distance r apart,

F =
e1e2
r2

[

1 +
r

c2
d2r

dt2
− 1

2c2

(

dr

dt

)2
]

.

This force seemed to fit the experiments (Ampère’s law, Biot-Savart’s law), but
ran into theoretical difficulties and eventually had to be discarded when, among
other things, the basic assumption of equal speeds in opposite directions was
found untenable.”

Other examples of this widespread belief: In 1969 Skinner said, relative to
Figure 1.2 in which the stationary closed circuit carries a constant current and
there is a stationary charge at P [161, page 163]: “According to Weber’s force
law, the current of Figure 2.39 [our Figure 1.2] would exert a force on an electric
charge at rest at the point P . (...) And yet a charge at P does not experience
any force.” As with Clausius’s and Maxwell’s generic statements, Skinner did
not quote any specific experiment which tried to find this force. Amazingly the
caption of his Figure 2.39 states: “A crucial test of Weber’s force law.” To most
readers, sentences like this convey the impression that the experiment had been
performed and Weber’s law refuted. But the truth is just the opposite! In fact,
several experiments discussed in this book show the existence of a force between
a stationary charge and a resistive wire carrying a steady current.

Pearson and Kilambi, in a paper discussing the analogies between Weber’s
electrodynamics and nuclear forces, made the same kind of criticisms in a Section
called “Invalidity of Weber’s electrodynamics” [162]. They consider a straight
wire carrying a constant current. They calculate the force on a stationary
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Figure 1.2: There is a stationary charge at P and a steady current flows in the
closed circuit.

charge nearby due to this wire with classical electromagnetism and with Weber’s
law, supposing the wire to be electrically neutral at all points. According to
their calculations, classical electromagnetism does not yield any force on the
test charge and they interpret this as follows (our emphasis underlined): “The
vanishing of the force on the stationary charge q corresponds simply to the
fact that a steady current does not give rise to any induced electric field.”
With Weber’s law they find a second order force and interpret this as meaning
(our emphasis): “that Weber’s electrodynamics give rise to spurious induction
effects. This is probably the most obvious defect of the theory, and the only
way of avoiding it is to suppose that the positive charges in the wire move with
an equal velocity in the opposite direction, which of course they do not.” As we
will see, the fact is that a steady current gives rise to an external electric field,
as shown by the experiments discussed below.

In this work we argue that all of these statements are misleading. That
is, we show theoretically the existence of a force upon the stationary external
charge exerted by a resistive wire connected to a battery and carrying a steady
current when there is no motion between the test charge and the wire. We also
compare the theoretical calculations with the experimental results which proved
the existence of this force. For this reason these false criticisms of Weber’s
electrodynamics must be disregarded.

1.5 Electric field of Zeroth Order; Proportional

to the Voltage of the Battery; and of Second

Order

In this work we discuss the force between a resistive wire carrying a steady
current and an external point charge at rest relative to the wire. Both of them
are assumed to be at rest relative to the laboratory, which for our purposes can
be considered a good inertial frame. We consider three components of this force
or electric field.

The wire is a conductor. Let us suppose that it is initially neutral in its
interior and along its surface, carrying no current. When we put a charge near
it, the free charges in the conductor will rearrange themselves along the surface
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of the conductor until it acquires a new constant potential at all points. As
a result of this redistribution of charges, there will be a net force between the
external point charge and the conductor. We will call it a zeroth order force, ~F0.
We can describe this situation by saying that the conductor has now produced
an induced electrostatic field which will act upon the external charge. This
electric field is independent of the current in the conductor, depending only
upon the external charge, its distance to the conductor, and the shape of the
conductor. That is, this electric field will continue to exist even when a current
begins to flow in the conductor, provided the shape of the conductor does not
change. We will call it a zeroth-order electric field, ~E0.

We now consider this resistive conductor connected to a battery. In the
steady state there is a constant current flowing along the wire. Will there be
a force between this wire and the external point charge at rest relative to the
wire, with a component of this force depending upon the voltage of the battery?
This is the main subject of this book, and the answer is positive. That is, there
is a component of this force proportional to the voltage of the battery. We
will represent this component of the force by ~F1. It is also possible to say that
this wire will generate an external electric field proportional to the voltage of
the battery and depending upon the shape of the wire. We will represent this
electric field by ~E1.

If there is no test charge outside the wire, the force ~F0 goes to zero, the same
happening with ~F1. If it is placed a small conductor, with no net charge, at
rest relative to a wire without current, no force ~F0 is observed between them.
On the other hand, when this resistive wire is connected to a chemical battery
and a constant current is flowing though it, there will be an attractive force
between this wire and the small conductor placed at rest nearby. That is, there
will be a force ~F1 even when the integrated charge of the small conductor goes
to zero. The reason for this force is that the battery will create a redistribution
of charges upon the surface of the resistive wire. There will be a gradient of the
surface charge density along the wire, with positive charges close to the positive
terminal of the battery and negative charges close to the negative terminal of
the battery (and with a null charge density at an intermediate point along
the wire). This gradient of surface charges will generate not only the internal
electric field (which follows the shape of the wire and is essentially parallel to
it at each internal point), but also an external electric field. And this external
electric field will polarize the small conductor placed in the neighbourhood of
the wire. This polarization of the conductor will generate an attractive force
between the polarized conductor and the current-carrying wire. With this effect
we can distinguish the forces ~F0 and ~F1. This effect has already been observed
experimentally, as will be seen in several experiments described in Chapter 3.

Many papers have also appeared in the literature discussing a second order
force or a second order electric field, ~F2 or ~E2. As we saw before, usually the
people who consider this second order effect are not aware of the zeroth order
effects nor of those proportional to the voltage of the battery. This second order
force is proportional to the square of the current, or proportional to the square of
the drifting velocity of the mobile electrons. Analogously, we can talk of a second
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order electric field generated by the wire. Sometimes this second order electric
field is called motional electric field. It has long been known that the force
laws of Clausius and of Lorentz (the ones adopted in classical electromagnetism
and presented in almost all textbooks nowadays) do not yield any second order
electric field [11, p. 697] [15] [23, Section 6.6]. On the other hand, some theories
like those of Gauss, Weber, Riemann and Ritz predict a force of this order of
magnitude by taking into account the force of the stationary lattice and mobile
conduction electrons acting upon the external stationary test charge [163] [3,
Vol. 2, pp. 588-590] [63, pp. 205-206 and 234-236] [162] [15] [23, Section 6.6].

For typical laboratory experiments, as we will show later, this second order
force or electric field is much smaller than the force or electric field proportional
to the voltage of the battery, which in turn is much smaller than the zeroth
order force or electric field. That is, usually we have |~F0| ≫ |~F1| ≫ |~F2| or

| ~E0| ≫ | ~E1| ≫ | ~E2|. In this book we will be concerned essentially with ~E0 and
~E1, discussing only briefly ~E2, due to its extremely small order of magnitude.
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Chapter 2

Reasons for the Existence of

the External Electric Field

In this Chapter we discuss essentially the electric field proportional to the volt-
age or to the electromotive force of the battery connected to the circuit. That
is, the electric field proportional to the potential difference which is acting along
the resistive wire carrying a steady current.

2.1 Bending a Wire

Consider a resistive wire of finite conductivity g connected to a battery and
carrying a steady current I, as in the left side of Figure 2.1. The ideal bat-
tery generates a constant voltage or electromotive force (emf) V between its
terminals.

Figure 2.1: The electric field at C points along the x direction in the Figure
at left. When the wire is bent as in the right side, the electric field at C now
points along the y direction. However, the directions and intensities of the
electric fields at A, B, D and E have not changed.
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The current density ~J is given by ~J = (I/A)û, where A is the area of the
cross section of the wire and the unit vector û points along the direction of the
current at every point in the interior of the wire. Ohm’s law in differential form
states that ~J = g ~E, where ~E is the electric field driving the current. By the
previous relation we see that ~E will also point along the direction of the wire at
each point.

Where are the charges which generate the electric field at each point along
the wire located? It might be thought that this electric field is due to the battery
(or to the charges located on the battery), but this is not the complete answer.
To see that the battery does not generate the electric field at all points along
the wire, we can consider Figure 2.1. We know that the electric field driving
the constant current will in general follow the shape of the wire. At a specific
point C inside the wire the electric field in Figure 2.1 (left circuit) points along
the positive x direction. When we bend a portion of the wire, the electric field
will follow this bending. In the circuit at the right side of Figure 2.1 it can be
seen that at the same point C the electric field now points toward the positive
y direction.

If something changes inside the battery when we bend the wire, the electric
field at points closer to the battery would also change. However, the electric
field changes its path or direction only in the portion which was bent and in
the regions close to it, maintaining the previous values and directions in the
other points (like the points A, B, D or E in Figure 2.1). As the electric field
inside the wire has changed only in the bent portion, something local must
have created this change in the direction of the electric field. The shape of
the wire has obviously changed. But as the shape or spatial configuration does
not create an electric field, the reason must be sought elsewhere. What creates
electric fields or the electric forces exerted upon the conduction electrons must
be other charges, called here source charges. So there should exist a change in
the location of the source charges when we compare the configurations of the
left and right sides of Figure 2.1. And this change in the location of the source
charges should happen mainly around the bent portion of the wire, but not at
the battery. We then arrive at Weber’s and Kirchhoff’s idea that the electric
field inside a wire carrying a constant current is due to free charges spread along
the surface of the wire [32, 24, 25, 26]. Kirchhoff’s three papers have English
translations [27, 28, 29]. In the Appendices we discuss these works in more
detail. The role of the battery is to maintain this distribution of free charges
along the surface of the wire (constant in time for steady currents, but variable
along the length of the wire). There will be a continuous gradient of density of
surface charges along the length of the wire, more positive toward the positive
terminal of the battery, decreasing in magnitude until it reaches a zero value at
an intermediary point, and increasingly negative toward the negative terminal,
Figure 2.2.

If there were no battery, the charge density would be zero at all points along
the surface of the wire. It is the distribution of these surface charges in space
which creates the electric field inside the wire driving the current. When we
bend a portion of the wire, the free charges redistribute themselves in space
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Figure 2.2: Qualitative distribution of charges along the surface of a resistive
wire carrying a steady current in two different configurations.

along the surface of the wire, creating the electric field which will follow the
new trajectory of the wire. This can be seen qualitatively in the right circuit
of Figure 2.2. Supposing the wire to be globally neutral, the integration of the
surface charges σ along the whole surface of the wire must always go to zero,
although σ is not zero at all points along the surface.

A qualitative representation of the surface charges in a resistive ring carrying
a steady current I when connected to a battery generating a voltage V between
its terminals is shown on the left side of Figure 2.3. A qualitative representation
of the internal and external electric fields due to these surface charges is shown
on the right side of Figure 2.3.

Figure 2.3: Qualitative representation of the surface charges (left) and of the
internal and external electric field (right) of a resistive ring carrying a steady
current.

A qualitative discussion of this redistribution of surface charges when a wire
is bent was given by Parker [164], and by Chabay and Sherwood [165, 166].
An order of magnitude calculation of the charges necessary to bend the electric
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current I around a corner has been given by Rosser [167].

However, most authors are not aware of these surface charges and the related
electric field outside the wire, as we can see from the quotations presented above.
Fortunately this subject has been revisited by other authors in some important
works discussed in this book.

2.2 Continuity of the Tangential Component of

the Electric Field

A second reason for the existence of an electric field outside resistive conductors
carrying steady currents is related to the boundary conditions for the electric
field ~E. As is well known, at an interface between two media 1 and 2 (with
n̂ being the unit vector normal to the interface at every point) we have that

the tangential component of ~E is continuous, Et1 = Et2 or n̂× ( ~E2 − ~E1) = 0.
On the other hand, the normal component may be discontinuous according to
n̂ · (ε2 ~E2− ε1 ~E1) = σ, where εj is the dielectric constant of the medium j and σ
is the density of surface charges at the interface. By Ohm’s law there must be a
longitudinal component of ~E inside a resistive wire, even at its surface. As this
component is continuous at an interface, it must also exist in vacuum or in the
air outside the conductor, not only close by, but also at measurable distances
from the wire.

Many textbooks only consider an electric field outside the current-carrying
wire when discussing these boundary conditions. The flux of energy in the
electromagnetic field is represented in classical electromagnetism by Poynting’s
vector ~S = ~E × ~B/µ0, where ~B is the magnetic field and µ0 = 4π × 10−7

H/m is the magnetic permeability of the vacuum. The authors who deal with
the electric field outside wires by considering the boundary conditions normally
present Poynting’s vector pointing radially inwards toward the wire [168, pp.
180-181] [33, p. 27-8]. This goes back to Poynting himself in 1885 [169, 170].
Here is what Poynting wrote in this paper: “In the particular case of a steady
current in a wire where the electrical level surfaces cut the wire perpendicularly
to the axis, it appears that the energy dissipated in the wire as heat comes in
from the surrounding medium, entering perpendicularly to the surface.” (...)
“In the neighbourhood of a wire containing a current, the electric tubes may in
general be taken as parallel to the wire while the magnetic tubes encircle it.”
In the first paragraph of the section A straight wire carrying a steady current
he wrote: “Let AB represent a wire in which is a steady current from A to B.
The direction of the electric induction in the surrounding field near the wire, if
the field be homogeneous, is parallel to AB.”

A typical representation found in the textbooks of the fields ~E, ~B and ~S in
the vicinity of a current carrying cylindrical wire is that of Figure 2.4.

There are two points to make here. In the first place, these drawings and
statements suggest that this electric field should exist only close to the wire,
while as a matter of fact it exists at all points in space. In the second place,
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Figure 2.4: Typical representation of the Poynting vector ~S = ~E× ~B/µ0 outside
a resistive wire carrying a steady current.

they indicate that these authors are not concerned about the surface charges
generating the field. It is only at a few locations that ~S will be orthogonal to
the wire just outside it, namely, the locations where the surface charge density
goes to zero. These locations are an exception and not the rule. In most other
locations the density of surface charges will be either positive (closer to the
positive terminal of the battery) or negative (closer to the negative terminal of
the battery). The rule is that there will be a radial component which may be
larger than the longitudinal one, pointing toward the wire or away from it. One
of the effects of this radial component is that ~E and ~S will usually be inclined
just outside the wire and not orthogonal to it.

These two misleading viewpoints are clearly represented by Feynman, Leighton
and Sands’s statement in Section 27-5 (Examples of energy flow) of their book
[33, p. 27-8], our emphasis in boldface: “As another example, we ask what hap-
pens in a piece of resistance wire when it is carrying a current. Since the wire
has resistance, there is an electric field along it, driving the current. Because
there is a potential drop along the wire, there is also an electric field just
outside the wire, parallel to the surface (see Fig. 27-5 [our Figure 2.4]).
There is, in addition, a magnetic field which goes around the wire because of the
current. The E and B are at right angles; therefore there is a Poynting vector
directed radially inward, as shown in the figure. There is a flow of energy into
the wire all around. It is, of course, equal to the energy being lost in the wire
in the form of heat. So our “crazy” theory says that the electrons are getting
their energy to generate heat because of the energy flowing into the wire from
the field outside. Intuition would seem to tell us that the electrons get their
energy from being pushed along the wire, so the energy should be flowing down
(or up) along the wire. But the theory says that the electrons are really being
pushed by an electric field, which has come from some charges very far away,
and that the electrons get their energy for generating heat from these fields.
The energy somehow flows from the distant charges into a wide area of space
and then inward to the wire.”

As we have seen, the electric field just outside the resistive wire is normally
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not parallel to the wire. Moreover, the main contribution for the local electric
field at a specific point inside a wire is due to the charges along the surface of
the wire around this point, contrary to their statement (who believed that it has
come “from some charges very far away”). Probably they were thinking here of
the charges inside the battery.
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Chapter 3

Experiments

In this Chapter we present experiments that prove the existence of the electric
field outside resistive wires carrying steady currents. Many experiments along
these lines were probably performed in the second half of the XIXth century
and in the early part of the XXth century, but they have been forgotten and
are not quoted nowadays. Here we present only those which have come to our
attention.

We separate these experiments into three classes. The first one is related to
the zeroth order electric field (due to electrostatic induction), which exists even
when there is no current along the wire. The second class is related directly to
the battery and to the current along the wire, being proportional to the emf of
the battery or to the potential difference acting along the conductor. The third
class is related to the second order electric field, proportional to v2

d/c
2, where

vd is the drifting velocity of the conduction electrons and c is light velocity in
vacuum.

3.1 Zeroth Order Electric Field

We are not aware of any specific experiments designed to measure the force
between a point charge and a nearby conductor. We are here considering a
conductor which is initially neutral and has no currents flowing through it, until
we bring a charge close to it and let both of them at rest relative to one another.
After the electrostatic equilibrium is reached, the electrical polarization of the
conductor will cause a net force between the conductor and the external charge.
This zeroth order force will depend upon the shape of the conductor, upon its
distance to the external charge, and upon the value of this charge. We can
also express this by saying that a zeroth order electric field will be created
depending upon the external test charge, upon its distance to the conductor
and upon the shape of the conductor. Many quantitative experiments along
these lines were probably performed in the XIXth century. As we are not aware
of them, we will not quote any specific experiment here. But we believe these
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experiments, which were probably made with conductors having many different
shapes, would have agreed with the predictions based upon Coulomb’s force
and upon the properties of conductors, otherwise this would have come to the
attention of most scientists long ago. The basic properties of conductors in
electrostatic equilibrium which we utilize in this book are: no electric field on
the interior, no net density of charges on the interior, any net charge resides on
the surface, the potential is constant throughout the interior and the surface of
a conductor, and the electric field is perpendicular to the surface immediately
outside it. Therefore, we will presume the calculations on this topic to have
been confirmed by past observations. In the next section we discuss Sansbury’s
experiment, which has some qualitative aspects that touch upon this subject.

3.2 Electric Field Proportional to the Voltage of

the Battery

We consider here the force between an external test charge and a resistive wire
carrying a steady current. We will consider the component of this force which
is proportional to the voltage or to the emf of the battery connected to the
wire. That is, the component of the electric field proportional to the potential
difference acting along the wire. The majority of the experiments deal with
voltages of the order of 104 V, when the macroscopic effects are more easily
seen [171] [166, p. 653].

We present several kinds of experiments. Some map the lines of electric field
outside resistive wires carrying steady currents. Others map the equipotential
lines outside these conductors. Other experiments directly measure the force
between a charge test body and a wire carrying a steady current, when there is
no motion between the wire and the test body. Anther experiment measures the
charging of an electroscope connected to different points of a circuit carrying a
steady current. Yet another experiment describes how to obtain a part of the
surface charge in different points of the circuit, showing also how to verify if it
is positive or negative and also its magnitude.

Bergmann and Schaefer present some experiments in which they mapped
the electric field lines [172, pp. 164-167] [173, pp. 197-199]. They comment
that due to the great conductivity of metals it is difficult to utilize metals
as conductors in these experiments. Metals cannot sustain a great potential
difference between their extremities, so that they produce only a very small
external electric field. For this reason they utilize graphite paper strips of high
resistivity and apply 20 000 to 40 000 volts between their extremities in order to
produce a steady current along the strip. They ground the center of the strip to
put it at zero potential, so that the lines of the electric field are symmetrically
distributed around it. They then spread semolina in castor oil around the strip,
and obtained the result shown in Figure 3.1. The central straight dark line is
the paper strip carrying a steady current. The particles of semolina polarize
due to the external electric field and align themselves with it, analogous to iron
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filings mapping a magnetic field.

Figure 3.1: Experimental mapping of the external electric field of a straight
conductor carrying a steady current.

It should be observed that along the external surface of the conductor there
is a longitudinal component of the electric field. This aspect differentiates it
from the electric field outside conductors held at a constant potential (in which
case the external electric field in steady state is normal to the conductor at
every point of its surface), as has been pointed out by Bergmann and Schaefer.

By bending the conductor in a U-form they were able to show the lines of
electric field outside a transmission line or twin-lead, Figure 3.2. On the left
side the electric field lines are built into the plane of the conductors, while on
the right hand side they are built into a plane orthogonal to the conductors.

Figure 3.2: Experimental mapping of the external electric field of a transmission
line.

Bergmann and Schaefer also discuss the redistribution of charges along the
surface of an open circuit connected to a battery when the circuit is closed.
Another clear discussion of this situation can be found in the recent book by
Chabay and Sherwood [165, Chapter 6].

Experiments similar to those of Bergmann and Schaefer have been performed
by Jefimenko [174] [175, pp. 295-312 and 508-511] [176, plates 6 to 9 and pp.
299-319 and 508-511]. He utilized a transparent conducting ink to make a two-
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dimensional printed circuit on glass plates of 10 inches × 12 inches. In the
Figures, 3.3 to 3.7 the gray sections represent the current-carrying conducting
strips. The power supply was capable of producing about 104 V. He utilized
a Du Mont high-voltage power supply type 263-A but mentioned that a small
van de Graaff generator might also be employed. After the power supply was
turned on, he spread some fine grass seeds (Redtop type) over the plate and
conducting system. The seeds lined up in the direction of the electric field over
and outside the conductors.

Figure 3.3 depicts Jefimenko’s experiment for a straight current-carrying
conductor.

Figure 3.3: Straight current-carrying conductor.

Figure 3.4 depicts his experiment for square-shaped (left) and circular (right)
conducting rings.

Figure 3.4: Square-shaped (left) and circular (right) conducting rings.

Figure 3.5 depicts his experiment for shorted symmetric (left) and asymmet-
ric (right) transmission lines.

Figure 3.6 depicts his experiment for current-carrying wedges with the two
halves connected in parallel (left) and in series (right).

And Figure 3.7 depicts his experiments involving current-carrying rings on
the left with two-pole (top) and four-pole (bottom) connections. On the right
we have current-carrying discs with two-pole (top) and four-pole (bottom) con-
nections.
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Figure 3.5: Shorted symmetric (left) and asymmetric (right) transmission lines.

Figure 3.6: Current-carrying wedges with the two halves connected in parallel
(left) and in series (right).

Figure 3.7: On the left are current-carrying rings with two-pole (top) and four-
pole (bottom) connections. On the right are current-carrying discs with two-pole
(top) and four-pole (bottom) connections.
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In a private communication to one of the authors (AKTA), Jefimenko men-
tioned that he never measured the current in the grass seed experiments. How-
ever, he believed that they were of the order of a few microamperes. He men-
tioned that the patterns of the current-carrying conductors were about 16 or 20
centimeters long.

The experiments of Bergmann, Schaefer and Jefimenko complement one an-
other. After obtaining theoretical formulas for the equipotentials and for the
electric field lines, we will compare them with some of these experimental results.

In another type of experiment, Jefimenko, Barnett and Kelly obtained the
equipotential lines directly inside and outside conductors with steady currents
utilizing an electronic electrometer [177] [176, p. 301]. A radioactive alpha-
source was utilized to ionize the air, in order to make it a conductor of electricity,
at the point where the field was to be measured. The alpha-source acquired
the same potential as the field at that point. The potential was measured
(in relation to a reference point chosen at zero potential) with an electronic
electrometer connected to the alpha-source. They utilized a hollow rectangular
chamber with electrodes for end walls and semi-conducting side walls carrying
uniform current. Graphite paper strips were used for the side walls, as in the
experiments by Bergmann and Schaefer, and aluminum foil served as electrodes
with 80 V applied. The equipotentials were mapped experimentally.

Figure 3.8 depicts the configuration of the problem.

Figure 3.8: Configuration of the system.

Figure 3.9 depicts the equipotential lines measured in one of the experiments.

Figure 3.9: Measured equipotentials.

In another experiment, undeveloped photographic film was used in place of
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the graphite paper, experimentally yielding the equipotential lines inside and
outside the conductor carrying steady currents represented in Figures 3.10 and
3.11.

Figure 3.10: Measured equipotentials.

Figure 3.11: Measured equipotentials with 80 Volt disc outside chamber.

In this last experiment, Figure 3.11, they showed that an external charged
body has no effect on the field inside the current carrying conductor. The
current in the graphite paper was measured to be 5 × 10−2 A, while in the
photographic film the current was measured to be only 4 × 10−6 A [177].

A variety of qualitative experiments demonstrating the existence of an ex-
ternal electric field have been performed by Parker [164]. He utilized 5 to 10
kV power supply connected to a high resistance, low-current circuit, which was
drawn on a ground-glass or Mylar surface with an IBM scoring pencil. When
there was a steady current in the circuit he detected a force on a charged pith
ball located nearby, which varied from one end of the circuit to the other. This
is a very interesting result, as it shows directly the force between a resistive cur-
rent carrying circuit and a stationary charge located nearby, the main question
we asked in the beginning of this book. Unfortunately Parker did not men-
tion the values of the current, the charge in the pith ball, the distance between
the pith ball and circuit, nor the detected force. He also utilized a gold-leaf
electroscope with a wire lead to probe quantitatively regions around the current
carrying circuit. He could also map the lines of electric field by dusting the glass
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with plastic or felt fibers while current was flowing. In particular he utilized
plastic fibers of approximately 1 mm in length. This mapping is similar to what
Bergmann, Schaefer and Jefimenko had done.

There is also an interesting experiment by Sansbury in which he detected
a force between a charged metal foil and a current-carrying conductor directly
by means of a torsion balance [178]. He placed a neutral 2 cm × 2 cm silver
foil which was at the extremity of a torsion balance close to a U-shaped neutral
conductor (length 50 cm, separation between the wires 10 cm) without current,
Fig. 3.12. When he charged the foil with a charge which he estimated to be
approximately 0.5 × 10−9 C (by connecting it to a 3 kV voltage supply), he
observed an attraction between the vane and the wire (the charged metal foil
moved from a to b in Fig. 3.13). This was probably due to the zeroth order force
of electrostatic induction F0 discussed above, i.e., a force due to image charges
induced in the wire by the charged foil nearby. He then passed a steady current
of 900 A through the wire by connecting it to a ± 1000 A, 8 V, adjustable,
regulated dc current supply. In this case he observed an extra attraction or
repulsion between the charged foil and the wire, depending on the sign of the
charge in the foil, Fig. 3.13. This extra force was greater than 1.7 × 10−7 N,
although he was not able to make precise measurements. This extra force was
probably due to the external electric field being discussed here, i.e., to the elec-
tric field proportional to the voltage or emf of the battery. Later on we analyze
this experiment in more detail in connection with theoretical calculations.

Figure 3.12: Configuration of Sansbury’s experiment.

The force between Sansbury’s charged metal foil and current-carrying wire
seems to be similar to the force between Parker’s charged pith ball and current
carrying circuit. Bartlett and Maglic considered the force detected by Sansbury
an “anomalous electromagnetic effect,” as suggested by the title of their paper
[179]. They conducted a similar experiment. See Figs. 3.14 and 3.15.

They utilized a rectangular 16-turn coil (4 wide × 4 high), with 30 cm
width and 60 cm length. Each turn was made of a 1/8 in. copper tubing
(outer diameter of 0.3175 cm). In a private communication with one of the
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Figure 3.13: In the beginning there is no current in the conductor and the
uncharged silver foil remains at a. When the silver foil is charged, it moves
from a to b. Then a steady current I is passed through the conductor. In this
case there appears an extra force of attraction or repulsion between the charged
foil and the U -shaped conductor.

authors (JAH) Bartlett reported that the conductor was water-cooled, with
water flowing through the hole in the center of the tubing. Approximately 50%
of the cross-sectional area of the tubing was copper, and 50% was water. A
current source connected to the coil maintained a steady current of 50 A in each
turn. They detected a force upon the charged metal foil with an area of 2.54
cm × 2.54 cm placed at a distance of 3.5 cm from the coil carrying a steady
current. This was similar to the effect detected by Sansbury.

Figure 3.14: Experiment performed by Bartlett and Maglic.

But when the upper half of the current carrying circuit and the test charge
were shielded with an aluminum can, the effect disappeared. Their conclusion
was that they could not find this “anomalous” interaction, implying that it did
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Figure 3.15: Top view of Bartlett and Maglic’s experiment.

not exist.
However, they seem to have been unaware of one important point in connec-

tion with Faraday cages. They are usually utilized to shield the system under
consideration from external influences. But they affect the net force on each in-
ternal test charge. For instance, if we have two charges q1 and q2 separated by a
distance d, the coulombian force between them has a magnitude of q1q2/4πε0d

2

and is directed along the line joining them, Figure 3.16.

Figure 3.16: Electrostatic force between two charges far from other charges and
conductors.

When we surround both of them with a metallic shell, they will induce a
distribution of charges along the surface of the shell. As a result of these induced
charges, the shell will exert forces on q1 and on q2, resulting in general in a net
force on each one of them different from the previous value of q1q2/4πε0d

2.
With a spherical shell the force upon the internal test charges exerted by the
induced charges along the wall can be easily calculated by the method of images.
Each charge qj located at a distance aj from the center of the shell of radius
r0 > aj , with j = 1 or 2, will induce charges equivalent to an image charge
qij = −qjr0/aj at a distance aij = r20/aj > r0 from the center of the shell,
located along the straight line connecting the center of the shell and qj . The

net force on q1, for instance, will be given by ~F21 + ~Fi1,1 + ~Fi2,1 instead of simply
~F21. Here ~Fm,n is the force exerted by the (image) charge m on the charge n. If
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the straight line connecting the two charges q1 and q2 does not pass through the
center of the shell, the net force on each one of them will change its magnitude
and also its direction in comparison with the previous value without the shell,
Figure 3.17.

Figure 3.17: Electrostatic forces on q1 due to q2, to the image charge qi1 and to
the image charge qi2.

If there are N internal charges, the net force on q1 will be given by the
sum of the forces due to the other N − 1 charges on q1, plus the N forces of
the image charges on q1. If the Faraday cage is not spherical, it will be very
difficult to calculate the new force on the test charges. In Bartlett and Maglic’s
case the Faraday cage was cylindrical with metallic lateral sides and dielectric
extremities. This makes it very difficult to estimate the effect of the shield
upon the internal charged foil. Moreover, we have not just the two charges
q1 and q2 as discussed before, but the charged foil and a quantity of charges
distributed along the surface of the resistive current-carrying wire. As the wire is
made of a conducting material, the induced charges upon the Faraday cage will
change the distribution of charges spread along the surface of the wire (compared
with the distribution of surface charges without the Faraday cage), such that
even this new distribution is not yet known until they can be calculated with
Laplace’s equation and the appropriate boundary conditions. This enormously
complicates the theoretical analysis of the expected net force (exerted upon the
test charge when the current-carrying wire and the test charge are shielded).
For this reason it seems preferable to perform this kind of experiment without
the metallic shield.

The result obtained by Bartlett and Maglic is described as follows [179]:
“Averaging the results of the runs with and without the shield we find a signal
of 0.3 ± 0.3 mrad. (...) We multiply our measured rotation of 0.3 ± 0.3 mrad by
the sensitivity of the fiber (9.1×10−5 N/m) to obtain a force of (0.27±0.27)10−7

N.” The impression we get from reading the paper is that the force measured
without the shield was 0.27 × 10−7 N, one order of magnitude smaller than
that observed by Sansbury. On the other hand, we infer that with the shield
Bartlett and Maglic measured no force (hence the ± sign given in the previous
quotation). Our opinion is that the shield changes the distribution of charges
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on the metallic shell. This changes the net force on each of the internal charges,
as we showed earlier. Therefore, it is very difficult to compare the two cases
(with and without shielding). The ideal situation would be to perform this kind
of experiment without any shield. Unfortunately, this was not the procedure
adopted by Bartlett and Maglic.

Further discussions of Sansbury’s experiment with different approaches can
be found in works by several authors [1, 4, 5, 82, 83, 180, 181, 182, 183].

Another kind of experiment was performed by Moreau, Ryan, Beuzenberg
and Syme [184]. (See Figure 3.18.)

Figure 3.18: Electroscope touching different points of a high voltage resistive
circuit carrying a steady current.

They connected a 0- to 5-kV current-limited dc power supply to a series
circuit consisting of two resistances of 75 MΩ. The conductors were bare alu-
minum bars and the resistances were strips of foam plastic impregnated with
Aqua Dac. The conductors and resistances had rectangular cross-sections of 12
mm × 9 mm. Each one of the resistances was 50 cm in length. The conducting
bar between them was 30 cm in length. The main goal of the experiment was
to demonstrate directly that when a steady current flows along a circuit, there
is a gradient of surface charges along the conductors and along the resistances,
in such a way that this gradient of surface charge density produces an electric
field along the direction of the current. To indicate the charge density at sev-
eral points of the circuit, they connected these points to a high voltage probe.
This probe was connected to a gold-leaf electroscope. Something similar to this
was done by Parker [164]. The electroscope was placed inside a nonconducting
polystyrene case. When the power supply was turned up to 2 kV a microamme-
ter in the circuit measured a current of about 13 µA. One side of the circuit was
grounded. At this point the electroscope showed no deflection, indicating zero
charge density. As the probe moved away from this point along the resistance
strip, the electroscope deflected gradually with distance traveled along the re-
sistance, reaching a deflection of about 55o at its end. The deflection remained
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constant as the probe was moved along the middle conductor, indicating that
the charge density was essentially constant (or that it varied very little) along
it. The deflection increased again along the second resistance, reaching a final
deflection of about 70o at the extremity. This indicated that the charge den-
sity was relatively high on the upstream side of the resistors, decreasing along
them in the direction of the current. This produced an electric field forcing the
conduction charges through the resistances.

Another very didactic experience was performed by Uri Ganiel and collabo-
rators of the Science Education Group at the Weizmann Institute in Israel. This
experiment has been cited and reproduced by Chabay and Sherwood [171, 185]
[166, Section 18.10, pp x and 652-654]. (See Figure 3.19.)

Figure 3.19: Four identical high resistance resistors are connected in series in
a closed circuit carrying a steady current. This Figure shows the qualitative
distribution of surface charges. The thin metallized mylar strip is attracted by
the bare (uninsulated) wires, touches them and is then repelled by them. By
testing the charge gained by the metallized strip it is possible to determine the
sign of the surface charges at each point along the circuit.

A closed circuit is formed with four identical high resistance resistors con-
nected in series, each with 80 MΩ. They are connected to two high voltage
power supplies, of 5 kV each. There is a grounded conductor between these
two power supplies. One of the power supplies yields + 5 kV at one extremity
of the first resistor, while the other yields - 5 kV at the opposite extremity of
the fourth resistor (relative to the ground). In other words, these two power
supplies are connected in series. There are bare (uninsulated) wires between
the resistors in order to allow the collection of their surface charges by an ap-
propriate probe. This is performed utilizing a flexible, thin metallized mylar
strip. When the strip is brought close to the bare wire at the left side of the
circuit, near location A, it is observed to be attracted to the wire. It touches
the wire and is then repelled by it. It is initially attracted due to polarization
of the aluminized plastic strip created by the surface charge on the wire. When
it touches the wire, it jumps away, since it is charged by contact with the bare
wire and repelled by the surface charge at that location. When the strip is
tested it is found to be negatively charged. It is then discharged, and the same
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procedure is repeated, although this time it is brought close to the bare wire
between the first and second resistors, at B. Once more it is found to become
negatively charged, but now with a smaller magnitude to the previous case. No
effect is observed at C when the strip is first discharged and then brought close
to this point. When the procedure is repeated at D, it is found to be posi-
tively charged. The same happens at E, but now with a larger magnitude than
at D. This experiment shows directly that different points of the wire become
charged when there is a constant current flowing through it. This surface charge
density changes along the circuit. The largest gradient (variation of the mag-
nitude per unit length) occurs along the resistors. Along the conductors there
is a very small variation of the magnitude of the charge density. Chabay and
Sherwood point out that only at very high voltages is there enough charge to
observe electrostatic repulsion in a mechanical system [166, p. 654]. With a low
voltage circuit (like in a flashlight connected to ordinary 1.5 V batteries), any
charged body brought near the current-carrying wire will be initially attracted
to it, regardless of the sign of the charged body. This will happen both close
to the positive and close to the negative terminals of the battery. The reason
for this fact is that the zeroth order force will be much greater than the force
proportional to the voltage of the battery.

In conclusion we can infer that the experiments of Bergmann, Schaefer,
Jefimenko, Barnett, Kelly, Sansbury, Parker, Moreau, Ryan, Beuzenberg, Syme,
Ganiel, Chabay and Sherwood prove the existence of the external electric field
due to resistive, stationary wires carrying steady currents. They have also shown
the existence of surface charges along the conductors and resistors. These are
the charges which produce the internal and external electric fields.

In order to have a complete proof, it would be necessary to repeat each
of these experiments with different electromotive forces of the batteries and
verify if the external electric field is proportional to this voltage. To the best
of our knowledge none of these experiments varied the emf in order to show or
demonstrate unambiguously linearity of the force intensity (or of the electric
field intensity) with applied voltage, unfortunately.

In the following Chapters we compare these experiments with analytical so-
lutions for the external potential and electric field due to resistive wires carrying
steady currents. This will give further support to the inference that there is a
force proportional to the voltage of the battery between an external stationary
point charge and a resistive wire carrying a steady current.

3.3 Second Order Electric Field

All the previous experiments involved the electromotive force of the battery. A
completely different set of experiments investigates a second order electric field,
i.e., an electric field proportional to v2

d/c
2.

Checking whether or not the second order electric field exists is much more
difficult than studying the electric field discussed previously. The reason for
this difficulty is that the order of magnitude of the second order electric field,
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E2, is normally much smaller than the electric field associated with the electro-
motive force of the battery, E1, and also much smaller than the zeroth order
electric field, E0. However, if the wire is a superconductor and a steady current
is flowing through (with no battery connected to the wire), the external electric
field E1 should go to zero. If we take into account (or neglect) the force due
to electrostatic induction (related with image charges) as well, there remains in
this case only the second order electric field. This was the approach utilized by
Edwards, Kenyon and Lemon in their experiments [14, 15], which are the best
known to us to analyze this effect. They utilized type II superconductor (48%
niobium and 52% titanium) cores of 2.5 mil radius with currents of the order of
16 A. They found an electric field proportional to I2, independent of the direc-
tion of the current, pointing toward the wire and with an order of magnitude
compatible with that predicted by Weber’s law. What they actually measured
utilizing an electrometer was a potential difference between the circuit and an
electrostatic shield around the circuit. They measured potential differences with
an order of magnitude of 10 mV.

Bartlett and Ward made a number of different experiments to detect this
second order electric field (which they interpreted as due to a possible variation
of the electron’s charge with its velocity), but failed to find it [186]. They
utilized normal resistive conductors, but in their analysis they did not mention
the electric field proportional to the voltage of the battery discussed above.

In another experiment, Kenyon and Edwards placed a beam-power radio
tube within a Faraday cage [187]. They tried to measure the potential difference
between the system and the Faraday cage. They could not find any effect
with the order of magnitude of the earlier experiment of Edwards, Kenyon and
Lemon.

In any event attention must be called here to the Faraday cage around
the system in these experiments, and also in most of those quoted by Bartlett
and Ward. As we mentioned previously, the charges induced in the walls of a
Faraday cage due to internal charges will exert a net force on any internal test
charge. If there are two or more internal charges, the net force in each will be
different in two cases: (A) without the Faraday cage (force due only to the other
internal charges), and (B) with Faraday cage (force due to the other internal
charges and to all induced charges in the walls of the cage). This enormously
complicates the analysis of all these experiments, and it is difficult to reach a
simple result. Beyond the complication of the Faraday cage, there is also the
electric field proportional to the voltage of the battery which must be taken into
account before discussing the second order electric field. And this was not done
by any of these authors when dealing with resistive conductors. The second
order electric field is usually much smaller than the electric field proportional to
the voltage of the battery, as we will show later on. For this reason the electric
field proportional to the voltage of the battery must be included in the analysis
because it can mask the effect which is being sought.

More research is necessary before a final conclusion can be drawn on this
second order electric field. A great number of experimental and theoretical
works in connection with this subject have been published in the last 25 years
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[188, 189, 190, 191, 82, 192, 181, 193, 83, 4, 5, 182, 194, 195, 196, 197, 23, 6, 7,
198].
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Chapter 4

Force Due to Electrostatic

Induction

4.1 Introduction

The main subject of this book is the force between a stationary wire carrying a
steady current and an external charge at rest relative to the wire. In particular,
we are interested in the component of this force which is proportional to the
voltage or emf of the battery, or to the potential difference acting along the
wire.

Before analyzing these cases we consider the force between a point charge
and a conductor which has no current flowing through it. We suppose air or
vacuum outside the conductor (and also inside hollow ones). We also consider
only the equilibrium situation when the point charge and the conductor are
at rest relative to one another and also at rest relative to an inertial frame of
reference. It is also assumed that there are no other charges or conductors in
the vicinity of the system, beyond the ones being considered here. The main
material of this Chapter was discussed in 2005 [199].

4.1.1 Point Charge and Infinite Plane

The simplest configuration is that of a point charge q at a distance d from
an infinite conducting plane with zero net charge. Let us suppose that the
conducting plane is along the plane z = 0, while the charge q is located at
(x, y, z) = (0, 0, z). The method of images yields in this case an attractive force
acting upon q given by

~F0 = ∓ q2

16πε0

ẑ

z2
. (4.1)

Here the top sign is valid for z > 0, while the bottom sign is valid for z < 0.
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Expressing this force as ~F0 = q ~E0 yields a zeroth order electric field given
by

~E0 = ∓ q

16πε0

ẑ

z2
. (4.2)

Even adding a finite charge Q uniformly spread along the infinite plane does
not change these two results. That is, ~F0 and ~E0 are independent of Q.

This force is always attractive and diverges to infinity when d→ 0.

