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Chapter 1

Introduction to Volume II

A. K. T. Assis1

The picture on the cover of Volume 2 comes from a 1856 lithograph by Rudolph Hoffmann
(1820-1882) based on a photograph by Bernhard Petri.2

This second Volume begins with the text of the Gauss-Weber correspondence of 1845. It
is related to Ampère’s force between current elements and Weber’s ideas about the unification
of the electrostatic and electrodynamic laws. It is followed by a paper by Fechner published
in 1845 in which he presented some qualitative ideas in the same direction. That is, to unify
Ampère’s force and Faraday’s law of induction with electrostatics. To this end he suggested
a force depending not only on the distance between the interacting electrified particles, but
also on their velocities. At the end of his paper Fechner mentioned that his work might be
seen as a forerunner of Weber’s investigations.

Then comes Weber’s First major Memoir on Electrodynamic Measurements, published
in 1846. I consider this work Weber’s most important publication. He introduced his bifilar
electrodynamometer with which he could measure currents with high precision. Initially he
utilized this instrument in order to prove Ampère’ force. He then utilized Ampère’s force
between current elements in order to deduce his own force law between electrified particles.
Weber’s force between two particles electrified with charges e and e′ depends not only on
the distance r between the particles, but also on their relative velocity dr/dt and relative
acceleration d2r/dt2. He showed that it was possible to unify the laws of Coulomb, Ampère
and Faraday with his force law.

This Volume contains also Weber’s 1848 paper in which he introduced his velocity de-
pendent potential energy. Kirchhoff’s 1849 paper on a deduction of Ohm’s law in connection
with the theory of electrostatics is also included in this Volume.

This Volume finishes with Weber’s Second major Memoir on Electrodynamic Measure-
ments (1852). The main focus of this work was the absolute measure of resistance. We-
ber’s Memoir contains also his pioneering calculation of the distribution of charges along
the surfaces of resistive conductors carrying steady currents. In particular, he considered a
cylindrical straight conductor and a resistive ring.

1Homepage: www.ifi.unicamp.br/~assis
2It appears, for instance, in [Wie60, p. 170] and [Wie67, p. 118].
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Chapter 2

Text of the Gauss-Weber 1845
Correspondence

Carl Friedrich Gauss and Wilhelm Weber3,4

Editor’s Note:5 The letters from Weber to Gauss, numbered 29 to 31, come from the
Gauss manuscripts in the Manuscripts and Rare Books Division of the State and University
Library of Lower Saxony, in Göttingen. They were transcribed from the German script by
Karl Krause and Alexander Hartmann. The letter from Gauss to Weber of 19 March appears
in Carl Friedrich Gauss, Werke, Vol. V, pages 627-629.6 All the letters were translated
into English by Susan P. Johnson.7 The words in brackets are added by the translator; the
footnotes are by the editor [Laurence Hecht].8

3[GW96].
4The Notes by Laurence Hecht, the editor of this text of the Gauss-Weber 1845 correspondence, are

represented by [Note by LH:]; while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
5[Note by AKTA:] Text appearing on page 41 of [GW96].
6[Note by AKTA:] [Gau45].
7[Note by AKTA:] See [Joh97].
8[Note by AKTA:] The original letters and transcriptions of some of them can be found in “The complete

correspondence of Carl Friedrich Gauß”, [Gau].
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2.1 Weber to Gauss, Letter No. 29, 18 January 1845

Highly honored Herr Hofrath:9

...For some time now, I have occupied myself with a treatise, which I would like to present
to the Royal Society in Göttingen; now that I am finished, however, I do not dare to venture
a sound judgment, either about its correctness in your eyes, or about whether it is worthy
of being presented to the Society, and therefore I would by far prefer to leave both to your
benevolent decision. Hence I submit them to you with the request, that you will be good
enough to look at them at your convenience, when your time permits...

With heartfelt affection and respect.