4.1.2 Point Charge and Spherical Shell

Another simple case to consider is that of a point charge and a conducting
spherical shell at rest relative to one another. We consider a spherical shell of
radius R centered upon the origin 0 of a coordinate system. There is a net
charge Q on the conducting spherical shell, insulated from the earth. The test
charge q is located at ~r = rr̂ relative to 0. The solution of this problem can
also be obtained by the method of images and is found in most textbooks on
electromagnetism. When r > R the force upon q is given by

~F0 =
q

4πε0

[

Q− qR3(2r2 −R2)

r(r2 −R2)2

]

~r

r3
. (4.3)

When r < R the force is independent of Q and is given by

~F0 =
q2

4πε0

R~r

(R2 − r2)2
. (4.4)

These forces diverge to infinity when r → R. When q is inside the shell, it
always suffers an electrostatic force toward the closest wall. When q is outside
the shell, the force will be attractive not only when qQ < 0, but also when
qQ > 0, provided q is at a very close distance to the shell. A detailed discussion
of this fact can be found, for instance, in Maxwell’s work [200, Chapter VII:
Theory of electrical images, pp. 80-88], in a paper by Melehy [201] and in
Jackson’s book [11, Section 2.3].

The zeroth order electric field in these cases is given by (with ~F0 = q ~E0):

~E0 =
1

4πε0

[

Q− qR3(2r2 −R2)

r(r2 −R2)2

]

~r

r3
, if r > R . (4.5)

~E0 =
q

4πε0

R~r

(R2 − r2)2
, if r < R . (4.6)

4.2 Point Charge and Cylindrical Shell

After considering these two simple cases we analyze the main subject of this
chapter. The goal is to calculate the electrostatic force between an infinite
conducting cylinder of radius a held at zero potential and an external point

46



charge q. To the best of our knowledge this has never been done before. To
this end we consider the Green function method [13, Chaps. 1 to 3]. We begin
reviewing a known solution of the potential inside a grounded, closed, hollow
and finite cylindrical shell with an internal point charge [13, p. 143]. We analyze
the limit of an infinite cylinder and explore the force exerted on the point charge.
We then perform a similar analysis for the case of an external point charge. We
consider in detail the particular situation of a thin wire, i.e., with the point
charge many radii away from the axis of the cylinder. These calculations were
published in 2005 [199].

4.3 Finite Conducting Cylindrical Shell with In-

ternal Point Charge: Solution of Poisson’s

Equation

Consider a finite conducting cylindrical shell of radius a and length ℓ ≫ a,
with z being its axis of symmetry. (See Fig. 4.1.) With cylindrical coordinates
(ρ, ϕ, z) the center of the shell is supposed to be at (ρ, z) = (0, ℓ/2). We also
consider a point charge q located at ~r ′ = (ρ′ < a,ϕ′, z′) inside the shell. We wish
to calculate the electric potential of the system, the electric field, the surface
charge distribution induced by q and the net force between the cylinder and q.

Figure 4.1: Finite conducting cylinder of length ℓ and radius a centered at
(ρ, z) = (0, ℓ/2), with z being its axis of symmetry. There are conducting covers
at z = 0 and at z = ℓ. There is a point charge q located at (ρ, ϕ, z) = (ρ′ <
a,ϕ′, 0 < z′ < ℓ).

The electrostatic potential φ obeys Poisson’s equation:

∇2
rφ = − ρ

ε0
. (4.7)

By the standard Green function method, the solution of Poisson’s equation
for this case with Dirichlet boundary conditions (potential specified on a closed
surface) is given by:
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φ(~r) =
1

4πε0

∫ ∫ ∫

V

ρ(~r ′′)G(~r, ~r ′′)dV ′′ − 1

4π
©
∫∫

S

φ(~r ′′)
∂G

∂n′′ da
′′ , (4.8)

where V is the volume of the cylindrical shell, S its closed surface and ∂/∂n′′

is the normal derivative at the surface S of the shell directed outwards. Here
G(~r, ~r ′′) is a Green function satisfying the equation:

∇2
r′′G(~r, ~r ′′) = −4πδ(~r − ~r ′′) . (4.9)

As the surface of the cylinder in electrostatic equilibrium is at a constant po-
tential φ0, we stipulate that G(~r, ~r ′′) = 0 at this surface.

We can expand the Dirac delta function in cylindrical coordinates as given
by:

δ(~r − ~r ′′) = δ(ρ− ρ′′)
δ(ϕ− ϕ′′)

ρ
δ(z − z′′) . (4.10)

The delta functions for ϕ and z can be written in terms of orthonormal
functions:

δ(z − z′′) =
2

ℓ

[ ∞
∑

n=1

sin
nπz

ℓ
sin

nπz′′

ℓ

]

, (4.11)

δ(ϕ− ϕ′′) =
1

2π

[ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

]

. (4.12)

Notice our particular choice of expansion for z, Eq. (4.11). This choice
satisfies the condition G(~r, ~r ′′) = 0 in the covers of the cylindrical shell located
at z = 0 and at z = ℓ. The Green function can be expanded in a similar fashion:

G(~r, ~r ′′) =
1

πℓ

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

[ ∞
∑

n=1

sin
nπz

ℓ
sin

nπz′′

ℓ
gm(k, ρ, ρ′′)

]}

,

(4.13)
where k = nπ/ℓ and gm(k, ρ, ρ′′) is the radial Green function to be determined.
Substituting this expression into Eq. (4.9) and using (4.10) to (4.12) we obtain:

1

ρ

d

dρ

(

ρ
dgm
dρ

)

−
(

k2 +
m2

ρ2

)

gm = −4π

ρ
δ(ρ− ρ′′) . (4.14)

For ρ 6= ρ′′ the right hand side of Eq. (4.14) is equal to zero. This means that
gm is a linear combination of modified Bessel functions, Im(kρ) and Km(kρ).
Suppose that ψ1(kρ) satisfies the boundary conditions for ρ < ρ′′ and that
ψ2(kρ) satisfies the boundary conditions for ρ > ρ′′:
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ψ1(kρ<) = AIm(kρ<) +BKm(kρ<) , (4.15)

ψ2(kρ>) = CIm(kρ>) +DKm(kρ>) . (4.16)

Here A, B, C and D are coefficients to be determined. The symmetry of the
Green function in ρ and ρ′′ requires that:

gm(k, ρ, ρ′′) = ψ1(kρ<)ψ2(kρ>) , (4.17)

where ρ> and ρ< are, respectively, the larger and the smaller of ρ and ρ′′.
The potential must not diverge for ρ → 0, so we must have B = 0. The
Green function must vanish at ρ = a, i.e., ψ2(ka) = 0. This yields C =
−DKm(ka)/Im(ka). The function gm can then be written as:

gm(k, ρ, ρ′′) = HIm(kρ<)

[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]

. (4.18)

The normalization coefficient H = AC is determined by the discontinuity
implied by the delta function in Eq. (4.14):

dgm
dρ

∣

∣

∣

∣

∣

+

− dgm
dρ

∣

∣

∣

∣

∣

−

= −4π

ρ′′
= kW [ψ1, ψ2] , (4.19)

where the ± signs means evaluation at ρ = ρ′′± ǫ and taking the limit ǫ→ 0. In
the last equality, W [ψ1, ψ2] is the Wronskian of ψ1 and ψ2. Substituting gm into
Eq. (4.19), and using W [Im(kρ′′),Km(kρ′′)] = −1/(kρ′′), we find H = 4π. The
Green function for the problem of a finite conducting cylinder with an internal
charge can be finally written as:

G(~r, ~r ′′) =
4

ℓ

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

{ ∞
∑

n=1

sin(kz) sin(kz′′)Im(kρ<)×

×
[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]}}

. (4.20)

4.3.1 Cylindrical Shell Held at Zero Potential

Consider the cylinder to be held at zero potential, namely, φ(~r ′′) = 0:

φ(a, ϕ, 0 ≤ z ≤ ℓ) = φ(ρ ≤ a, ϕ, ℓ) = φ(ρ ≤ a, ϕ, 0) = 0 . (4.21)

Substituting Eqs. (4.20) and (4.21) into Eq. (4.8) yields the potential inside
the cylinder as (with ρ(~r ′′) = qδ(~r ′ − ~r ′′)):

φ(~r, ~r ′) =
q

πε0ℓ

{ ∞
∑

m=−∞

{ ∞
∑

n=1

eim(ϕ−ϕ′) sin
(nπz

ℓ

)

sin

(

nπz′

ℓ

)

Im

(nπρ<
ℓ

)

×
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×
[

Km

(nπρ>
ℓ

)

− Im

(nπρ>
ℓ

) Km

(

nπa
ℓ

)

Im
(

nπa
ℓ

)

]}}

. (4.22)

Here ρ> (ρ<) is the larger (smaller) of ρ and ρ′.

4.4 Infinite Conducting Cylindrical Shell with

Internal Point Charge

We now expand Jackson’s solution for the case of a cylindrical shell of infinite
length.

The solution for an infinite cylinder differs from the solution of the finite
cylinder in that it essentially changes the expansion of the delta function in
Eq. (4.11). In the infinite cylinder there is no restriction on the choice of n (or
k):

δ(z − z′′) =
1

2π

∫ ∞

−∞
eik(z−z

′′)dk =
1

π

∫ ∞

0

cos[k(z − z′′)]dk . (4.23)

The Green function can be written as:

G(~r, ~r ′′) =
2

π

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

∫ ∞

0

cos[k(z − z′′)]Im(kρ<)×

×
[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]

dk

}

. (4.24)

Note that we can pass from Eq. (4.11) to Eq. (4.23) by transforming the
Fourier series into the Fourier transform, that is, by letting ℓ → ∞, setting
nπ/ℓ = k, dk = π/ℓ, z → z + ℓ/2, z′′ → z′′ + ℓ/2 and by replacing the infinite
sum by the integral over k.

4.4.1 Cylindrical Shell Held at Zero Potential

Consider the cylinder to be held at zero potential, namely, φ(a, ϕ, z) = 0. Substi-
tuting Eq. (4.24) into Eq. (4.8), the potential inside the cylinder can be written
as (with ρ(~r ′′) = qδ(~r ′ − ~r ′′)):

φ(~r, ~r ′) =
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]Im(kρ<)×

×
[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]

dk

}

. (4.25)

Once more ρ> (ρ<) is the larger (smaller) of ρ and ρ′.
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The zeroth order electric field is given by ~E0 = −∇φ, with components:

Eρ(ρ < ρ′) = −∂φ
∂ρ

= − q

2π2εo

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]Im
′(kρ)×

×
[

Km(kρ′) − Im(kρ′)
Km(ka)

Im(ka)

]

dk

}

, (4.26)

Eρ(ρ > ρ′) = −∂φ
∂ρ

= − q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]Im(kρ′)×

×
[

Km
′(kρ) − Im

′(kρ)
Km(ka)

Im(ka)

]

dk

}

, (4.27)

Eϕ = −1

ρ

∂φ

∂ϕ
=

q

π2ε0ρ

{ ∞
∑

m=1

m sin[m(ϕ− ϕ′)]

∫ ∞

0

cos[k(z − z′)]Im(kρ<)×

×
[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]

dk

}

, (4.28)

Ez = −∂φ
∂z

=
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k sin[k(z − z′)]Im(kρ<)×

×
[

Km(kρ>) − Im(kρ>)
Km(ka)

Im(ka)

]

dk

}

. (4.29)

The zeroth order force ~F0 = q ~E0(~r
′) acting upon the charge q is given by

Eq. (4.26) at ~r = ~r ′ without the first term between brackets (which is the field
generated by the charge q itself). There is only a radial component when the
cylinder has an infinite length:

~F0(~r
′) =

q2

2π2ε0

{ ∞
∑

m=−∞

∫ ∞

0

kIm(kρ′)Im
′(kρ′)

Km(ka)

Im(ka)
dk

}

ρ̂

= − q2

4π2ε0ρ′
2

{ ∞
∑

m=−∞

∫ ∞

0

I2
m(x)

d

dx

[

x
Km(xa/ρ′)

Im(xa/ρ′)

]

dx

}

ρ̂ . (4.30)

In the last equation we integrated by parts. We plotted in Fig. 4.2 the zeroth
order force of Eq. (4.30), normalized by the constant Fq ≡ q2/4πε0a

2, as a
function of ρ′/a. This force goes to zero when ρ′/a = 0 and diverges when
ρ′ → a, as expected.

The surface charges can be calculated using Gauss’s law, yielding:

σ(a, ϕ, z) = ε0Eρ(a, ϕ, z) =
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Figure 4.2: Zeroth order force F0 between an infinite grounded conducting cylin-
der of radius a and a point charge q at a distance ρ′ < a from the z axis
(which is also the axis of symmetry of the cylinder), normalized by the constant
Fq ≡ q2/4πε0a

2.

= − q

2π2a

[ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]
Im(kρ′)

Im(ka)
dk

]

. (4.31)

The charge per unit length λ(z) is given by:

λ(a, z) =

∫ 2π

0

σ(a, ϕ, z)a dϕ = − q

π

∫ ∞

0

cos[k(z − z′)]
I0(kρ

′)

I0(ka)
dk . (4.32)

The total charge induced in the cylinder, supposing z′ = 0, can be obtained
integrating Eq. (4.32) from z = −∞ to ∞. Utilizing:

δ(k) =
1

2π

∫ ∞

−∞
cos(kz)dz =

1

π

∫ ∞

0

cos(kz)dz , (4.33)

this yields:

Q =

∫ ∞

−∞
λ(a, z)dz = −q . (4.34)

4.5 Infinite Conducting Cylindrical Shell with

External Point Charge

We can now consider a new case, i.e., a conducting cylinder with an external
point charge. Suppose that the point charge q is located at ~r ′ = (ρ′, ϕ′, z′),
with ρ′ > a. Green function can be written analogously in this case as:

G(~r, ~r ′′) =
1

2π2

[ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

∫ ∞

0

cos[k(z − z′′)]gm(k, ρ, ρ′′)dk

]

, (4.35)
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where gm can be written as the product ψ′
1(ρ < ρ′′)ψ′

2(ρ > ρ′′). The functions
ψ′

1 and ψ′
2 satisfy the modified Bessel equation. They can be written as a linear

combination of the possible solutions:

ψ′
1(kρ<) = A′Im(kρ<) +B′Km(kρ<) , (4.36)

ψ′
2(kρ>) = C′Im(kρ>) +D′Km(kρ>) . (4.37)

For ρ → ∞ Green function must remain finite. This means that C′ = 0.
Additionally, Green function must be zero at the boundary surface. That is,
G = 0 at the surface of the cylinder ρ = a. This yields:

ψ′
1(a) = A′Im(ka) +B′Km(ka) = 0 → B′ = −A′ Im(ka)

Km(ka)
. (4.38)

In order to obtain the function gm we still have to find the constant H ′:

gm(k, ρ, ρ′′) = H ′
[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>) , (4.39)

where ρ> (ρ<) is the larger (smaller) of ρ and ρ′′.
From Eq. (4.19) we have that H ′ = 4π:

gm(k, ρ, ρ′′) = 4π

[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>) . (4.40)

The Green function is then given by:

G(~r, ~r ′′) =
2

π

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

∫ ∞

0

cos[k(z − z′′)]×

×
[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>)dk

}

. (4.41)

4.5.1 Cylindrical Shell Held at Zero Potential

Suppose that the surface of the cylinder is held at zero potential, namely:

φ(a, ϕ, z) = 0 . (4.42)

Applying Eqs. (4.41) and (4.42) in Eq. (4.8) with ρ(~r ′′) = qδ(~r ′ − ~r ′′) yields:

φ(~r, ~r ′) =
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]×

×
[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>)dk

}

. (4.43)

Here ρ> (ρ<) is the larger (smaller) of ρ and ρ′.
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Far from the origin, ρ is much larger than ρ′, hence we can express Eq. (4.43)
in approximate form. The first term that appears between brackets is given by
Im(kρ<)Km(kρ>), with ρ< = ρ′ and ρ> = ρ. Note the presence of the term
Km(kρ), with ρ ≫ ρ′, which decays rapidly for increasing k. This implies that
the main contribution of the integrand is in the region 0 < k < 1/ρ. Then
we can approximate Im(kρ′) for small arguments, i.e., for kρ′ ≪ 1, yielding
Im(kρ′) ≈ (kρ′/2)m/m!. From this we can see that the most relevant term is
the first one, m = 0. The integral of the first term between brackets in Eq. (4.43)
is then given by:

φ1(ρ≫ ρ′) ≈ q

2π2ε0

∫ ∞

0

cos[k(z − z′)]K0(kρ)dk =
q

4πε0ρ
. (4.44)

To arrive at the last equality we have used the identity given by [202, Prob. 11.5.11]:

2

π

∫ ∞

0

cos(xt)K0(yt)dt =
1

√

x2 + y2
. (4.45)

The second term that appears between brackets in Eq. (4.43) can be treated in a
similar way. The main contribution of the integrand is in the region 0 < k < 1/ρ.
Again, the most relevant term is the first one. Accordingly, we approximate the
function K0(kρ

′) for small arguments: K0(kρ
′) ≈ − ln(kρ′). The integral of the

second term between brackets of Eq. (4.43) is then given by:

φ2(ρ ≫ ρ′) ≈ − q

2π2ε0

∫ ∞

0

cos[k(z − z′)]
ln(kρ′)

ln(ka)
K0(kρ)dk . (4.46)

From Eq. (4.43) the electric field is given by ~E0 = −∇φ, with components:

Eρ(ρ < ρ′) = − q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]×

×
[

Im
′(kρ) −K ′

m(kρ)
Im(ka)

Km(ka)

]

Km(kρ′)dk

}

, (4.47)

Eρ(ρ > ρ′) = − q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]×

×
[

Im(kρ′) −Km(kρ′)
Im(ka)

Km(ka)

]

Km
′(kρ)dk

}

, (4.48)

Eϕ =
q

π2ε0ρ

{ ∞
∑

m=1

m sin[m(ϕ− ϕ′)]

∫ ∞

0

cos[k(z − z′)]×

×
[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>)dk

}

, (4.49)

Ez =
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k sin[k(z − z′)]×
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×
[

Im(kρ<) −Km(kρ<)
Im(ka)

Km(ka)

]

Km(kρ>)dk

}

. (4.50)

The zeroth order force ~F0 = q ~E0(~r
′) acting upon the charge q is given by

Eq. (4.47) at ~r = ~r ′ without the first term between brackets (which is the field
generated by the charge q itself). There is only a radial component:

~F0(~r
′) =

q2

2π2ε0

[ ∞
∑

m=−∞

∫ ∞

0

kKm(kρ′)Km
′(kρ′)

Im(ka)

Km(ka)
dk

]

ρ̂

= − q2

4π2ε0ρ′
2

{ ∞
∑

m=−∞

∫ ∞

0

K2
m(x)

d

dx

[

x
Im(ax/ρ′)

Km(ax/ρ′)

]

dx

}

ρ̂ . (4.51)

In the last equation we integrated by parts. We plot the zeroth order force of
Eq. (4.51) in Fig. 4.3, normalized by the constant Fq ≡ q2/4πε0a

2, as a function
of ρ′/a. This force goes to zero when ρ′/a → ∞ and diverges when ρ′ → a, as
expected.

Figure 4.3: Zeroth order force F0 between an infinite grounded conducting
cylinder of radius a and a point charge q at a distance ρ′ from the z axis
(which is also the axis of symmetry of the cylinder), normalized by the constant
Fq ≡ q2/4πε0a

2. For ρ′ < a the force comes from Eq. (4.30), while for ρ′ > a
the force is given by Eq. (4.51).

The surface charges can be calculated using Gauss’s law, yielding:

σ(a, ϕ, z) = ε0Eρ(a, ϕ, z) =

= − q

2π2a

[ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]
Km(kρ′)

Km(ka)
dk

]

. (4.52)

The charge per unit length λ(z) is given by:

λ(a, z) =

∫ 2π

0

σ(a, ϕ, z)a dϕ = − q

π

∫ ∞

0

cos[k(z − z′)]
K0(kρ

′)

K0(ka)
dk . (4.53)
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It is interesting to obtain the behaviour of λ for a thin wire, far from z′

(|z − z′| ≫ ρ′ ≫ a). Utilizing Eq. (3.150) of Jackson’s book [13] we obtain:

λ ≈ − q

2 ln(|z|/a)
1

√

ρ′2 + z2
. (4.54)

The total charge induced in the cylinder can be obtained integrating Eq. (4.53)
from z = −∞ to ∞. Utilizing Eq. (4.33) this yields:

Q =

∫ ∞

−∞
λ(a, z)dz = −q . (4.55)

A plot of λ(a, z) as a function of z, with z′ = 0 and normalized by q/ρ′, is
given in Fig. 4.4. The maximum value of λ(a, z) is given at z = z′, as expected.
In Fig. 4.5 we plot λmax as a function of ρ′/a, normalized by q/ρ′. From this
Figure we can see that λmax → 0 when ρ′/a→ ∞, i.e., for a conducting cylinder
of zero thickness, a simple conducting straight line.

Figure 4.4: Induced linear charge density λ on the conducting cylinder with
an external point charge, Eq. (4.53), as a function of z/a. We utilized z′ = 0,
ρ′/a = 2 and normalized by q/ρ′.

4.5.2 Thin Cylindrical Shell Held at Zero Potential

Consider that the grounded conducting cylinder is very thin, i.e., a ≪ ρ′. The
modified Bessel functions can be approximated for small argument by [203,
Sec. 8.44]:

Im(y ≪ 1) ≈ 1

m!

ym

2m
, (4.56)

Km(y ≪ 1) ≈ (m− 1)!2m−1

ym
, m > 0 , (4.57)

K0(y ≪ 1) ≈ − ln
y

2
− γ . (4.58)
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Figure 4.5: Maximum induced linear charge density λmax(z = z′) on the con-
ducting cylinder with an external point charge, Eq. (4.53), as a function of ρ′/a.
We normalized the plot by q/ρ′.

Here γ = 0.577 is the Euler-Mascheroni constant.
The term between brackets in Eq. (4.51) for m = 0 and for m > 0 can be

approximated by, respectively:

d

dx

[

x
1

− ln ax
2ρ′ − γ

]

≈ − 1

ln(a/ρ′)
, (4.59)

d

dx

[

x
1

m!

(ax/ρ′)m

2m
(ax/ρ′)m

(m− 1)!2m−1

]

≈ (2m+ 1)x2m(a/ρ′)2m

m!(m− 1)!22m−1
. (4.60)

The most relevant term for ρ′ ≫ a is therefore m = 0. Utilizing the identity
∫∞
0 K2

0 (x)dx = π2/4 we have the zeroth order force acting upon the charge q as
given by:

~F0(ρ
′ ≫ a) ≈ − q2

4π2ε0ρ′
2

∫ ∞

0

K2
0 (x)

ln(2ρ′/xa) − γ + 1

[γ − ln(2ρ′/xa)]2
dxρ̂

≈ − q2

4π2ε0ρ′
2 ln(ρ′/a)

∫ ∞

0

K2
0 (x)dxρ̂ = − q2

16ε0ρ′
2 ln(ρ′/a)

ρ̂ . (4.61)

Alternatively, another expression for the force can be found by integrating
the force exerted by the linear charge density of a thin cylinder, λ(a, z) of
Eq. (4.53), acting upon the point charge q. Utilizing that

∫ ∞

−∞

ρ′ cos[k(z − z′)]

[ρ′2 + (z − z′)2]3/2
dz = 2kK1(kρ

′) , (4.62)

we obtain:

~F0(~r
′) = − q

4πε0

∫ ∞

−∞

ρ′
√

ρ′2 + z2

λ(a, z)

ρ′2 + z2
dzρ̂
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= − q2

2π2ε0ρ′
2

∫ ∞

0

x
K0(x)K1(x)

K0(xa/ρ′)
dxρ̂ . (4.63)

To compare Eqs. (4.61) and (4.63) we can expand the latter using the ap-
proximation ρ′ ≫ a. Utilizing that K1(x) = −dK0/dx, integrating by parts,
and using K0(xa/ρ

′) ≈ − ln(xa/2ρ′) − γ ≈ ln(ρ′/a) we obtain:

~F0 =
q2

2π2ε0ρ′
2

∫ ∞

0

x
K0(x)(dK0/dx)

K0(xa/ρ′)
dxρ̂

≈ − q2

4π2ε0ρ′

∫ ∞

0

K2
0 (x)

ln(2ρ′/xa) − γ + 1

[γ − ln(2ρ′/xa)]2
dxρ̂

≈ − q2

16ε0ρ′
2 ln(ρ′/a)

ρ̂ , (4.64)

which is exactly Eq. (4.61).

4.5.3 Infinite Cylindrical Shell Held at Constant Potential

Suppose that the conducting cylinder is held at a constant potential, φ(a, ϕ, z) =
φ0. From Eq. (4.41) we obtain (with n′′ = ρ< and ρ> = ρ):

∂G

∂n′′

∣

∣

∣

∣

∣

ρ′′=a

= − 2

π

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

∫ ∞

0

k cos[k(z − z′′)]
Km(kρ)

Km(ka)
×

×
[

Im
′(kρ′′)Km(ka) − Im(ka)Km

′(kρ′′)
]

dk

}

ρ′′=a

=
2

πa

{ ∞
∑

m=−∞
eim(ϕ−ϕ′′)

∫ ∞

0

cos[k(z − z′′)]
Km(kρ)

Km(ka)
dk

}

. (4.65)

In the last equality we utilized the Wronskian relation W [Im(kρ′′),Km(kρ′′)] =
−1/(kρ′′).

The second term given by Eq. (4.8) can be written as:

φ+ = − 1

4π
©
∫∫

S

φ(~r ′′)
∂G

∂n′′ da
′′ =

φ0

2π2a

∫ ∞

−∞
a dz′′

∫ 2π

0

dϕ′′×

×
{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]
Km(kρ)

Km(ka)
dk

}

=
φ0

π

∫ ∞

−∞
dz′′

∫ ∞

0

cos[k(z − z′)]
K0(kρ)

K0(ka)
dk

=
2φ0

π

∫ ∞

0

dz′′
∫ ∞

0

cos[k(z − z′)]
K0(kρ)

K0(ka)
dk . (4.66)
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In the last equality we changed the limits of the integral over z′′.
In order to calculate the last integral, we utilize Eq. (4.23). Changing vari-

ables, we have:
∫ ∞

0

cos[k(z − z′)]dz′ = πδ(k) . (4.67)

The approximation for small argument of K0(y), namely, K0(y) ≈ − ln y, is in
this case inappropriate, because the term limk→0K0(kρ)/K0(ka) → 1 for any
ρ. This is true for an infinite cylinder, but gives no physical insight into the
behaviour of the potential as a function of ρ. We should use instead k ≪ 1/ρ <
1/a, yielding:

φ+ ≈ φ0
ln(kρ)

ln(ka)
, for k ≪ 1/ρ < 1/a . (4.68)

The potential outside an infinite conducting cylinder with an external charge,
held at a constant potential φ0, is then given by the summation of Eqs. (4.43)
and (4.68).

We can find the potential of a cylinder held at a constant potential φ0 by
a different method. Suppose we have a long straight line of length ℓ along the
z axis, uniformly charged with a linear charge density λ. The potential at a
distance ρ from the z axis, for ℓ≫ ρ, is given by:

φline ≈ λ

2πε0
ln
ℓ

ρ
. (4.69)

At a distance ρ = a from the z axis, we have a constant potential φ0 =
2λ ln(ℓ/a), which is the same boundary condition as before. This implies that
the solution is the same. Substituting λ, we obtain the potential as given by:

φline = φ0
ln(ℓ/ρ)

ln(ℓ/a)
. (4.70)

Note that Eq. (4.68) with k ≪ 1/ρ < 1/a and Eq. (4.70) with ℓ ≫ a > ρ are
essentially the same. Henceforth, we utilize Eq. (4.70) as the solution for a long
cylinder held at a constant potential.

The final potential of the problem of a long conducting cylinder held at a
constant potential φ0 with an external charge q is given by:

φ(~r, ~r ′) =
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

cos[k(z − z′)]Km(kρ>)×

×
[

Im(kρ<) − Im(ka)

Km(ka)
Km(kρ<)

]

dk

}

+ φ0
ln(ℓ/ρ)

ln(ℓ/a)
. (4.71)

The components of the zeroth order electric field ~E0, the zeroth order force ~F0

exerted on q, the surface charge density σ and the linear charge density λ are
given by, respectively:

Eρ(ρ < ρ′) = − q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]×
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×
[

Im
′(kρ) − Im(ka)

Km(ka)
K ′
m(kρ)

]

Km(kρ′)dk

}

, (4.72)

Eρ(ρ > ρ′) = − q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]×

×
[

Im(kρ′) − Im(ka)

Km(ka)
Km(kρ′)

]

Km
′(kρ)dk

}

+
φ0

ρ ln(ℓ/a)
, (4.73)

Eϕ =
q

π2ε0ρ

{ ∞
∑

m=1

m sin[m(ϕ− ϕ′)]

∫ ∞

0

cos[k(z − z′)]×

×
[

Im(kρ<) − Im(ka)

Km(ka)
Km(kρ<)

]

Km(kρ>)dk

}

, (4.74)

Ez =
q

2π2ε0

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k sin[k(z − z′)]×

×
[

Im(kρ<) − Im(ka)

Km(ka)
Km(kρ<)

]

Km(kρ>)dk

}

, (4.75)

~F0(~r
′) = − q2

4π2ε0ρ′
2

{ ∞
∑

m=−∞

∫ ∞

0

K2
m(x)

d

dx

[

x
Im(ax/ρ′)

Km(ax/ρ′)

]

dx

}

ρ̂

+
qφ0

ρ′ ln(ℓ/a)
ρ̂ , (4.76)

σ(a, ϕ, z) = − q

2π2

{ ∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0

k cos[k(z − z′)]
Km(kρ′)

Km(ka)
dk

}

+
ε0φ0

a ln(ℓ/a)
, (4.77)

λ(a, z) = − q

π

∫ ∞

0

cos[k(z − z′)]
K0(kρ

′)

K0(ka)
dk +

2πε0φ0

ln(ℓ/a)
. (4.78)

From Eq. (4.78) we can calculate the total charge on the cylinder:

Q =

∫ ∞

−∞
λ(a, z)dz = − q

π

∫ ∞

−∞
dz

∫ ∞

0

cos[k(z − z′)]
K0(kρ

′)

K0(ka)
dk +

2πℓε0φ0

ln(ℓ/a)

= −q lim
k→0

ln(kρ′)

ln(ka)
+

2πℓε0φ0

ln(ℓ/a)
= −q +

2πℓε0φ0

ln(ℓ/a)
. (4.79)

For a neutral charged cylinder, i.e., Q = 0, we can relate the constant potential
φ0 with the charge q by:

φ0 =
q ln(ℓ/a)

2πε0ℓ
. (4.80)

60



4.6 Discussion

We can express the zeroth order force exerted by the grounded conducting
infinite cylinder of radius a upon the external point charge q at a distance ρ′

from the axis of the cylinder as given by:

~F0 = −αL
q2

4πε0ρ′
2 ρ̂ , (4.81)

where αL is a dimensionless parameter. In this work we have obtained three
different expressions for this force, namely, Eqs. (4.51), (4.61) and (4.63). The
parameter αL for these three cases is given by, respectively:

αL =
1

π

{ ∞
∑

m=−∞

∫ ∞

0

K2
m(x)

d

dx

[

x
Im(ax/ρ′)

Km(ax/ρ′)

]

dx

}

, (4.82)

αL ≈ 1

π

∫ ∞

0

K2
0(x)

ln(2ρ′/xa) − γ + 1

[γ − ln(2ρ′/xa)]2
dx ≈ π

4 ln(ρ′/a)
, (4.83)

αL ≈ 2

π

∫ ∞

0

x
K0(x)K1(x)

K0(xa/ρ′)
dx . (4.84)

We plot these three values of αL as functions of a/ρ′ in Figs. 4.6 to 4.8.

Figure 4.6: Dimensionless parameter αL given by Eq. (4.81) as a function of
a/ρ′. The continuous line represents the parameter from Eq. (4.82); the tight-
dashed line that of Eq. (4.83); and the light-dashed line that of Eq. (4.84).

We can see that these three values of αL converge to one another as a/ρ′ → 0.
This was expected because Eq. (4.51) is valid for a cylinder of finite thickness
with arbitrary value of a/ρ′, while Eqs. (4.61) and (4.63) are valid only for a
thin cylinder, i.e., for a≪ ρ′.

In table (4.85) we present the values of the exact αL given by Eq. (4.82) as
a function of ρ′/a.
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Figure 4.7: Dimensionless parameter αL given by Eq. (4.81) as a function of
a/ρ′, for the region a/ρ′ ≪ 1. The continuous line represents the parameter from
Eq. (4.82); the tight-dashed line represents the parameter of Eq. (4.83); and the
light-dashed line (which in this interval of a/ρ′ is overlaid on the continuous
line) represents the parameter of Eq. (4.84).

Figure 4.8: Dimensionless parameter αL given by Eq. (4.81) as a function of
log10(a/ρ

′), for the region a/ρ′ ≪ 1. The continuous line represents the parame-
ter from Eq. (4.82); the tight-dashed line represents the parameter of Eq. (4.83);
and the light-dashed line (which in this interval of a/ρ′ is overlaid on the con-
tinuous line) represents the parameter of Eq. (4.84).

From Eq. (4.83) we can see that when a/ρ′ ≪ 1, the parameter αL behaves
as π/[4 ln(ρ′/a)]. That is, it goes to zero when a/ρ′ → 0. According to these
calculations we conclude that there is no force between a point charge and
an idealized grounded conducting line (of zero thickness). One of the authors
(AKTA) [1] had expected 0 < αL < 1, not specifically for a grounded conducting
line, but for a conducting line with zero total charge. In particular he expected
that 0.1 < αL < 0.9, by guessing the result based on dimensional analysis and
in analogy with the case of a point charge q at a distance ρ′ from an infinite
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conducting plane. In this last case, the net force upon the test charge is given by
αP q

2/4πε0ρ
′2, with αP = 1/4 = 0.25. The results of the calculations presented

here, on the other hand, indicate that αL = 0 when a/ρ′ = 0 (in the case of a
grounded infinite line). This is an interesting result indicating that the existence
of a force upon the external test charge requires not only that it is at a finite
distance to the cylinder, but also the existence of a surface area different from
zero in the conductor with which it is interacting.





































ρ′/a αL
1.1 29.1
1.2 8.94
1.5 2.20
2.0 0.944
5 0.322
10 0.228
100 0.130
103 0.0930
104 0.0727
1010 0.0318





































(4.85)

Later on we compare this zeroth order force with the force proportional
to the voltage of the battery arising when a constant current flows upon the
cylindrical wire.
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Chapter 5

Relevant Topics

5.1 Properties of the Electrostatic Field

We present here some properties of the scalar electric potential, φ, and of the
electric field, ~E. These properties are proved in detail in most books dealing
with electromagnetism, so that we present here only the main aspects. Suppose
that we are in an inertial frame of reference S with origin 0. There are N
point charges qj at rest in this reference frame, with j = 1, ..., N . The position
vector describing the location of charge qj relative to 0 is represented by ~rj .
The electric potential at the point ~ro due to these N charges, according to the
principle of superposition, is defined by:

φ(~ro) ≡
N
∑

j=1

qj
4πε0

1

roj
, (5.1)

where roj ≡ |~ro − ~rj | is the distance between the tip of the vector ~ro and the
charge qj .

The electric field at the point ~ro is given by

~E(~ro) = −∇oφ . (5.2)

Performing the line integral between points A and B of the potential differ-
ence, dφ = − ~E · d~ℓ, yields

∫ B

A

~E · d~ℓ = −
∫ B

A

(∇φ) · d~ℓ = −
∫ B

A

dφ = φ(~rA) − φ(~rB) . (5.3)

That is, this integral is independent of the path of integration, being a
function only of the initial and final points.

If it is performed an integration around a closed path of arbitrary form, this
yields a null value:

∮

~E · d~ℓ = 0 . (5.4)
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5.2 The Electric Field in Different Points of the

Cross-section of the Wire

Let us suppose a rectilinear, resistive and homogeneous wire, of uniform cross-
section, conducting a steady current. It seems that Davy was the first to prove
in 1821 that the current flows over the whole cross-section and not only along
the surface of the wire [63, p. 90]:

As we have already seen, Cavendish investigated very completely
the power of metals to conduct electrostatic discharges; their power
of conducting voltaic currents was now examined by Davy.1 His
method was to connect the terminals of a voltaic battery by a path
containing water (which it decomposed), and also by an alterna-
tive path consisting of the metallic wire under examination. When
the length of the wire was less than a certain quantity, the water
ceased to be decomposed; Davy measured the lengths and weights
of wires of different materials and cross-sections under these limiting
circumstances; and, by comparing them, showed that the conduct-
ing power of a wire formed of any one metal is inversely proportional
to its length and directly proportional to its sectional area, but in-
dependent of the shape of the cross-section.2 The latter fact, as he
remarked, showed that voltaic currents pass through the substance
of the conductor and not along its surface.

A theoretical proof that the current fills the cross-section of the wire can
be found in the book of Chabay and Sherwood [166, Section 18.2.4, p. 631].
Suppose there is a solid, homogeneous, rectilinear and uniformly resistive wire,
with a cross-section of arbitrary form, carrying a steady current. In steady-
state the electric field must be parallel to the wire (to avoid transverse currents
and transverse electrostatic polarizations). Imagine now a rectangular path
ABCDA within the wire, with AB and CD parallel to the wire, while BC and
DA are perpendicular to the wire. When we perform the line integration of the
electric field, we get a null value, as was shown in Section 5.1. In this proof we
utilized charges at rest. In the case of this Section we are considering steady
currents, so that the surface charges are also moving with a drifting velocity of
value vd relative to the bulk of the wire. But these drifting velocities are very
small compared to light velocity c. This means that the corrections of second
order, of the type v2

d/c
2, will be negligible in comparison to Coulomb’s force.

Therefore, they will not be considered here. This means that the electric field
in the section AB must be parallel to the wire, with its intensity equal to the
intensity of the electric field in the section CD. By the microscopic form of
Ohm’s law we find that the same result must be true for the volume current
density, ~J .

1Phil. Trans. cxi (1821), p. 425. His results were confirmed by Becquerel, Annales de

Chimie, xxxii (1825), p. 423.
2These results had been known to Cavendish.
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Even with the component of the electric field arising from the radial Hall
effect, to be discussed in Section 6.4, the same result will be maintained. The
reason for this is that the component of the electric field pointing toward the
axis of the wire will have its line integral cancelled between the sections BC and
DA.

Utilizing the same reasoning in the case of a circuit having the shape of a
solid and homogeneous ring, conducting an azimuthal current, we find that the
azimuthal electric field (neglecting the small radial Hall effect) must decrease
as 1/ρ, where ρ is the distance of the observation point to the ring axis of
symmetry. We will see an example of this fact in Chapter 13.

We do not know any experience which tried to verify if the electric field and
volume current density are really constants in all points of the cross-section of
a metallic rectilinear wire carrying a steady current. The same can be said of
the 1/ρ dependence in the case of a ring. But the experiences of Bergman,
Schaefer, Jefimenko and Parker (see Chapter 3) show qualitatively that these
suppositions are reasonable.

5.3 Electromotive Force Versus Potential Differ-

ence

In this book we will see several examples showing that the electric field outside
a wire carrying a steady current is proportional to the electromotive force (emf)
of the battery connected to the wire. In this Section we emphasize that the emf
is a concept different from the potential difference due to charges at rest. This
topic has been discussed by a number of authors [204] [16, Section 7.1.2, pp.
277-278] [171] [166, pp. 642-644].

In order to separate positive and negative charges it is necessary the existence
of “non-Coulomb” forces, ~FnC , i.e., forces which are not of electrostatic origin.
This must happen in all cases in which we separate these charges: in frictional
electricity; when two different metals touch one another; in a chemical battery;
in thermoelectric effect; in piezoelectric effect; in a Van de Graaff generator;
in a photoelectric cell, etc. The reason for this is that due to Coulomb’s force,
charges of opposite sign attract one another and tend to get together. What
separate these charges (or prevent them from getting together once they were
separated) can then only be of non-electrostatic origin. That is, this interaction
must be independent from Coulomb’s electrostatic force.

The origin of the expression “electromotive force” is due to Volta (1745-1827)
[204].

As we have seen in Section 5.1, the difference of electrostatic potential be-
tween two points A and B is given by

φB − φA = −
∫ B

A

~EC · d~ℓ . (5.5)

Here ~EC is the electrostatic field due to charges at rest. This potential difference
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does not depend upon the path of integration, being a function only of the initial
and final points.

On the other hand, the electromotive force between two points A and B,
emfBA, is given by

emfBA =

∫ B

A

~EnC · d~ℓ . (5.6)

Here ~EnC = ~FnC/q is the impressed force acting upon the test charge q, divided
by the value of this charge. This impressed force has a non-electrostatic origin.
This line integral depends upon the path of integration.

In a battery, for instance, the Coulomb and non-Coulomb forces balance one
another in an open circuit. This means that there will be a potential difference
across the battery. Moreover, this potential difference is numerically equal to
the battery’s emf. The emf of a battery is also called its voltage.

Analogously, the emf of a closed circuit is given by:

emf =

∮

~EnC · d~ℓ . (5.7)

If in the closed circuit there is a chemical battery, or another force of non-
electrostatic origin, this line integral upon a closed circuit may have a net value
different from zero.

Despite the term “force” in the expression emf, the emf is not a force in the
Newtonian sense. The emf of a pile or chemical battery is numerically equal to
the potential difference generated between the terminals of the battery. It has
the same units as potential difference, namely, volt or newton/coulomb. Despite
this fact, the emf is not a potential difference, as we emphasized in this Section.
Its origin is due to a non-electrostatic force. And it is not always associated with
a potential difference. For instance, in the case of a ring approaching or moving
away from a permanent magnet (example discussed by Weber, as we discuss in
Appendix A), it is generated a current along the resistive ring, although there
is no potential difference between any two points of the ring [204] [184].

5.4 Russell’s Theorem

Russell proved in an important short paper a general theorem related with
straight parallel conductors of arbitrary cross-sections carrying steady currents
[9]. He concluded that the density of surface charges σ on the conductors vary
linearly with distance along the direction of their common axis z. The same
was found valid for the potential φ inside and outside the conductors.

He considered homogeneous isotropic materials surrounded by an insulating
medium of constant permittivity ε. His theorem is valid at great distances from
their termination (in order to neglect edge effects) and also far from the sources
of electromotive force, emf, maintaining the current.
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The essence of his proof is to consider that inside the conductors carrying
steady currents the electric field ~E has everywhere the same longitudinal compo-
nent. By ~E = −∇φ this means that the potential inside them must be a linear
function of z. Outside the conductors the potential φ must satisfy Laplace’s
equation ∇2φ = 0. But the solutions of Laplace’s equation which satisfy all the
boundary conditions are unique. As the boundary conditions in all conductors
are linear functions of z, the same must be true outside them. That is,

φ(x, y, z) = F (x, y)(A+Bz) , (5.8)

where F (x, y) is a function of the transverse coordinates, while A and B are
constants.

Analogously, the surface charge densities σ are obtained by Gauss’s law
as directly proportional to the normal component of the electric field at the
conductor boundaries. As ~E = −∇φ, Eq. (5.8) yields:

σ(x, y, z) = G(x, y)(A +Bz) , (5.9)

where G(x, y) is a function of the transverse coordinates.
This means that the solution of electrostatic problems can be directly ap-

plied to the solution of steady currents, by including a linear dependence in the
longitudinal component. In the following Chapters we will see many examples
illustrating this theorem.

But it should be kept in mind that it is valid only far from the terminations
of the conductors and also far from the batteries. Moreover, it is not valid as
well close to the junction of two materials of different conductivities.
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Part II

Straight Conductors
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In this work the frame of reference will always be the laboratory. When we
speak of conductors and wires in general, it should be understood that they are
usually uniformly resistive, unless stated otherwise. The medium outside the
conductors or between them will be usually air or vacuum. No time variation of
currents or potentials will be considered here. It is assumed that there are no
conductors nor other external charges close to the current-carrying wire, so that
we will consider it isolated from external influences (except for the test charge
already mentioned).

In this first part we will consider one or more parallel resistive conductors
carrying steady currents along the z axis.
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Chapter 6

A Long Straight Wire of

Circular Cross-section

To our knowledge the first to perform theoretical calculations related to the elec-
tric field inside a wire of circular cross section due to surface charges increasing
linearly with the longitudinal coordinate has been Wilhelm Weber in 1852 [32],
as we discuss in the Appendix A. Here we follow the treatment published in
1999 [1].

6.1 Configuration of the Problem

The situation considered here is that of a cylindrical and homogeneous resistive
wire of length ℓ and radius a≪ ℓ, Figure 6.1.

Figure 6.1: Configuration of the problem.

The axis of the wire coincides with the z direction, with z = 0 at the center of
the wire. A battery maintains constant potentials φL and φR at the extremities
z = −ℓ/2 and z = +ℓ/2 of the wire, respectively. The wire carries a constant
current I, has a finite conductivity g and is at rest relative to the laboratory.
There is air or vacuum outside the wire. At a distance ρ =

√

x2 + y2 from
the axis of the wire there is a stationary point charge q. We want to know the
force exerted by the wire upon the charge q. In particular we wish to calculate
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the component of this force which is proportional to the voltage or emf of the
battery, or to the potential difference acting along the wire. To this end we will
suppose the following approximation:

ℓ≫ ρ ≥ 0, ℓ≫ a > 0 and ℓ≫ |z| ≥ 0 . (6.1)

Here z is the longitudinal component of the vector position of q. See Fig. 6.1. We
utilize throughout this chapter cylindrical coordinates (ρ, ϕ, z) and unit vectors
ρ̂, ϕ̂ and ẑ.

This wire must be closed somewhere. The calculations presented here with
this approximation should be valid for the circuit of Figure 6.2. This is a square
circuit with four sides of length ℓ, composed of cylindrical wires of radius a≪ ℓ.
There is an external point charge close to the middle of one of its sides (like
AB, BC or CD) and far from the battery. The case when the point charge is
close to the middle of the side AD has been published in 2004 [205].

Figure 6.2: A closed square circuit made of a resistive wire of circular cross-
section. There is a point charge close to the middle of one of its sides.

With this approximation we can consider that the three other sides will not
contribute significantly to the potential and field near the center of the fourth
side. Alternatively, it should also give approximate results for a circular loop of
larger radius R0 = ℓ/2π and smaller radius a≪ R0 (a ring), if the point charge
is close to the ring but far from the battery maintaining the current. It might
even be utilized as a first gross approximation for the force on the point charge
of Figure 1.1 considering a generic circuit of large length and small curvatures
(that is, with radii of curvature much larger than the diameter of the wire and
also much larger than the distance of the point charge to the wire).

We consider separately three components of the force exerted by the wire
on q: (A) The component due to the electrostatic induction, based upon the
charges induced along the surface of the wire by q, which has been considered in
Chapter 4; (B) the component of the force due to the surface charges which exist
in resistive wires carrying steady currents (force proportional to the voltage or
emf of the battery connected to the circuit); and (C) the force proportional to the
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square of the drifting velocity, vd, of the conduction electrons, i.e., proportional
to v2

d/c
2.

6.2 Force Proportional to the Potential Differ-

ence Acting upon the Wire

When a constant current flows in a resistive wire connected to a battery, the elec-
tric field driving the conduction electrons against the resistive friction exerted
upon them by the lattice is due to free charges distributed along the surface of
the wire, as we have seen before. We represent this surface charge density by
σ(a, ϕ, z). For steady currents, σ is constant in time but varies along the length
of the wire (that is, it is a function of z). Here we follow the approach of Weber
and Kirchhoff discussed in Chapter 2. The battery, due to the chemical forces
which maintain its terminals at different potentials, is responsible for maintain-
ing this distribution of charges along the surface of the wire. But the battery
does not generate directly the electric field in all points along the circuit. The
surface charges, on the other hand, generate not only the electric field inside
the wire but also an electric field outside it.

The approach of this chapter is the following: We consider the cylindrical
wire carrying the constant current I and calculate the potential φ1 and electric
field ~E1 inside and outside the wire due to these surface charges in the absence
of the test charge q. When we put the test charge at a distance ρ from the
wire the force on it due to the surface charges will be then given by ~F1 = q ~E1,
supposing that it is small enough such that it does not disturb the current nor
the wire (except from the induction charges already considered in Chapter 4,

which will exert the force ~F0 = q ~E0). We begin calculating the potential due to
the surface charges.

As there is a constant current in the wire, the electric field inside it and
driving the current must be constant over the cross-section of the wire [63, p.
90]. Here we are disregarding the small radial Hall effect inside the wire due to
the azimuthal magnetic field generated by the current to be discussed in Section
6.4. This means that the potential and surface charge distribution must be a
linear function of z, as we saw in Section 5.4. Due to the axial symmetry of the
wire it cannot depend on the azimuthal angle either. This means that

σ(a, ϕ, z) = σA + σB
z

ℓ
, (6.2)

where σA and σB are constants.
Before proceeding we wish to discuss this expression. We may wish to con-

sider the wire as globally neutral, i.e., no net charge as a whole. When we
integrate the free charge density σ over the whole surface of the wire we need
to obtain a zero net value in this case. This will happen with Eq. (6.2) after
integrating from z = −ℓ/2 to z = ℓ/2 only in the symmetrical case in which
σA = 0. This might represent, for instance, the top side BC of Figure 6.2. On
the other hand, we will perform the calculations with a generic value of σA so
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that the calculation might be applicable, for instance, to the left half of the top
side BC of Figure 6.2. The integration of σ over this left side (from z = −ℓ/2
to zero) will yield a positive value, as it is closer to the positive terminal. This
positive charge will be balanced by the negative charge lying on the right half
of the top side of Figure 6.2 (z going from zero to +ℓ/2). With a generic σA we
might also consider, for instance, the left side AB of Figure 6.2 with a positive
charge, which will be balanced by the negative charge in the right side CD of
Figure 6.2. It should be emphasized that the point where σ = 0 is specified by
the battery. The battery itself also specifies where σ will be positive (portions of
the wire closer to its positive terminal) or negative (portions of the wire closer
to its negative terminal).

Due to the axial symmetry of σ we can calculate φ at the specific angle ϕ = 0
rad and then generalize the solution to all ϕ. The potential inside or outside
the wire is then given by:

φ1(ρ, z) =
1

4πε0

∫ 2π

ϕ2=0

∫ ℓ/2

z2=−ℓ/2

σadϕ2dz2
√

ρ2 + a2 − 2ρa cosϕ2 + (z2 − z)2

=
1

4πε0

∫ 2π

ϕ2=0

∫ ℓ/2

z2=−ℓ/2

(σA + σBz2/ℓ)dϕ2dz2
√

(

1 − 2 ρa cosϕ2 + ρ2

a2

)

+
(

z2−z
a

)2
. (6.3)

Defining the dimensionless variables s2 ≡ 1−2(ρ/a) cosϕ2+(ρ2/a2) and u ≡
(z2 − z)/a we are then led to: φ1(ρ, z) = (a/4πε0)[(σBa/ℓ)I1 +(σA+σBz/ℓ)I2],
where

I1 ≡
∫ 2π

ϕ2=0

∫ ℓ/2a−z/a

u=−(ℓ/2a+z/a)

u
dϕ2du√
s2 + u2

, (6.4)

and

I2 ≡
∫ 2π

ϕ2=0

∫ ℓ/2a−z/a

u=−(ℓ/2a+z/a)

dϕ2du√
s2 + u2

. (6.5)

These integrals can be solved with the approximation (6.1). The final ap-
proximate result is given by (generalizing for all ϕ):

φ1(ρ ≤ a, ϕ, z) ≈ a

ε0

[

σA ln
ℓ

a
+ σB

z

ℓ
ln

ℓ

ea

]

, (6.6)

φ1(ρ ≥ a, ϕ, z) ≈ a

ε0

[

σA ln
ℓ

ρ
+ σB

z

ℓ
ln

ℓ

eρ

]

. (6.7)

From Eq. (6.1) we can neglect ln e = 1 in comparison with ln(ℓ/a) and
ln(ℓ/ρ). This yields:

φ1(ρ, ϕ, z) ≈
aσ(z)

ε0
ln
ℓ

a
=
a(σA + σBz/ℓ)

ε0
ln
ℓ

a
, if ρ ≤ a , (6.8)
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φ1(ρ, ϕ, z) ≈
aσ(z)

ε0
ln
ℓ

ρ
=
a(σA + σBz/ℓ)

ε0
ln
ℓ

ρ
, if ρ ≥ a . (6.9)

By writing the linear density of charges along the wire as λ(z) ≡ 2πaσ(z)
these last expressions can be written as

φ1(ρ ≤ a, ϕ, z) ≈ λ(z)

2πε0
ln
ℓ

a
, (6.10)

φ1(ρ ≥ a, ϕ, z) ≈ λ(z)

2πε0
ln
ℓ

ρ
. (6.11)

From Eqs. (6.6) and (6.7) we can obtain the electric field ~E1 = −∇φ1:

~E1(ρ < a, ϕ, z) ≈ −aσB
ε0ℓ

(

ln
ℓ

ea

)

ẑ , (6.12)

~E1(ρ > a, ϕ, z) ≈ a

ε0

(

σA + σB
z

ℓ

) ρ̂

ρ
− aσB

ε0ℓ

(

ln
ℓ

eρ

)

ẑ . (6.13)

To our knowledge the first to obtain Eq. (6.12) beginning with the integration
of Eq. (6.2) was Wilhelm Weber in 1852, as we discuss in Appendix A.

From Eq. (6.1) we can neglect 1 in comparison with ln(ℓ/a) and ln(ℓ/ρ).
This yields the coulombian force on a test charge q located at (ρ, ϕ, z) as given

by (with ~F1 = −q∇φ1):

~F1 = q ~E1 ≈ −qa
ε0

∂σ(z)

∂z

(

ln
ℓ

a

)

ẑ = −qaσB
ℓε0

(

ln
ℓ

a

)

ẑ if ρ < a , (6.14)

~F1 = q ~E1 ≈ qaσ(z)

ε0

ρ̂

ρ
− qa

ε0

∂σ(z)

∂z

(

ln
ℓ

ρ

)

ẑ

=
qa(σA + σBz/ℓ)

ε0

ρ̂

ρ
− qaσB

ℓε0

(

ln
ℓ

ρ

)

ẑ if ρ > a . (6.15)

We can relate these expressions with the current I flowing in the wire. From
Figure 6.1 and the fact that φ1 is a linear function of z we obtain

φ1(ρ ≤ a, z) =
φR + φL

2
+ (φR − φL)

z

ℓ
. (6.16)

Equating this with Eq. (6.8) and utilizing Ohm’s law φL − φR = RI,
where R = ℓ/gπa2 is the resistance of the wire, with g being its conductiv-
ity, yields σB = −Rε0I/a ln(ℓ/a) and σA = ε0(φR + φL)/2a ln(ℓ/a) = ε0(RI +
2φR)/2a ln(ℓ/a). The density of free charges along the surface of the wire can
then be written as:
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σ(a, ϕ, z) =
ε0(φR + φL)

2a ln(ℓ/a)
− Rε0I

a ln(ℓ/a)

z

ℓ
. (6.17)

This means that the potential and the force on the test charge q are given by:

φ1 =
φR + φL

2
−RI

z

ℓ
if ρ ≤ a , (6.18)

φ1 =
φR + φL

2

ln(ℓ/ρ)

ln(ℓ/a)
−RI

ln(ℓ/ρ)

ln(ℓ/a)

z

ℓ
if ρ ≥ a , (6.19)

~F1 = q ~E1 = q
RI

ℓ
ẑ if ρ < a , (6.20)

~F1 = q ~E1 = q

[

1

ln(ℓ/a)

(

RI + 2φR
2

−RI
z

ℓ

)

ρ̂

ρ
+
RI

ℓ

ln(ℓ/ρ)

ln(ℓ/a)
ẑ

]

if ρ > a .

(6.21)
Now that we have obtained the potential outside the wire we might also

invert the argument. That is, we might solve Laplace’s equation ∇2φ = 0
in cylindrical coordinates inside and outside the wire (for a ≤ ρ ≤ ℓ) by the
method of separation of variables, supposing a solution of the form φ(ρ, ϕ, z) =
R(ρ)Φ(ϕ)Z(z). The arbitrary constants obtained by this method are found
imposing the following boundary conditions: finite φ(0, ϕ, z), φ(a, ϕ, z) = (φR+
φL)/2 + (φR − φL)z/ℓ and φ(ℓ, ϕ, z) = 0. This last condition is not a trivial
one and was obtained only after we found the solution in the order presented
in this work. See Eq. (6.9). The usual boundary condition that the potential
goes to zero at infinity does not work in the case of a long cylinder carrying a
steady current. But the potential going to zero at ρ = ℓ is a reasonable result.
After all, this means that we are considering φ = 0 at a great distance from
the wire. By this reverse method we obtain the potential inside and outside the
wire, then the electric field by ~E = −∇φ and lastly the surface charge density
by ε0 times the normal component of the electric field outside the wire in the
limit in which ρ→ a. In this way we checked the calculations.

If we put φL = φR = φ0 or I = 0 in Eqs. (6.18) to (6.21) we recover
the electrostatic solution (long wire charged uniformly with a constant charge
density σA, with total charge QA = 2πaℓσA), namely:

φ1(ρ ≤ a) = φ0 =
aσA
ε0

ln
ℓ

a
, (6.22)

φ1(ρ ≥ a) = φ0
ln(ℓ/ρ)

ln(ℓ/a)
=
aσA
ε0

ln
ℓ

ρ
, (6.23)

~E1(ρ < a) = ~0 , (6.24)

~E1(ρ > a) =
φ0

ln(ℓ/a)

ρ̂

ρ
=
aσA
ε0

ρ̂

ρ
. (6.25)
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We can also obtain the capacitance per unit length of this long cylindrical wire
as C/ℓ = [QA/φ(a)]/ℓ = 2πε0/ ln(ℓ/a).

It is interesting to analyze here the solutions for points extremely close to
the wire, ρ = a+ d with d≪ a. In this approximation Eq. (6.9) yields:

φ1 ≈ aσ(z)

ε0

(

ln
ℓ

a
− d

a

)

. (6.26)

The analysis presented here refines the previous work of Coombes and Laue,
who discussed in 1981 the limiting case of an infinitely long wire [17]. They
arrived at the same uniform electric field both inside and outside the wire.
This is correct for an infinitely long wire. In the present case we arrived at a
uniform electric field inside the wire and at an electric field outside the wire with
longitudinal and radial components depending on ρ, as we were considering a
large but finite length ℓ.

Eqs. (6.16), (6.20) and (6.21) show that the electric field both inside and
outside the wire is proportional to the potential difference φL−φR = RI acting
along the wire. The same can be said of the force exerted upon a stationary
external test charge by the resistive wire carrying a steady current. If we change
the diameter of the wire, or its resistivity, we can change the resistance of the
wire. But if it is connected to the same battery, in such a way that it is under
the action of the same potential difference, the current flowing along the wire
will change accordingly. But the density of surface charges and the external
electric field will not change. This important aspect has been emphasized by
Chabay and Sherwood [165, 166, 171].

Moreover, there will be not only a tangential component of the electric field
outside the wire (as might be expected from the continuity of this component
at an interface between two media), but also a radial component. In the sym-
metrical case in which φL = −φR = RI/2 the ratio of the radial component of
~F1 to its tangential component is given by z/[ρ ln(ℓ/ρ)]. For a wire with 1 meter
length with z = ρ = 10 cm this ratio is given by 0.4. This means that these two
components are of the same order of magnitude.

The longitudinal component of the electric field is continuous at an interface
separating two media. From Eqs. (6.20) and (6.21) we can see that at the surface
of the wire, ρ = a, the longitudinal component of the electric field is given by:
~E1 = (RI/ℓ)ẑ. This electric field will act upon the surface conduction electrons
belonging to the wire, so that they will move with a constant tangential velocity
in steady state, with the electric force balanced by the Ohmic resistance. In
equilibrium there will be the same number of free electrons entering and leaving
a circular strip of length 2πa and width dz, so that the distribution of surface
charges will not change with time, although being a function of z. In any event,
the surface charges will not remain stationary when there is a steady current,
but will move due to this tangential electric field existing at the surface of the
conductor. The drifting velocity of the conduction electrons will be different
from zero not only in the bulk of the metal, but also along its surface. The
distribution of surface charges is actually a surface current. The same will
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happen for the other resistive conductors carrying steady currents discussed in
this work.

Eqs. (6.19) and (6.21) show that the external potential, electric field and
force go to zero when ℓ/a→ ∞. This means that resistive electric currents exert
forces upon external static charges, except in the idealized case of filamentary
current (zero cross-section conductor). The crucial aspect for the existence of a
force is not only that the current-carrying wires are resistive but that they have
finite cross-sections.

Below we consider a force due to the square of the current.

6.3 Force Proportional to the Square of the Cur-

rent

Up to now we have only considered two components of the force exerted by
the resistive wire upon the external test charge: (A) the component arising
from electrostatic induction (due to induction charges along the surface of the
wire generated by the presence of q); and (B) the component arising from the
potential difference acting along the wire (due to the charges along the surface of
the wire induced by the presence of the battery, when there is a steady current
flowing along the wire). This surface charge density and the accompanying
electric field are proportional to the emf of the battery or to the potential
difference acting along the wire. We have not yet taken into account the force
of the stationary lattice and mobile conduction electrons on the stationary test
charge. We consider it here in this Section, analyzing two different theoretical
models: Lorentz’s force and Weber’s force.

We first consider Lorentz’s force (or Liénard-Schwarzschild’s force). In this
case there are also components of the force exerted by a charge q2 belonging to
the current carrying circuit on the test charge q which depend on the square of
the velocity of q2, v

2
d, and on its acceleration. If we have a steady current, the

acceleration of q2 will be its centripetal acceleration due to any curvature in the
wire, proportional to v2

d/rc, where rc is the radius of curvature of the wire at
each point. This might lead to a force proportional to v2

d or to I2. However, it
has been shown that if we have a closed circuit carrying a constant current, there
is no net effect of the sum of all these terms on a stationary charge outside the
wire [11, page 697, exercise 14.13] [15] [23, Section 6.6]. The same result is valid
for Clausius’s force law. In conclusion we might say the following: According
to Lorentz’s force, the stationary lattice creates an electric field which is just
balanced by the force due to the free electrons inside the closed wire, even when
there is a constant current along the resistive wire. This might be interpreted
as considering the wire to be electrically neutral in its interior (the radial Hall
effect will be considered later on).

We now consider Weber’s electrodynamics [23]. As already stated, we are
disregarding the small radial Hall effect inside the wire due to the azimuthal
magnetic field generated by the current. This means that the interior of the wire
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can be considered essentially neutral. Despite this fact Weber’s electrodynamics
predicts a force exerted by this neutral wire in a stationary charge nearby,
even for closed circuits carrying constant currents. The reason for this effect is
that the force exerted by the mobile electrons on the stationary test charge is
different from the force exerted by the stationary positive ions of the lattice on
the test charge. One of us has already performed these calculations in related
situations, so that we present here only the final result. The calculations have
been published in 1991 [22] [23, Section 6.6, pages 161-168]. When we first
performed these calculations we were not completely conscious of the surface
charges discussed in this book (proportional to the emf of the battery, or to the
potential difference acting along the wire). For this reason the calculations were
performed supposing wires electrically neutral in all internal points and also
along their surfaces. Despite the limitations of this supposition, we reproduce
the final results here in order to show that they are different from the final
results obtained with Lorentz’s force when we assume the same conditions of
neutrality.

Once more we assume (6.1). For the situation of Figure 6.1, with a uniform

current density ~J = (I/πa2)ẑ, the force on the test charge is given by:

~F2 = −q Ivd
4πε0c2

ρ̂

ρ
= − µ0

4π2

qI2

a2en

ρ̂

ρ
if ρ > a , (6.27)

where vd is the drifting velocity of the electrons. We also utilized c2 = 1/ε0µ0

and vd = I/πa2en, where e = 1.6 × 10−19 C is the elementary charge and n is
the number of free electrons per unit volume.

This force is proportional to the square of the current. The electric field
~E2 = ~F2/q points toward the current, as if the wire had become negatively
charged. Sometimes this second order field is called motional electric field.

Suppose that we now bend the wire carrying a constant current (by letting
its shape in the form of a ring, for instance). In this case Weber’s electrody-
namics predicts another component of the force exerted by this current upon
a stationary charge outside the wire. This new component depends upon the
acceleration of the source charges (in this case conduction electrons). As we are
supposing a steady current which does not change with time, the relevant accel-
eration here is the centripetal one proportional to v2

d/rc, where rc is the radius
of curvature of the wire at that location. This means that also this component
of the force will be proportional to v2

d or to I2. The order of magnitude is the
same as the previous example. In 1991 [22] and in 1994 [23, Section 6.6, pp.
161-168] it was calculated the net second order force acting upon a stationary
charge outside the wire due to a circular closed circuit carrying a steady az-
imuthal current in the shape of a ring, utilizing Weber’s force. We showed that
its net value had the order of magnitude of Eq. (6.27). To this end we have
taken into account not only the component of the force which depends upon
the square of the velocity of the source charges, v2

d, but also the component of
the force due to the centripetal acceleration of the source electrons. This means
that Weber’s second order force does not go to zero even for closed circuits.
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In the case of Lorentz’s force, on the other hand, this net second order force
is always null in the case of closed currents. This is an important theoretical
difference between these two theories.

6.4 Radial Hall Effect

Another simple question which might be asked is the following: Is a stationary
resistive wire carrying a constant current electrically neutral in its interior?

Many authors quoted in Section 1.2 answered positively to this question as
this was one of their reasons for believing that this wire would not generate
any electric field outside itself. However, we already showed that there will
be a longitudinal distribution of surface charges which will give rise to the
longitudinal electric field inside the wire and also to an electric field outside it.
Here we show that there will also be a radial electric field inside the wire due
to the fact that its interior is negatively charged.

To our knowledge the first to consider this effect and to present quantitative
calculations were Matzed, Russell and Rosser [206, 167]. Smythe also discussed
this subject briefly [207, Section 6.04, pp. 250-252].

The usual Hall effect is discussed in most textbooks on classical electromag-
netism, so that we will not enter into details here. Normally they consider the
effects upon a current carrying conductor when placed in an external magnetic
field. These effects include the so-called “Hall voltage” and related topics.

However, what we discuss here is a similar effect but due to the internal
magnetic field generated by the current-carrying wire itself, without the presence
of any external magnetic field. To distinguish this effect from the usual Hall
effect, we utilize the expression radial Hall effect (related to the case of a current
flowing along a cylindrical conductor).

We here consider the radial Hall effect due to the azimuthal magnetic field
inside the wire generated by the longitudinal current flowing in this wire. As
is usually considered [63, p. 90], we will suppose the constant total current I
to flow uniformly over the cross-section of the cylindrical wire with a current
density J = I/πa2. With the magnetic circuital law

∮

C
~B · d~ℓ = µ0IC , where

C is the circuit of integration and IC is the current passing through the surface
enclosed by C, we obtain that the magnetic field inside and outside the wire is
given by:

~B(ρ ≤ a) =
µ0Iρ

2πa2
ϕ̂ , (6.28)

~B(ρ ≥ a) =
µ0I

2πρ
ϕ̂ . (6.29)

The magnetic force on a specific conduction electron of charge q = −e inside
the wire (due to the magnetic field generated by all other conduction electrons),
at a distance ρ < a from the axis and moving with drifting velocity ~v = −|vd|ẑ
is given by:
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~F = q~v × ~B = −|µ0evdIρ|
2πa2

ρ̂ . (6.30)

This radial force pointing inwards will create a concentration of negative
charges in the body of the conductor. This is like a pinch effect. In equilibrium
there will be a radial force generated by these charges which will balance the
magnetic force: qE = qvB. That is, there will be inside the wire, beyond the
longitudinal electric field E1 driving the current, a radial electric field pointing
inwards given by:

~Eρ(ρ ≤ a) = −|µ0vdIρ|
2πa2

ρ̂ . (6.31)

The longitudinal electric field inside the wire driving the current is given by
E1 = RI/ℓ. In order to compare it with the magnitude of the radial electric
field Eρ due to the Hall effect we consider the maximum value of this last field
very close to the surface of the wire, at ρ → a: Eρ → |µ0vdI|/2πa. This means
that (with R = ℓ/gπa2):

|Eρ|
|E1|

=
|µ0vdga|

2
. (6.32)

For a typical copper wire (vd ≈ 4×10−3 m/s and g = 5.7×107 Ω−1m−1) with 1
mm diameter this yields: Eρ/E1 ≈ 7×10−5. This shows that the radial electric
field inside the wire is negligible compared to the longitudinal one.

By Gauss’s law ∇ · ~E = ρc/ε0 we obtain that inside the wire there will
be a constant negative charge density ρc− given by: ρc− = −|Ivd|/πa2c2.
The total charge inside the wire is compensated by a positive charge spread
over the surface of the wire with a constant surface density σ+ = |ρc−a/2| =
|Ivd|/2πac2. That is, the negative charge inside the wire in a small segment
of length dz, ρc−πa

2dz, is equal and opposite to the positive charge along its
surface, σ+2πadz. This means that the radial Hall effect will not generate any
electric field outside the wire, only inside it. For this reason it is not relevant
to the experiments discussed before. In any event it is important to clarify this
effect.

Contrary to the surface density of free charges σ(a, z), this constant charge
density σ+ does not depend on the longitudinal component z.

In conclusion we may say that the total surface charge density along the
wire, not taking into account the motional electric field and the induction of
charges in the conductor due to external charges, is given by the constant σ+

added to the σ given by Eq. (6.17).
In our analysis of the radial Hall effect we are not considering the motional

electric field already discussed as it is not yet completely clear if it exists or not.
The results of this Section are completely theoretical. They are based upon
the equilibrium of a magnetic force (due to the poloidal magnetic field) and an
electric force (orthogonal to the axis of the wire) acting upon a drifting electron
moving along the axis of the wire. We are not aware of any experiments which
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tried to measure the internal density of charges ρc− in current carrying metallic
conductors.

We now compare all three components of the electric field outside the wire
with one another.

6.5 Discussion

The solutions presented here will remain valid in the case of a hollow cylindrical
shell of internal radius ai and external radius a. The internal density of surface
charge at ρ = ai will be zero taking into account the approximations considered
here, while the external density of surface charge will be the same as obtained
before. The main difference is that the electric field in the region ρ < ai will
not produce any current as there is no conductor in this region.

Although many authors forget about the zeroth order force F0 due to elec-
trostatic induction when dealing with a current-carrying wire interacting with
an external charge, there is no doubt it exists. Comparing the three components
of the force already discussed, it is the only one which diverges as we approach
the wire. If we are far away from the wire (at a distance ρ≫ a from it) this ze-
roth order force falls as 1/ρ2 ln(ρ/a) (as we saw in Eqs. (4.81) and (4.83)), while
the radial component of the force proportional to the voltage of the battery and
of the second order force, F1 and F2, fall as 1/ρ (as we saw in Eqs. (6.21) and
(6.27)).

We now compare the three components of this force given by Eqs. (4.81)
and (4.82), (6.21) and (6.27). To this end we consider a particular example
with orders of magnitudes similar to those employed in Sansbury’s experiment
[178]. He utilized a U-shaped copper current conductor (50 cm long legs spaced
10 cm apart, with 0.95 cm diameter). As we will utilize his dimensions in a
different configuration (straight wire instead of a U-shaped conductor), we will
consider our straight wire having a total length of ℓ = 1.20 m and a radius
a = 4.75× 10−3 m. The conductivity of copper is g = 5.7× 107 Ω−1m−1 and it
has a number of free electrons per unit volume given by n = 8.5×1028 m−3. The
resistance of the wire is then given by R = ℓ/gπa2 = 3.0 × 10−4 Ω. He passed
a current of 900 A in his wire, which means a potential difference between the
extremities of the wire as given by φL − φR = 0.27 V. The drifting velocity in
this case amounts to vd = I/πa2en = 0.9×10−3 m/s. We will suppose moreover
the symmetrical case in which φR = −φL = −0.135 V. The test charge will be
the one estimated by Sansbury, namely, q ≈ 5×10−10 C, at a distance of ρ = 3.5
cm = 3.5 × 10−2 m from the wire. This yields a/ρ′ = 0.121. Although his test
charge was spread over a 2 cm × 2 cm silver foil, here we suppose the test charge
concentrated in a point.

These values in Eqs. (4.81) and (4.82) yield αL = 0.247, F0 = 4.5 × 10−7

N and E0 = F0/q = 9.0 × 102 V/m. Although Sansbury observed a zeroth
order force, he did not measure it. For comparison we present here the zeroth
order force upon an electron (q = −1.6 × 10−19 C) and upon a typical charge
generated by friction (q ≈ 10−6 C) at the same distance from the same wire,
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namely: F0 = 4.6 × 10−26 N and F0 = 1.8 N, respectively. The huge difference
between these forces arises from the fact that F0 is proportional to the square
of q. The corresponding zeroth order electric fields due to the electron and
to the charge generated by friction are given by E0 = 2.9 × 10−7 V/m and
E0 = 1.8 × 106 V/m, respectively.

We now consider the force F1 and electric field E1 = F1/q proportional to
the voltage of the battery. We consider only the radial component along the ρ̂
direction given by Eq. (6.21). This component depends upon the values of the
potentials at the extremities of the wire and also upon the value of z. With the
given symmetrical potentials, φL + φR = 0 V, then the radial components of
F1 and of E1 go to zero at z = 0. The maximal magnitudes of F1 and of E1

happen at z = ±ℓ/2. At these locations, with q = 5 × 10−10 C and with the
given conditions we obtain: F1 = 3.5 × 10−10 N and E1 = 0.69 V/m.

As regards the second order effect, we utilize Eq. (6.27). With q = 5×10−10

C and the given conditions we obtain: F2 = 1.2 × 10−15 N. This yields E2 =
F2/q = 2.4 × 10−6 V/m.

Finally we can compare the three force components along the radial direction
(for F1 we consider only the maximal value). Utilizing q = 5 × 10−10 C we
obtained: F0 = 4.5× 10−7 N, F1 = 3.5× 10−10 N and F2 = 1.2× 10−15 N. The
corresponding components of the electric field were given by: E0 = 9.0 × 102

V/m, E1 = 6.9 × 10−1 V/m and E2 = 2.4 × 10−6 V/m. This yields F0/F1 =
1.3× 103, F1/F2 = 2.9 × 105, E0/E1 = 1.3× 103 and E1/E2 = 2.9 × 105. That
is, in this case F0 ≫ F1 ≫ F2 and E0 ≫ E1 ≫ E2.

Similar order of magnitudes are obtained in the experiment of Bartlett and
Maglic [179].

To facilitate the detection of the force F1 it would be better not to place
any test charge close to the wire. Instead of this, it would be ideal to bring a
small neutral conductor close to the wire. In principle it would not act upon
the wire. But when we pass a current upon the resistive wire, this wire should
become charged along its surface. Therefore, it should generate an electric field
E1 outside it. This electric field would then polarize the small conductor outside
it. Consequently, there would arise an attraction between the conductor and
the current-carrying wire. We have already seen experiments of this kind in
Chapter 3.

The second possibility in order to facilitate the detection of the force F1 even
in the presence of the force F0 (in the case in which we approach a charged body
to the current-carrying wire) would be to increase the voltage of the battery
connected to the wire. As F1 is proportional to the emf of the battery, we can
make F1 greater than F0 working with high resistance wires connected to high
voltages. We also saw experiments of this kind in Chapter 3.

In many cases we will have F0 ≫ F1 ≫ F2. Despite this fact the force
~F1 has already been observed in the laboratory, as we saw in Chapter 3. We
consider the current flowing in the top part of a circuit like that of our Figure 6.1,
with symmetrical potentials: φR = −φL. In order to compare these theoretical
results with the experiments, we need to obtain the lines of electric field. To
obtain these lines we follow the approach presented in Sommerfeld’s book [208,
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pp. 125-130] (German original from 1948 based on lectures delivered in 1933-
1934). We obtain this in the plane xz (y = 0). Any plane containing the
z axis will yield a similar solution. The lines of electric field are orthogonal
trajectories to the equipotential lines. As ~E = −∇φ, the electric field points
along the direction of the maximum space rate of change of φ. We are then
looking for a function ξ(ρ, z) such that

∇ξ(ρ, z) · ∇φ(ρ, z) = 0 . (6.33)

For ρ < a we have φ as a linear function of z, such that ξ can be found
proportional to ρ. We write it as ξ(ρ < a, z) = −Aℓρ, with A as a constant.
The equipotential lines, φ(ρ, z) = constant, can be written as z1(ρ) = K1,
where K1 is a constant (for each constant we have a different equipotential
line). Analogously, the lines of electric field will be given by z2(ρ) = K2, where
K2 is another constant (for each K2 we have a different line of electric field).
From Eq. (6.33) we get dz2/dρ = −1/(dz1/dρ) = (∂φ/∂z)/(∂φ/∂ρ). Integrating
this equation we can obtain ξ(ρ, z). With Eq. (6.9) this yields the solution for
ρ > a. We are then led to:

ξ(ρ, z) = (φR − φL)
ρ

ℓ
if ρ < a , (6.34)

ξ(ρ, z) = (φR + φL)
z

ℓ
+ (φR − φL)

(

ρ2

2ℓ2
+
z2

ℓ2
− ρ2

ℓ2
ln
ρ

ℓ

)

if ρ > a . (6.35)

From these equations we can easily verify Eq. (6.33).
In order to compare these results with the experiments of Bergmann, Schae-

fer, Jefimenko, Barnett and Kelly we need essentially the value of ℓ/a. From
Figure 3.1 we get ℓ/a ≈ 33, from Figure 3.3 we get ℓ/a ≈ 13, while from Fig-
ure 3.10 we get ℓ/a ≈ 4. The plots of the equipotentials between z = −ℓ/2
and ℓ/2 given by Eqs. (6.8) and (6.9) with these values of ℓ/a are given in
Figures 6.3, 6.4 and 6.5 (with the experimental results of Bergmann, Schaefer,
Jefimenko, Barnett and Kelly overlaid on them).

Plots of the lines of electric field given by Eqs. (6.34) and (6.35) with these
values of ℓ/a are given in Figures 6.6, 6.7 and 6.8 (with the experimental results
of Bergmann, Schaefer, Jefimenko, Barnett and Kelly overlaid on them).

These theoretical Figures overlaid on the experimental ones indicate a very
good agreement between theory and experiment.

We now consider Sansbury’s experiment discussed in Chapter 3. The ob-
served force was of the order of 10−7 N, although he was not able to make precise
measurements. He analyzed briefly the possibility that this extra force might be
the force F1 discussed here, but only considered the longitudinal electric field
outside the wire. He then concluded that this force would be three orders of
magnitude smaller than the effect he measured. However, he was not aware of
the radial component of ~E1, which can be larger than the longitudinal compo-
nent, as we showed here. Moreover, his U-shaped wire was bent close to the foil
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Figure 6.3: Theoretical equipotential lines overlaid on the experimental lines of
electric field obtained by Bergmann and Schaefer.

Figure 6.4: Theoretical equipotential lines overlaid on the experimental lines of
electric field obtained by Jefimenko.

and thus the approximation to a long straight wire may not be applicable. Close
to a corner the electric field outside the wire is even larger than the longitudinal
one inside it [167]. Possibly what Sansbury detected directly was the force F1

discussed here. It would be important to repeat his experiment carefully taking
this into account.

In this Chapter we have seen a first example in which the electric field inside
and outside a resistive wire carrying a steady current is due to charges spread
along the surface of the conductor. The density of these surface charges is con-
stant in time but varies along the length of the wire. It is proportional to the
voltage generated by the battery connected to the wire. As the internal and ex-
ternal electric field is produced by charges at the surface of the wire, we can see
a direct connection between electrostatics (represented by Gauss’s law) and cir-
cuit theory (represented by Ohm’s law). This allows a connection between these
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Figure 6.5: Theoretical equipotential lines overlaid on the experimental ones
obtained by Jefimenko, Barnett and Kelly.

Figure 6.6: Theoretical lines of electric field overlaid on the experimental ones
obtained by Bergmann and Schaefer.

two topics which are usually considered separately in the textbooks. Despite
this fact some authors have called attention to the strong connection between
these two branches of electromagnetism, beginning with Weber and Kirchhoff,
as we see in the Appendices. Some modern scientists mention the same aspect
[209, 210, 211, 171] [166, Chapter 18: A Microscopic View of Electric Circuits,
pp. 623-666].

The example discussed here is important to show clearly the existence of
an external electric field proportional to the potential difference acting upon
the resistive wire, even in the case of a straight wire carrying a steady current.
This electric field does not depend upon a variable current (with a longitudinal
acceleration of the electrons along the direction of the wire), nor of a centripetal
acceleration of the conduction electrons (due to any curvature in the wire). That
is, this external electric field will exist even when there is no acceleration of the
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Figure 6.7: Theoretical lines of electric field overlaid on the experimental ones
obtained by Jefimenko.

Figure 6.8: Theoretical lines of electric field overlaid on the experimental equipo-
tential lines obtained by Jefimenko, Barnett and Kelly.

conduction electrons.

91



92



Chapter 7

Coaxial Cable

7.1 Introduction

Many authors studied the distribution of surface charges in resistive coaxial
cables carrying steady currents, as well as the potential and electric field inside
and outside the conductors [212, pp. 175-184] [170] [208, pp. 125-130] [213]
[214] [176, pp. 318 and 509-511] [12] [215] [16, pp. 336-337] [216] [217].

Here we present the main results in this configuration considering the general
case of a return conductor of finite area and finite conductivity. In this case
there will be an electric field outside the external return conductor, although
the magnetic field goes to zero in this region.

The configuration of the problem is that of Figure 7.1.

Figure 7.1: Configuration of the problem.

A constant current I flows uniformly in the z direction along the inner
conductor (radius a and conductivity g1), returning uniformly along the outer
conductor (internal and external radii b and c, respectively, and conductivity g3).
The conductors have uniform circular cross-sections and a length ℓ≫ c > b > a
centered on z = 0. The medium outside the conductors is considered to be air
or vacuum. The potentials at the extremities located at z = ℓ/2 of the inner and
outer conductors are maintained at the constant values φA and φB, respectively.
The potentials at the extremities located at z = −ℓ/2 of the outer and inner
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conductors are maintained at the constant values φC and φD, respectively.