Leipzig, 1845, January 18

Your devoted,
Wilhelm Weber

9[Note by LH:] The title by which Weber addressed Gauss is approximately translated as “Mr. Court
Councillor.”
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2.2 Weber to Gauss, Letter No. 30, 1 February 1845

Highly honored Herr Hofrath:

I have just noticed, that in the manuscript I recently sent to you, there is apparently
missing a note regarding Ampère’s formula, which would be necessary in order to understand
it. Namely, Ampère has given a more general expression,10 for the interaction of two current
elements, than I introduce there, which I seek to justify, by means of the consideration
that the empirically derived determination of the coefficient11 of the second term, which I
have discarded, seems completely untrustworthy, because of the unreliability of the method,
and hence that coefficient, so long as it lacks a more precise quantitative determination,
by the same reasoning would have to be set = 0. If I am not in error, you yourself earlier
expressed certain thoughts about discarding the negative value which Ampère assumed for
that coefficient by means of which two current elements, one following the other, would have
to mutually repel one another.12

With heartfelt respect.

Leipzig, 1845, February 1

Yours most devoted,
Wilhelm Weber

10[Note by AKTA:] André-Marie Ampère (1775-1836). His masterpiece was published in 1826, [Amp26]
and [Amp23]. There is a complete Portuguese translation of this work, [Cha09] and [AC11]. Partial English
translations can be found at [Amp65] and [Amp69]. Complete and commented English translations can be
found in [Amp12] and [AC15].
A huge material on Ampère and his force law between current elements can be found in the homepage

Ampère et l’Histoire de l’Électricité, [Blo05].
11[Note by AKTA:] In German: aus der Erfahrung hergeleitete Bestimmung des Coefficienten. This

expression can also be translated as “determination of the coefficient derived from experience”.
12[Note by AKTA:] See Sections 7.5 (Obtaining the value k = −1/2) and 7.6 (Two remarkable results

obtained by Ampère) of [AC15].
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2.3 Gauss to Weber, 19 March 1945

Esteemed friend:

Since the beginning of this year, my time has been incessantly taken up and frittered
away in so many ways, and on the other hand, the state of my health is so little favorable
to sustained work, that up to now, I have not been in any position to go through the little
treatise you were so good as to send me, and to which I just now have been able to give
a first quick glance. This, however, has shown me that the subject belongs to the same
investigations with which I very extensively occupied myself some 10 years ago (I mean
especially in 1834-1836), and that in order to be able to express a thorough and exhaustive
judgment upon your treatise, it does not suffice to read through it, but I would have to first
plunge into study of my own work from that period, which would require all the more time,
since, in the course of a preliminary survey of papers, I have found only some fragmentary
snatches, although probably many more will be extant, even if not in completely ordered
form.

However, if, having been removed from that subject for several years, I may permit
myself to express a judgment based on recollection, I would think, to begin with, that, were
Ampère still living, he would decidedly protest, when you express Ampère’s law by means
of the formula

−αα
′

rr
ii′ sin θ sin θ′ cos ε (I)

since that is contained in a wholly different formula, namely

−αα
′

rr
ii′
(

1

2
cos θ cos θ′ + sin θ sin θ′ cos ε

)

(II)13

Nor do I believe that Ampère would be satisfied by the appended note, which you mention
in a later letter, namely, where you cast the difference in such a way, that Ampère’s formula
would be a more general one, just like

−αα
′

rr
(F cos θ cos θ′ +G sin θ sin θ′ cos ε)

where Ampère experimentally derived F = 1
2
G, while, because Ampère’s experiments may

not be very exact, you think that with equal correctness, you can claim that F = 0. In any
other case than the present one, I would concede that in this discordance between you and
Ampère, a third party would perhaps clarify the matter as follows, that:

whether one (with you) views this as merely a modification of Ampère’s law, or

whether (as, in my estimation, Ampère would have to view the matter), this is nothing
less than a complete overturning of Ampère’s formula, and the introduction of an essentially
different one,

13[Note by LH:] This seems to be Gauss’s only error of memory: The epsilon should be an omega.
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is at bottom little more than idle work-play. As I said, in any other case I would gladly
grant this, since no one can be in verbis facilior [more easy-going in matters of verbal formu-
lation] than I. However, in the present case the difference is a vital question, for Ampère’s
entire theory of the interchangeability of magnetism with galvanic currents depends abso-
lutely on the correctness of Formula II and is wholly lost, if another is chosen in its place.