7.2 Potentials and Fields

We are interested in calculating the potentials and fields in a point ~r = (ρ, ϕ, z)
such that ℓ ≫ ρ and ℓ ≫ |z|, so that we can neglect edge effects. All solutions
presented here were obtained with this approximation. With this approximation
and configuration we then have the potential as a linear function of z. See
Section 5.4. In order to have uniform currents flowing in the z direction along
the inner and outer conductors, with a potential satisfying the given values at
the extremities, we have:

φ(ρ ≤ a, ϕ, z) =
φA + φD

2
+ (φA − φD)

z

ℓ
, (7.1)

φ(b ≤ ρ ≤ c, ϕ, z) =
φC + φB

2
+ (φB − φC)

z

ℓ
. (7.2)

By Ohm’s law (with R1 and R3 being the resistances of the inner and outer
conductors, respectively) we obtain:

φD − φA = R1I =
ℓI

πg1a2
, (7.3)

φB − φC = R3I =
ℓI

πg3(c2 − b2)
. (7.4)

In the four regions (ρ < a, a < ρ < b, b < ρ < c and c < ρ) the potential φ
satisfies Laplace’s equation ∇2φ = 0. By Eqs. (7.1) and (7.2) we have the value
of φ in the first and third regions, which also supply the boundary conditions
at ρ = a and at ρ = b in order to find φ in the second region. To find φ in the
fourth region we need another boundary condition, in addition to the value of
φ at ρ = c, which is given by Eq. (7.2). We then impose the following boundary
condition:

φ(ρ = ℓ, ϕ, z) = 0 V . (7.5)

This is the main non-trivial boundary condition for this problem. The same
reasoning was utilized in Section 6.2 after Eq. (6.21). This equation says that the
potential goes to zero at a radial distance ρ = ℓ, so that the length ℓ of the cable
appears in the solution. The usual condition φ(ρ → ∞, ϕ, z) = 0 V does not
work in the situation considered here. We first tried this last condition but could
not obtain a correct solution for the potential, and only discovered Eq. (7.5)
working backwards. That is, from the work of Russell we knew that in general
the density of the surface charges on a system of long parallel homogeneous
conductors in steady-state (as is the case of the coaxial cable being considered
here) varies linearly with distance along the direction of their common axis [9].
That is, if d represents a, b or c, the surface charge densities at these surfaces
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must be given by σd(z) = Ad+Bdz, with the constants Ad and Bd characterizing
each surface. We then obtained the potential at all points in space by

φ(~r) =
1

4πε0

3
∑

j=1

∫ ∫

Sj

σ(~rj)daj
|~r − ~rj |

. (7.6)

Here the sum goes over the three surfaces ρ = a, b and c, extending from
z = −ℓ/2 to z = ℓ/2. After solving these integrals we discovered that φ went
to zero not at infinity, but at ρ = ℓ. Although this difference is important
mathematically in order to arrive at a working solution, physically we can say
that the potential going to zero at ρ = ℓ is equivalent to it going to zero at
infinity. As we suppose ℓ ≫ c > b > a, we are essentially imposing that the
potential goes to zero at a large distance from the cable, which is reasonable.

Here we reverse the argument, as this is more straightforward. That is, we
begin with the boundary conditions for φ, obtaining the solutions of Laplace’s
equation, the electric field ~E = −∇φ and then σ by Gauss’s law.

The boundary conditions are then the values of φ at ρ = a, ρ = b, ρ = c and
ρ = ℓ. They are given by Eqs. (7.1), (7.2) and (7.5). The solutions of Laplace’s
equation ∇2φ = 0 for a ≤ ρ ≤ b and for c ≤ ρ in cylindrical coordinates
satisfying these boundary conditions yield:

φ(a ≤ ρ ≤ b, ϕ, z) =
φB + φC

2
+ (φB − φC)

z

ℓ

+

[

φA + φD − φC − φB
2

+ (φA − φD + φC − φB)
z

ℓ

]

ln(b/ρ)

ln(b/a)
, (7.7)

φ(c ≤ ρ, ϕ, z) =

[

φC + φB
2

+ (φB − φC)
z

ℓ

]

ln(ℓ/ρ)

ln(ℓ/c)
. (7.8)

The lines of electric field are given by a function ξ(ρ, z) such that ∇ξ·∇φ = 0.
By the procedure described in the previous Chapter we obtain

ξ(ρ < a, ϕ, z) = −(φA − φD)
ρ

ℓ
, (7.9)

ξ(a < ρ < b, ϕ, z) =
φA + φD − φC − φB

2

z

ℓ
+
φB − φC

2

ρ2

ℓ2
ln
b

a

+
φA − φD + φC − φB

2

(

z2

ℓ2
+

ρ2

2ℓ2
− ρ2

ℓ2
ln
ρ

b

)

, (7.10)

ξ(b < ρ < c, ϕ, z) = −(φB − φC)
ρ

ℓ
, (7.11)

ξ(c < ρ, ϕ, z) =
φB + φC

2

z

ℓ
+
φB − φC

2

(

z2

ℓ2
+

ρ2

2ℓ2
− ρ2

ℓ2
ln
ρ

ℓ

)

. (7.12)
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The electric field ~E = −∇φ is given by

~E(ρ < a, ϕ, z) =
φD − φA

ℓ
ẑ , (7.13)

~E(a < ρ < b, ϕ, z) =

[

φA + φD − φC − φB
2

+ (φA − φD + φC − φB)
z

ℓ

] 1

ln(b/a)

ρ̂

ρ

+

[

φC − φB
ℓ

+
φD − φA + φB − φC

ℓ

ln(b/ρ)

ln(b/a)

]

ẑ , (7.14)

~E(b < ρ < c, ϕ, z) =
φC − φB

ℓ
ẑ , (7.15)

~E(c < ρ, ϕ, z) =

[

φC + φB
2

+ (φB − φC)
z

ℓ

]

1

ln(ℓ/c)

ρ̂

ρ

+
φC − φB

ℓ

ln(ℓ/ρ)

ln(ℓ/c)
ẑ . (7.16)

The main points to be emphasized here are the solutions (7.8) and (7.16).
They show the existence of an electric field outside the resistive cable even when
it is carrying a constant current.

Here we do not consider the motional electric field proportional to second
order in vd/c. Its order of magnitude is much smaller than the one considered
here (proportional to the potential difference along the cable). For this reason
we do not need to take it into account here.

The surface charge densities σ along the inner conductor (ρ = a, σa(z)) and
along the inner and outer surfaces of the return conductor (ρ = b, σb(z) and
ρ = c, σc(z)) can be obtained easily utilizing Gauss’s law:

∫

©
∫

S

~E · d~a =
Q

ε0
, (7.17)

where d~a is the surface element pointing normally outwards the closed surface
S and Q is the net charge inside S. This yields σa(z) = ε0E2ρ(ρ → a, z),
σb(z) = −ε0E2ρ(ρ → b, z) and σc(z) = ε0E4ρ(ρ → c, z), where the subscripts

2ρ and 4ρ mean the radial component of ~E in the second and fourth regions,
a < ρ < b and c < ρ, respectively. This means that:

σa(z) =
ε0
a

1

ln(b/a)

[

φA + φD − φC − φB
2

+ (φA − φD + φC − φB)
z

ℓ

]

, (7.18)
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σb(z) = −a
b
σa(z) , (7.19)

σc(z) =
ε0
c

1

ln(ℓ/c)

[

φC + φB
2

+ (φB − φC)
z

ℓ

]

. (7.20)

An alternative way of obtaining φ and ~E is to begin with the surface charges
as given by Eqs. (7.18) to (7.20). We then calculate the electric potential φ (and
~E = −∇φ) through Eq. (7.6). We checked the calculations with this procedure.

7.3 The Symmetrical Case

In order to visualize the equipotentials and lines of electric field we consider
ℓ/c = 5, ℓ/b = 15/2 and ℓ/a = 15. There are two main cases of interest, the
symmetrical and asymmetrical cases. In the symmetrical case there are two
equal batteries located at both extremities of the cable, Figure 7.2.

Figure 7.2: The symmetrical case.

They generate potentials φB = φD = −φA = −φC ≡ φ0/2. In this case the
surface charge densities go to zero at the center of the cable (z = 0) in all three
surfaces (ρ = a, b and c). The equipotentials and lines of electric field for this
situation are shown in Figures 7.3 and 7.4, respectively.

Figure 7.3: Equipotential lines for the symmetrical case.
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Figure 7.4: Lines of electric field for the symmetrical case.

In this case the potential is simply proportional to z without any additive
constant. We can then write it in terms of the currents and conductivities as
given by:

φ(ρ ≤ a) = − Iz

πg1a2
, (7.21)

φ(a ≤ ρ ≤ b) = − I

π

z

ln(b/a)

[

ln(b/ρ)

g1a2
− ln(ρ/a)

g3(c2 − b2)

]

, (7.22)

φ(b ≤ ρ ≤ c) =
Iz

πg3(c2 − b2)
, (7.23)

φ(c ≤ ρ) =
I

π

ln(ℓ/ρ)

ln(ℓ/c)

z

g3(c2 − b2)
. (7.24)

Particular cases include an equipotential outer conductor (φC = φB = 0)
with an infinite area (c → ∞) or with an infinite conductivity (g3 → ∞).
These solutions are recovered taking g3(c

2 − b2) → ∞, such that σc(z) → 0,
~E(ρ > b) → 0 and φ(ρ ≥ b) → 0 for any z. The opposite solution when the
current flows in an inner conductor of infinite conductivity, returning in an outer
conductor of finite area and finite conductivity, is also easily obtained from the
previous result, yielding ~E(ρ < a) → 0 and φ(ρ ≤ a) → 0 for any z.

7.4 The Asymmetrical Case

In the asymmetrical case there is a battery at the left extremity and a load
resistance RL at the right extremity, Figure 7.5.

We can represent the potentials generated by the battery producing a voltage
φ0 between its terminals as φD = −φC ≡ φ0/2. By Ohm’s law the total current
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Figure 7.5: The asymmetrical case.

I is related to the total resistanceRt ≡ R1+RL+R2 by I = φ0/Rt. Analogously:
φD−φA = φ0(R1/Rt), φA−φB = φ0(RL/Rt) and φB−φC = φ0(R2/Rt). These
results in Eqs. (7.1) to (7.12) yield:

φ(ρ ≤ a, ϕ, z) = φ0

(

R2 +RL
2Rt

− R1

Rt

z

ℓ

)

, (7.25)

φ(a ≤ ρ ≤ b, ϕ, z) = −φ0

[(

R1 +RL
2Rt

− R1 +R2 + 2RL
2Rt

ln(b/ρ)

ln(b/a)

)

−
(

R2

Rt
− R1 +R2

Rt

ln(b/ρ)

ln(b/a)

)

z

ℓ

]

, (7.26)

φ(b ≤ ρ ≤ c, ϕ, z) = −φ0

(

R1 +RL
2Rt

− R2

Rt

z

ℓ

)

, (7.27)

φ(c ≤ ρ, ϕ, z) = −φ0

(

R1 +RL
2Rt

− R2

Rt

z

ℓ

)

ln(ℓ/ρ)

ln(ℓ/c)
. (7.28)

ξ(ρ < a, ϕ, z) = φ0
R1

Rt

ρ

ℓ
, (7.29)

ξ(a < ρ < b, ϕ, z) = φ0

[

R1 +R2 + 2RL
2Rt

z

ℓ
+

R2

2Rt

ρ2

ℓ2
ln
b

a

− 1

2

(

z2

ℓ2
+

ρ2

2ℓ2
− ρ2

ℓ2
ln
ρ

b

)]

, (7.30)

ξ(b < ρ < c, ϕ, z) = −φ0
R2

Rt

ρ

ℓ
, (7.31)

ξ(c < ρ, ϕ, z) = −φ0

[

R1 +RL
2Rt

z

ℓ
− R2

2Rt

(

z2

ℓ2
+

ρ2

2ℓ2
− ρ2

ℓ2
ln
ρ

ℓ

)]

. (7.32)

These Equations are plotted in Figures 7.6 and 7.7 when ℓ/c = 5, ℓ/b = 15/2,
ℓ/a = 15 and R1 = R2 = RL.

As we obtained algebraic solutions for the fields, potentials and surface
charges, it is easy to apply them for commercial cables. In this way we can
know the orders of magnitude of these quantities for several standard cables.
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Figure 7.6: Equipotential lines for the asymmetrical case.

Figure 7.7: Lines of electric field for the asymmetrical case.

7.5 Discussion

The distribution of charges given by Eqs. (7.18) to (7.20) is equivalent to equal
and opposite charges in the facing surfaces. That is, the charge at the position
ρ = a, z, in a length dz, dqa(z) = 2πaσa(z)dz, is equal and opposite to the charge
at the position ρ = b, z, in the same length dz: dqb(z) = 2πbσb(z)dz = −dqa(z).

The electric field outside the coaxial cable then depends only on the surface
charges at the external wall of the return conductor, σc(z):

φ(c ≤ ρ, ϕ, z) =
c

ε0
σc(z) ln

ℓ

ρ
=

[

φB + φC
2

+ (φB − φC)
z

ℓ

]

ln(ρ/ℓ)

ln(c/ℓ)
. (7.33)

The main nontrivial conclusions of this analysis are Eqs. (7.16) and (7.33).
They show that although there is no vector potential or magnetic field outside
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a coaxial cable, the electric field will be different from zero when there is a finite
resistivity in the outer conductor. To our knowledge the first to mention this
external electric field outside a resistive coaxial cable was Russell in his impor-
tant paper of 1983 [213]. The solution of this Chapter presents an analytical
calculation of this field.

This external electric field indicates that there is no shielding in a coaxial
cable with a resistive outer conductor (sheath). It is important to realize this
specially when dealing with interferences in telecommunication systems. Even
with a long cable there will be this external electric field, as can be seen from
Eq. (7.33). For this reason this resistive cable will influence other electrical
systems nearby. This field will be present even for variable current. This is a
relevant aspect neglected by most authors.
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Chapter 8

Transmission Line

8.1 Introduction

One of the most important electrical systems is that of a two-wire transmission
line, usually called twin-leads. We consider here homogeneous resistive wires
fixed in the laboratory and carrying steady currents. The goal here is to calculate
the electric field outside the wires.

The case of twin-leads was first considered by Stratton [218, p. 262]. Al-
though he called attention to the electric field outside the transmission line, this
has been forgotten by most authors, as we have seen. We treated this case in
more detail in 1999 [219] and here we follow this latter approach. These are the
only theoretical works dealing with this configuration known to us.

8.2 Two-Wire Transmission Line

The configuration of the system is given in Figure 8.1.
We have two equal straight wires of circular cross-sections of radii a and

length ℓ, surrounded by air. Their axes are separated by a distance b and are
parallel to the z axis, symmetrically located relative to the z and x axes. That is,
the centers of the wires are located at (x, y, z) = (−b/2, 0, 0) and (+b/2, 0, 0).
The conductivity of the wires is g and their extremities are located at z = −ℓ/2
and z = +ℓ/2. Here we calculate the electric potential φ and the electric field
~E at a point (x, y, z) such that ℓ ≫ r =

√

x2 + y2 + z2. Moreover, we also
assume that ℓ≫ b/2 > a, so that we can neglect edge effects.

We want to find the potential and electric field when a current I flows uni-
formly through one of the wires along the direction +ẑ and returns uniformly
through the other wire along the direction −ẑ. The current densities in both
wires are then given by ~J = (I/πa2)ẑ and ~J = −(I/πa2)ẑ, respectively. As we
are considering homogeneous wires with a constant conductivity g, Ohm’s law
yields the internal electric field in the wires as ~E = ±(I/gπa2)ẑ. We do not

need to consider in ~E the influence of the time variation of the vector potential
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Figure 8.1: Two homogeneously resistive parallel wires of radii a separated by a
distance b. The first wire carries a steady current I along the positive z direction
while the second wire carries the return current I along the negative z direction.

as we are dealing with a steady current in stationary wires, so that ∂ ~A/∂t = ~0

everywhere. We can then write ~E = −∇φ. As we have a constant electric field
in each wire, this implies that the potential is constant over each cross-section
and a linear function of z. In this work we consider a symmetrical situation for
the potentials so that in the first wire the current flows from the potential φL at
z = −ℓ/2 to φR at z = ℓ/2 and returns in the second wire from −φR at z = ℓ/2
to −φL at z = −ℓ/2, Figure 8.1. We can then write:

φF (z) =
φR + φL

2
+ (φR − φL)

z

ℓ
=
φR + φL

2
+

I

gπa2
z , (8.1)

φS(z) = −φF (z) . (8.2)

In these equations φF (z) and φS(z) are the potentials as a function of z over
the cross-section of the first and second conductors, respectively.

In this Chapter we neglect the small Hall effect due to the azimuthal mag-
netic field generated by these currents. See Section 6.4. This effect creates a
redistribution of the charge density within the wires, and modifies the surface
charges also. As these are usually small effects, they will not be considered here.

We now find the potential in space supposing there is air outside the conduc-
tors. As the conductors are straight and the boundary conditions (the potentials
over the surface of the conductors) are linear functions of z, the same must be
valid everywhere, as we saw in Section 5.4. That is, φ = (A+Bz)f(x, y), where
A and B are constants and f(x, y) is a function of x and y. This function can
be found by the method of images, imposing a constant potential φ0 over the
first wire and −φ0 over the second one [13, Section 2.1]. The final solution for

φ and ~E satisfying the given boundary conditions, valid for the region outside
the wires, is given by:
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φ(x, y, z) = −
(

φR + φL
2

+ (φR − φL)
z

ℓ

)

1

2 ln b−
√
b2−4a2

2a

× ln
(x−

√
b2 − 4a2/2)2 + y2

(x+
√
b2 − 4a2/2)2 + y2

, (8.3)

~E = −
(

φR + φL
2

+ (φR − φL)
z

ℓ

)
√
b2 − 4a2

ln b+
√
b2−4a2

2a

× (x2 − y2 + a2 − b2/4)x̂+ 2xyŷ

D4
1

+
φR − φL

ℓ

1

2 ln b−
√
b2−4a2

2a

[

ln
(x −

√
b2 − 4a2/2)2 + y2

(x +
√
b2 − 4a2/2)2 + y2

]

ẑ , (8.4)

where:

D4
1 ≡ x4 + y4 + b4/16 + a4 + 2x2y2 − b2x2/2

+ 2a2x2 + b2y2/2 − 2a2y2 − b2a2/2 . (8.5)

The equipotentials at z = 0 are plotted in Figure 8.2.

Figure 8.2: Equipotentials in the plane z = 0.

It is also relevant to express these results in cylindrical coordinates (ρ, ϕ, z)
centered on the first and second wires. See Figure 8.3.
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Figure 8.3: Cylindrical coordinates centered on the first and second wires.

For the first wire this can be accomplished replacing x by ρF cosϕF − b/2,
y by ρF sinϕF , x̂ by ρ̂F cosϕF − ϕ̂F sinϕF and ŷ by ρ̂F sinϕF + ϕ̂F cosϕF ,
yielding:

φ(ρF , ϕF , z) = −
(

φR + φL
2

+ (φR − φL)
z

ℓ

)

1

2 ln b−
√
b2−4a2

2a

ln

√

D2
2

D2
3

, (8.6)

where:

D2
2 ≡ ρ2

F − ρF (cosϕF )
(

b+
√

b2 − 4a2
)

+
b2

2
− a2 +

b
√
b2 − 4a2

2
, (8.7)

and

D2
3 ≡ ρ2

F − ρF (cosϕF )
(

b−
√

b2 − 4a2
)

+
b2

2
− a2 − b

√
b2 − 4a2

2
. (8.8)

The electric field is then given by:

~E = −
(

φR + φL
2

+ (φR − φL)
z

ℓ

)
√
b2 − 4a2

ln b+
√
b2−4a2

2a

× (ρ2
F cosϕF − ρF b+ a2 cosϕF )ρ̂F + (sinϕF )(ρ2

F − a2)ϕ̂F
D4

4

+
φR − φL

ℓ

1

2 ln b−
√
b2−4a2

2a

×
[

ln
ρ2
F − ρF (cosϕF )(b +

√
b2 − 4a2) + b2/2 − a2 + b

√
b2 − 4a2/2

ρ2
F − ρF (cosϕF )(b −

√
b2 − 4a2) + b2/2 − a2 − b

√
b2 − 4a2/2

]

ẑ , (8.9)

where:
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D4
4 ≡ ρ4

F − 2ρ3
F b cosϕF + ρ2

F b
2 + a4

+ 2ρ2
Fa

2(cos2 ϕF − sin2 ϕF ) − 2ρF ba
2 cosϕF . (8.10)

The density of surface charges over the first and second wires, σF and σS ,
can then be found by ε0 times the radial component of the electric field over
the surface of each cylinder, yielding:

σF =

(

φR + φL
2

+ (φR − φL)
z

ℓ

)

ε0

2a ln b+
√
b2−4a2

2a

√
b2 − 4a2

b/2 − a cosϕF
, (8.11)

σS = −
(

φR + φL
2

+ (φR − φL)
z

ℓ

)

ε0

2a ln b+
√
b2−4a2

2a

√
b2 − 4a2

b/2 + a cosϕS
. (8.12)

In order to check these results we calculated the potential φ inside each wire
and in space, beginning with these surface charge densities and utilizing:

φ(x, y, z) =
1

4πε0

[

∫ ℓ/2

z′=−ℓ/2

∫ 2π

ϕ′

F
=0

σF (ϕ′
F )adϕ′

Fdz
′

|~r − ~r ′|

+

∫ ℓ/2

z′=−ℓ/2

∫ 2π

ϕ′

S
=0

σS(ϕ′
S)adϕ′

Sdz
′

|~r − ~r ′|

]

. (8.13)

Here we integrate over the surfaces of the first and second cylinders, SL and
SR, respectively. We can then check these results assuming the correctness of the
method of images for the electrostatic problem and utilizing the approximations
ℓ≫ |~r| and ℓ≫ b/2 > a.

With b≫ a and b≫ ρF , Eqs. (8.11) and (8.6) yield:

σF ≈ ε0
a ln(b/a)

(

φR + φL
2

+ (φR − φL)
z

ℓ

)

, (8.14)

and

φ(a < ρF ≪ b, ϕF , z) ≈
aσF (z)

ε0
ln

b

ρF
. (8.15)

These results are analogous to Eqs. (6.2) and (6.9).
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8.3 Discussion

The first aspect to be discussed here is the qualitative interpretation of these
results. In all this Section we will assume φR = 0 in order to simplify the
analysis. The distribution of surface charges for a given z is similar to the
distribution of charges in the electrostatic problem given the potentials φ0 and
−φ0 at the first and second wires, without current. That is, σF (ϕF ) > 0 for any
ϕF and its maximum value is at ϕF = 0 rad. The density of surface charges
at the second wire, σS , has the same behaviour of σF with an overall change of
sign, with its maximum magnitude occurring at ϕS = π rad. A qualitative plot
of the surface charges at z = 0 is given in Figure 8.4.

Figure 8.4: Qualitative distribution of surface charges for two parallel wires in
the plane z = 0.

A quantitative plot of σF is given in Figure 8.5 supposing b/2a = 10/3 and
normalizing the surface charge density by the value of σF at ϕF = π rad.

Figure 8.5: Quantitative normalized distribution of the density of surface
charges in the first wire in the plane z = 0 as a function of the azimuthal
angle.

It should also be remarked that for a fixed ϕF the surface density decreases
linearly from z = −ℓ/2 to z = ℓ/2, the opposite happening with σS for a fixed
ϕS .

We can integrate the surface charges over the circumference of each wire,
obtaining the integrated charge per unit length λ(z) as:
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λF (z) =

∫ 2π

ϕF =0

aσF (ϕF )dϕF

= − 2πε0

ln [(b−
√
b2 − 4a2)/2a]

[

φR + φL
2

+ (φR − φL)
z

ℓ

]

. (8.16)

λS(z) = −
∫ 2π

ϕS=0

aσS(ϕS)dϕS = −λF (z) . (8.17)

One important aspect to discuss is the experimental relevance of these sur-
face charges in terms of forces. That is, as the wires have a net charge in each
section, there will be an electrostatic force acting on them. We can then com-
pare this force with the magnetic force. The latter is given essentially by (force
per unit length):

dFM
dz

=
µ0I

2

2πb
, (8.18)

where we are supposing b/2 ≫ a.
We now calculate the electric force per unit length on the first wire, integrat-

ing the force over its circumference. We consider a typical region in the middle
of the wire, around z = 0, and once more suppose b/2 ≫ a:

d~FE
dz

=

∫ 2π

ϕF =0

aσF (ϕF ) ~E(ρF = a, ϕF , z = 0)dϕF ≈ πε0φ
2
L

ln2 b/a

(

x̂

b
+
ẑ

ℓ

)

. (8.19)

From Eqs. (8.18) and (8.19) the ratio of the magnetic to the radial elec-
tric force is given by (with Ohm’s law φ2

L/I
2 = R2 = (ℓ/gπa2)2, R being the

resistance of each wire):

FM
FE

≈ µ0/ε0
2R2

ln2 b

a
. (8.20)

As µ0/ε0 = 1.4 × 105 Ω2 this ratio will be usually many orders of magnitude
greater than 1. This would be of the order of 1 when R ≈ 370 Ω (supposing
ln(b/a) ≈ 1). This is a very large resistance for homogeneous wires.

In order to compare this force with the magnetic force we suppose typical
copper wires of conductivities g = 5.7×107 m−1Ω−1, lengths ℓ = 1 m, separated
by a distance b = 6 mm and diameters 2a = 1 mm. This means that by Ohm’s
law φ2

L/I
2 = R2 ≈ 5× 10−4 Ω2. With these values the ratio of the longitudinal

electric force to the magnetic force is of the order of 7×10−11, while the ratio of
the radial electric force to the magnetic force is of the order of 1 × 10−8. That
is, the electric force between the wires due to these surface charges is typically
10−8 times smaller than the magnetic force. This shows that we can usually
neglect these electric forces.
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Despite this fact it should be remarked that while the magnetic force is re-
pulsive in this situation (parallel wires carrying currents in opposite directions),
the radial electric force is attractive, as we can see from the charges in Figure 8.4.

The situation described in this Chapter is very similar to the experiments
performed by Bergmann, Schaefer and Jefimenko, whose results are presented
in Figures 3.2 and 3.5. We can compare these experiments with the theoretical
calculations by plotting the equipotentials obtained here. We need essentially
the values of ℓ/b, b/2a and ℓ/2a. From Fig. 3.2 we obtain ℓ/b ≈ 2.8, b/2a ≈ 7.4
and ℓ/2a ≈ 20.7. From Fig. 3.5 we have ℓ/b ≈ 1.9, b/2a ≈ 3.0 and ℓ/2a ≈ 5.7.
These values together with φA = 0 V and φB = 1 V yielded the equipotentials
given by Eq. (8.3) at y = 0, Figures 8.6 and 8.7.

Figure 8.6: Theoretical equipotential lines overlaid on the experimental lines of
electric field obtained by Bergmann and Schaefer.

The lines of electric field orthogonal to the equipotentials can be obtained by
the procedure described in Sommerfeld’s book, discussed in Section 6.5. This
yields the following solutions in the plane y = 0 outside the wires:

ξout(x, 0, z) = −(φR + φL)
z

ℓ
+ (φR − φL)

[

x(x2 − 3x2
o)

6xoℓ2
ln

(x− xo)
2

(x+ xo)2

+
x2
o

3ℓ2
ln

(x− xo)
2(x+ xo)

2

x4
o

− x2

3ℓ2
− z2

ℓ2

]

, (8.21)

where xo ≡
√
b2 − 4a2/2.

The lines of electric field inside the first and second wires can be written as,
respectively:

ξF (x, 0, z) = −(φR − φL)
|x+ b/2|

ℓ
, (8.22)
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Figure 8.7: Theoretical equipotential lines overlaid on the experimental lines of
electric field obtained by Jefimenko.

ξS(x, 0, z) = (φR − φL)
|x− b/2|

ℓ
. (8.23)

With the previous values of ℓ/b, b/2a and ℓ/2a for the two experiments
already mentioned we obtain the lines of electric field by these equations as
given in Figures 8.8 and 8.9 (with Figure 3.2 and the left side of Figure 3.5
overlaid on them).

Figure 8.8: Theoretical lines of electric field overlaid on the experimental lines
obtained by Bergmann and Schaefer.

These numerical plots are very similar to the experiments, especially in the
region between the wires. Although this calculation is strictly valid only for
r ≪ ℓ, the numerical plots go from z = −ℓ/2 to ℓ/2. As the result is in rea-
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Figure 8.9: Theoretical lines of electric field overlaid on the experimental lines
obtained by Jefimenko.

sonable agreement with the experiments, we conclude that the exact boundary
conditions at z = ±ℓ/2 are not very relevant in these particular configurations.

We can also estimate the ratio of the radial component of the electric field
to the axial component just outside the wire. We consider the first wire at three
different values of z: z = −ℓ/2, z = 0 and z = ℓ/2. The axial component Ez is
constant over the cross-section and does not depend on z. On the other hand,
the radial component Ex is a linear function of z and also depends on ϕF . In
this comparison we consider ϕF = 0. With these values and Jefimenko’s data in
Eq. (8.4) we obtain Ex/Ez ≈ 12 at z = −ℓ/2, 6 at z = 0 and 0 at z = ℓ/2. That
is, the radial component of the electric field just outside the wire is typically
one order of magnitude larger than the axial electric field responsible for the
current. Jefimenko’s experiment gives a clear confirmation of this fact.
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Chapter 9

Resistive Plates

9.1 Introduction

In this Chapter we consider one or more resistive plates carrying steady currents.
We consider an ideal case of an infinite resistive bidimensional plate (like an
infinite plane). The current is supposed to flow uniformly over the plate along
a straight direction.

When there is no current flowing in the conducting plate and we approximate
a test charge, waiting until electrostatic equilibrium is reached, with the test
charge at a distance z from the plate, there will be an attraction between the
plate and the charge given by Eq. (4.1).

What happens when we now pass a constant current through the stationary
resistive plate connected to a battery? The electric field that maintains the
current against Ohmic resistance is generated by a surface charge distribution
on the plate. Our goal is to calculate the potential and electric field over the
plate and in the space surrounding it when the plate carries a steady current.

The subject of this Chapter was first discussed by Jefimenko [176, pp. 303-
304], and later by other authors [220, 221].

9.2 Single Plate

We consider the case of conducting plates from the point of view of surface
charge distributions generating the electric fields.

The configuration we are considering is that of a rectangular plate of length
ℓy in the y direction and ℓz in the z direction. The plate is located in the x = 0
plane with its center at (x, y, z) = (0, 0, 0). We assume that the current I flows

uniformly from −ℓz/2 to +ℓz/2 with a surface current density ~K = (I/ℓy)ẑ,
Figure 9.1. We also assume that the surface charge density is linear along z, as
we saw in Section 5.4:

σ(z) = σA + σB
z

ℓz
. (9.1)
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Figure 9.1: A resistive plate in the plane x = 0 with a steady and uniform
surface current density ~K along the positive z direction.

Note that the surface charge should in general be a function of the y and z
coordinates, σ = σ(y, z). We neglect the dependence on y as an approximation

for ℓy ≫ |~r|, where |~r| =
√

x2 + y2 + z2 is the distance from the observation
point to the center of the plate. Moreover, we consider that the test charge is
far from the battery. The case in which the test charge or the observation point
is close to the battery, in analogy with the case of a test charge close to the
middle point of side AD of Figure 6.2, was considered in 2005 [222].

In order to generate such steady and uniform (that is, independent of the
variable y) longitudinal current along an infinite plate, the ideal battery driving
this current can be thought as an infinite straight line along the plate and
orthogonal to the direction of the current.

The electric potential is readily given from the surface charge σ(z) by:

φ(~r) =
1

4πε0

∫ ∫

σ(z′)da′

|~r − ~r′|
. (9.2)

This integral should be evaluated over the whole charge distribution. We are
interested in the potential at the symmetric plane y = 0:

φ(x, 0, z) =
1

4πε0

∫ ℓy/2

−ℓy/2

∫ ℓz/2

−ℓz/2

σA + σBz
′/ℓz

√

x2 + y′2 + (z − z′)2
dy′dz′ . (9.3)

We solve these integrals utilizing three different approximations:

(A) ℓy ≫ ℓz ≫
√

x2 + z2 , (9.4)

(B) ℓ ≡ ℓy = ℓz ≫
√

x2 + z2 , (9.5)

(C) ℓz ≫ ℓy ≫
√

x2 + z2 . (9.6)

For each case the potential is given by, respectively:

φ(ℓy ≫ ℓz) ≈
σ(z)

2ε0

(

ℓz
π

− |x|
)

+
σA
2ε0

ℓz
π

ln
2ℓy
ℓz

, (9.7)

114



φ(ℓy = ℓz ≡ ℓ) ≈ σ(z)

2ε0

(

2ℓ

π
ln(

√
2 + 1) − |x|

)

+
σA
2ε0

ℓ

π
ln(

√
2 + 1) , (9.8)

φ(ℓz ≫ ℓy) ≈
σ(z)

2ε0

(

ℓy
π

ln
2ℓz
ℓy

− |x|
)

+
σA
2ε0

ℓy
π
. (9.9)

For each approximation we define the constants λ1 and λ2 by the expressions:

(A) λ1 ≡ ℓz
2π

, λ2 ≡ ℓz
2π

ln
2ℓy
ℓz

≫ λ1 , (9.10)

(B) λ1 ≡ ℓ

2π
ln(

√
2 + 1) , λ2 ≡ ℓ

2π
ln(

√
2 + 1) = λ1 , (9.11)

(C) λ1 ≡ ℓy
2π

ln
2ℓz
ℓy

, λ2 ≡ ℓy
2π

≪ λ1 . (9.12)

The constants λ1 and λ2 have dimensions of length, are typically of the order
of magnitude of the width or length of the plates, and are much larger than the
distance to the point of interest r =

√
x2 + z2.

With these constants we can write the electric potential for this single plate
in the three given cases (A), (B) and (C) as:

φ(x, 0, z) =
1

ε0

[(

σA + σB
z

ℓz

)(

λ1 −
|x|
2

)

+ σAλ2

]

. (9.13)

The electric field ~E = −∇φ is given by:

~E(x, 0, z) = ± 1

ε0

[

σA + σBz/ℓz
2

x̂∓ σB
λ1 − |x|/2

ℓz
ẑ

]

, (9.14)

where the top (bottom) sign is for x > 0 (x < 0).
In order to test the coherence of this procedure we invert the argument.

Applying Gauss’s law to a small cylinder centered on the plate we obtain the
usual boundary condition relating the normal component of the electric field,
Ex, to the surface charge density, σ, namely: ε0Ex(limx→ 0+)−ε0Ex(limx→
0−) = σ(z). And this yields exactly the same charge distribution on the plate
as that given by the starting point, Eq. (9.1). We checked the calculations by a
similar procedure in the other cases of two and four plates.

The equipotentials given by Eq. (9.13) are shown in Figure 9.2 in approxi-
mation (A) with ℓy/ℓz = 3, φ(0, 0,−ℓz/2) = φ0/2 and φ(0, 0, ℓz/2) = −φ0/2. In
this case σB = −2πε0φ0/ℓz and σA = 0.

The lines of electric field are given by a function ξ(x, 0, z) such that ∇ξ·∇φ =
0. Following the procedure described in Section 6.5 we obtain in this case:

ξ(x, 0, z) =
2σAz + σB(4λ1x− x2 + z2)/ℓz

ε0
, if x > 0 , (9.15)

115



Figure 9.2: Equipotential lines in a plane orthogonal to the plate. The arrows
indicate the direction of the current.

ξ(x, 0, z) =
2σAz − σB(4λ1x+ x2 − z2)/ℓz

ε0
, if x < 0 . (9.16)

This function presents a family of two hyperbolas in the regions above and
below the plate. An example of this function ξ is presented in Figure 9.3 in
approximation (A) with ℓy/ℓz = 3, φ(0, 0,−ℓz/2) = φ0/2 and φ(0, 0, ℓz/2) =
−φ0/2.

Figure 9.3: Lines of electric field in a plane orthogonal to the plate. The arrows
indicate the direction of the current.

9.3 Two Parallel Plates

We now consider the experiments of Bergmann, Schaefer and Jefimenko utilizing
a different model. We first consider a single straight conductor, Figures 3.2 and
3.3. Here we model these cases as that of a constant current flowing uniformly
along the z axis of a conductor of conductivity g in the form of a parallelepiped
of lengths ℓy, 2a and ℓz. Accordingly there will be free charges only along its
outer surfaces located at x = ±a (considering the thick conductor centered at
(x, y, z) = (0, 0, 0)). At both sides the free charges will be given by Equa-
tion (9.1). The superposition of the two charged planes situated in x = a and
x = −a, utilizing Eq. (9.13) and replacing x by x ± a appropriately yields the
potential in the plane y = 0 as given by:

φ(x, 0, z) =
1

ε0

[(

σA + σB
z

ℓz

)(

2λ1 −
|x− a| + |x+ a|

2

)

+ 2σAλ2

]

. (9.17)
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This potential can be seen in Figure 9.4 in approximation (A) with ℓy/ℓz =
ℓz/2a = 6.5. With the boundary conditions φ(±a, 0, −ℓz/2) = φ0/2 and
φ(±a, 0, ℓz/2) = −φ0/2 we have σB = −φ0ε0/(4λ1 − 2a) and σA = 0.

Figure 9.4: Equipotential lines in a plane orthogonal to two parallel plates
carrying steady currents along the positive z direction.

The electric field is readily given by ~E = −∇φ:

~E(x > a, 0, z) =
1

ε0

[(

σA + σB
z

ℓz

)

x̂− σB
2λ1 − x

ℓz
ẑ

]

, (9.18)

~E(−a < x < a, 0, z) = − 1

ε0
σB

2λ1 − a

ℓz
ẑ , (9.19)

~E(x < −a, 0, z) = − 1

ε0

[(

σA + σB
z

ℓz

)

x̂− σB
2λ1 + x

ℓz
ẑ

]

. (9.20)

As expected, the electric field is constant in the region between the two
plates. This fact allows us to utilize the situation of two plates to model also
the parallelepiped of sides ℓy and 2a carrying a steady current along the z
direction. The two plates already mentioned would be equivalent to the top
and bottom plates of the parallelepiped located in the planes x = ±a.

The lines of electric field ξ(x, 0, z) such that ∇ξ · ∇φ = 0 can be obtained
by the method described before. They are given by the following equation:

ξ(x, 0, z) =







(2σAz + σB(4λ1x− x2 + z2)/ℓz)/ε0, x > a ,
−σBax/ℓzε0, −a < x < a ,
(2σAz − σB(4λ1x+ x2 − z2)/ℓz)/ε0, x < −a .

(9.21)

In Figure 9.5 we plot this function with the approximation ℓy/ℓz = ℓz/2a =
6.5, in order to have similar dimensions as in Jefimenko’s experiment. This
theoretical Figure is similar to Jefimenko’s experimental one, Figure 3.3.

9.4 Four Parallel Plates

We now wish to obtain plots similar to Figures 3.5 and 3.2 utilizing the paral-
lelepiped model of this Chapter. We have essentially a transmission line in which
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Figure 9.5: Lines of electric field in a plane orthogonal to two parallel plates
carrying steady currents along the positive z direction.

the current flows uniformly along the z axis of a parallelepiped of conductivity
g1 and thickness 2a, returning uniformly along another parallel parallelepiped
of the same thickness but conductivity g2. The centers of the two conductors
are separated by a distance b. In this case there will be free charges in the four
planes situated at y = b/2 ± a and y = −b/2 ± a, with b/2 > a > 0.

9.4.1 Opposite Potentials

In this case both conductors have the same finite conductivity g1 = g2 = g. We
assume that the potentials are exactly opposite in the two thick plates, for any
z. The densities of surface charges for the plates located at x = ±(b/2 + a) and
x = ±(b/2 − a) are given by:

σ(x = ±(b/2 + a), y, z) = ±
(

σAext + σBext
z

ℓz

)

, (9.22)

σ(x = ±(b/2 − a), y, z) = ±
(

σAint + σBint
z

ℓz

)

. (9.23)

We can obtain the potential utilizing Eq. (9.3). To simplify the results we
define two dimensionless constants with appropriate values for each one of the
approximations (Eq. (9.4) to (9.6)), namely:

(A) κ1 ≡ 4b− 8a

πℓz − 4b+ 8a
, κ2 ≡ 2b− 4a

πℓz − 2b+ 4a
, (9.24)

(B) κ2 ≡ 3
√

2(b− 2a)

πℓz − 3
√

2(b− 2a)
, κ2 ≡ 2

√
2(b − 2a)

πℓz − 2
√

2(b− 2a)
, (9.25)

(C) κ1 ≡ 2b− a

πℓz − 2b+ a
, κ2 ≡ 2b− a

π(πℓz − 2b+ a)
. (9.26)

With the given approximations we have κ1 ≪ 1 and κ2 ≪ 1.
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In order to model the given experiments, the potential should not depend
on x in the regions b/2− a < x < b/2 + a and −b/2− a < x < −b/2 + a (as the
current flows only along the z direction in these regions). This yields

σAint =
σAext

κ2
≡ σA , σBint =

σBext

κ1
≡ σB . (9.27)

The potential is then given by (in the plane y = 0 and in the following
regions, respectively: x > b/2 + a, b/2 − a < x < b/2 + a, −b/2 + a < x <
b/2 − a, −b/2 − a < x < −b/2 + a, x < −b/2 − a):

φ =























((b − 2a)(σA + σBz/ℓz) + (b+ 2a− y)(σAκ2 + σBzκ1/ℓz))/2ε0 ,
(b− 2a)(σA + σBz/ℓz)/2ε0 ,
y(σA + σBz/ℓz)/ε0 ,
−(b− 2a)(σA + σBz/ℓz)/2ε0 ,
−((b− 2a)(σA + σBz/ℓz) + (b + 2a+ y)(σAκ2 + σBzκ1/ℓz))/2ε0 .

(9.28)
This potential can be seen in Figure 9.6 in approximation (A) with ℓy/ℓz =
ℓz/2a = 6.8.

Figure 9.6: Equipotential lines in a plane orthogonal to the four plates. There
is a current along the positive (negative) z direction in the two top (bottom)
plates.

The electric field ~E(x, 0, z) = −∇φ is given in the five regions by, respec-
tively:

~E =























((σAκ2 + σBzκ1/ℓz)x̂− σB [b− 2a+ κ1(b+ 2a− 2x)]ẑ/ℓz)/2ε0 ,
−(b− 2a)σB ẑ/2ε0ℓz ,
−((σA + σBz/ℓz)x̂ + xσB ẑ/ℓz)/ε0 ,
(b− 2a)σB ẑ/2ε0ℓz ,
((σAκ2 + σBzκ1/ℓz)x̂+ σB [b− 2a+ κ1(b+ 2a+ 2x)]ẑ/ℓz)/2ε0 .

(9.29)
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The lines of electric field, ξ(x, 0, z), are given for each region in Eq. (9.30):

ξ =























(2σAzκ2/κ1 + σB[[b+ 2a+ (b − 2a)/κ1]x− x2 + z2]/ℓz)/ε0 ,
−σB(b− 2a)x/2ℓzε0 ,
(2σAz − σB(x2 − z2)/ℓz)/ε0 ,
σB(b− 2a)x/2ℓzε0 ,
(2σAzκ2/κ1 − σB[[b+ 2a+ (b − 2a)/κ1]x− x2 + z2]/ℓz)/ε0 .

(9.30)

In Figure 9.7 we plot this function in the approximation (A) with ℓy/ℓz =
ℓz/2a = 6.8. The upper plate has the potential at its boundaries given by
φ(b/2 − a < x < b/2 + a, 0, −ℓz/2) = φ0/2 and φ(b/2 − a < x < b/2 +
a, 0, ℓz/2) = 0, while the lower plate has the potential at its boundaries given
by φ(−b/2 − a < x < −b/2 + a, 0, −ℓz/2) = −φ0/2 and φ(−b/2 − a < x <
−b/2 + a, 0, ℓz/2) = 0.

The relation between φ0 and the surface charges for this case is given by
σA = ε0φ0/2(b− 2a) and σB = −ε0φ0/(b− 2a).

Figure 9.7: Lines of electric field in a plane orthogonal to the four plates. There
is a current along the positive (negative) z direction in the two top (bottom)
plates.

9.4.2 Perfect Conductor Plate

Now, suppose that the two lower plates (or the lower parallelepiped) are a
perfect conductor, with zero resistivity. That is, suppose they are subjected to
the same constant potential φ(−b/2 − a < x < −b/2 + a, 0, z) = Φ in the
whole extension along the z axis, but still conducting a steady current. This
experimental result is shown at the right side of Figure 3.5 with g1 ≪ g2. To
model this case we consider four plates located at x = b/2 + a, x = b/2 − a,
x = −b/2+a and x = −b/2−a. Their surface charges are given by, respectively,
σ(x = b/2 + a, y, z) = σAb + σBbz/ℓz, σ(x = b/2 − a, y, z) = σAa + σBaz/ℓz,
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σ(x = −b/2 + a, y, z) = σ−Aa + σ−Baz/ℓz and σ(x = −b/2 − a, y, z) =
σ−Ab + σ−Bbz/ℓz.

The potential must not depend on x in the region b/2 − a < x < b/2 + a,
and must be a constant in the region −b/2 − a < x < −b/2 + a. From this we
find:

σAa =
σAb(4λ1 + 4λ2 − b− 2a) − 2Φε0

b− 2a
, σBa = σBb

4λ1 − b− 2a

b− 2a
,

σ−Aa = −σAa , σ−Ba = −σBa ,

σ−Ab = σAb , σ−Bb = σBb . (9.31)

With Eq. (9.13) and the appropriate replacements of x by x± (b/2 ± a) we
get in the five regions, respectively:

φ(x, 0, z) =























[(σAb + σBbz/ℓz)(4λ1 − b/2 − a− y) + 4λ2σAb]/ε0 − Φ ,
(2b− 4a)(σAa + σBaz/ℓz)/ε0 + Φ ,
(σAa + σBaz/ℓz)(b/2 − a+ y)/ε0 + Φ ,
Φ ,
(σAb + σBbz/ℓz)(b/2 + a+ y)/ε0 + Φ .

(9.32)
The equipotentials are shown in Figure 9.8 in approximation (A) with ℓy/ℓz =

ℓz/2a = 6.8.

Figure 9.8: Equipotential lines in a plane orthogonal to the four plates. The
two top plates are uniformly resistive and carry currents along the positive z
direction. The two bottom plates have zero resistivity and carry currents along
the negative z direction.

The electric field in these five regions is given by, respectively:
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~E =























[(σAb + σBbz/ℓz)x̂− σBb(4λ1 − b/2 − a− x)ẑ/ℓz]/ε0 ,
−(b− 2a)σBaẑ/ℓzε0 ,
−[(σAa + σBaz/ℓz)x̂+ σBa(b/2 − a+ x)ẑ/ℓz]/ε0 ,
~0 ,
−[(σAb + σBbz/ℓz)x̂+ σBb(b/2 + a+ x)ẑ/ℓz]/ε0 .

(9.33)

The lines of electric field are given by:

ξ(x, 0, z) =























(2σAbz + σBb((8λ1 − b− 2a)x− x2 + z2)/ℓz)/ε0 ,
−σBb(b − 2a)x/2ℓzε0 ,
(2σAaz − σBa((b− 2a)x+ x2 − z2)/ℓz)/ε0 ,
−σBa(b− 2a)2/4ℓzε0 ,
(2σAbz − σBb((b + 2a)x+ x2 − z2)/ℓz)/ε0 .

(9.34)

They are shown in Figure 9.9 with the given approximation and the same
dimensions as in Figure 9.7. The constant potential in the lower plate is
Φ = −φ0/2. Once more there is a reasonable match with Jefimenko’s experi-
mental result, the right side of Figure 3.5, especially in the region between the
parallelepipeds.

Figure 9.9: Lines of electric field in a plane orthogonal to the four plates. The
two top plates are uniformly resistive and carry currents along the positive z
direction. The two bottom plates have zero resistivity and carry currents along
the negative z direction.
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Chapter 10

Resistive Strip

10.1 The Problem

Here we consider a constant current flowing uniformly through the surface of
a stationary and resistive straight strip. Our goal is to calculate the potential
φ and electric field ~E everywhere in space and the surface charge distribution
σ along the strip that creates this electric field. We follow essentially the work
published in 2003 [223].

We consider a strip in the x = 0 plane localized in the region −a < y < a and
−ℓ/2 < z < ℓ/2, such that ℓ≫ a > 0. The medium around the strip is taken to
be air or vacuum. The constant current I flows uniformly along the positive z
direction with a surface current density given by ~K = Iẑ/2a (see Fig. 10.1). By
Ohm’s law this uniform current distribution is related to a spatially constant
electric field along the surface of the strip. In the steady state this electric field
can be related to the potential by ~E = −∇φ. This relation means that along the
strip the potential is a linear function of z and independent of y. The problem
can then be solved by finding the solution of Laplace’s equation ∇2φ = 0 in
empty space and applying the boundary conditions.

Figure 10.1: A resistive strip of width 2a and length ℓ with a steady and uniform
surface current density ~K along the positive z direction.
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10.2 The Solution

Due to the symmetry of the problem, it is convenient to utilize elliptic-cylindrical
coordinates (ζ, ϑ, z) see Figure 10.2 [224]. These variables can take the fol-
lowing values: 0 ≤ ζ ≤ ∞, 0 ≤ ϑ ≤ 2π rad, and −∞ ≤ z ≤ ∞. The relation
between cartesian (x, y, z) and elliptic-cylindrical coordinates is given by:

x = a sinh ζ sinϑ , (10.1)

y = a cosh ζ cosϑ , (10.2)

z = z , (10.3)

where 2a is the constant thickness of the strip. The inverse relations are given
by:

ζ = tanh−1

√

y2 − x2 − a2 + Ω

2y2
, (10.4)

ϑ = tan−1

√

a2 + x2 − y2 + Ω

2y2
, (10.5)

z = z , (10.6)

where Ω ≡
√

(x2 + y2 + a2)2 − 4a2y2.

Figure 10.2: Elliptic-cylindrical coordinates (ζ, ϑ, z).
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Laplace’s equation in this coordinate system is given by:

∇2φ =
1

a2(cosh2 ζ − cos2 ϑ)

(

∂2φ

∂ζ2
+
∂2φ

∂ϑ2

)

+
∂2φ

∂z2
= 0 . (10.7)

A solution of Eq. (10.7) can be obtained by separation of variables in the form
φ(ζ, ϑ, z) = H(ζ)Φ(ϑ)Z(z):

H ′′ − (α2 + α3a
2 cosh2 ζ)H = 0 , (10.8)

Φ′′ + (α2 + α3a
2 cos2 ϑ)Φ = 0 , (10.9)

Z ′′ + α3Z = 0 , (10.10)

where α2 and α3 are constants.
For the long strip being considered here, it is possible to neglect boundary

effects near z = ±ℓ/2. It has already been proved that in this case the potential
must be a linear function of z, not only over the strip, but also over all space.
See Section 5.4. This condition means that α3 = 0. There are then two possible
solutions for Φ(ϑ). If α2 = 0, then Φ = C1 + C2ϑ; if α2 6= 0, then Φ =
C3 sin(

√
α2ϑ) + C4 cos(

√
α2ϑ), where C1 to C4 are constants. Along the strip

we have x = 0, and y2 ≤ a2, which means that Ω = a2 − y2, ζ = 0 and
ϑ = tan−1

√

(a2 − y2)/y2. We are assuming that the potential does not depend
on y along the strip. This independence and the relation between y and ϑ means
that the potential will not depend on ϑ as well. Thus a non-trivial solution for
Φ can only exist if α2 = 0, C2 = 0, and Φ = constant for all ϑ. The solution for
H with α2 = α3 = 0 will be then a linear function of ζ. The general solution of
the problem is then given by:

φ = (A1ζ −A2)
(

φA + φB
z

ℓ

)

=

(

A1 tanh−1

√

y2 − x2 − a2 + Ω

2y2
− A2

)

(

φA + φB
z

ℓ

)

. (10.11)

The electric field ~E = −∇φ takes the form:

~E = −A1

( |y|x
√

2

Ω
√

y2 − x2 − a2 + Ω
x̂

+
|y|
√

y2 − x2 − a2 + Ω

y
√

2Ω
ŷ

)

(

φA + φB
z

ℓ

)

− φB
ℓ

(

A1 tanh−1

√

y2 − x2 − a2 + Ω

2y2
−A2

)

ẑ , (10.12)
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To find the surface charge density, we utilize the approximation close to the
strip (|y| < a and |x| ≪ a):

~E ≈ −A1

[

x

|x|
√

a2 − y2
x̂+

y|x|
(a2 − y2)3/2

ŷ

]

(

φA + φB
z

ℓ

)

− φB
ℓ

(

A1 tanh−1 |x|
√

a2 − y2
−A2

)

ẑ . (10.13)

The surface charge density σ(y, z) can be obtained by the standard procedure

utilizing Gauss’s law
∫

◦
∫

S
~E · d~a = Q/ε0. The surface charge density is then

obtained by considering the limit in which |x| → 0 in Eq. (10.13) and a small
cylindrical volume with its length much smaller than its diameter, yielding:
σ = ε0[ ~E(x > 0) · x̂− ~E(x < 0) · (−x̂)]. If we use Eq. (10.13), the surface charge
density is found to be given by:

σ(x, z) = −2ε0A1(φA + φBz/ℓ)
√

a2 − y2
. (10.14)

The linear charge density λ(z) can be obtained as λ(z) =
∫ a

−a σ(y, z)dy,
yielding

λ(z) = −2πε0A1

(

φA + φB
z

ℓ

)

. (10.15)

10.3 Discussion

In the plane x = 0 the current in the strip creates a magnetic field ~B that points
along the positive (negative) x direction for y > 0 (y < 0). Consider a specific
conduction electron moving with drifting velocity ~vd. The magnetic field due to
all other mobile conduction electrons will act on this specific conduction electron
with a force given by q~vd× ~B (see Fig. 10.3). This force will cause a redistribution
of charges along the y direction, with negative charges concentrating along the
center of the strip and positive charges at the extremities y = ±a. In the
steady-state this redistribution of charges will create an electric field along the
y direction, Ey , that will balance the magnetic force, namely, |qEy | = |qvdB|.

We have disregarded this Hall electric field because it is usually much smaller
than the electric field giving rise to the current, as was shown in 6.4.

We now analyze some particular cases. We first consider two limits by com-
paring a with the distance of the observation point ρ =

√

x2 + y2. If a2 ≫ ρ2,
we have Ω ≈ a2 + x2 − y2 + 2x2y2/a2 and ζ ≈ |x|/a, such that:

φ ≈
(

A1
|x|
a

−A2

)

(

φA + φB
z

ℓ

)

. (10.16)

Combining this result with Eq. (10.14) in the approximation a2 ≫ ρ2 yields:
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Figure 10.3: Magnetic field ~B along the strip due to the current along the
positive z direction. There is a magnetic force pointing toward the axis acting
upon the conduction electrons.

φ ≈ σ(z)

2ε0

(

a
A2

A1
− |x|

)

. (10.17)

This result coincides with Eq. (9.9) considering aA2/A1 = (ℓy/π) ln(2ℓz/ℓy) and
σA = 0. This was expected because a strip with ℓ2 ≫ a2 ≫ ρ2 is equivalent to
a large plate.

This Equation is also equivalent to Eq. (6.26) with A2/A1 = ln(ℓ/a) except
by an overall factor of 2. This was once more to be expected. The electrostatic
potential at a distance d from a charged plate is given by φ = φ0 − σd/2ε0,
where φ0 is an arbitrary constant and σ is the total density of surface charge,
half of it in each side of the charged plane. On the other hand, the electrostatic
potential just outside a closed charged conductor (at a distance d from it) is
given φ = φ1 − σd/ε0, where φ1 is an arbitrary constant and σ here is the
surface charge density at the point in which the potential is being estimated,
while the internal potential has the constant value φ1. That is, when we close an
open charged conducting surface, the charges in the internal side migrate to the
external side. The magnitude of the electric field just outside the closed surface
is twice the electric field close to a large charged plane, supposing the same local
charge density in both cases. As we have seen here, the same happens with the
surface charges when a current flows along the resistive surface.

On the other hand, if a2 ≪ ρ2, we have Ω ≈ ρ2 + a2 − 2a2y2/ρ2 and
ζ ≈ ln(ρ/a). Utilizing these results in Eq. (10.11) combined with Eq. (10.15)
yields:

φ ≈ λ(z)

2πε0

(

A2

A1
− ln

ρ

a

)

. (10.18)

This result coincides with Eq. (6.11) with A2/A1 = ln(ℓ/a), where ℓ is the typ-
ical length of the wire or strip being considered, with ℓ≫ a. This is reasonable
because Eq. (6.11) corresponds to the potential outside a long straight cylindri-
cal wire carrying a constant current. At a point far from the axis of the strip
both results coincide as they must.
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10.4 Comparison with the Experimental Results

These results indicate that there is an electric field not only along the resistive
strip carrying a steady current, but also in the space around the strip. As we
have seen, Jefimenko performed experiments which demonstrate the existence
of this external electric field [174] [176, Plate 6]. The configuration of Jefi-
menko’s experiment, Figure 3.3, is equivalent to what has been considered here:
a two-dimensional conducting strip made on a glass plate using a transparent
conducting ink. To compare our calculations with his experimental results, we
need the values of A2/A1 and φA/φB . We take A2/A1 = 3.6 and φA/φB = 0.
The condition φA/φB = 0 corresponds to the symmetrical case considered by
Jefimenko in which the electric field is parallel to the conductor just outside of
it at z = 0 (zero density of surface charges at z = 0).

We first consider the plane orthogonal to the strip, y = 0. In this case the
potential reduces to:

φ(x, 0, z) =

(

A1 tanh−1

√

x2

x2 + a2
−A2

)

(

φA + φB
z

ℓ

)

. (10.19)

The lines of the electric field orthogonal to the equipotentials can be obtained
by the procedure described in Section 6.5. These lines are represented by a
function ξ such that ∇ξ · ∇φ = 0. This yields:

ξ(x, 0, z) = A1φB
z2

ℓ2
+ 2A1φA

z

ℓ
+
A1φB

2

x2

ℓ2

− A1φB
|x|
ℓ

√
x2 + a2

ℓ
cosh−1

√

x2 + a2

a2

− A1φB
2

a2

ℓ2

(

cosh−1

√

x2 + a2

a2

)2

− A2φB
4

( |x|
ℓ

√
x2 + a2

ℓ
+
a2

ℓ2
ln

|x| +
√
x2 + a2

a

)

.(10.20)

A plot of Eqs. (10.19) and (10.20) is given in Fig. 10.4.
We now consider the plane of the strip, x = 0. The potential reduces to:

φ(0, |y| ≤ a, z) = −A2

(

φA + φB
z

ℓ

)

, (10.21)

φ(0, |y| ≥ a, z) =

(

A1 tanh−1

√

y2 − a2

y2
−A2

)

(

φA + φB
z

ℓ

)

=

(

A1 cosh−1 |y|
a

−A2

)

(

φA + φB
z

ℓ

)

. (10.22)

When there is no current in the strip, the potential along it is a constant for
all z. From Eq. (10.21) this means φB = 0. This value of φB in Eqs. (10.11),
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Figure 10.4: Equipotentials (dashed lines) and lines of electric field (continuous
lines) in a plane orthogonal to the plane of the strip.

(10.12) and (10.14) reduces these equations to the known electrostatic solution
of a strip charged to a constant potential [225].

By a similar procedure, the lines of electric field for the plane x = 0 are
given by:

ξ(0, |y| ≤ a, z) = A2φB
ay

ℓ2
, (10.23)

ξ(0, |y| ≥ a, z) = A1φB
z2

ℓ2
+ 2A1φA

z

ℓ
+
A1φB

2

y2

ℓ2

− A1φB
|y|
ℓ

√

y2 − a2

ℓ
cosh−1 |y|

a

+
A1φB

2

a2

ℓ2

(

cosh−1 |y|
a

)

− A2φB
4

( |y|
ℓ

√

y2 − a2

ℓ

− a2

ℓ2
ln

|y| +
√

y2 − a2

a

)

. (10.24)

A plot of Eqs. (10.21) to (10.24) is presented in Fig. 10.5.
Figure 10.6 presents the theoretical electric field lines overlaid on the exper-

imental result of Jefimenko, Figure 3.3.
In Fig. 10.7 the experimental result of Jefimenko, Barnett and Kelly, Fig-

ure 3.10, is overlaid on the equipotential lines calculated utilizing Eqs. (10.23)
and (10.24) with A2/A1 = 3.0 and φA/φB = 0. The agreement is not as good
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Figure 10.5: Equipotentials (dashed lines) and lines of electric field (continuous
lines) in the plane of the strip.

Figure 10.6: Theoretical lines of electric field overlaid on the experimental lines
obtained by Jefimenko.

as in our previous figure for two reasons: One reason is that our calculations
are for a two-dimensional configuration, while the experiment of Jefimenko, Bar-
nett and Kelly [177] was performed in a three-dimensional rectangular chamber.
The second reason is that in the grass seed experiment [174], the ratio of the
length to the width of the conductor was 7, but in the second experiment [177],
this ratio was only 2, which means that boundary effects near z = ℓ/2 and
z = −ℓ/2 are more important. These boundary effects were not considered in
our calculations.
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Figure 10.7: Theoretical equipotential lines overlaid on the experimental lines
obtained by Jefimenko, Barnett and Kelly.
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Part III

Curved Conductors
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In this third Part of the book we consider resistive conductors carrying
steady currents along curved paths. Russell’s theorem, discussed in Section 5.4,
is no longer valid due to the curvature of the wire. Three cases in particular
will be discussed here, the azimuthal current in an infinite cylindrical shell,
the azimuthal current over the surface of a spherical shell, and the azimuthal
current in a toroidal conductor. These cases can still be solved analytically, and
their solutions clarify some important aspects of surface charges in conductors
carrying steady currents.
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Chapter 11

Resistive Cylindrical Shell

with Azimuthal Current

11.1 Configuration of the Problem

The subject of this Chapter has been discussed mainly by Jefimenko [175, Prob-
lem 9.33 and Figure 14.7] [176, p. 318], Heald [226] and Griffiths [16, p. 279].
We follow these approaches here.

An infinite homogeneous resistive cylindrical shell of radius a has its axis
coinciding with the z direction. We utilize cylindrical coordinates (ρ, ϕ, z)

with origin at the center of the shell, with ρ =
√

x2 + y2 being the distance to
the z axis. There is a narrow slot along its entire length located at (ρ, ϕ, z) =
(a, π, z). An idealized line battery in the slot maintains its terminals located
at ϕ = ±π rad with the constant potentials φ = ±φB/2, respectively. See
Figure 11.1.

Figure 11.1: Configuration of the problem.

In accordance with Ohm’s law the potential along the surface of the cylin-
drical shell is then given by
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φ(a, ϕ, z) = φB
ϕ

2π
. (11.1)

11.2 Potential and Electric Field

The potential inside and outside the cylindrical shell satisfies Laplace’s equation
∇2φ = 0:

1

ρ

∂

∂ρ

(

ρ
∂φ

∂ρ

)

+
1

ρ2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= 0 . (11.2)

The solution should be independent of z. Trying a solution in terms of
separation of variables φ(ρ, ϕ, z) = R(ρ)Φ(ϕ) yields

Φ′′ +m2Φ = 0 , (11.3)

ρ
d

dρ

(

ρ
dR

dρ

)

−m2R = 0 , (11.4)

where m is a constant. The solutions of these equations if m = 0 are Φ(ϕ) =
A0 + B0ϕ and R(ρ) = C0 ln ρ +D0. If m 6= 0 we have φ(ϕ) = Am cos(mϕ) +
Bm sin(mϕ) and R(ρ) = Cmρ

−m + Dmρ
m. The solutions must be periodic in

ϕ, i.e., Φ(ϕ+ 2π) = Φ(ϕ). This means that B0 = 0 and m = 1, 2, 3, ...
The internal and external solutions, with appropriate coefficients, are then

given by

φ(ρ ≤ a, ϕ, z) = A0i (C0i ln ρ+D0i)

+

∞
∑

m=1

[Ami cos(mϕ) +Bmi sin(mϕ)]
[

Cmiρ
−m +Dmiρ

m
]

, (11.5)

φ(ρ ≥ a, ϕ, z) = A0e (C0e ln ρ+D0e)

+

∞
∑

m=1

[Ame cos(mϕ) +Bme sin(mϕ)]
[

Cmeρ
−m +Dmeρ

m
]

, (11.6)

We specify finite solutions when ρ→ 0. This means that C0i = C1i = C2i =
... = 0. We also specify solutions in which the potential goes to zero when
ρ → ∞. This means that C0e = D0e = D1e = D2e = ... = 0. Our solutions in
these two regions reduce to

φ(ρ ≤ a, ϕ, z) = A0iD0i +

∞
∑

m=1

[AmiDmi cos(mϕ) +BmiDmi sin(mϕ)] ρm ,

(11.7)
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φ(ρ ≥ a, ϕ, z) =
∞
∑

m=1

[AmeCme cos(mϕ) +BmeCme sin(mϕ)]
1

ρm
. (11.8)

The potential must be continuous in ρ = a. This means that A0iD0i = 0,
AmiDmia

m = AmeCmea
−m andBmiDmia

m = BmeCmea
−m. Defining AmiDmi ≡

Gm and BmiDmi ≡ Hm yields

φ(ρ ≤ a, ϕ, z) =

∞
∑

m=1

[Gm cos(mϕ) +Hm sin(mϕ)] ρm , (11.9)

φ(ρ ≥ a, ϕ, z) =
∞
∑

m=1

[Gm cos(mϕ) +Hm sin(mϕ)]
a2m

ρm
. (11.10)

Now we need to apply the boundary condition at ρ = a, Eq. (11.1). To this
end we employ the Fourier expansion of ϕ, which is valid for −π rad < ϕ < π rad:

ϕ = 2

[ ∞
∑

m=1

(−1)m−1 sin(mϕ)

m

]

. (11.11)

Comparing Eqs. (11.9) and (11.10) at ρ = a with Eqs. (11.1) and (11.11)
yields Gm = 0 and Hma

m = φB(−1)m+1/πm:

φ(ρ ≤ a, ϕ, z) = −φB
π

[ ∞
∑

m=1

(−1)m
(ρ

a

)m sin(mϕ)

m

]

, (11.12)

φ(ρ ≥ a, ϕ, z) = −φB
π

[ ∞
∑

m=1

(−1)m
(

a

ρ

)m
sin(mϕ)

m

]

. (11.13)

These two series can be put in closed form [226]:

φ(ρ ≤ a, ϕ, z) =
φB
π

tan−1 ρ sinϕ

a+ ρ cosϕ
=
φB
π

tan−1 y

a+ x
=
φB
π
ψ , (11.14)

φ(ρ ≥ a, ϕ, z) =
φB
π

tan−1 a sinϕ

ρ+ a cosϕ
=
φB
π

tan−1 ay

x2 + ax+ y2
, (11.15)

where ψ is the polar angle about the slot as the axis.
The equipotentials given by these equations are represented in Figure 11.2.
The lines of electric field given by the function ξ(x, y) such that ∇ξ ·∇φ = 0

can be obtained by the method described in Section 6.5. For the region ρ < a
this function is given by

ξ(x, y) = φB
2ax+ x2 + y2

a2
. (11.16)

These are circular arcs centered on the battery given by the following equation
(for a particular ξo):
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Figure 11.2: Equipotential lines. The battery is represented by the black spot.

(x+ a)2 + y2 =
2ξo + φB
φB

a2 . (11.17)

Combining this result with Eqs. (8) and (10) of Heald’s paper [226] we can
also obtain the function ξ for the region outside the cylinder (this result can be
checked by observing that it satisfies ∇ξ · ∇φ = 0):

ξ(x, y) = φB
a2 + 2ax

x2 + y2
. (11.18)

These are also circular arcs with centers along the x axis, given by (for a par-
ticular ξo):

(

x− φB
ξo
a

)2

+ y2 =
φB
ξo

ξo + φB
ξo

a2 . (11.19)

From Eqs. (11.14), (11.15), (11.16) and (11.18) we can verify that ∇ξ ·∇φ =
0.

The electric field can be readily obtained by ~E = −∇φ. Inside the shell it is
given by:

~E(ρ < a, ϕ, z) = −φB
π

a(sinϕ)ρ̂+ (ρ+ a cosϕ)ϕ̂

a2 + ρ2 + 2aρ cosϕ

= − φB
π

ψ̂

ρ′
, (11.20)

where ρ′ ≡
√

ρ2 + a2 + 2aρ cosϕ is the polar radius about the slot as the axis.
That is, the lines of electric field are circular arcs centered on the battery.

Outside the shell the electric field is given by:
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~E(ρ > a, ϕ, z) =
φB
π

a

ρ

ρ(sinϕ)ρ̂− (a+ ρ cosϕ)ϕ̂

a2 + ρ2 + 2aρ cosϕ
, (11.21)

with magnitude | ~E| = φBa/πρρ
′.

At the surface of the shell, ρ = a, Eqs. (11.20) and (11.21) yield the same
tangential component:

Eϕ(a, ϕ, z) = − φB
2πa

. (11.22)

This is the correct result arising from Eq. (11.1), namely, E = ∆φ/L, where
∆φ ≡ φB is the potential difference generated by the battery and L ≡ 2πa is
the length described by the electrons around the circuit.

The lines of electric field are represented in Figure 11.3.

Figure 11.3: Lines of electric field. The battery is represented by the black spot.

11.3 Surface Charge Densities

The surface charge densities inside and outside the hollow shell (that is, along
the internal and external surfaces), σi and σo, are obtained utilizing Gauss’s
law. They have the same value and are given by

σi = σo =
ε0φB
2πa

tan
ϕ

2
=
ε0φB
2πa

tanψ . (11.23)

A plot of this surface charge density as a function of ϕ is shown in Figure 11.4.
The total charge density σt is given by

σt = σi + σo =
ε0φB
πa

tan
ϕ

2
=
ε0φB
πa

tanψ . (11.24)
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Figure 11.4: Surface charge densities σ ≡ σi = σo inside and outside the hollow
shell as a function of the azimuthal angle ϕ, according to Eq. (11.23) [226].

Expanding Eq. (11.23) for ϕ ≪ 1 rad and utilizing Eqs. (11.1) and (11.11)
yields:

σi(ϕ≪ 1 rad) = σo(ϕ≪ 1 rad) ≈ ε0φBϕ

4πa
=
ε0φ

2a
. (11.25)

This result coincides with Eq. (9.7) when we are over the plate (x = 0) and
σA = 0, if we equate the circumference of the cylindrical shell here (2πa) with
the longitudinal length ℓz of the plate of Section 9.2, as expected. The surface
charge density which appears in Eq. (9.7) is the total charge density due to the
charges in both sides of the plate, analogous to σi + σo of Eq. (11.25).

On the other hand, for ϕ = (π ± δ) rad, with 0 < δ ≪ 1 (that is, close to
ϕ = π rad) we have:

σi = σo ≈ ∓ε0φB
πaδ

= ∓ε0φB
πs

. (11.26)

Here s ≡ aδ is the distance along the surface of the cylindrical shell to the
line battery. This is an important result which shows that the surface charge
density diverges inversely proportional to the distance from the line battery in
this idealized case.

Eq. (11.23) indicates that in regions close to the battery the surface charge
density is no longer a linear function of the longitudinal coordinate (in this case
the arc aϕ) of the resistive conductor. It is linear only close to ϕ = 0 rad but
increases nonlinearly (that is, it is not proportional to aϕ) toward the battery.
See Figure 11.4. This nonlinearity should also occur in straight conductors when
we are close to the battery. This has been confirmed in 2004 and 2005 [205, 222].

Eqs. (11.14) to (11.26) indicate that several functions are proportional to
the emf of the battery, namely: the internal and external potential and electric
field, as well as the surface charge densities in the internal and external walls.
That is, they are proportional to the voltage φ(π) − φ(−π) = φB between the
terminals of the battery. Suppose we have two cylindrical shells 1 and 2 of
the same radius but with different resistivities. If we connect only shell 1 with
battery B and later on if we connect only shell 2 with the same battery B
(assuming the battery has not lost its power), different steady currents will flow
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in each shell, as they have different resistivities. But the internal and external
potentials, electric fields and surface charge densities will be the same in both
cases. This again illustrates that the electric field outside a resistive conductor
carrying a steady current is proportional to the voltage to which it is subjected.
The importance of the present case is that this has been shown in a situation in
which we were able to find an exact analytical solution of all magnitudes. That
is, this external electric field does not depend directly upon the current flowing
in the circuit. After all, the electric field was found to be the same even when
different currents flow in two circuits connected by the same emf. In order to
observe the effects of the external electric field, it is most important to work
with circuits connected to high voltage sources, as this field is proportional to
the applied emf.

11.4 Representation in Fourier Series

Our solution of the potential in terms of Fourier series was presented in Eqs. (11.12)
and (11.13). These series can be put in closed form. See Eqs. (11.14) and
(11.15). If this were not possible, we could continue to utilize the Fourier series

representation obtaining the electric field ~E = −∇φ in the form

~E(ρ < a, ϕ, z) =
φB
πρ

{ ∞
∑

m=1

(−ρ
a

)m

[sin(mϕ)ρ̂+ cos(mϕ)ϕ̂]

}

, (11.27)

~E(ρ > a, ϕ, z) = −φB
πρ

{ ∞
∑

m=1

(−a
ρ

)m

[sin(mϕ)ρ̂− cos(mϕ)ϕ̂]

}

. (11.28)

From these two equations the tangential component of the electric field at
ρ = a is given by:

Eϕ(a, ϕ, z) =
φB
πa

[ ∞
∑

m=1

(−1)m cos(mϕ)

]

. (11.29)

This is a divergent series. This happens with the differentiation of some Fourier
series [202, Section 14.4]. By differentiating both sides of Eq. (11.11) we obtain

1 = 2

[ ∞
∑

m=1

(−1)m−1 cos(nϕ)

]

. (11.30)

While Eq. (11.11) is convergent, the latter series is divergent. But if we disre-
gard this and apply Eq. (11.30) into Eq. (11.29) we obtain the same result as
Eq. (11.22). And this is a reasonable result.

Figure 11.5 is a plot of
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f(ϕ) ≡
∞
∑

m=1

(−1)m−1 cos(nϕ) , (11.31)

including 100 terms in the summation. The oscillations are due to the divergent
character of this series representation, although we can see that the curve oscil-
lates around the constant value of f(ϕ) = 1/2, which was expected according
to Eq. (11.30).

Figure 11.5: Plot of Eq. (11.31) including 100 terms in the summation. The
oscillations are due to the divergent character of this series. The bold line is a
plot of the constant 1/2 as expected by Eq. (11.30).

In order to deal with a divergent Fourier series, we thought of applying an
average approach. In particular, at each angle ϕi we consider the average value
of a generic function g(ϕ), g(ϕi), namely:

g(ϕi) ≡
1

∆ϕ

∫ ϕi+∆ϕ/2

ϕi−∆ϕ/2

g(ϕ)dϕ . (11.32)

The value of ∆ϕ is typically taken as the whole interval in which we are plotting
g(ϕ) divided by the number of terms we are including in the summation. For
instance, if we are plotting a function g(ϕ) in the interval ϕ = −π rad to ϕ = π
rad and we include 100 terms in the Fourier series expansion of g(ϕ), then
∆ϕ = (2π/100) rad.

Figure 11.6 is a plot of f(ϕ) obtained from this averaging approach utilizing
Eq. (11.31). From this Figure we can see that f(ϕ) coincides with the expected
value of 1/2, indicating the correctness of this averaging procedure.

The surface charge densities inside and outside the shell can be obtained
from Gauss’s law. From Eqs. (11.27) and (11.28) this yields:
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Figure 11.6: Plot of f(ϕ) obtained from Eqs. (11.32) and (11.31), overlaid on the
constant value 1/2. As f(ϕ) coincides with this constant value, this indicates
the correctness of this averaging procedure.

σi = − lim
ρ→a

ε0 ~E(ρ < a) · ρ̂ = −ε0φB
πa

[ ∞
∑

m=1

(−1)m sin(mϕ)

]

, (11.33)

σo = lim
ρ→a

ε0 ~E(ρ > a) · ρ̂ = σi . (11.34)

The same expressions are obtained from Eq. (11.23) by expanding tan(ϕ/2)
in Fourier series.

The total charge density expressed in Fourier series is given by

σt = σi + σo = −2ε0φB
πa

[ ∞
∑

m=1

(−1)m sin(mϕ)

]

. (11.35)

In Figure 11.7 we present a plot of Eq. (11.35) including 100 terms in the
summation. The oscillations in this Figure are probably due to convergence
problems of the Fourier series already discussed. Increasing the number of terms
does not improve significantly the plot or decrease the amplitude of oscillation
around each value of ϕ. The bold line in this Figure is given by Eq. (11.24).

Fig. 11.8 is a plot of Eq. (11.24) overlaid on a plot of σt(ϕi) obtained from
Eqs. (11.35) and (11.32). In this case we have considered a whole oscillation
of σt(ϕi) around each angle ϕi. The two plots coincided with one another (the
two curves are indistinguishable in Fig. 11.8), indicating the correctness of this
averaging procedure.
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Figure 11.7: Total surface charge density σt = σi + σo of an infinite resistive
cylindrical shell carrying a steady azimuthal current as a function of the angle
ϕ. The bold line is a plot of the closed form solution of σt(ϕ), Eq. (11.24), while
the oscillatory line is a plot of σt(ϕ) expressed in a Fourier series, Eq. (11.35).

Figure 11.8: Total surface charge density σt. The summation that appears as an
oscillation in Fig. 11.7, given by Eq. (11.35), is smoothed out by taking the mean
value for each point of its surroundings (in this case, a whole oscillation around
each point), utilizing Eq. (11.32). The closed analytical form, Eq. (11.24), is
overlaid on it. Both plots coincide with one another, indicating the correctness
of this averaging procedure.

11.5 Lumped Resistor

Heald also considered a lumped resistor, i.e., a cylindrical shell of finite resistiv-
ity for −α < ϕ < α and zero resistivity outside this region [226]. The potential
at the shell was given by
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φ(a, ϕ, z) =
∞
∑

k=1

Ak sin(kϕ) . (11.36)

Here the coefficients Ak are given by:

Ak =
φB
π

[
∫ α

0

ϕ

α
sin(kϕ)dϕ +

∫ π

α

sin(kϕ)dϕ

]

=
φB
π

[

(−1)k−1

k
+

sin(kϕ)

k2α

]

. (11.37)

The potential inside and outside the shell is given by, respectively:

φ(ρ ≤ a, ϕ, z) =
φB
π

[

tan−1 ρ sinϕ

a+ ρ cosϕ

+
∞
∑

k=1

ρ

a

k sin(kα)

k2α
sin(kϕ)

]

, (11.38)

φ(ρ ≥ a, ϕ, z) =
φB
π

[

tan−1 a sinϕ

ρ+ a cosϕ

+

∞
∑

k=1

a

ρ

k sin(kα)

k2α
sin(kϕ)

]

. (11.39)

The equipotentials for this case of lumped resistor are represented in Fig-
ure 11.9.

Figure 11.9: Equipotential lines for the lumped resistor.
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Figure 11.10: Lines of electric field for the lumped resistor.

The electric field lines are represented in Figure 11.10.

The internal and external surface charge densities are again equal. In this
case they are given by:

σi = σo =
ε0φB
2πa

[

tan
ϕ

2
+

∞
∑

k=1

2
sin(kα)

kα
sin(kϕ)

]

=
ε0φB
2πa

[

tan
ϕ

2
+

1

α
ln | sin[(ϕ+ α)/2]

sin[(ϕ− α)/2]
|
]

. (11.40)

In this case the surface charge densities diverge not only at the battery but
also at the discontinuity in the resistivity of the shell, as in Figure 11.11.

Figure 11.11: Densities of surface charge σ ≡ σi = σo along the internal and
external surfaces of the hollow lumped resistor (continuous line) as a function
of the azimuthal angle, as given by Eq. (11.40). The dashed line represents the
previous case of a uniformly resistive conductor.
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Another qualitative discussion of lumped resistors can be found in the book
of Chabay and Sherwood [166, Section 18.6]. Their analysis is extremely didactic
and helpful.
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Chapter 12

Resistive Spherical Shell

with Azimuthal Current

12.1 Introduction

Our goal in this chapter is to consider a steady azimuthal current flowing in a
resistive spherical shell [227]. The mathematical difficulty is intermediate be-
tween the infinite cylindrical shell which we considered in the previous Chapter
and the toroidal conductor which is the subject of the next Chapter. The im-
portance of the present case is that we can obtain exact analytical solutions for
the external and internal distribution of surface charges, potential and electric
field which are not as complex as in the toroidal conductor. Despite this fact
they show clearly the existence of an electric field outside a resistive conductor
bounded in a finite volume of space. To the best of our knowledge this case has
never been treated before by other authors.

12.2 Description of the Problem

Consider a resistive spherical shell of radius a, centered at the origin. We
suppose an idealized linear battery located along a meridian of the shell (like
Greenwich Meridian) and maintaining a constant potential difference between
its left and right sides. See Figure 12.1.

That is, the battery is a semi-circumference in the plane y = 0 with its ex-
tremities at (x, y, z) = (0, 0,±a) and central point along the semi-circumference
at (x, y, z) = (−a, 0, 0). Utilizing spherical coordinates (r, θ, ϕ) the linear bat-
tery is then located at (a, θ, π). We suppose that the potential difference gen-
erated by the battery does not depend upon the polar angle θ. The battery
generates a steady current flowing along the shell in the azimuthal direction
−ϕ̂. See Figs. 12.1 and 12.2. The medium inside and outside the spherical shell
is supposed to be air or vacuum.
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Figure 12.1: A resistive spherical shell of radius a (m) is centered at the origin.
An idealized linear battery located at (r, θ, ϕ) = (a, θ, π) generates a steady
current I (A) flowing along the surface of the shell in the azimuthal direction −ϕ̂.
The bold line represents the battery, which has the form of a semi-circumference.

Figure 12.2: Projection of the resistive spherical shell with radius a in the plane
z = 0. Notice that the battery, represented by the bold line, is seen as a straight
line for −a ≤ x ≤ 0. In this plane the current flows in the clockwise direction
−ϕ̂.

According to Ohm’s law, the potential φ along the surface is given by (in-
cluding also a constant potential for the sake of generality, so that we can return
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to the situation of a charged shell without current as a special case):

φ(a, θ, ϕ) = φA + φB
ϕ

2π
. (12.1)

The goal is to find solutions of Laplace’s equation ∇2φ = 0 outside and
inside the spherical shell utilizing Eq. (12.1) as a boundary condition, together
with finite values of the potential at the center of the shell and at infinity. The
electric field is then found by ~E = −∇φ. Lastly the surface charge density σ
is obtained by the standard procedure of taking the radial components of the
external and internal electric fields when r → a.

12.3 General Solution

Laplace’s equation in spherical coordinates can be written as:

∇2φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+

cot θ

r2
∂φ

∂θ
+

1

r2 sin2 θ

∂2φ

∂ϕ2
= 0 . (12.2)

The electric potential φ can be solved utilizing the method of separation of
variables, φ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). This yields the following equations for
the functions R, Θ and Φ [224, pp. 24–27]:

R′′ +
2

r
R′ − α2

r2
R = 0 , (12.3)

Θ′′ + Θ′ cot θ +

(

α2 −
α1

sin2 θ

)

Θ = 0 , (12.4)

Φ′′ + α1Φ = 0 , (12.5)

where α1 and α2 are constants. The function Φ(ϕ) must be periodic in ϕ,
i.e., Φ(0) = Φ(2π). This implies α1 = q2, where q = 0, 1, 2, . . . The solutions

of Eq. (12.5) are then Φ
(1)
q = sin(qϕ) and Φ

(2)
q = cos(qϕ). Eq. (12.4) is the

associated Legendre equation [202, Sec. 12.5]. In order to have finite solutions
at θ = 0 rad and at θ = π rad the constant α2 must have the form α2 =
p(p+ 1), with p = 0, 1, 2, . . . The solutions of Eq. (12.4) are then the associated

Legendre functions of first and second kind, namely, Θ
(1)
pq = P qp (cos θ) and Θ

(2)
pq =

Qqp(cos θ). When q = 0 they reduce to Legendre polynomial, Pp(cos θ), and to
Legendre function of the second kind, Qp(cos θ), respectively. The solutions of

Eq. (12.3) with α2 = p(p+ 1) are given by R
(1)
p = rp and R

(2)
p = r−p−1.

The potential must remain finite at every point in space. The solution

R
(1)
p = rp diverges when r → ∞ and p ≥ 1. For this reason we eliminate this

solution outside the shell. By specifying that the potential goes to zero when
r → ∞ we can also eliminate the solution with p = 0. Analogously we eliminate

the solution R
(2)
p = r−p−1 inside the shell as it diverges when r → 0. The

function P qp (cos θ) is finite for 0 rad ≤ θ ≤ π rad. On the other hand, Qqp(cos θ)
diverges at θ = 0 rad and at θ = π rad. We then eliminate this solution both
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inside and outside the shell. The finite solutions for the potential outside and
inside the shell are then given by the combination of all possible values of Rp(r),
Θpq(θ) and Φq(ϕ), respectively:

φo(r ≥ a, θ, ϕ) =
∞
∑

p=0

r−(p+1)

{

ApPp(cos θ)

+

∞
∑

q=1

[Bpq sin(qϕ) + Cpq cos(qϕ)]P qp (cos θ)

}

, (12.6)

φi(r ≤ a, θ, ϕ) =

∞
∑

p=0

rp

{

DpPp(cos θ)

+

∞
∑

q=1

[Epq sin(qϕ) + Fpq cos(qϕ)]P qp (cos θ)

}

. (12.7)

In order to obtain the coefficients Ap, Bpq, Cpq, Dp, Epq and Fpq we must apply
the boundary condition at the surface of the shell, r = a. Expanding Eq. (12.1)
in Fourier series [226]:

φ(a, θ, ϕ) = φA + φB
ϕ

2π
= φA +

φB
π

[ ∞
∑

q=1

(−1)q−1

q
sin(qϕ)

]

. (12.8)

As there are no terms in cos(qϕ) in Eq. (12.8) we obtain immediately Cpq =
Fpq = 0.

First we find the coefficients Ap and Bpq for the region outside the shell
(r ≥ a). Eq. (12.6) calculated at r = a combined with Eq. (12.8) yields the
following equations:

φA =

∞
∑

p=0

a−(p+1)ApPp(cos θ) , (12.9)

φB
π

(−1)q−1

q
=

∞
∑

p=0

a−(p+1)BpqP
q
p (cos θ) . (12.10)

To find the coefficients Ap and Bpq we multiply both sides of Eq. (12.9) by
Pℓ(cos θ) sin θ dθ, both sides of Eq. (12.10) by P qℓ (cos θ) sin θ dθ, and integrate
from 0 rad to π rad. We then utilize the orthogonality relation of Legendre
polynomials [202, Eq. (12.104)]:

∫ π

0

P qp (cos θ)P qℓ (cos θ) sin θ dθ =
2

2p+ 1

(p+ q)!

(p− q)!
δpℓ , (12.11)

where δpℓ is Kronecker’s delta function, which is 1 for p = q and 0 for p 6= q.
This yields:

Ap = aφAδp0 , (12.12)
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and

Bpq =
φB
π
ap+1 (−1)q−1

q

2p+ 1

2

(p− q)!

(p+ q)!
Ipq , (12.13)

where we defined:

Ipq ≡
∫ π

0

P qp (cos θ) sin θ dθ . (12.14)

Notice that Ipq = 0 for p + q odd due to the parity property of the associated
Legendre functions [202, p. 725].

We can change the upper limit of the summation over q in Eq. (12.6) from
∞ to p, because P qp (ξ) = 0 for q > p. The final solution for the potential outside
a spherical shell conducting a steady azimuthal current is given by:

φo(r ≥ a, θ, ϕ) = φA
a

r
+
φB
2π

[ ∞
∑

p=1

p
∑

q=1

ap+1

rp+1

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
×

× IpqP
q
p (cos θ) sin(qϕ)

]

. (12.15)

It is useful to keep in mind that the summation order can be inverted, from
∑∞
p=1

∑p
q=1 to

∑∞
q=1

∑∞
p=q.

For the region far from the origin, r ≫ a, the two most relevant terms of
Eq. (12.15) are:

φo(r ≫ a, θ, ϕ) ≈ φA
a

r
+ φB

3a2

8r2
sin θ sinϕ . (12.16)

This can be understood as the potential of a point charge qsphere = 4πε0φAa
at the center of the shell plus the potential of an electric dipole of moment
~psphere located at the origin with ~psphere = (3πε0φBa

2/2)ŷ, namely:

φo(r ≫ a, θ, ϕ) =
qsphere

4πε0r
+
~psphere · ~r

4πε0r3
. (12.17)

The solution for the potential inside the sphere (r ≤ a), φi, can be found by
changing (a/r)p+1 → (r/a)p, as discussed by Jackson [13, p. 101]:

φi(r ≤ a, θ, ϕ) = φA +
φB
2π

[ ∞
∑

p=1

p
∑

q=1

rp

ap
(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
×

× IpqP
q
p (cos θ) sin(qϕ)

]

, (12.18)

where Ipq is given by Eq. (12.14).
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Utilizing that (as can be seen multiplying both sides of Eq. (12.19) by
P qℓ (cos θ) sin θ dθ, integrating from θ = 0 rad to θ = π rad and finally apply-
ing Eqs. (12.14), (12.13) and (12.8)):

∞
∑

p=1

p
∑

q=1

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ) = ϕ , (12.19)

we obtain from Eqs. (12.15) and (12.18) in the limit r → a that φo(a, θ, ϕ) =
φi(a, θ, ϕ) = φA + φBϕ/2π, as expected.

12.4 Electric Field and Surface Charges

The electric field in spherical coordinates is given by:

~E = −∇φ = −∂φ
∂r
r̂ − 1

r

∂φ

∂θ
θ̂ − 1

r sin θ

∂φ

∂ϕ
ϕ̂ . (12.20)

This yields the following components outside and inside the shell, respectively:

Er,o = φA
a

r2
+
φB
2π

[ ∞
∑

p=1

p
∑

q=1

ap+1

rp+2

(−1)q−1

q
(p+ 1)(2p+ 1)

(p− q)!

(p+ q)!
×

×IpqP qp (cos θ) sin(qϕ)

]

, (12.21)

Eθ,o =
φB
2π

[ ∞
∑

p=1

p
∑

q=1

ap+1

rp+2

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p
′(cos θ) sin θ sin(qϕ)

]

,

(12.22)

Eϕ,o = −φB
2π

[ ∞
∑

p=1

p
∑

q=1

ap+1

rp+2
(−1)q−1(2p+ 1)

(p− q)!

(p+ q)!
Ipq

P qp (cos θ)

sin θ
cos(qϕ)

]

,

(12.23)

Er,i = −φB
2π

[ ∞
∑

p=1

p
∑

q=1

rp−1

ap
(−1)q−1

q
p(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ)

]

,

(12.24)

Eθ,i =
φB
2π

[ ∞
∑

p=1

p
∑

q=1

rp−1

ap
(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p
′(cos θ) sin θ sin(qϕ)

]

,

(12.25)

Eϕ,i = −φB
2π

[ ∞
∑

p=1

p
∑

q=1

rp−1

ap
(−1)q−1(2p+ 1)

(p− q)!

(p+ q)!
Ipq

P qp (cos θ)

sin θ
cos(qϕ)

]

.

(12.26)
In Eqs. (12.22) and (12.25) P qp

′(ξ) is the derivative of the associated Legendre
function P qp (ξ) relative to its argument ξ.
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From Eqs. (12.22), (12.25) and (12.19) we obtain in the limit r → a that:

Eθ,o(a, θ, ϕ) = Eθ,i(a, θ, ϕ)

=
φB
2πa

[ ∞
∑

p=1

p
∑

q=1

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p
′(cos θ) sin θ sin(qϕ)

]

=
φB
2πa

d

dθ

[ ∞
∑

p=1

p
∑

q=1

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ)

]

=
φB
2πa

d

dθ
ϕ = 0 . (12.27)

From Eqs. (12.23), (12.26) and (12.19) we obtain in the limit r = a that:

Eϕ,o(a, θ, ϕ) = Eϕ,i(a, θ, ϕ)

= − φB
2πa sin θ

[ ∞
∑

p=1

p
∑

q=1

(−1)q−1(2p+ 1)
(p− q)!

(p+ q)!
IpqP

q
p (cos θ) cos(qϕ)

]

= − φB
2πa sin θ

d

dϕ

[ ∞
∑

p=1

p
∑

q=1

(−1)q−1

q
(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ)

]

= − φB
2πa sin θ

d

dϕ
ϕ = − φB

2πa sin θ
. (12.28)

Eq. (12.27) indicates that the non-radial electric field at the surface of the
shell is only in the azimuthal direction, as expected from Eq. (12.1). The length
of an azimuthal circumference at the polar angle θ along the surface of the shell
is given by 2πa sin θ. Eq. (12.28) indicates that Eϕ(a, θ, ϕ) at each polar angle
θ is given by the total electromotive force, ∆φ = φB , over the length of the
corresponding circuit at the polar angle θ, as expected. By Ohm’s law the same
inverse proportionality with sin θ will be valid for the surface current density.
That is, ~K should be proportional to φB/ sin θ. According to this model the
current density should diverge at the poles (in θ = 0 rad and in θ = π rad).
This indicates a limitation for the theoretical model which we are utilizing. This
divergence arises due to the fact that we are utilizing a conducting spherical
shell with an idealized linear battery along a meridian. In a real experiment
this divergence should not occur. This means that our analytical theoretical
solution obtained in this Section should not be valid close to these two poles
when compared with a real experiment. The reason for utilizing our theoretical
model is that it yields an analytical solution for the important problem of a
closed current flowing in a finite volume of space.

The surface charge distributions outside and inside the shell are related to
the electric field through Gauss’s law:

σo(a, θ, ϕ) = lim
r→a

ε0 ~Eo(r, θ, ϕ) · r̂ = ε0

{

φA
a

+
φB
2πa

∞
∑

p=1

[

p
∑

q=1

(−1)q−1

q
×
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×(p+ 1)(2p+ 1)
(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ)

]}

, (12.29)

σi(a, θ, ϕ) = − lim
r→a

ε0 ~Ei(r, θ, ϕ) · r̂

= ε0
φB
2πa

[ ∞
∑

p=1

p
∑

q=1

(−1)q−1

q
p(2p+ 1)

(p− q)!

(p+ q)!
IpqP

q
p (cos θ) sin(qϕ)

]

. (12.30)

In this case of a spherical shell we have σo(a, θ, ϕ) 6= σi(a, θ, ϕ). In the cylindrical
case, on the other hand, we obtained the same surface charge densities both
inside and outside the shell. The total surface charge density is the sum of
these two expressions, namely, σt = σo + σi.

In Fig. 12.3 we plot the equipotentials in the plane z = 0 of the spherical
shell with φA = 0 (no net charge in the shell). The current is in the clockwise
direction, the bold circumference represents the shell. The electric field lines
which are perpendicular to these equipotentials are also contained in the plane
z = 0. This can be seen noting that for θ = π/2 rad we have P qp

′(cos θ) = 0 for
p+ q even (see page 733 of the book by Arfken and Weber [202] combined with
the recurrence relation (12.87) of the same work). Using the property that Ipq
is null for p+ q odd, we have that Eθ = 0 for both r < a and r > a.

Figure 12.3: Equipotentials in the plane z = 0. The resistive spherical shell
carries a clockwise steady current. The bold circumference represents the shell.
The projection of the battery is represented by the bold straight line going from
x = −a to x = 0. The electric field has no z component, so the electric field
lines are orthogonal to the equipotentials in this plane.

In Fig. 12.4 we plot the equipotentials in the plane x = 0. The current enters
the plane of the paper on the left side of the bold circumference and leaves the
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plane of the paper on the right side. We utilized φA = 0. In this case the electric
field lines are not contained in this plane (Eϕ or Ex are not null in the entire
plane).

Figure 12.4: Equipotentials in the plane x = 0 of the spherical shell with φA = 0.
The bold circumference represents the shell. The current enters the plane of the
paper on the left side of the circumference and leaves the paper on the right
side.

In Fig. 12.5 we plot the total surface charge density σt in the equatorial
plane as a function of the azimuthal angle ϕ, normalized by the value of σt
at ϕ = π/4 rad. The presence of the term (−1)q sin(qϕ) in Eqs. (12.29) and
(12.30) causes a rapid variation in the calculation of σt. This can be seen in the
oscillation of Fig. 12.5.

The oscillations on the plot of σt(ϕ) shown in Figs. 12.5 and 11.7 probably
occur because σt is proportional to the radial component of the electric field
that comes from differentiating a Fourier series. And sometimes there are con-
vergence problems with the differentiation of Fourier series, as we saw in Section
11.4. By raising the number of terms in the Fourier series of σt we increase only
the number of oscillations in the curves.

We did not succeed in putting the series solutions given by Eqs. (12.29) and
(12.30) in closed analytical form. But utilizing the averaging procedure pre-
sented in Section 11.4, we obtained Fig. 12.6. The wiggles around ϕ = ±π/2 rad
should be due to numerical approximations without physical significance. The
real curve should be smooth like Fig. 11.8. Fig. 12.6 indicates that σt(ϕ) is
linear with ϕ far from the battery (i.e., around ϕ = 0 rad), diverging close to it
(when ϕ→ ±π rad). This is the important physical result.
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Figure 12.5: Total surface charge density σt(ϕ) as a function of the azimuthal
angle ϕ in the equatorial plane z = 0 of a resistive spherical shell carrying a
steady azimuthal current, normalized by its value at ϕ = π/4 rad. We have
utilized Eqs. (12.29) and (12.30) with the summation in p going from p = 1 to
p = 100.

Figure 12.6: Smoothed out plot of Fig. 12.5.

12.5 Conclusion

We have obtained the surface charge density, σ, potential, φ, and electric field,
~E, outside and inside a resistive spherical shell carrying a steady azimuthal
current. We have plotted the total surface charge density σt as a function of the
azimuthal angle ϕ. We have found that σt is linear with ϕ far from the battery,
diverging to infinity close to it. At great distances from the spherical shell the
potential is that of a point charge plus that of an electric dipole, Eq. (12.17). The
total charge q and dipole moment ~p of this system are given by Eq. (12.17) and
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in the paragraph before it. Alternatively, they can also be found by q =
∫ ∫

σ da
and ~p =

∫ ∫

σ ~r da, where da is an area element and the integration is over the
surface of the system. The two approaches agree with one another, as expected.
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Chapter 13

Resistive Toroidal

Conductor with Azimuthal

Current

13.1 Introduction

The calculations of this Chapter were presented in 2003 and 2004 [228, 229]. The
only other attempt known to us to calculate the electric field inside a resistive
ring carrying a steady current due to charges distributed along the surface of
the ring is that due to Weber in 1852 [32]. See the Appendix.

Our goal is to find a solution for the potential due to a current distributed
in a finite volume of space, which creates an electric field outside the Ohmic
conductor. The only author who has fully solved a problem with the current
bounded in a finite volume (beyond the case presented in the previous Chapter)
is Jackson [12], who considered a coaxial cable of finite length. But as he
considered a return conductor of zero resistivity, he obtained an electric field
only inside the cable, with no electric field outside it.

13.2 Description of the Problem

Consider a stationary toroidal Ohmic conductor (greater radius R0 and smaller
radius r0) with a steady current I, constant over the length 2πR0 of the conduc-
tor. We assume that the conductor has uniform resistivity, and the current is in
the azimuthal direction, flowing along the circular loop. The toroid is centered
on the plane z = 0, z being its axis of symmetry. There is a battery located
at ϕ = π rad maintaining constant potentials at its extremities. See Fig. 13.1.
We initially idealize the battery as of negligible thickness. Later on we consider
the battery occupying a finite volume. The medium outside the conductor is
supposed to be air or vacuum.
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Figure 13.1: A toroidal Ohmic conductor with axis of symmetry along the z
axis, smaller radius r0 and greater radius R0. A thin battery is located at
ϕ = π rad maintaining constant potentials (represented by the + and - signs)
in its extremities. A steady current flows azimuthally in this circuit loop in the
clockwise direction, from ϕ = π rad to ϕ = −π rad.

The goal here is to find the electic potential φ everywhere in space, using the
potential at the surface of the conductor as a boundary condition. The problem
treated here can be applied to two cases: (a) the toroid is a full homogeneous
solid and the battery is a disc. See Fig. 13.2a. And (b) the toroid is hollow
and the battery is a circumference. See Fig. 13.2b. The symmetry of this
problem suggests the approach of toroidal coordinates (η, χ, ϕ) see Figure 13.3
[224, p. 112]. These coordinates were introduced by C. Neumann [230], who
studied the distribution of surface charges in a metallic ring kept at a constant
potential [231, p. 516].

Figure 13.2: The two cases being considered here: (a) a full solid resistive

toroidal conductor, with an azimuthal volume current density ~J through the
cross-section; (b) a hollow resistive toroidal conductor, with an azimuthal sur-

face current density ~K through the circumference 2πr0 of the hollow toroidal
shell.
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Figure 13.3: Toroidal coordinates (η, χ, ϕ).

These coordinates are defined by:

x ≡ a
sinh η cosϕ

cosh η − cosχ
, y ≡ a

sinh η sinϕ

cosh η − cosχ
, z ≡ a

sinχ

cosh η − cosχ
.

(13.1)
Here a is a constant that gives the radius of a circumference in the z = 0 plane
described by η → ∞ (that is, when η → ∞ we have x = a cosϕ, y = a sinϕ
and z = 0). The values assumed by the toroidal coordinates are: 0 ≤ η < ∞,
−π rad ≤ χ ≤ π rad and −π rad ≤ ϕ ≤ π rad. The inverse transformations are
given by:

η = arctanh
2a
√

x2 + y2

x2 + y2 + z2 + a2
, χ = arctan

2za

x2 + y2 + z2 − a2
,

ϕ = arctan
y

x
. (13.2)

It is also convenient to present here the expressions for sinh η, cosh η and
cosχ:

sinh η =
2a
√

x2 + y2

√

(x2 + y2 + z2 − a2)2 + 4a2z2
, (13.3)

cosh η =
x2 + y2 + z2 + a2

√

(x2 + y2 + z2 − a2)2 + 4a2z2
, (13.4)

cosχ =
x2 + y2 + z2 − a2

√

(x2 + y2 + z2 − a2)2 + 4a2z2
. (13.5)
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The surface of the toroid is described by a constant η0. The internal (exter-
nal) region of the toroid is characterized by η > η0 (η < η0). The greater radius
R0 and the smaller radius r0 are related to η0 and to a by R0 = a cosh η0/ sinh η0
and r0 = a/ sinh η0. See Figs. 13.1 and 13.3. That is, R0/r0 = cosh η0 and
η0 = cosh−1(R0/r0).

Laplace’s equation for the electric potential φ, ∇2φ = 0, has the following
form in toroidal coordinates:

∇2φ =
(cosh η − cosχ)2

a2 sinh η

[

∂

∂η

(

sinh η

cosh η − cosχ

∂φ

∂η

)

+ sinh η
∂

∂χ

(

1

cosh η − cosχ

∂φ

∂χ

)]

+
(cosh η − cosχ)2

a2 sinh2 η

∂2φ

∂ϕ2
= 0 . (13.6)

It can be solved in toroidal coordinates with the method of separation of
variables (by a procedure known as R-separation), leading to a solution of the
form [224, p. 112]:

φ(η, χ, ϕ) =
√

cosh η − cosχH(η)X(χ)Φ(ϕ) . (13.7)

The functions H , X , and Φ which appear here satisfy, respectively, the ordinary
equations (with Υ ≡ cosh η, and where p and q are constants):

(Υ2 − 1)H ′′ + 2ΥH ′ − [(p2 − 1/4) + q2/(Υ2 − 1)]H = 0 , (13.8)

X ′′ + p2X = 0 , (13.9)

Φ′′ + q2Φ = 0 . (13.10)

13.3 General Solution

The solutions of Eqs. (13.9) and (13.10) for p 6= 0 and q 6= 0 are linear
combinations of the general forms Xp(χ) = Cpχ cos(pχ) + Dpχ sin(pχ) and
Φq(ϕ) = Cqϕ cos(qϕ) + Dqϕ sin(qϕ), respectively, where Cpχ, Dpχ, Cqϕ and
Dqϕ are constants. When p = q = 0 the solutions reduce to, respectively,
X0(χ) = C0χ + D0χχ and Φo(ϕ) = C0ϕ + D0ϕϕ. Eq. (13.8) is the associ-
ated Legendre equation, whose solutions are the associated Legendre functions
P q
p− 1

2

(cosh η) and Qq
p− 1

2

(cosh η), known as toroidal Legendre polynomials [232,

p. 173].

The solution must be periodic in ϕ, i.e., φ(η, χ, ϕ + 2π) = φ(η, χ, ϕ), and
in χ, i.e., φ(η, χ + 2π, ϕ) = φ(η, χ, ϕ). This condition implies that D0ϕ = 0,
D0χ = 0, q = 1, 2, 3, . . ., and p = 1, 2, 3, . . .

The functions Qq
p− 1

2

(cosh η) are irregular in η = 0 (which corresponds to the

z axis, or to great distances from the toroid). For this reason we eliminate them
as physical solutions for this problem in the region outside the toroid (that is,
η < η0). The general solution consists of linear combinations of all possible
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regular solutions of P q
p− 1

2

(cosh η), Xp(χ) and Φq(ϕ):

φ(η ≤ η0, χ, ϕ) =
√

cosh η − cosχ

{ ∞
∑

q=0

[Cqϕ cos(qϕ) +Dqϕ sin(qϕ)]

×
[ ∞
∑

p=0

[Cpχ cos(pχ) +Dpχ sin(pχ)]P q
p− 1

2

(cosh η)

]}

. (13.11)

We utilized the fact that sin 0 = 0 and cos 0 = 1 to sum up from p = q = 0 to
∞. Here P 0

p− 1

2

(cosh η) ≡ Pp− 1

2

(cosh η) are the Legendre functions [202, p. 724].

13.4 Particular Solution for a Steady Azimuthal

Current

The surface of the toroid is described by a constant η0. Here we study the case
of a steady current flowing in the azimuthal ϕ direction along the Ohmic toroid.
For this reason we suppose that the potential along the surface of the toroid
is linear in ϕ, φ(η0, χ, ϕ) = φA + φBϕ/2π. This potential can be expanded in
Fourier series in ϕ:

φ(η0, χ, ϕ) = φA + φB
ϕ

2π
= φA +

φB
π

[ ∞
∑

q=1

(−1)q−1

q
sin(qϕ)

]

. (13.12)

Fig. 13.4 shows the Fourier expansion of the potential along the conductor
surface as a function of ϕ. The oscillations close to ϕ = ±π rad are due to a
Fourier series with a finite number of terms. The overshooting is known as the
Gibbs phenomenon, a peculiarity of the Fourier series at a simple discontinuity
[202, p. 783–7].

Figure 13.4: Fourier expansion of the potential along the conductor surface as
a function of the azimuthal angle ϕ, Eq. (13.12) with φA = 0 and φB = φ0.
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We assume that the potential inside the full solid toroidal Ohmic conductor
(that is, for η > η0), Fig. 13.2a, is also given by Eq. (13.12), namely:

φ(η > η0, χ, ϕ) = φA + φB
ϕ

2π
. (13.13)

The electric field inside the solid toroid can be expressed in cylindrical coordi-
nates (ρ, ϕ, z) simply as:

~E = −∇φ = − φB
2πρ

ϕ̂ . (13.14)

This electric field does not lead to any accumulation of charges inside a full solid
conductor because ∇ · ~E = 0.

These are reasonable results. The potential satisfies Laplace’s equation
∇2φ = 0, as expected. The electric field is inversely proportional to the distance
ρ =

√

x2 + y2 from the z axis. This was to be expected as we are assuming
a conductor of uniform resistivity. The difference of potential ∆φ created by
the battery at ϕ = π rad can be related to the azimuthal electric field by a line
integral:

∆φ = −
∫ −π

ϕ=π

~E · d~ℓ = −Eϕ2πρ . (13.15)

Here ρ is the radius of a circular path centered on the z axis and located inside
or along the surface of the toroid. This shows that Eϕ should be inversely
proportional to ρ, as found in Eq. (13.14). Comparing Eqs. (13.14) and (13.15)
yields:

∆φ = φB . (13.16)

By Ohm’s law ~J = g ~E (where g is the uniform conductivity of the wire) we

can see that ~J is also inversely proportional to the distance ρ from the z axis
inside a full solid homogeneous toroidal conductor.

We now consider the solution outside the conductor, valid for the cases of a
solid and a hollow toroid.

We calculate Eq. (13.11) with η = η0 and utilize Eq. (13.12) as a boundary
condition of this problem. As we do not have terms with cos(qϕ) in Eq. (13.12),
this means that Cqϕ = 0 for q = 1, 2, 3, . . . Comparing Eq. (13.11) at η = η0
with Eq. (13.12) yields two equations connecting φA and φB to the C’s and D’s,
namely:

φA = C0ϕ

√

cosh η0 − cosχ

{ ∞
∑

p=0

[Cpχ cos(pχ)

+ Dpχ sin(pχ)]Pp− 1

2

(cosh η0)
}

, (13.17)

φB =
πqDqϕ

(−1)q−1

√

cosh η0 − cosχ

{ ∞
∑

p=0

[Cpχ cos(pχ)
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+ Dpχ sin(pχ)]P q
p− 1

2

(cosh η0)
}

. (13.18)

We now isolate the term 1/
√

cosh η0 − cosχ in Eqs. (13.17) and (13.18),
expanding it in Fourier series. That is:

1√
cosh η0 − cosχ

=
1

2π

{ ∞
∑

p=0

(2 − δ0p)

[
∫ π

−π

cos(pχ′)dχ′
√

cosh η0 − cosχ′

]

cos(pχ)

}

=

√
2

π

[ ∞
∑

p=0

(2 − δ0p)Qp− 1

2

(cosh η0) cos(pχ)

]

, (13.19)

where δwp is the Kronecker delta, which is zero for w 6= p and one for w = p.
In the last passage we utilized an integral representation of Qp− 1

2

(cosh η) [232,

p. 156, Eq. (10)]:

Qp− 1

2

(cosh η0) =
1

2
√

2

∫ π

−π

cos(pχ′)dχ′
√

cosh η0 − cosχ′ . (13.20)

As in Eq. (13.19) we do not have terms of sin(pχ), this means that Dpχ = 0
in Eqs. (13.17) and (13.18). Using Eq. (13.19) with Eq. (13.17) yields (for
p = 0, 1, 2, . . .):

Ap ≡ C0ϕCpχ =
φA(2 − δ0p)

2πPp− 1

2

(cosh η0)

∫ π

−π

cos(pχ′)dχ′
√

cosh η0 − cosχ′

=

√
2φA(2 − δ0p)

π

Qp− 1

2

(cosh η0)

Pp− 1

2

(cosh η0)
. (13.21)

Using Eq. (13.19) with Eq. (13.18) yields:

Bpq ≡ DqϕCpχ =
φB(−1)q−1(2 − δ0p)

2qπ2P q
p− 1

2

(cosh η0)

∫ π

−π

cos(pχ′)dχ′
√

cosh η0 − cosχ′

=

√
2φB(−1)q−1(2 − δ0p)

qπ2

Qp− 1

2

(cosh η0)

P q
p− 1

2

(cosh η0)
. (13.22)

The final solution outside the toroid is given by:

φ(η ≤ η0, χ, ϕ) =
√

cosh η − cosχ

{ ∞
∑

p=0

Ap cos(pχ)Pp− 1

2

(cosh η)

+

∞
∑

q=1

sin(qϕ)

[ ∞
∑

p=0

Bpq cos(pχ)P q
p− 1

2

(cosh η)

]}

, (13.23)

where the coefficients Ap and Bpq are given by Eqs. (13.21) and (13.22), respec-
tively.
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For the region inside the hollow toroid (that is, η > η0), Fig. 13.2b, we
have P q

p− 1

2

(cosh η → ∞) → ∞, while Qq
p− 1

2

(cosh η → ∞) → 0. For this reason

we eliminate P q
p− 1

2

(cosh η) as physical solutions for the region inside the hollow

toroid. The potential is then given by:

φ(η > η0, χ, ϕ) = φA +
√

cosh η − cosχ

×
{ ∞
∑

q=1

sin(qϕ)

[ ∞
∑

p=0

B′
pq cos(pχ)Qq

p− 1

2

(cosh η)

]}

, (13.24)

where the coefficients B′
pq are defined by:

B′
pq ≡

φB(−1)q−1(2 − δ0p)

2qπ2Qq
p− 1

2

(cosh η0)

∫ π

−π

cos(pχ′)dχ′
√

cosh η0 − cosχ′

=

√
2φB(−1)q−1(2 − δ0p)

qπ2

Qp− 1

2

(cosh η0)

Qq
p− 1

2

(cosh η0)
. (13.25)

Note that the potential inside the solid toroid, Eq. (13.13), and the potential
inside the hollow toroid, Eq. (13.24), are different. This happens because the
discontinuous boundary condition, Eq. (13.12), applies for any η > η0 inside
the solid toroid, particularly for ϕ→ π rad (φ→ φA + φB/2) and ϕ→ −π rad
(φ → φA − φB/2), where the disc battery is located. See Fig. 13.2a. This does
not happen to the hollow toroid, where the battery is a circumference, and the
potential must be continuous inside the hollow toroid. See Fig. 13.2b.

We plotted the equipotentials of a full solid toroid on the plane z = 0 in
Fig. 13.5 with φA = 0 and φB = φ0. We utilized a toroidal surface described by
η0 = 2.187.

Figure 13.6 shows a plot of the equipotentials of the full solid toroid in the
plane x = 0 (perpendicular to the current), also with φA = 0, φB = φ0, R0 = 1
and η0 = 2.187.

13.5 Potential in Particular Cases

We now analyze the potential outside the toroid, Eq. (13.23), in four regions:
(A) far away from the toroid, (B) close to the origin, (C) along the z axis, and
(D) along the circumference described by x2 + y2 = a2 in the plane z = 0.

(A) For great distances from the toroid (that is, r =
√

x2 + y2 + z2 ≫ a),
Eqs. (13.2) to (13.5) yield:

η ≈ 2a
√

x2 + y2

r2
≪ 1 , (13.26)

cosh η ≈ 1 +
2a2(x2 + y2)

r4
→ 1 , (13.27)
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Figure 13.5: Equipotentials for a resistive full solid toroidal conductor in the
plane z = 0. The bold circumferences represent the borders of the toroid. The
current runs in the azimuthal direction, from ϕ = π rad to ϕ = −π rad. The
thin battery is on the left (ϕ = π rad). We have used R0 = 1 and η0 = 2.187.

Figure 13.6: Equipotentials in the plane x = 0 for a resistive full solid toroidal
conductor carrying a steady azimuthal current, Eq. (13.23) with φA = 0 and
φB = φ0. The bold circumferences represent the conductor surface. We have
used R0 = 1 and η0 = 2.187.

cosχ ≈ 1 − 2a2z2

r4
→ 1 , (13.28)

χ ≈ 2az

r2
≪ 1 , (13.29)

√

cosh η − cosχ ≈ a
√

2

r
≪ 1 . (13.30)

For cosh η ≈ 1 + ǫ, where 0 < ǫ ≪ 1, we have the following expansion [232,
pp. 163 and 173]:

P q
p− 1

2

(1 + ǫ) ≈ Γ
(

p+ q + 1
2

)

2q/2q! Γ
(

p− q + 1
2

)ǫq/2
{

1 + ǫ

[

p2 − 1
4

2(1 + q)
− q

4

]}

. (13.31)
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That is, for q = 0 and for q = 1, 2, 3, ... we have, respectively:

Pp− 1

2

(1 + ǫ) ≈ 1 + ǫ

(

p2

2
− 1

8

)

→ 1 , (13.32)

P q
p− 1

2

(1 + ǫ) ≈ 2−q/2Γ(p+ q + 1
2 )

q!Γ(p− q + 1
2 )

ǫq/2 ≪ 1 . (13.33)

This means that the terms which appear in the potential for η ≪ 1, up to
the order ǫ1/2, are those which have the polynomials with q = 0 and with q = 1.
That is, Pp− 1

2

(cosh η ≈ 1 + ǫ) ≈ 1 and P 1
p− 1

2

(cosh η ≈ 1 + ǫ) ≈ (p2 − 1/4)
√

ǫ/2.

The potential φ, Eq. (13.23), at great distances from the origin, is given in
spherical coordinates (r, θ, ϕ) by (where ǫ = 2a2 sin2 θ/r2):

φ(r ≫ a, θ, ϕ) ≈ a
√

2

r

{ ∞
∑

p=0

cos

(

p
2a cos θ

r

)

×
[

Ap +Bp1

(

p2 − 1

4

)

a

r
sinϕ sin θ

]}

, (13.34)

so that φ(r → ∞) → 0, as expected.
(B) The potential close to the origin (that is, r ≪ a) can be calculated in

the same manner. In this approximation:

η ≈ 2
√

x2 + y2

a
≪ 1 , (13.35)

cosh η ≈ 1 +
2(x2 + y2)

a2
→ 1 , (13.36)

cosχ ≈ −1 +
2z2

a2
→ −1 , (13.37)

χ ≈ π − 2z

a
→ π , (13.38)

√

cosh η − cosχ ≈
√

2 +
x2 + y2 − z2

√
2a2

→
√

2 . (13.39)

The potential (13.23) can be expressed as (with ǫ = 2r2 sin2 θ/a2):

φ(r ≪ a, θ, ϕ) ≈
√

2

{ ∞
∑

p=0

(−1)p cos

(

p
2r cos θ

a

)

×
[

Ap +Bp1

(

p2 − 1

4

)

r

a
sinϕ sin θ

]}

. (13.40)

(C) Along the z axis we have
√

x2 + y2 = 0. From Eqs. (13.2) to (13.5) we
have:

η = 0 , (13.41)
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cosh η = 1 , (13.42)

cosχ =
z2 − a2

z2 + a2
, (13.43)

√

cosh η − cosχ = a

√

2

z2 + a2
. (13.44)

The potential (13.23) along the z axis can be written as:

φ
(

r =
√

x2 + y2 + z2 = |z|, θ, ϕ
)

= a

√

2

z2 + a2

[ ∞
∑

p=0

Ap cos

(

p arccos
z2 − a2

z2 + a2

)

]

. (13.45)

(D) In the circumference described by x2 + y2 = a2, along the plane z =
0, we have η → ∞. The associated Legengre functions P q

p− 1

2

(cosh η) and

Qq
p− 1

2

(cosh η), for η ≫ 1 (and, therefore, for cosh η ≫ 1), can be approximated

utilizing [232, p. 164]:

Qq
p− 1

2

(cosh η ≫ 1) ≈ (−1)q
√
πΓ
(

p+ q + 1
2

)

2p+
1

2 p! coshp+
1

2 η
, for any p , (13.46)

P q
p− 1

2

(cosh η ≫ 1) ≈ 2p−
1

2 (p− 1)! coshp−
1

2 η√
πΓ
(

p− q + 1
2

) , for p > 0 , (13.47)

where Γ is the gamma function [202, p. 591]. The potential inside the hollow
toroid, Eq. (13.24), assumes the following form along this circumference:

φ(η → ∞, χ, ϕ) = φA − φB
π3/2

Q− 1

2

(cosh η0)

[ ∞
∑

q=1

sin(qϕ)Γ
(

q + 1
2

)

qQq− 1

2

(cosh η0)

]

. (13.48)

13.6 Electric Field and Surface Charges

In toroidal coordinates the gradient is written as:

∇φ =
1

a
(cosh η − cosχ)

(

η̂
∂φ

∂η
+ χ̂

∂φ

∂χ
+

ϕ̂

sinh η

∂φ

∂ϕ

)

. (13.49)

The electric field can then be calculated by ~E = −∇φ, whose components
for the region outside the toroid (η < η0) are given by:

Eη = − sinh η
√

cosh η − cosχ

a

{ ∞
∑

p=0

cos(pχ)

{

Ap

[

1

2
Pp− 1

2

(cosh η)
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+ (cosh η − cosχ)Pp− 1

2

′(cosh η)
]

+

∞
∑

q=1

sin(qϕ)Bpq

[

1

2
P q
p− 1

2

(cosh η) + (cosh η − cosχ)P q
p− 1

2

′(cosh η)

]

}}

,

(13.50)

Eχ = −
√

cosh η − cosχ

a

{ ∞
∑

p=0

[

sinχ cos(pχ)

2
− p(cosh η − cosχ) sin(pχ)

]

×
[

ApPp− 1

2

(cosh η) +
∞
∑

q=1

sin(qϕ)BpqP
q

p− 1

2

(cosh η)

]}

, (13.51)

Eϕ = − (cosh η − cosχ)3/2

a sinh η

{ ∞
∑

q=1

q cos(qϕ)

[ ∞
∑

p=0

Bpq cos(pχ)P q
p− 1

2

(cosh η)

]}

,

(13.52)
where P q

p− 1

2

′(cosh η) are the derivatives of the P q
p− 1

2

(cosh η) relative to cosh η.

The electric field inside the full solid toroid (η > η0) is given simply by:

Eη = 0 , Eχ = 0 , Eϕ = −coshη − cosχ

a sinh η

φB
2π

= − φB

2π
√

x2 + y2
.

(13.53)
The total surface charge distribution σt that creates the electric field inside

(and outside of) the conductor, keeping the current flowing, can be obtained
with Gauss’s law (by choosing a Gaussian surface involving a small portion of
the conductor surface) for the full solid toroid, Fig. 13.2a:

σt(η0, χ, ϕ) = ε0

[

~E(η < η0) · (−η̂) + ~E(η > η0) · η̂
]

η0

=
ε0 sinh η0

a

{

φA + φBϕ/2π

2
+ (cosh η0 − cosχ)3/2

×
{ ∞
∑

p=0

cos(pχ)
[

ApPp− 1

2

′(cosh η0) +

∞
∑

q=1

sin(qϕ)BpqP
q

p− 1

2

′(cosh η0)
]

}}

.

(13.54)

13.7 Thin Toroid Approximation

Suppose that the toroid is very thin, with its radii described by a greater radius
R0 = a cosh η0/ sinh η0 ≈ a and smaller radius r0 = a/ sinh η0, such that r0 ≪
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R0. See Fig. 13.1. The surface of the toroid is described by η0 ≫ 1 and,
consequently, cosh η0 ≫ 1.

In this approximation, the potential inside the hollow toroid and inside the
full solid toroid is given by the same expression, Eq. (13.13). The electric field
is given by Eqs. (13.14) and (13.53). This means that there is no distribution
of surface charges in the internal surface of a hollow thin toroid.

The Legendre functions of the second kind calculated at η = η0, given by
Qp− 1

2

(cosh η0), appear in the coefficients Ap and Bpq of the potential outside

the toroid, Eqs. (13.21) and (13.22), respectively. As Eq. (13.46), calculated in

η = η0 and for q = 0, has a factor of cosh−p−1/2 η0 ≪ 1, we can neglect all
terms in Eq. (13.23) having p > 0 compared with the term having p = 0. The
potential outside the thin toroid (η0 ≫ 1) can then be written as:

φ(η ≤ η0, χ, ϕ) =

√

cosh η − cosχ

cosh η0

{

φA
P− 1

2

(cosh η)

P− 1

2

(cosh η0)

+
φB
π

[ ∞
∑

q=1

(−1)q−1

q
sin(qϕ)

P q− 1

2

(cosh η)

P q− 1

2

(cosh η0)

]}

. (13.55)

It is interesting to find the expressions for the potential and electric field
outside but in the vicinity of the conductor (that is, η0 > η ≫ 1). A series
expansion of the functions P q− 1

2

(Υ) and P q− 1

2

′(Υ) around Υ → ∞ gives as the

most relevant terms [232, p. 173]:

P q− 1

2

(Υ) ≈
√

2/π

Γ(1/2 − q)

ln(2Υ) − ψ(1/2 − q) − γ√
Υ

, (13.56)

P q− 1

2

′(Υ) ≈
√

2/π

Γ(1/2 − q)

1

Υ3/2

[

1 − ln(2Υ) − ψ(1/2 − q) − γ

2

]

, (13.57)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, and γ ≈ 0.577216 is the
Euler gamma.

The potential just outside the thin toroid, Eq. (13.55), can then be written
in this approximation as (utilizing that ψ(1/2) + γ = − ln 4):

φ(η0 ≥ η ≫ 1, χ, ϕ) = φA
ln(8 cosh η)

ln(8 coshη0)

+
φB
π

[ ∞
∑

q=1

(−1)q−1

q
sin(qϕ)

ln(2 cosh η) − ψ
(

1
2 − q

)

− γ

ln(2 cosh η0) − ψ
(

1
2 − q

)

− γ

]

. (13.58)

This equation is valid for −π rad ≤ ϕ ≤ π rad, even close to the battery.
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The electric field close to the surface of the thin toroid, just outside it,
obtained from Eq. (13.58), is given by:

Eη = − sinh η

a

{

φA
ln(8 cosh η0)

+
φB
π

[ ∞
∑

q=1

(−1)q−1

q

sin(qϕ)

ln(2 cosh η0) − ψ
(

1
2 − q

)

− γ

]}

, (13.59)

Eχ = 0 , (13.60)

Eϕ = −φB
πa

[ ∞
∑

q=1

(−1)q−1 cos(qϕ)
ln(2 cosh η) − ψ

(

1
2 − q

)

− γ

ln(2 cosh η0) − ψ
(

1
2 − q

)

− γ

]

.(13.61)

Note that

Eϕ(η0) = −φB
πa

[ ∞
∑

q=1

(−1)q−1 cos(qϕ)

]

= − φB
2πa

. (13.62)

That is, it coincides exactly with the electric field inside the solid toroid, Eq. (13.14).
This is a divergent series presented in Eq. (11.30) which arises from differenti-
ation of a convergent Fourier series, as we discussed in Section 11.4. It can be
handled by the average procedure presented in Eq. (11.32).

The surface charge distribution in this thin toroid approximation is given
by, from Eq. (13.59):

σ(η0 ≫ 1, χ, ϕ) = −ε0Eη(η0) =
ε0 sinh η0

a

[

φA
ln(8 cosh η0)

+
φB
π

( ∞
∑

q=1

(−1)q−1

q

sin(qϕ)

ln(2 coshη0) − ψ
(

1
2 − q

)

− γ

)]

, (13.63)

which is also valid for −π rad ≤ ϕ ≤ π rad. As there is no surface charge
distribution in the internal surface of a hollow thin toroid, this expression means
the total surface charge distribution which exists only in the external surface of
the (hollow or solid) thin toroid.

In Fig. 13.7 we plotted the density of surface charges σ as a function of the
azimuthal angle ϕ obtained from Eq. (13.63). We can see that σ is linear with
ϕ close to ϕ = 0 rad. Close to the battery σ diverges to infinity (that is, σ → ∞
when ϕ → ±π rad). To our knowledge the first to conclude correctly that the
surface charge density in a resistive ring carrying a steady current grows toward
the battery as a function of the azimuthal angle ϕ in a pace faster than linearly
was Weber in 1852. See the Appendix A.

From Figure 13.7 and Eq. (11.11) we can then write the summation of
Eq. (13.63) for a thin toroid and far from the battery (that is, for η0 ≫ 1
and ϕ≪ π rad) as
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Figure 13.7: Density of surface charges as a function of the azimuthal angle ϕ
obtained from Eq. (13.63) with φA = 0 and η0 = 10 (R0/r0 = 1.1 × 104). It is
linear with ϕ when ϕ ≈ 0 rad but then diverges to infinity close to the battery.

∞
∑

q=1

(−1)q−1

q

sin(qϕ)

ln(2 cosh η0) − ψ
(

1
2 − q

)

− γ
≡ g(η0)

ϕ

2
. (13.64)

Here g(η0) is a dimensionless function of η0 defined by this equation.
With this definition Eq. (13.63) can be written as

σ(η0 ≫ 1, χ, ϕ≪ π) ≈ ε0 sinh η0
a

φA
ln(8 cosh η0)

+
ε0 sinh η0

a
g(η0)φB

ϕ

2π

≡ σA + σB
ϕ

2π
. (13.65)

The constants σA and σB are defined by this equation, namely

σA ≡ ε0 sinh η0
a

φA
ln(8 cosh η0)

, (13.66)

σB ≡ ε0 sinh η0
a

g(η0)φB . (13.67)

Combining Eq. (13.67) with Eq. (13.62) we can write the tangential compo-
nent of the electric field Eϕ at the surface of the thin toroid as

Eϕ(η0 ≫ 1) = − φB
2πa

= − σB
2πε0 sinh η0g(η0)

. (13.68)

As we will see in Appendix A, Weber was the first to obtain an analogous
to this result. His approach of dealing with this problem leads to a tangential
component of the electric field for a very thin toroid as given by Eq. (A.20),
namely:

Eϕ(η0 ≫ 1) ≈ − r0σB
2πε0R0

(

ln
8R0

r0
− π

2

)

. (13.69)

By comparing Eqs. (13.68) and (13.69) for a very thin toroid (η0 ≫ 1,
a ≈ R0, sinh η0 = a/r0 ≈ R0/r0) we can then try to fit g(η0) as
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g(η0) ≡
1

ln(R0/r0) +K0
. (13.70)

The constant K0 defined by this equation should be a function of η0 and, ac-
cording to Eqs. (13.68) and (13.69), should tend to ln 8 − π/2 = 0.509 when
η0 → ∞.

In Eq. (13.71) we present a least-square fitting of g(η0) given by Eq. (13.64)
with 10000 terms in the summation, for ϕ varying from −π/100 rad to π/100
rad, with steps of π/10000 rad. At the last column we present for each value of
g(η0) the corresponding value of K0 as given by Eq. (13.70).

































η0 R0/r0 g(η0) K0

12.206 105 0.0830051 0.534
23.719 1010 0.0424678 0.521
35.232 1015 0.0285259 0.517
46.745 1020 0.0214746 0.515
69.771 1030 0.0143698 0.513
92.797 1040 0.0107974 0.511
115.822 1050 0.00864749 0.511
230.952 10100 0.00433335 0.510
461.21 10200 0.00216907 0.510

































(13.71)

This equation indicates thatK0 → ln 8−π/2, as expected if we apply Weber’s
approach in order to deal with this problem. See Appendix A. Supposing that
this is the case, we can then write the surface charge density for a thin toroid
and far from the battery approximately as

σ(η0 ≫ 1, χ, ϕ≪ π) ≈ σA + σB
ϕ

2π

≈ ε0
r0

φA
ln(8R0/r0)

+
ε0
r0

φB
ln(R0/r0) + ln 8 − π/2

ϕ

2π
. (13.72)

In this approximation of a thin toroid, the surface charge density given by
Eq. (13.63) does not depend upon the angle χ. This means that the linear
charge density λ(ϕ) is given simply by 2πr0σ, namely:

λ(η0 ≫ 1, ϕ) =
2πr0ε0 sinh η0

a

[

φA
ln(8 cosh η0)

+
φB
π

( ∞
∑

q=1

(−1)q−1

q

sin(qϕ)

ln(2 coshη0) − ψ
(

1
2 − q

)

− γ

)]

. (13.73)

Far from the battery this reduces to, from Eq. (13.64):

λ(η0 ≫ 1, ϕ≪ π) ≈ 2πr0ε0 sinh η0
a

φA
ln(8 cosh η0)

+
2πr0ε0 sinh η0

a
g(η0)φB

ϕ

2π
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≡ λA + λB
ϕ

2π
. (13.74)

The constants λA and λB were defined by this equation.
We can calculate the total charge qA of the thin toroid as a function of the

constant electric potential φA. For this end, we integrate the surface charge
density σ in χ and ϕ (in the approximation cosh η0 ≫ 1):

qA =

∫ π

−π
hχdχ

∫ π

−π
hϕdϕσ(χ, ϕ) =

4π2ε0φAR0

ln(8 coshη0)
≈ 4π2ε0φAR0

ln(8R0/r0)
, (13.75)

where hη = hχ = a/(cosh η − cosχ) and hϕ = a sinh η/(cosh η − cosχ) are the
scale factors in toroidal coordinates [233]. Notice that from Eq. (13.75) we can
obtain the capacitance of the thin toroid [234, p. 127]:

C =
qA
φA

=
4π2ε0R0

ln(8 cosh η0)
=

4π2ε0R0

ln(8R0/r0)
. (13.76)

The potential along the z axis is given by, from Eq. (13.45) in the thin toroid
approximation:

φ
(

r =
√

x2 + y2 + z2 = |z|, θ, ϕ
)

=
qA

4πε0

1√
z2 + a2

. (13.77)

Eq. (13.77) coincides with the coulombian result of a charged thin toroid of
radius a in the z = 0 plane and total charge qA.

As we have seen, in the case of a thin toroid the term in the potential with
p = 0 is much larger than the terms with p > 0. This means that Eq. (13.34)
reduces to

φ(r ≫ a, θ, ϕ) ≈ a
√

2

r

[

A0 −
B01

4

a

r
sinϕ sin θ

]

. (13.78)

With Eqs. (13.21) and (13.22) we obtain

φ(r ≫ a, θ, ϕ) ≈ a
√

2

r

[√
2φA
π

Q− 1

2

(cosh η0)

P− 1

2

(cosh η0)

−
√

2φB
π2

Q− 1

2

(cosh η0)

P 1
− 1

2

(cosh η0)

a

4r
sinϕ sin θ

]

. (13.79)

We now simplify the last two equations utilizing Eqs. (13.46), (13.56) and
the relations

Γ(1/2) =
√
π , Γ(−1/2) = −2

√
π , (13.80)

ψ(1/2) + γ = − ln 4 , ψ(−1/2) + γ = 2 − ln 4 . (13.81)
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This yields:

φ(r ≫ a, θ, ϕ) ≈ aπ

r

{

φA
ln(8 cosh η0)

+
φB

2π[ln(8 cosh η0) − 2]

a

r
sinϕ sin θ

}

.

(13.82)

Utilizing a similar procedure beginning with Eq. (13.40) yields:

φ(r ≪ a, θ, ϕ) ≈ π

{

φA
ln(8 cosh η0)

+
φB

2π[ln(8 cosh η0) − 2]

r

a
sinϕ sin θ

}

.

(13.83)

13.8 Comparison of the Thin Toroid Carrying a

Steady Current with the Case of a Straight

Cylindrical Wire Carrying a Steady Cur-

rent

It is useful to define a new coordinate system:

s′ = aϕ , ρ′ =

√

(

√

x2 + y2 − a
)2

+ z2 . (13.84)

We can interpret s′ as a distance along the toroid surface in the ϕ direction,
and ρ′ as the shortest distance from the circumference x2 + y2 = a2 located in
the plane z = 0. When η0 > η ≫ 1 (that is, r0 < ρ′ ≪ a), Eqs. (13.84) and
(13.4) result in cosh η ≈ a/ρ′ ≫ 1 and cosh η0 ≈ a/r0 ≫ 1. For η0 ≥ η ≫ 1 we
can approximate the term inside square brackets of Eq. (13.58) by (taking into
account Eq. (11.11)):

∞
∑

q=1

(−1)q−1

q
sin(qϕ)

ln(2 cosh η) − ψ
(

1
2 − q

)

− γ

ln(2 cosh η0) − ψ
(

1
2 − q

)

− γ

≈
( ∞
∑

q=1

(−1)q−1

q
sin(qϕ)

)

ln(cosh η)

ln(cosh η0)
=
ϕ

2

ln(cosh η)

ln(cosh η0)
. (13.85)

Utilizing Eqs. (13.85) and (13.84) into Eq. (13.58) yields:

φ(η0 ≥ η ≫ 1, χ, ϕ) = φA
ln(8a/ρ′)

ln(8a/r0)
+ φB

s′

2πa

ln(a/ρ′)

ln(a/r0)
. (13.86)

Eq. (13.86) can be written in a slightly different form. Consider a certain
piece of the toroid between the angles ϕ0 and −ϕ0, with potentials in these
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extremities given by φR = φA+φBϕ0/2π and φL = φA−φBϕ0/2π, respectively.
This piece has a length of ℓ = 2aϕ0. The potential can then be written as:

φ = φA
ln(ℓ/ρ′) − ln(ℓ/8a)

ln(ℓ/r0) − ln(ℓ/8a)
+ φB

ϕ0s
′

πℓ

ln(ℓ/ρ′) − ln(ℓ/a)

ln(ℓ/r0) − ln(ℓ/a)

≈
[

φR + φL
2

+ (φR − φL)
s′

ℓ

]

ln(ℓ/ρ′)

ln(ℓ/r0)
. (13.87)

In the last approximation we neglected the terms ln(ℓ/8a) and ln(ℓ/a) in com-
parison with the terms ln(ℓ/ρ′) and ln(ℓ/r0) utilizing the approximation r0 <
ρ′ ≪ a (so that ℓ/r0 > ℓ/ρ′ ≫ ℓ/a). The electric field can be expressed in this
approximation as:

~E = −
[

φR + φL
2

+ (φR − φL)
s′

ℓ

]

η̂

ρ′ ln(ℓ/r0)
− φR − φL

ℓ

ln(ℓ/ρ′)

ln(ℓ/r0)
ϕ̂ . (13.88)

Eqs. (13.87) and (13.88) can be compared to Eqs. (6.17) and (6.18), re-
produced as Eqs. (13.89) and (13.90), respectively. These equations refer to
a long straight cylindrical conductor of radius r0 carrying a constant current,
in cylindrical coordinates (ρ′, ϕ, z) (note that the conversions from toroidal to
cylindrical coordinates in this approximation are η̂ ≈ −ρ̂′ and ϕ̂ ≈ ẑ). In this
case, the cylinder has a length ℓ and radius r0 ≪ ℓ, with potentials φL and φR
in the extremities of the conductor, and RI = φL − φR:

φ(r ≥ a) =

[

φR + φL
2

+ (φR − φL)
z

ℓ

]

ln(ℓ/ρ′)

ln(ℓ/r0)
, (13.89)

~E(ρ′ ≥ a) =

[

φR + φL
2

+ (φR − φL)
z

ℓ

]

ρ̂′

ρ′ ln(ℓ/r0)
− φR − φL

ℓ

ln(ℓ/ρ′)

ln(ℓ/r0)
ẑ .

(13.90)
The potential in the region close to the thin toroid coincides with the cylin-

drical solution, as expected.

13.9 Charged Toroid without Current

Consider a toroid described by η0, without current but charged to a constant
potential φA. Using φB = 0 in Eqs. (13.23), (13.13) and (13.24) we have the
potential inside and outside the toroid, respectively:

φ(η ≥ η0, χ, ϕ) = φA , (13.91)

φ(η ≤ η0, χ, ϕ) =
√

cosh η − cosχ

[ ∞
∑

p=0

Ap cos(pχ)Pp− 1

2

(cosh η)

]

, (13.92)

181



where Pp− 1

2

(cosh η0) are the Legendre functions, and the coefficients Ap are

given by Eq. (13.21). This solution is already known in the literature [235,
p. 239] [236, p. 1304].

It is also possible to obtain the capacitance of the toroid. To this end we com-
pare the electrostatic potential at a distance r far from the origin, Eq. (13.34),
with the potential given by a point charge q, φ(r ≫ a) ≈ q/4πε0r:

φ(r ≫ a, θ, ϕ) ≈ a
√

2

r

[ ∞
∑

p=0

√
2φA(2 − δ0p)

π

Qp− 1

2

(cosh η0)

Pp− 1

2

(cosh η0)

]

=
q

4πε0r
. (13.93)

The capacitance of the toroid with its surface at a constant potential φA can
be written as C = q/φA. From Eq. (13.93) this yields [235, p. 239] [237, p. 5-13]
[238, p. 9] [239, p. 375]:

C = 8ε0a

[ ∞
∑

p=0

(2 − δ0p)
Qp− 1

2

(cosh η0)

Pp− 1

2

(cosh η0)

]

. (13.94)

Utilizing the thin toroid approximation, η0 ≫ 1, one can obtain the capacitance
of a circular ring, Eq. (13.76).

Another case of interest is that of a charged circular wire already discussed,
which is the particular case of a toroid with r0 → 0. In this case the charged
toroid reduces to an uniformly charged circumference of radius R0 = a. With
η0 ≫ 1 and cosh η0 ≫ 1 we have R0 ≈ a. Keeping only the term with p = 0 in
Eqs. (13.21) and (13.92) yields (with Eq. (13.75)):

φ(η ≤ η0, χ, ϕ) = φA

√

cosh η − cosχ

cosh η0

P− 1

2

(cosh η)

P− 1

2

(cosh η0)

=
qA

4π
√

2ε0a

√

cosh η − cosχP− 1

2

(cosh η) . (13.95)

Expressed in spherical coordinates (r, θ, ϕ), the potential for the thin toroid
becomes:

φ(r, θ, ϕ) =
qA

4πε0

1

[(r2 − a2)2 + 4a2r2 cos2 θ]1/4

×P− 1

2

(

r2 + a2

√

(r2 − a2)2 + 4a2r2 cos2 θ

)

. (13.96)

From Eqs. (13.91) and (13.75) we can see that the constant electrostatic
potential along the thin toroid expressed in terms of its total charge qA is given
by:

φ(r0 ≪ R0, θ, ϕ) =
qA/2πa

2πε0
ln

8a

r0
. (13.97)

Even when the linear charge density qA/2πa remains constant, we can see from
this expression that the potential diverges logarithmically when a/r0 → ∞.
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We can expand Eq. (13.96) in powers of r</r>, where r< (r>) is the lesser

(greater) of a and r =
√

x2 + y2 + z2. We present the first three terms:

φ(r, θ, ϕ) ≈ qA
4πε0

{

1

r>
− 1 + 3 cos(2θ)

8

r2<
r3>

+
3

512

[

9 + 20 cos(2θ) + 35 cos(4θ)
]r4<
r5>

}

. (13.98)

Eqs. (13.95) to (13.98) can be compared with the solution given by Jackson
[13, p. 104]. Jackson gives the exact electrostatic solution of the problem of
a charged circular wire (that is, a toroid with radius r0 = 0), in spherical
coordinates (r, θ, ϕ):

φ(r, θ, ϕ) =
qA

4πε0

[ ∞
∑

n=0

r2n<
r2n+1
>

(−1)n(2n− 1)!!

2nn!
P2n(cos θ)

]

, (13.99)

where qA is the total charge of the wire. Eq. (13.99) expanded to n = 2 yields
exactly Eq. (13.98). We have checked that Eqs. (13.96) and (13.99) are the same
for at least n = 30.

We plotted both Eqs. (13.95) and (13.99), in Fig. 13.8. They yield the same
result, as expected. It is worthwhile to note that in spherical coordinates we
have an infinite sum, Eq. (13.99), while in toroidal coordinates the solution is
given by a single term, Eq. (13.95). The agreement shows that Eqs. (13.95) and
(13.99) are the same solution only expressed in different forms.

Figure 13.8: Equipotential lines on the plane x = 0 (perpendicular to the toroid)
for the charged thin wire without current. Both Eqs. (13.95) and (13.99) coincide
with one another. We utilized η0 = 38 (cosh η0 = 1.6× 1016) and a = 1. Notice
the difference between this Figure and Figure 13.6: the left and right sides of
the conductor here possess the same charge signs, while in Figure 13.6 they have
opposite signs.

Fig. 13.9 shows the potential as function of ρ (in cylindrical coordinates) in
the plane z = 0. Eqs. (13.95) and (13.99) give the same result.
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Figure 13.9: Normalized potential as a function of ρ (distance to the z axis)
on the plane z = 0. Eqs. (13.95) and (13.99) give the same result. We utilized
η0 = 38 (cosh η0 = 1.6 × 1016) and a = 1.

Along the z axis, i.e., for
√

x2 + y2 = 0, the potential represented by
Eq. (13.96) is given by:

φ(r, θ, ϕ) =
qA

4πε0

1√
z2 + a2

. (13.100)

This is the same result which arises from a direct integration of the electro-
static potential. That is, a charge qA uniformly distributed along a filiform
ring of radius a, located at the plane z = 0 and centered along the z axis [202,
Example 12.3.3].

13.10 Comparison with Experimental Results

Figure 13.5 can be compared with the experimental result found by Jefimenko
[174, Fig. 3], reproduced here in Fig. 13.10 with Fig. 13.5 overlaid on it. The
equipotential lines obtained here are orthogonal to the electric field lines. There
is a very reasonable agreement between the theoretical result and the experi-
ment.

In order to have a better fit to his data we should consider an extended
battery. As we can see from his account of the experiment, Jefimenko painted
two sections of his strip with a conducting ink of much smaller resistivity than
the remainder of the strip. These sections located at −ϕj < ϕ < −ϕi and
ϕi < ϕ < ϕj were charged to opposite potentials. Considering these sections as
of zero resistivity we can model analytically the potential inside and along the
surface of the toroid as:

φ(η ≥ η0, χ, ϕ) =























−φB ϕi

2π
π+ϕ
π−ϕj

, −π < ϕ < −ϕj ,
−φBϕi/2π, −ϕj < ϕ < −ϕi ,
φBϕ/2π, −ϕi < ϕ < ϕi ,
φBϕi/2π, ϕi < ϕ < ϕj ,
φB

ϕi

2π
π−ϕ
π−ϕj

, ϕj < ϕ < π .

(13.101)
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Figure 13.10: Theoretical equipotential lines of Figure 13.5 overlaid on the
experimental lines of electric field obtained by Jefimenko. The equipotential
lines are orthogonal to the electric field lines.

Notice that the potential described by Eq. (13.101) no longer has a discontinuity
at ϕ = π rad. The potential is linear between ϕ = −ϕi and ϕ = ϕi, constant
for −ϕj < ϕ < −ϕi and ϕi < ϕ < ϕj , and linear for −π rad < ϕ < −ϕj and
for ϕj < ϕ < π rad. The boundary condition Eq. (13.12) is now replaced by:

φ(η0, χ, ϕ) =
φB
π

{ ∞
∑

q=1

sin(qϕ)

q2

[

sin(qϕj)

π − ϕj
+

sin(qϕi)

ϕi

]

}

. (13.102)

The potential from Eq. (13.102) is represented in Fig. 13.11 with the values ϕi =
9π/10 rad = 2.83 rad and ϕj = 17π/18 rad = 2.97 rad. The equipotentials in
the plane z = 0 are plotted in Fig. 13.12. Fig. 13.13 represents Jefimenko’s
experiment with Fig. 13.12 overlaid on it. The agreement is now even better
than in Fig. 13.10.

Despite this agreement it should be mentioned that Jefimenko’s experiment
has a conducting strip painted on a glass plate. On the other hand, the the-
oretical results presented in Figs. 13.5 and 13.12 represent an equatorial slice
through a three dimensional toroid. As we saw in Chapter 3, Jefimenko, Bar-
nett and Kelly succeeded in directly measuring the equipotential lines inside
and outside a hollow rectangular conductor carrying a steady current. If one
day a similar experiment is performed with a toroid, it will be possible to obtain
a better comparison with the theoretical results of this Chapter.

The solution inside and along the surface of the full solid toroid yields only
an azimuthal electric field, namely, |Eϕ| = ∆φ/2πρ. But even for a steady

current we must have a component of ~E pointing away from the z axis, Eρ,
due to the curvature of the wire. Here we disregard this component due to its
extremely small order of magnitude compared with the azimuthal component
Eϕ. To grasp this, consider a conducting electron of charge −e and mass m
moving azimuthally with drifting velocity vd in a circumference of radius ρ
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Figure 13.11: Fourier expansion of the potential along the conductor surface as a
function of the azimuthal angle ϕ, Eq. (13.102), with φB = πφ0/ϕi. Comparing
this Figure with Figure 13.4 we can observe that the oscillations, as well as the
overshooting, do not appear anymore, as the potential is now continuous for 0
rad ≤ ϕ ≤ 2π rad. We have used ϕi = 9π/10 rad = 2.83 rad and ϕj = 17π/18
rad = 2.97 rad.

around the z axis. In a steady state situation there will be a redistribution
of charges along the cross-section of the toroid creating an electric field Eρ
which will exert a centripetal force on the conduction electrons. By Newton’s
second law of motion we can equate the force eEρ with the mass of the electron
times its centripetal acceleration, in such a way that eEρ = mv2

d/ρ. Suppose
we have a 14 gauge copper wire (r0 = 8.14 × 10−4 m) of 1 m length bent in
a circumference of radius R0 = ρ = (1/2π) m = 1.59 × 10−1 m carrying a
current of 1 A. The drifting velocity is given by vd = 3.55 × 10−5 m/s, the
resistance of the wire is 8.13 × 10−3 Ω and the potential difference created by
the battery is ∆φ = 8.13 × 10−3 V. This yields Eϕ = 8.13 × 10−3 V/m and
Eρ = 4.5 × 10−20 V/m. That is Eρ ≪ Eϕ, which justifies disregarding the Eρ
component of the electric field in comparison with the Eϕ component.

As we saw in Section 6.4, a stationary conductor carrying a steady current
which is uniform over its cross-section generates a charge distribution inside
the conductor. This charge distribution creates a radial electric field inside
the conductor. In steady state there is then an electric force acting upon any
specific conduction electron which is counteracted by the radial magnetic force
that arises due to the movement of the other conduction electrons, the radial
Hall effect. However, this electric field is rather small, (10−5 smaller than the
electric field that maintains the current flowing, supposing a typical copper
conductor with 1 mm diameter and 4 × 10−3 m/s drifting velocity). For this
reason this electric field and the corresponding charge redistribution have been
neglected in these calculations.

In this Chapter we presented a solution for the potential inside and outside
a resistive toroidal conductor carrying a steady azimuthal current. The current
flows in a finite volume of space and the solution obtained here indicates the
existence of the electric field outside the conductor. The theoretical calculations
were compared to the experimental results, indicating a very good agreement.

186



Figure 13.12: Equipotentials in the plane z = 0 for a resistive toroidal conductor
carrying a steady azimuthal current, using Eq. (13.102) as boundary condition
and φB = πφ0/ϕi. The bold circumferences represent the conductor surface
and the bold straight lines represent the angles ϕ = ±ϕi = ±9π/10 rad = 2.83
rad and ϕ = ±ϕj = ±17π/18 rad = 2.97 rad. We have used η0 = 2.187.

Figure 13.13: Jefimenko’s experiment with Figure 13.12 overlaid on it – the
equipotential lines are orthogonal to the electric field lines.
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We also obtained the distribution of charges along the surface of the resistive
ring carrying a steady current, a subject which was first considered by Wilhelm
Weber 150 years ago, as we see in the Appendix. Weber made the first pre-
liminary quantitative calculations related to this problem, and this specific case
has essentially been forgotten these many years. This Chapter can be seen as a
fulfillment of one of Weber’s goals. That is, to derive the distribution of surface
charges in a ring which, together with the battery, creates a constant tangential
electric field for all azimuthal angles inside the ring. We have also succeeded in
deriving the force exerted upon a stationary and external point charge by this
stationary ring carrying a steady current.
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Part IV

Open Questions
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Chapter 14

Future Prospects

In this book we presented the main simple cases which can be treated analyt-
ically. The goal now might be to consider theoretically other situations which
have already been analyzed experimentally. Examples include the current flow-
ing in a disc, Figure 3.7; current-carrying wedges with the two halves connected
in parallel and in series, Figure 3.6; etc. The latter situation is interesting in
order to know quantitatively the correct distribution of charges allowing the
current to bend around a corner. Studies along these lines include Rosser [167],
Jefimenko [240] [176, pp. 302-303] and the book by Chabay and Sherwood [165,
Chapter 6].

Other interesting aspects are connected with the distribution of surface
charges close to the battery and inside it. In Chapters 11 to 13 we discussed this
in the cases of a cylindrical shell, a spherical shell and a ring with azimuthal
currents. Another important discussion for the case of a coaxial cable of fi-
nite size has been given by Jackson [12]. Saslow considered a spherical battery
surrounded by a conducting medium and analyzed the distribution of charges
upon the surface of the battery [241]. The distribution of surface charges close
to a battery in the case of straight conductors carrying steady currents has
been treated for two different configurations in 2004 [205] and 2005 [222]. Other
cases should also be studied quantitatively in different configurations. Although
it might be difficult to obtain detailed information analytically about the distri-
bution of surface charges in a battery of finite size, this might be accomplished
with computer calculations and numerical plots.

It would also be important to analyze cases in which the current is not
generated by a chemical battery, but by the relative motion between a closed
conducting circuit and a magnet, as in the first case considered qualitatively
by Weber and described in the Appendix. Calculations have been performed
relative to the surface charges in the case of a square circuit in the presence of a
variable magnetic flux [242], and also the case of a ring rotating in the presence
of a magnetic field [243]. It would be important to extend the calculations to
other spatial configurations and analogous situations.

Another situation which has received little attention up to now is the dis-
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tribution of charges in resistive conductors carrying steady currents when these
conductors are composed of two or more different materials. That is, the charges
that accumulate on the interface between a conductor and a resistor, or on the
interface of two conductors with different resistivities. Some authors who have
considered this problem include Jefimenko [240], Heald [226], Härtel [244, 245],
Chabay and Sherwood [165, 166], and Jackson [12]. Jackson’s work has an in-
teresting comparison of the distribution of surface charges in a circuit with a
large resistance and in an equivalent open circuit, i.e., with the resistor removed
from the circuit.

Another relevant topic is to consider in detail the behavior of surface charges
and the corresponding external electric field in the transition from steady-
currents to low and high frequency circuits with alternating currents. Important
discussions of this subject have been given by Jackson [12] and Preyer [246]. We-
ber and Kirchhoff’s works related with the telegraphy equation discussed in the
Appendices should also be reconsidered and extended to different cases and
configurations [30, 31].

Beyond these future extensions, there are a number of topics which still
need to be clarified. Consider a stationary point charge close to a stationary
permanent magnet. Is there a net force between them beyond the force due to
electrostatic origin? That is, is there a force depending upon the magnetization
of the magnet, or depending upon the magnetic field it produces? As we have
seen in this book, there is a force between a stationary point charge and a
stationary resistive circuit carrying a steady current. This force is proportional
to the electromotive force of the battery. Is there a similar force between a
stationary magnet and a stationary external charge? In this question we are
not including the force due to electrostatic induction which must exist between
a conducting magnet and the external charge, which is of electrostatic origin
(due to image charges, etc.) The magnet we are considering here has permanent
magnetization. Its magnetic field is due to permanent microscopic or molecular
currents in its interior. The magnet is not connected to a chemical battery and
for this reason it should not have a distribution of surface charges as in the case
of a resistive wire carrying a steady current. In any event this subject should
be better analyzed and careful experiments should be performed to answer this
question.

Analogously, there should not exist an electric field outside a wire made of
a superconducting material if it carries a steady current without any external
source of electromotive force, i.e., if there is no battery connected to the wire.
As this wire has no resistance and is not connected to any battery, there should
be no electric field outside the wire (except for the zeroth order electric field if
we approach a test charge to the wire). But it should be emphasized once more
that only experiments can decide this question.

A possible connection between the external electric field around a resistive
cylindrical conductor carrying a steady current and the Aharonov-Bohm effect
was discussed in 2001 [247]. Although this idealized infinite conductor will
not produce any external magnetic field, it will produce an external electric
field if the solenoid is connected to a chemical battery. This electric field is
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not considered by most authors, as they are unaware of its existence. For this
reason none of them considered the influence of this steady electric field in the
Aharonov-Bohm effect, taking into account only the magnetic vector potential.
The goal of our paper was to call attention to this external electric field for the
analysis of the Aharonov-Bohm effect.

In this book we have shown that a force must exist between a point charge
and a resistive wire carrying a steady current when they are at rest relative to
one another. It has been shown theoretically that this force (or the electric field
outside the wire) is proportional to the emf of the battery. But it is still necessary
to show experimentally the proportionality between this force and the voltage
of the battery. This proportionality should appear according to the calculations
presented here. They have yielded qualitative agreement with the experiments
of Bergmann, Schaefer, Jefimenko, Barnett and Kelly relating to equipotentials
and electric field lines. But we are not not aware of any experiment showing
directly the proportionality between this force and the voltage generated by the
battery.

Another crucial question which still needs to be settled empirically is related
to the second order electric field (proportional to the square of the current, or
to the square of the drifting velocity of the mobile electrons). Alternatively we
might ask if there is a second order force between a stationary charge and a sta-
tionary wire carrying a steady current. This electric field and the corresponding
force produced by it upon stationary charges are usually much smaller than the
electric field and forces discussed in this book (proportional to the voltage of
the battery). For this reason it is difficult to decide unambiguously whether
this effect exists. Experiments to decide this question should be performed sep-
arately, considering three cases: (1) resistive wires connected to batteries and
carrying steady currents, (2) superconductors carrying steady currents without
any external source of electromotive force, and (3) permanent magnets. It may
happen that this second order electric field exists (or does not exist) for all three
cases. It may also be that it exists for one or more of these cases, but not for
the other case(s). These three cases must be considered independently from one
another. The theoretical analysis of the experiments must take into account
the force due to electrostatic induction (zeroth order electric field) and also the
component of the electric field discussed in this book proportional to the emf
of the battery (for the case of resistive conductors). This is not a simple task
in complicated configurations. It is essential to be extremely careful with all
possible influences in order to avoid misleading conclusions.

Another topic which has not been treated in this book is the convenience
and importance of the surface charges and of microscopic aspects of current
conduction for the understanding of the macroscopic phenomena associated with
circuits carrying steady currents. This subject has great conceptual and didactic
relevance. Several studies relating to the teaching of electromagnetism have been
developed through an exploration of this topic, as applied to high school and to
university courses [164, 244, 245, 248, 211, 165, 171, 249, 250, 166].

This book has shown how a very simple question of basic electromagnetism
has been answered incorrectly by many important authors along several decades.
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This has had a negative influence on the development of the subject for more
than a century, and created many prejudices which are very difficult to eliminate.
We should try to avoid the same mistake in the future. This was one of our
reasons for writing this book.

Another goal was to obtain the densities of charges spread upon the surfaces
of resistive conductors carrying steady currents in several configurations. For
long, straight conductors it was shown that these surface densities are a linear
function of the longitudinal coordinate. For curved conductors, on the other
hand, they grow faster than linearly along the length of the conductor, increasing
their magnitude toward both extremities of the battery. All of this can indeed
be understood in terms of electrodynamical principles. Following French in the
last page of his didactic book Newtonian Mechanics [251, p. 700], the best way
to close this work is with a simple and fair statement, namely: “But Weber got
there first!”
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Appendix A

Wilhelm Weber and Surface

Charges

Wilhelm Eduard Weber (1804-1891) was one of the first to mention and ana-
lyze quantitatively the surface charges in resistive conductors carrying steady
currents. Here we discuss some parts of his papers dealing with this topic. In
Section 1.4 we presented some important aspects of his life and work, quoting
the publication of his collected papers and all of his works which have been
translated into English.

Weber wrote eight major memoirs between 1846 and 1878 under the gen-
eral title Electrodynamic Measurements, or Determination of Electrodynamic
Measures (the eighth memoir was published only posthumously in his collected
papers).

The work which we discuss here is the second memoir of this series, published
in 1852: Electrodynamic Measurements Relating Specially to Resistance Mea-
surements [32]. To the best of our knowledge this work has never been translated
into English or any other language. What we quote here is our translation. The
paper is divided into six parts and has five extra appendices. What interests us
here is the fifth part, which extends from Section 28 to Section 36 (pp. 368 to
405 of Vol. 3 of Weber’s Werke [38]): On the Connection of the Theory of the
Galvanic Circuit with the Electrical Fundamental Laws. Between square brack-
ets we offer our interpretation of expressions or sentences from Weber. We have
produced the figures presented in this Appendix in order to illustrate Weber’s
reasoning. The footnotes presented here are also ours.

Section 28 begins with the statement that until then there was no devel-
opment of the relation between the theory of the galvanic current [Ohm’s law]
and the electrical fundamental laws [Coulomb’s force], as these two subjects
were treated independently from one another. He says that the main reason for
this separate treatment lies in the mathematical difficulty of connecting the two
subjects in a complete manner.1 His goal is to discuss some aspects which can

1An example of this mathematical difficulty can be seen in Chapter 13 of this book, a
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lead to a connection between both subjects. He mentions Ohm’s law, valid for
steady currents, relating the current intensity, the resistance and the electro-
motive force (or electro-motor force) [due to a chemical battery, for instance].2

He remarks that Ohm tried to base his law on the variable volume density of
charges in the conductor, in analogy with Fourier’s treatment of the propaga-
tion of heat based on the variable distribution of the temperature inside a body.
That is, in a region of the wire carrying a steady current where there is no elec-
tromotive force (no point of contact between two different metals, for instance),
the force moving the charges against resistance would be due to a gradient in
the volume density of charges.3 Weber states that Ohm found the key to explain
the law of the galvanic circuit based upon the distribution of electric charges
in the conductor. On the other hand, he mentions that Ohm’s approach is in
contradiction with the fundamental laws of electrostatics, according to which
free electricity can exist only along the surface of a conductor. Weber mentions
that the same must be true in the case of a galvanic circuit with steady current,
even disregarding the relative motion between the interacting charges. While
the local temperature gradient is a necessary condition for the local propagation
of heat, the same does not need to be true for charges, as they act at a distance.

Weber then considers an interesting example of a stationary homogeneous
closed copper ring with overall equal cross-section. He imagines a magnet mov-
ing along the axis of the ring, perpendicular to its plane. See Figure A.1. Weber
had already considered briefly this situation in his first major Memoir of 1846,
[137, p. 203 of the Werke]. According to Weber the magnet will exert the same
electromotive force in all elements of the ring. As all elements have the same
resistance, the electromotive force will produce the same current in all of them.
In this case there will not appear any accumulation of charges in any place of
the ring.4 According to Weber, only when there is a difference of the action
of the electromotive force in different parts of the circuit there will appear ac-
cumulation of charges.5 The effect of the distribution of free electricity along
the surface of the wire will be to equalize [in all parts of the wire] the action
of the electromotive force [due to the contact of two different metals or due to

situation which Weber also considered quantitatively in his memoir, as we will see.
2In some examples it is possible to understand Weber’s elektromotorische Kraft as poten-

tial difference or as electromotive force (emf) around a complete circuit carrying a steady
current. On the other hand, in other situations it seems that Weber refers to the longitudinal
component of the electric field driving the conduction charges along a wire carrying a steady
current. The electric force associated with this electric field acts in the opposite direction of
the resistive frictional force exerted upon the conduction electrons by the crystaline lattice of
the metal.

3This can be seen in pp. 402 and 418 of Ohm’s work [252].
4For an experimental proof of this fact, see the interesting paper of Moreau and collabora-

tors [184]. The relative motion between the magnet and the circuit drives the current around
the ring due to a non Coulomb force. In this case there is no potential difference between any
two points on the ring [204].

5This will be the case, for instance, when there is steady current in a resistive wire connected
to a chemical battery. The electromotive force of the battery acts mainly inside itself and in
the region close to its surface, so that along the other parts of the wire there must be forces
of another origin moving the mobile charges against resistive forces.
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a chemical battery, this electromotive force having differing intensities in dif-
ferent portions of the circuit]. Weber then states that two things remain to be
shown: (1) how this distribution of free electricity is possible according to the
fundamental electrical laws, and what its properties should be, 6 and (2) how
the surface charges arise and are maintained.

Figure A.1: Magnet moving along the axis of a copper ring. According to Weber
the magnet will exert the same electromotive force in all elements of the ring.

Section 29 is entitled “Proof of the possibility of a distribution of the free
electricity in a conductor, through which is balanced the difference in the ac-
tion of given electromotive forces in different parts of the circuit according to
the proportionality of their resistances.” He begins by considering particles of
free electricity along the surface of a conductor exerting electromotive forces [in
this case electrostatic forces due to Coulomb’s law] upon all charged particles
of the conductor. These forces due to surface charges will decrease or increase
the electromotive forces of the circuit [due to a chemical battery, for instance].
He then asks if a distribution of surface charges is possible such that the [net]
electromotive forces [that is, the resultant electric field due to the chemical bat-
tery and to the surface charges] will be equilibrated in all parts of the circuit
in proportion with the resistance of these parts. Disregarding the effect of the
relative motion between the charges [relative motion between the conduction
charges and the ions of the lattice], Weber mentions that this question must be
answered based upon the fundamental law of electrostatics. He then mentions
the theorem proved by Poisson that there is one and only one possible distri-
bution of charges on the surface of a conductor which equilibrates the electric
forces exerted by external charges.

He then applies this theorem conceptually to a cylindrical conductor acted
upon by an external point charge along its axis, at a great distance from the
cylinder. See Figure A.2. This external charge exerts essentially the same axial
electrostatic force on all charges of the cylinder. There will be a redistribution

6That is, how is it possible to derive from Coulomb’s force the distribution of the surface
charges which will equalize the electric field in all points inside the resistive wire.
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of charges along the surface of the cylinder, creating an opposite electric field
and canceling this external force at all internal points of the cylinder. If we now
consider the presence of this fixed distribution of surface charges, without the
presence of the external point charge [that is, as if the surface charges had been
glued upon the surface of the cylinder and later on the external point charge
were removed], there will be an axial electromotive force acting on all points of
the cylinder.7

Next he considers a curved cylinder [like a piece of a ring in the form of
an arc of a circle] and a point charge at a great distance from it, along the
tangent to one element of the arc. This external point charge exerts a uniform
force along the tangent of the arc, which is equilibrated by the force due to the
distribution of surface charges in the curved cylinder. When this distribution of
surface charges is kept fixed at their places [by the application of other external
forces to them] and the external point charge is removed, only the longitudinal
electromotive force [acting upon all charges of the cylinder] due to the surface
charges will remain. He then generalizes this to all elements of the curved
cylinder such that the surface charges on any specific element will be a function
of the surface charges on all other elements of the arc.

Figure A.2: Point charge q along the axis of a finite cylindrical conductor,
at a great distance from it. This external charge exerts essentially the same
electrostatic axial force upon all charges of the cylinder. In equilibrium there
will be an electrical polarization of the cylinder, with the charges along its
surface canceling exactly, at all internal points of the cylinder, the electric field
due to the external charge.

He then imagines this curved cylinder making a circle, like a ring, with a
small separation between the initial and final cross-sections of the ring. Weber
shows that these two surfaces should not touch one another; otherwise there
will be an infinite amount of opposite charges on these surfaces (supposing a
uniform tangential electromotive force acting on all points of the ring). He calls
δ the distance between the extremities of the open ring and ±e the charges of
two elements of these opposite faces. Utilizing Coulomb’s law he shows that the
force on a test charge inside the ring due to the two opposite faces is proportional
to δe. As he wants this electromotive force [or electric field, as we would say
today] to remain constant as δ → 0, it is necessary that simultaneously e→ ∞,
which was what he wanted to prove. The electromotive force along the ring is

7He has proved in this first simple case that there is a distribution of surface charges which
exerts an equal longitudinal force on all points of a cylinder, although he did not explicitly
attempt to calculate the distribution of surface charges in this specific example.
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then also proportional to δe. In the open region between the two extremities the
electromotive force due to the charges in the end surfaces points in a direction
opposite to the direction of the electromotive force acting on a test charge inside
the ring and close to the extremities. He concludes that if we want the same
electromotive force [net electric field] at all points of the closed ring, then in
the region between the extremities it is necessary for an electromotive force
to act, independent of the distribution of surface charges [that is, a force of
non-electrostatic origin]. As an example of such a force he mentions the case
of copper and zinc touching one another [we might also mention the case of a
chemical battery].

He draws three conclusions from these considerations:
1. It is not possible to have [steady] current in a closed ring due only to a

distribution of surface charges on the ring. It is necessary to have an electro-
motive force of different origin in at least one cross-section of the ring (like the
contact of copper and zinc).8

2. The current in a circuit is proportional to the density of surface charges
along the circuit.9 The electromotive force is proportional to δe and to the
current in the circuit.

3. When we double all dimensions of a circuit but keep the same electro-
motive force, then the density of surface charges should remain constant, even
though the surface area is four times the previous one.10 At the same time it
follows that when we double all dimensions of a circuit, the distance δ should
also double, but when the charge e remains constant, the electromotive force
proportional to δe should also double. This double electromotive force requires
the same motion [velocity] of the charges in a circuit with doubled dimensions,
as [the velocity] in a circuit of simple length and cross-section. But this same
motion [velocity] generates four times the current in a circuit with doubled di-
mensions (and four times the [area of the] cross-section). That is, a doubled
electromotive force generates, in a circuit of doubled length and four times the
cross-section [in comparison with the simple original circuit], a current four
times larger, which is in agreement with the laws of the galvanic circuit.

Section 30 is entitled “On the law of the distribution of the free electricity

8This is similar to the theorem that
∮

~E · d~ℓ = 0, where ~E is the electrostatic field of

Coulomb’s law, d~ℓ is an element of length and the line integral is over a closed circuit of
arbitrary form. That is, in order to have an electromotive force driving a current around a
closed resistive circuit it is necessary to have a source of non-electrostatic origin. See Section
5.1.

9An example of this general conclusion can be seen in Eq. (6.17) for the case of a straight
wire. Combining it with Eq. (6.2), σ(z) = σA+σBz/ℓ, yields: I = −(aσB/Rε0) ln(ℓ/a). That
is, I is directly proportional to σB , as Weber concluded.

10From Eqs. (6.2), (6.14) and with the electric field (Weber’s electromotive force in this
case) given by E1 = ∆φ/ℓ = RI/ℓ we obtain:

σB =
ε0E1

ln(ℓ/a)

ℓ

a
. (A.1)

That is, σB is proportional to E1 and to (ℓ/a)/ ln(ℓ/a). If at the same time we double ℓ
and a, keeping a constant E1, then σB will remain constant. This is an example of Weber’s
conclusion.
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over the surface of a conductor carrying a constant and uniform current.” For a
linear conductor he says that we can consider the surface charges as distributed
along its axis.11 He shows this considering a cylindrical conductor of length 2λ
with a circular cross-section of radius α≪ λ. See Figure A.3.

Figure A.3: Cylindrical conductor of length 2λ and radius α ≪ λ. In the case
of steady currents, the surface charge density is linear with the longitudinal x
component, i.e., proportional to a+ bx.

He considers initially that in the case of a steady current the density of
surface charges is linear with the longitudinal x component, i.e., proportional
to a+ bx.12 He integrates the longitudinal electromotive force [our electric field
along the direction of the axis] due to these surface charges acting on a point
located at the origin (the center of the cylinder), obtaining the result (supposing
λ≫ α):

∫ λ

x=−λ

2πα(a+ bx)xdx

(α2 + x2)3/2
≈ 4παb

(

logλ− log
eα

2

)

, (A.2)

where e = 2.7183 is the natural logarithm base.13

He then shows that the same result is obtained when we consider all the
surface charges distributed along the axis of the cylinder, integrating from x =
−λ to x = λ, with the exception of the region between x = −eα/2 and x = eα/2.
See Figure A.4.

That is, he was able to derive Eq. (A.2) by assuming all surface charges
concentrated along the axis of the wire and calculating the longitudinal electric
field at the origin integrating from x = −λ to x = −eα/2 and from x = eα/2
to x = λ.14

11That is, the actual force exerted by the free charges distributed along the surface of a
cylindrical conductor carrying a steady current upon a test charge can be replaced by the
force upon this test charge due to an appropriate distribution of charges along the axis of the
cylinder.

12Weber’s 2λ and α are equivalent, respectively, to our ℓ and a of Figure 6.1. Weber’s a+bx
is equivalent to our σ(z) = σA + σBz/ℓ, Eq. (6.2).

13This result is equivalent to Eq. (6.12), namely, E1 = (aσB/ℓε0) ln(ℓ/ea). All results
obtained by Weber in this Section can be put in the international system of units by dividing
them by 4πε0. Weber’s log has base e, which means that his log can be written as our ln.
In Chapter 6 we first calculated the potential by integration, and then the electric field by
~E = −∇φ. Here Weber has integrated the electric field directly. The final result was the
same, as expected.

14 In other words, he considers the line having a linear charge density given by 2πα(a+ bx).
He considered the test charge at the origin. This is a very interesting technique which greatly
simplifies the integrations. We have checked his integration and it is correct.

We now generalize his calculation to obtain the longitudinal electric field at an arbitrary
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Figure A.4: Weber considered now all surface charges distributed along the
axis of the cylinder of length 2λ. According to Weber, the linear integration
that yields the same electric field at the origin as that given by Figure A.3
and Eq. (A.2), now runs from x = −λ to x = λ, except in the region between
x = −eα/2 and x = eα/2.

point x′, Ex′(x
′):

Ex′(x
′) =

(

∫ x′−eα/2

x=−λ

+

∫ λ

x=x′+eα/2

)

2πα(a + bx)(x′ − x)dx

[(x′ − x)2]3/2

= −2πα

[

b ln
4(λ2 − x′2)

e2α2
−

2(a + bx′)x′

λ2 − x′2

]

. (A.3)

At x′ = 0 this yields Weber’s result, namely

Ex′(0) = −4παb ln
2λ

eα
. (A.4)

We now present an alternative way of obtaining the electric field. This alternative procedure
will be followed by Weber in the calculation of the ring, as we will see shortly.

If he had wished to obtain the electric field from the potential, he would have had to
calculate the potential at a generic point x′ (and not only at the origin x′ = 0). The integrals
would need to go from x = −λ to x = x′ − eα/2 and from x = x′ + eα/2 to x = λ. Let us
write as Φ(x′) the function which would represent the potential at x′ calculated in this way
(later on we show that it is different from the real potential φ(x′)). With a charge element
dq = 2πα(a + bx)dx we would obtain:

Φ(x′) =

(

∫ x′−eα/2

x=−λ

+

∫ λ

x=x′+eα/2

)

2πα(a + bx)dx
√

(x′ − x)2

= 2πα

[

(a + bx′) ln
4(λ2 − x′2)

e2α2
− 2bx′

]

. (A.5)

From this expression we obtain

−
∂Φ(x′)

∂x′
= −2πα

[

b ln
4(λ2 − x′2)

e2α2
−

2(a + bx′)x′

λ2 − x′2
− 2b

]

. (A.6)

And this is different from the electric field given by Eq. (A.3)! For instance, in the limit
when x′ → 0 Eq. (A.6) yields −4παb ln(2λ/e2α). And there is a difference of 1/e inside the
logarithm as compared with the previous result which Weber obtained by direct integration
of the electric field.

That is, although in general ~E = −∇φ, in this particular case we did not obtain Ex′(x
′) =

−∂Φ(x′)/∂x′, as might be expected. The origin of this difference is not easy to locate but
we need to clarify it before proceeding. Everything is due to Weber’s peculiar approximation
method when we calculate Ex′(x

′) or Φ(x′). In this method the location of the point of
observation, x′, appears not only in the integrand, but also in the limits of the integrals.
The problem arises from the following mathematical result, valid for arbitrary functions and
variables [253, p. 44]:

∂

∂α

∫ x=g(α)

x=f(α)

F (α, x)dx =

∫ x=g(α)

x=f(α)

∂F (α, x)

∂α
dx
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Next he goes to his main calculation. He replaces the straight cylindrical
conductor with a toroidal one, like a ring conducting an azimuthal current. He
calls the greater radius of the ring r and its smaller radius α, supposing α≪ r.
He considers the electrostatic potential null at the azimuth angle ψ = π rad and
discontinuous at ψ = 0 rad. See Figure A.5.

Figure A.5: Conducting ring with greater radius r and smaller radius α, with
α ≪ r. The potential is discontinuous at ψ = 0 rad and null at ψ = π rad.
Weber wants to calculate the tangential electric field, Eψ, at the angle ψ, Eψ(ψ).
The angle ϕ is the variable angle of integration.

That is, the potential F (ψ) [represented by Weber as Fψ] is such that F (0) =
−F (2π).15 It is then given by F (ψ) = c(ψ−π), where [F (2π)−F (0)]/2πr = c/r
is the value of the tangential electromotive force [our electric field] assumed
constant along the ring. He utilizes his linear approach in order to calculate, in

+

{

∂g(α)

∂α
F [α, g(α)] −

∂f(α)

∂α
F [α, f(α)]

}

. (A.7)

In order to arrive at Eq. (A.3) beginning with Eq. (A.5) we would need to utilize the
following expression (obtained from Eq. (A.7)):

Ex′(x
′) = −

∂Φ(x′)

∂x′
+
∂(x′ − eα/2)

∂x′
2πα[a + b(x′ − eα/2)]
√

[x′ − (x′ − eα/2)]2

−
∂(x′ + eα/2)

∂x′
2πα[a + b(x′ + eα/2)]
√

[x′ − (x′ + eα/2)]2

= −
∂Φ(x′)

∂x′
− 4παb . (A.8)

And this equation coincides with Eq. (A.3) if we utilize Eq. (A.6). This is the correct
approach if we wish to obtain the electric field E(x′) utilizing Weber’s approximate method
and beginning with an equivalent to a potential function. That is, we need to follow this
approach if we begin with the function Φ(x′) and wish to obtain E(x′) by differentiation. We
will return to this point when considering Weber’s next calculation.

15At ψ = 0 rad there should be the point of contact between copper and zinc, or a chemical
battery, or another non-electrostatic source of electromotive force. Weber’s α, r and F are
equivalent to our r0, R0 and φ, respectively. See Fig. 13.1.
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a general way, the electrostatic potential at the angle ψ along the ring due to all
surface charges, integrating from from ϕ = ψ+ eα/2r to ϕ = 2π+ψ− eα/2r.16

He calls fϕdϕ the amount of free electricity in the arc element rdϕ, where
fϕ is the angular density of free charge (it is not yet specified whether this
charge density is a linear function of the angle ϕ). That is, fϕ is the angular
density of free electricity along the ring as a function of the azimuth angle ϕ.
[From now on we will call it f(ϕ). That is, f(ϕ) has units of charge per angle, or
Coulomb per radian in the SI.] He mentions that according to Ohm’s hypothesis,
the density of charges along a uniformly resistive conductor should be a linear
function of the length along the circuit.17 As we have a ring this would imply,
according to Weber, that the angular density of charges should be given by
f(ϕ) = a(ϕ− π).18 Weber then decides to test if this linear hypothesis is valid
for a ring.

Instead of calculating the electric field directly, as he had done in the case of
a linear conductor, he decided to calculate the electrostatic potential.19 To this
end he divides the circumference of radius r into two parts, ABD and DCA.
See Figure A.6.

The points A, B, D and C are located at ϕ = 0 rad, ϕ = ψ (where he wants

16That is, instead of performing an integration over the surface of the ring, he performs only
a linear integration replacing the ring by a circumference with an appropriate linear charge
density. He calculates the potential at the angle ψ, where the test charge will be located. His
integration can be thought of as going from ϕ = 0 rad to ϕ = π rad, except for the region
between ψ − eα/2r and ψ + eα/2r.

17This can be seen in p. 456 of Ohm’s work [252].
18 It should be observed that the a here has no relation with the a of the previous surface

charge density of a cylinder given by a+bx. Weber’s approach is analogous to the one utilized
in Chapter 6. That is, he supposes a distribution of source charges and from them calculate
the potential and electric field. The approach utilized in Chapter 13 was the opposite. In
Chapter 13 it was given the potential along the surface of the conductor, Laplace’s equation
was solved, yielding the potential everywhere in space. Then the electric field was obtained as
minus the gradient of the potential. And finally the surface charges were obtained by applying
Gauss’s law at the interface between the conductor and the external medium. For the ring
we obtained a density of surface charges given by Eq. (13.63). Far from the battery this is
reduced to Eq. (13.65), namely, σ(ϕ) = σA+ σBϕ/2π. Far from the battery the linear charge
density which we obtained was given by Eq. (13.74). Weber’s angular density of charges, f(ϕ),
is given by R0 times the linear charge density. That is (far from the battery and utilizing
η0 ≫ 1, a ≈ R0, a/ sinh η0 = r0 and cosh η0 = R0/r0):

f(ϕ) = R0

(

λA + λB
ϕ

2π

)

= 2πr0R0

(

σA + σB
ϕ

2π

)

= 2πR0ε0

[

φA

ln(8R0/r0)
+ g(η0)φB

ϕ

2π

]

. (A.9)

Comparing this expression with Weber’s expression, f(ϕ) = a(ϕ−π), we find that Weber’s
a is equivalent to our r0R0σB = R0ε0g(η0)φB .

19In principle he would need to integrate

Φ(ψ) ≡
[
∫ ψ−eα/2r

ϕ=0

+

∫ 2π

ϕ=ψ+eα/2r

]

a(ϕ− π)dϕ

r
√

2
√

1 − cos(ψ − ϕ)
. (A.10)

However, if he tried to perform this direct integration he would end up needing to evaluate
∫

xdx/ sinx. The solution of this indefinite integral yields an infinite series, namely [203, p.

233]:

203



Figure A.6: Weber’s configuration to integrate the potential.

to know the value of the potential), ϕ = 2ψ and ϕ = ψ + π, respectively. In
order to calculate the potential at B due to the charges spread along the arc
ABD, with the exception of the small arc eα/r around B, he considers two
charge elements symmetrically located around B, at angles ±χ from B. The
charge elements located at ϕ = ψ ± χ, in elementary arcs of length rdχ, are
given by a(ψ±χ− π)dχ. Each of these charge elements is at the same distance
2r sin(χ/2) from B. By adding the contributions of these two charge elements
he obtains the differential potential at B as given by a(ψ − π)dχ/r sin(χ/2).
This was a very good idea in order to avoid the integral of xdx/ sinx. After
integration he obtains the potential

a(ψ − π)

r

∫ ψ

χ= eα
2r

dχ

sin χ
2

=
2a(ψ − π)

r

(

log tan
ψ

4
− log tan

eα

8r

)

. (A.12)

To obtain the potential at B due to the charges located around the arc
DCA he proceeds in a similar way. He considers two charge elements located
symmetrically around C, at angles ±χ from C. Relative to A these two charge
elements are located at ϕ = ψ+π±χ. Both are at the same distance 2r sin[(π−
ψ)/2)] from B. The potential due to the sum of these two charge elements
calculated at B is then given by aψdχ/r cos(χ/2). After integration he obtains

aψ

r

∫ π−ψ

χ=0

dχ

cos χ2
= −2aψ

r
log tan

ψ

4
. (A.13)

∫

xdx

sinx
= x+

∞
∑

k=1

(−1)k+1 2(22k−1 − 1)

(2k + 1)!
B2kx

2k+1 . (A.11)

It is difficult to put this infinite series in closed form.
Instead of solving this integral directly, Weber utilizes an ingenious approach by taking

advantage of the symmetrical distribution of charges along the circumference, as we will show
below. In this way he avoids this integral.
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By adding Eqs. (A.12) and (A.13) he obtains the total potential at ϕ = ψ
as given by20

−2aψ

r
log tan

eα

8r
− 2aπ

r

(

log tan
ψ

4
− log tan

eα

8r

)

. (A.15)

By making the derivative of this expression with respect to the arc rψ,
namely, d/rdψ, Weber obtains the following expression for the magnitude of
the tangential component of the electromotive force [the absolute value of our
electric field] at the angle ψ due to all surface charges along the ring, except for
the charges in the arc eα/r around ψ:

−2a

r2
log tan

eα

8r
− aπ

r2 sin(ψ/2)
. (A.16)

That is, Weber initially calculated the potential at the angle ψ as given by
Eq. (A.14). He then obtained absolute value of the tangential component of the

20 This final value obtained by Weber can be written as

Φ(ψ) ≡
[
∫ ψ−eα/2r

ϕ=0

+

∫ 2π

ϕ=ψ+eα/2r

]

a(ϕ − π)dϕ

r
√

2
√

1 − cos(ψ − ϕ)

= −
2aψ

r
log tan

eα

8r
−

2aπ

r

(

log tan
ψ

4
− log tan

eα

8r

)

. (A.14)
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electric field at ψ as given by Eψ(ψ) = dΨψ(ψ)/rdψ, obtaining Eq. (A.16).21

He then mentions that this value is approximately constant only for ψ ≈
π rad, i.e., far from the point of discontinuity in the potential [far from the
battery]. When we are close to ψ = 0 rad or to ψ = π rad, the magnitude
of this longitudinal electromotive force is smaller than its magnitude at ψ = π
rad. He concludes that Ohm’s hypothesis is only valid for the middle part of
the circuit (that is, for ψ ≈ π rad).

He mentions that it is then also necessary to consider the charges which are
located in the cross-sections of the ring where there is a discontinuity in the
potential, charges which had not been considered by Ohm. He calls ±ε the
amount of these opposite surface charges (which he considers in his simplified
model as concentrated at points) and δ the small distance separating them. See
Figure A.7.

After calculating the absolute value of the longitudinal electromotive force
[that is, the tangential electric field along the ring] acting at the angle ψ due to
this dipole, Weber obtains the result22

21Weber could have obtained the tangential component of the electric field by direct inte-
gration. That is,

Eψ(ψ) =

(
∫ ψ−eα/2r

ϕ=0

+

∫ 2π

ϕ=ψ+eα/2r

)

a(ϕ− π) sin(ψ − ϕ)dϕ
√

8r2[1 − cos(ψ − ϕ)]3/2

=
2a

r2
ln tan

eα

8r
+

aπ

r2 sin(ψ/2)
−
eαa

2r3
1

sin eα
4r

. (A.17)

The last term on the right hand side does not appear in Weber’s expression, Eq. (A.16).
This is due to the same problem discussed in footnote 14.

In order to arrive at Eq. (A.17) beginning with Eq. (A.14) and taking into account Eq. (A.7),
Weber should have utilized:

Eψ(ψ) = −
1

r

∂Φ

∂ψ
+

∂(ψ − eα/2r)

∂ψ

a(ψ − eα/2r − π)

r2
√

2
√

1 − cos(ψ − (ψ − eα/2r))

−
∂(ψ + eα/2r)

∂ψ

a(ψ + eα/2r − π)

r2
√

2
√

1 − cos(ψ − (ψ + eα/2r))

= −
1

r

∂Φ

∂ψ
−

eαa

2r3 sin eα
4r

. (A.18)

And this coincides with Eq. (A.17) based on Eq. (A.14).
At ψ = π rad and with α≪ r we obtain from Eq. (A.17):

Eψ(ψ = π rad) ≈
2a

r2

(

ln
α

8r
+
π

2

)

. (A.19)

Utilizing Weber’s a as our r0R0σB (as we saw in footnote 18) and also his α and r as our
r0 and R0, respectively, the latter equation can be written as (dividing the right hand side by
4πε0 in order to obtain the electric field in the international system of units):

Eψ(ψ = π rad) ≈ −
r0σB

2πε0R0

(

ln
8R0

r0
−
π

2

)

. (A.20)

22 We have checked this result and it is correct. There should be an overall minus sign in
front of this expression if we wish to express the algebraic value of the tangential electric field
due to this dipole.
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Figure A.7: Simplified model proposed by Weber to consider the opposite sur-
face charges ±ε in the discontinuity of the potential, separated by a small dis-
tance δ.

1 + cos2(ψ/2)

sin3(ψ/2)

δε

8r3
. (A.21)

To find δε he considers the value of the net electromotive force [due to
the surface charges along the ring and due to the dipole at the discontinuity].
He specifies that this net electromotive force should be almost constant with
ψ. That is, he chooses δε such that the second and third derivatives of the
electromotive force with regard to the azimuthal angle ψ go to zero at ψ = π
rad. With this condition he obtains23

δε =
8aπr

5
. (A.22)

Combining Eqs. (A.21) and (A.22) with the previous result arising from Ohm’s
linear hypothesis yields as the final result:24

2a

r2
log cot

eα

8r
+

2aπ

5r2 sin3(ψ/2)

(

3 cos2
ψ

2
− 2

)

. (A.24)

In this case the absolute value of the electromotive force for ψ 6= π rad is
greater than its absolute value at ψ = π rad, while with only Ohm’s linear
hypothesis he had found that the electromotive force was smaller for ψ 6= π

23This result is also correct.
24Combining Eq. (A.22) with the negative of Eq. (A.21), as we discussed in footnote 22,

together with Eq. (A.17), we obtain:

Eψ(ψ) =
2a

r2
ln tan

eα

8r
+

aπ

r2 sin(ψ/2)
−
eαa

2r3
1

sin eα
4r

−
aπ

5r2
1 + cos2(ψ/2)

sin3(ψ/2)
. (A.23)
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rad than at ψ = π rad. He then concluded [32] [38, p. 382] (our words in
square brackets): “The correct hypothesis about the distribution of the free
electricity, from which should result an equal electromotive force [tangential or
longitudinal electric field] in all parts [along the ring] is then contained between
both hypotheses above, which means the same as: the [surface] electric charge of
the circuit increases from the neutral point [ψ = π rad, opposite to the battery]
to the contact point [ψ = 0 rad, where there is contact between copper and zinc,
or the chemical battery, or another non-electrostatic source of electromotive
force] not uniformly, but accelerates gradually.”25 He goes on to write: “The
everywhere equal electromotive force which follows from this [analysis] will be
situated presumably between the two limiting values given by the hypotheses
above, namely

2a

r2

(

log cot
eα

8r
− π

2

)

(A.25)

and

2a

r2

(

log cot
eα

8r
− 2π

5

)

. (A.26)

The factor a is related to the slope of the [surface] electric charge in the
middle of the circuit [ψ = π rad], when slope is understood, according to Ohm,
as the differential quotient of the charge fϕ [that is, charge per angle f(ϕ)] in
relation to the arc ϕ [in other words, a = df/dϕ].”

In Section 31 Weber presents a mathematical method to estimate the dis-
tribution of surface charges in a linear conductor (that is, a filiform conductor
which can be straight or curved) carrying a steady current, in different cases.
His method can also yield an estimation of the magnitude of the correspond-
ing electric field inside the conductor produced by this distribution of surface
charges.

Section 32 is called “Proof of how a necessary distribution of free electricity
on the surface of a closed conductor arises when it carries a steady and uniform
current.” He considers a closed circuit with only one point acted upon by an
electromotive force [like the contact of copper and zinc]. Only the charges in this
point will begin to move, but according to Weber, this will cause a distribution of
free charges along the whole conductor. And there will be a specific distribution
of free charges which will create an electromotive force [electric field] at all
other points of the circuit, allowing it to carry a steady current. He goes on to
mention that this distribution of surface charges does not produce electrostatic

25That is, he concluded that the surface charge density along the resistive ring carrying
a steady current grows linearly with the azimuthal angle ψ only close to ψ = π rad, i.e.,
opposite to the battery. When we approach the battery the density of surface charges must
grow faster than linearly with the azimuthal angle ψ, in order to produce a uniform tangential
electric field at all points along the ring. That is, the surface charge density cannot increase
as a function of ψ simply as σ = C1 + C2ψ. If it did increase linearly with ψ, the magnitude
of the tangential electric field would not be constant at all points along the ring. This is a
remarkable prediction confirmed by our calculations in Chapter 13. See specially Figure 13.7.
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equilibrium, otherwise the net electric force at any point along the surface of the
conductor would be orthogonal to the conductor. He says that this distribution
of surface charges will create both a normal component of the electric force at
the surface [of the conductor], and a tangential component. This means, in
Weber’s view, that the free charges along the surface of the conductor carrying
a steady current cannot be stationary, but must participate in the motion of the
internal current. But he also shows that the motion does not imply a temporal
variation of this distribution of surface charges. That is, this distribution will
not change with time for steady currents, as at any section along the surface
there will be an equal amount of charges entering and leaving the section. [The
density of surface charges will then be a function of the longitudinal coordinate
only, and not a function of time.]

In Section 33 he mentions that during the printing of his work, Kirchhoff’s
paper dealing with the same subject was published [24] (this paper has been
translated into English [27]). We discuss this paper in the next Appendix.
Weber quotes the final section of Kirchhoff’s paper. This Section of Weber’s
work is important to indicate that Weber and Kirchhoff arrived at essentially
the same ideas independently of one another, both trying to improve upon
Ohm’s work and hypotheses. But Weber was the only one who attempted to
calculate explicitly the distribution of surface charges in specific configurations.

Section 34 is called “To determine, through a comparison of electromotive
and galvanometric observations of a galvanic circuit, the relative velocity be-
tween two electrical masses in which no attraction nor repulsion arises.” Weber
derives here a theoretical relation of the fundamental constant which appears in
his law of force (1846), with the current, resistance and electromotive force in
a circuit carrying a steady current. According to Weber’s force law, Eq. (1.1),
when two charges approach or separate from from one another with a constant
relative velocity ṙ =

√
2c (with the modern nomenclature that c = 3×108 m/s),

they will not affect one another, regardless of the signs of the charges. That is,
the Coulombian component of the force will be balanced by the velocity com-
ponent, yielding zero net force between them. Only in 1855-56 did Weber and
Kohlrasch succeed in obtaining experimentally the value of this fundamental
constant. See Section 1.4 for references.

Section 35 is called “On the ratio of the velocity of the flow to the velocity
of the propagation of the current.” Here Weber presents a first theoretical
comparison of the drifting velocity of charges in a conductor carrying a constant
current, with the velocity for the propagation of a variable current along this
conductor. The numerical values of these two velocities were not yet known at
that time, as no experiments had given their orders of magnitude.

Section 36 is called “On the origin of the resistance of conductors.” He
begins by mentioning that for a complete understanding of the resistance it is
not enough to define it by its effect (as the ratio between electromotive force and
current given by Ohm’s law). That is, it is also necessary to define resistance
by its origin. In particular we need to know if it comes through the ponderable
part of the current or from its electric fluid. Weber asks: What is the origin
of the force that creates resistance to the motion of the charges against the
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electromotive force accelerating them? He wants to know if this force is purely
electric, or if it acts upon the ponderable particles of the current (due to forces
having another origin, like molecular forces). In his reasoning, he considers
initially Fechner’s hypothesis, i.e., he assumes a double current with an equal
amount of positive and negative charges moving relative to the wire with equal
and opposite velocities. He analyzes whether the encounter of these opposite
charges might give rise to the resistive force, due only to electromagnetic forces
between these charges. To this end he considers a simplified model in which only
the negative charges move relative to the wire, while the positive charges remain
fixed in the lattice. He is here departing from Fecher’s hypothesis and coming
close to the modern model of a current in metallic conductors in which only
the electrons move relative to the lattice. But at that time no one knew about
the existence of electrons and they also did not know the order of magnitude
of the drift velocity of the mobile charges. Weber here imagines a negative
charge making a Keplerian elliptical orbit around a positive charge due to a
central force which falls as 1/r2, disregarding the components of his fundamental
force law (1.1) which depend on the relative velocity and relative acceleration
between the charges (by considering that these components have a small value in
comparison to the greater value of the Coulombian component). When there is
an electromotive force [like an external electric field] acting along the wire, it will
perturb this orbit into a spiral form. The loops of this spiral will increase until
the negative charges come into the sphere of action of another positive charge
along the wire. It will orbit this second positive charge until it comes into the
sphere of action of the third positive charge along the line composing the wire.
This transference of the negative charge to the following positive charges will
continue as long as the electromotive force acts upon the conductor. In the event
this electromotive force stops acting, the negative charge will no longer move
forward, but will continue to circle the specific positive charge around which
it was moving when the electromotive force was interrupted. He concludes the
Section by mentioning that it would be important to calculate the time interval
needed by the negative charge to move in its spiral orbit from one positive
charge to the next, but that this calculation should be difficult, as is shown by
the perturbation theory of astronomy.26.

This fifth part of Weber’s paper is extremely important. Here we can see that
he is one of the pioneers who pointed out the surface charges in resistive con-
ductors carrying steady currents. The chemical battery or contact between two
different metals, like copper and zinc, creates a difference of potential between
two points. But what creates the uniform electric field tangential to the circuit
at every point inside a resistive wire is the distribution of free charges along

26Weber’s idea that the resistive force might be due to a newtonian central force falling
as 1/r2 does not seem feasible to us for two main reasons. (1) The newtonian forces are
conservative and (2) do not depend on the velocities of the interacting bodies. The resistive
force responsible for Ohm’s law, on the other hand, is non-conservative and proportional to
the drifting velocities of the mobile charges, acting against the motion of these charges. The
origin of this force must be sought somewhere else. The origin of these resistive forces is a
very difficult topic in physics, and even today there is no clear answer to this question.
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the surface of this wire. He correctly pointed out that these surface charges
must be in motion together with the current, as the tangential electric field will
act not only inside it, but also along the surface of the conductor. Moreover,
he was probably the first to try to calculate this distribution of surface charges
explicitly in a specific example. In particular he considered a ring of finite cross-
section, much smaller than the length of the ring, with a small gap at one point
where a non-electrostatic electromotive force acts. With an ingenious calcula-
tion he showed that the distribution of surface charges increases linearly with
the azimuthal angle only in the region opposite to the battery. He showed that
as we approach the gap the surface charge density must increase faster than
linearly with the azimuthal angle, a remarkable result confirmed 150 years later
when this problem was completely solved analytically, as described in Chapter
13 of this book. Weber goes even further, trying to understand the origin of the
resistive force in terms of microscopic forces of electromagnetic origin between
the interacting charges composing the current. This is a remarkable piece of
work which deserves to be more widely known.

Weber produced another very important study in 1864 which continues the
study of surface charges: “Electrodynamic measurements relating specially to
electric oscillations” [254]. This is the fifth work in the series of “Electrodynamic
measurements.” To the best of our knowledge, it has also never been translated
into English. The main theoretical derivations of this paper were obtained in
1857 or prior to that, but were not published at this time. A similar treatment
was first published by Kirchhoff in 1857. As we discuss Kirchhoff’s papers
in the next Appendix, we will not enter into details here of Weber’s similar
findings which were delayed in publication. Kirchhoff’s paper was published in
Poggendorff’s Annalen, now known as Annalen der Physik. Poggendorff wrote a
note after Kirchhoff’s paper relating that after seeing it he had occasion to meet
Weber in Berlin. Weber showed him the paper he intended to publish, with
essentially the same results as Kirchhoff’s. But Weber had not yet sent it to
print, as he was waiting for results of experiments on this topic to be performed
together with R. Kohlrasch [255]. This paper by Weber was published in 1864.
It deals with the propagation of electromagnetic signals along wires, taking into
consideration variable currents and the effects of all surface charges upon the
current. As we will see, Weber and Kirchhoff arrived at the telegraphy equation.
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Appendix B

Gustav Kirchhoff and

Surface Charges

Here we discuss three papers by Kirchhoff, one from 1849 and two from 1857
[24, 25, 26]. All of these papers have been translated into English [27, 28, 29].
For this reason we present only brief summaries of them.

In the first paper he pointed out a mistake in Ohm’s hypothesis according
to which a uniform volume density of electricity could remain at rest inside a
conductor. Ohm assumed also that the electroscopic or electromotive forces act-
ing along a resistive conductor carrying a steady current would be proportional
to the variation of this volume density of charges as regards the longitudinal
coordinate (in the case of a linear conductor). According to Kirchhoff, on the
other hand, what is constant inside a conductor in electrostatic equilibrium is
its electric potential, but not its volume charge density. The electromotive force
inside a resistive conductor carrying a steady current is proportional to the vari-
ation of this potential with the longitudinal coordinate. And the potential itself
originates from free charges spread along the surface of the conductor. Kirchhoff
shows that even in the case of steady currents the potential will satisfy Laplace’s
equation inside the conductor. He does not try to calculate the distribution of
these surface charges in any specific example. At the end of this first paper he
shows that Weber’s law of force between point charges is also compatible with
Ohm’s law, and with his reasoning of free charges along the surface of resistive
conductors.

In his first paper of 1857 Kirchhoff derives the telegraphy equation for a sig-
nal propagating along a thin conducting wire. We present here his main results
in vectorial notation and in the International System of Units SI, following a
paper of 1999 [256]. Weber’s simultaneous and more thorough work was delayed
in publication, and was published only in 1864. Both worked independently of
one another and predicted the existence of periodic modes of oscillation of the
electric current propagating at light velocity in a conducting circuit of negligible
resistance.
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In his first paper of 1857, Kirchhoff considered a conducting circuit of circular
cross-section which might be open or closed. Kirchhoff’s wire could be straight
or curved, provided the following assumption was satisfied: “that the form of
the central line of the wire is such, that the distance between two of its points,
between which a finite portion of the wire lies, is never infinitely small. By
this supposition the case is excluded, that induction spirals are contained in the
circuit.” He wrote Ohm’s law taking into account the free electricity along the
surface of the wire and the induction due to the alteration of the strength of
the current in all parts of the wire:

~J = −g
(

∇φ+
∂ ~A

∂t

)

. (B.1)

Here ~J is the current density, g is the conductivity of the wire, φ is the electric
potential and ~A is a function analogous to the modern magnetic vector poten-
tial (which Kirchhoff will calculate from Weber’s force). He calculates φ by
integrating the effect of all free surface charges:

φ(x, y, z, t) =
1

4πε0

∫ ∫

σ(x′, y′, z′, t)da′

|~r − ~r ′| . (B.2)

Here ~r = xx̂ + yŷ + zẑ is the point where the potential is being calculated,
t is the time, and σ is the free surface charge. Kirchhoff then performed a
remarkable calculation, integrating this equation over the whole surface of the
wire of length ℓ and radius α without specifying the behaviour of σ with regard
to the variables x′, y′, z′ or t, but only the requirement that α≪ ℓ. Moreover,
he supposed that the current density was the same at all points of the periphery
of a cross-section in the wire (that is, he neglected the effects of curvatures in
the wire) and that it was never infinitely large. With only these assumptions
he arrived finally at:

φ(s, t) =
ασ(s, t)

ε0
ln
ℓ

α
. (B.3)

Here s is a variable distance along the wire from a fixed origin. See Figure B.1.
This is equivalent to our Eq. (6.8). While our equation was derived for a straight
wire carrying a steady current, Kirchhoff obtained it for a wire which might be
straight or slightly curved. Moreover, in his calculation the potential, current
and surface charge density could also be a function of time. This was a remark-
able result, also obtained by Weber and published in 1864 [254].

He obtains the vector potential ~A from Weber’s force, Eq. (1.1). That is,
the component of this force which depends upon the acceleration of the charges
can be written as −q∂ ~A/∂t, with a vector potential given by

~A(x, y, z, t) =
µ0

4π

∫ ∫ ∫

[

~J(x′, y′, z′, t) · (~r − ~r ′)
]

(~r − ~r ′)
dx′dy′dz′

|~r − ~r ′|3 . (B.4)

Here the integration is through the volume of the wire.
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Figure B.1: A long curved conductor of length ℓ and radius α. The variable s
represents a distance along the wire from a fixed origin O.

After integrating this expression he arrived at

~A(s, t) =
µ0

2π
I(s, t)

(

ln
ℓ

α

)

ŝ , (B.5)

where I(s, t) is the variable current.
Given that I = Jπα2 and that R = ℓ/(πgα2) is the resistance of the wire,

the longitudinal component of Ohm’s law could then be written as

∂σ

∂s
+

1

2πα

1

c2
∂I

∂t
= − ε0R

αℓ ln(ℓ/α)
I . (B.6)

In order to relate the two unknowns, σ and I, Kirchhoff utilized the equation
for the conservation of charges, which he wrote as

∂I

∂s
= −2πα

∂σ

∂t
. (B.7)

To the best of our knowledge this was the first time that this fundamental
equation for the conservation of charges was published in the literature.

When these two relations are equated, they yield the equation of telegraphy,
namely:

∂2ξ

∂s2
− 1

c2
∂2ξ

∂t2
=

2πε0R

ℓ ln(ℓ/α)

∂ξ

∂t
, (B.8)

where ξ can represent I, σ, φ or the longitudinal component of ~A.
If the resistance is negligible, this equation predicts the propagation of sig-

nals along the wire with light velocity. As Kirchhoff put it, the velocity of
propagation of an electric wave “is independent of the cross-section, of the con-
ductivity of the wire, also, finally, of the density of the electricity: its value is
41950 German miles in a second, hence very nearly equal to the velocity of light
in vacuo.”

Equations similar to Eq. (B.8) can be found in pages 123 and 125 of the
second part of Volume 4 of Weber’s Collected Papers (original paper of 1864)
[254, 39].

In his second paper of 1857 Kirchhoff generalizes this first work in order
to consider three-dimensional conductors of arbitrary shape. We discussed this
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briefly in 1994 [29]. The results are essentially the same as before, but now
he shows that it is possible to have free electricity distributed throughout the
substance of the conductor, in the case of a current varying in time and in space.

Recently we developed Kirchhoff’s ideas in the international system of units
and applied them to the propagation of electromagnetic signals in a coaxial
cable, a situation which was not considered by Kirchhoff [30, 31, 257, 258].

It should be stressed that the works of Kirchhoff of 1857 were published
before Maxwell wrote down his equations in 1861-64, establishing the electro-
magnetic theory of light. When Maxwell introduced the displacement current
(1/c2)∂ ~E/∂t he was utilizing Weber’s constant c. He was also aware of Weber
and Kohlrasch’s measurement of 1854-56 that c had the same value as light ve-
locity in vacuum. He also knew Kirchhoff’s derivation of the telegraphy equation
yielding the propagation of electromagnetic signals at light velocity. Kirchhoff’s
work of 1857 was quoted only once by Maxwell in the note to paragraph 805, p.
450 of his Treatise [158]. It should be remarked that this specific citation does
not appear in the Index at the end of Maxwell’s Treatise. For this reason it may
not have been noted by some authors. In note 26 of Schaffer’s paper we find the
following important remark regarding Maxwell’s knowledge of Kirchhoff’s first
paper of 1857: “In the early 1870s Maxwell made detailed notes on Kirchhoff’s
paper on electricity in wires: see Cambridge University Library MSS ADD 7655
Vn/1, p. 44 ff” [259].

As mentioned above, Kirchhoff’s paper of 1857 was published earlier than
Weber’s paper of 1864, although both of them arrived at essentially the same
results independently of one another and at the same time, as pointed out by
Poggendorff, the editor of the Annalen der Physik (at that time called Poggen-
dorff’s Annalen) in 1857 [255].
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nisches Maass. Abhandlungen der Königl. Sächs. Gesellschaft der Wis-
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dertjährigen Geburtstagfeier Leibnizen’s herausgegeben von der Fürstl. Ja-
blonowskischen Gesellschaft (Leipzig), pages 211–378, 1846. Reprinted in
Wilhelm Weber’s Werke, Vol. 3, H. Weber (ed.), (Springer, Berlin, 1893)
pp. 25-214.

[138] G. T. Fechner. Ueber die verknüpfung der Faraday’schen inductions-
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Errata 

 

We thank U. Ausserlechner for one of these corrections. 

 

- Page 109, Eq. (8.20) should be replaced by: 

 

  
  
 
     
     

   
 

 
 

 

- Page 166, the first line of Eq. (13.6) should read: 
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- Page 206, the fourth line should read: 

 

Battery]. When we are close to 0   rad or to  2  rad, the 
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