I cannot contradict you, when you pronounce Ampère’s experiments to be not very
conclusive, while, since I do not have Ampère’s classic treatise at hand, nor do I recall
the manner of his experiments at all, nonetheless I do not believe that Ampère, even if he
himself were to admit the incompleteness of his experiments, would authorize the adoption
of an entirely different formula (I), whereby his entire theory would fall to pieces, so long
as this other formula were not reinforced by completely decisive experiments. You must
have misunderstood the reservations which, according to your second letter, I myself have
expressed. Early on I was convinced, and continued to be so, that the above-mentioned
interchangeability necessarily requires the Ampère formula, and allows no other which is
not identical with that one for a closed current, if the effect is to occur in the direction of
the straight lines connecting the two current elements; that, however, if one relinquishes the
just-expressed condition, one can choose countless other forms, which for a closed current,
must always give the same end result as Ampère’s formula. Furthermore, one can also
add that, since for this purpose it is always a matter of effects at measurable distances,
nothing would prevent us from presupposing that other components might possibly enter
into the formula, which are only effective at immeasurably small distances (as molecular
attraction takes the place of gravitation), and that thereby, the difficulty of the repulsion of
two successive elements of the same current could be removed.

In order to avert misunderstanding, I will further remark, that the Formula II above can
also be written

−αα
′

rr
ii′
(

−1

2
cos θ cos θ′ + sin θ sin θ′ cos ε

)

and that I do not know, whether Ampère (whose memoire, as I said, I do not have at hand)
used the first or the second notation. Both of them signify the same thing, and one uses the
first form, when one measures the angle θ, θ′ with the same delimited straight line; thus,
this line determines the side of the second angle in the opposite way, but determines the
other form, when one is considering a straight line of indeterminate length, and, for the
measurement of angle θ, θ′, one resorts to that line twice, in one sense or another. And,
likewise, one can place a + sign in front of the whole formula instead of the − sign, if one is
considering as a positive effect, not repulsion, but attraction.

Perhaps I am in a position to again delve somewhat further into this subject, which has
now grown so remote from me, by the time that you delight me with a visit, as you have
given me hope that you will do at the end of April or the beginning of May. Without a
doubt, I would have made my investigations public long ago, had it not been the case that
at the point where I broke off, what I considered to be the actual keystone was lacking

Nil actum reputans si quid superesset agendum
[Discussions accomplish nothing, if work remains to be done]
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namely, the derivation of the additional forces (which enter into the reciprocal action of
electrical particles at rest, if they are in relative motion) from the action which is not in-
stantaneous, but on the contrary (in a way comparable to light) propagates itself in time.
At the time, I did not succeed; however, I recall enough of the investigation at the time, not
to remain wholly without hope, that success could perhaps be attained later, although—if I
remember correctly—with the subjective conviction, that it would first be necessary to make
a constructible representation of the way in which the propagation occurs.

With hearty greetings to your brothers and sister and to Professor Möbius.14

Göttingen, 19 March 1845

Ever yours,
C. F. Gauss

14[Note by AKTA:] August Ferdinand Möbius (1790-1868).
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2.4 Weber to Gauss, Letter No. 31, 31 March 1845

Highly honored Herr Hofrath:

Professor Buff15 from Giessen, who is travelling from here to Göttingen, in order to visit
Woehler,16 his former colleague in Cassel, will have the goodness to bring you these pages.
It has been of great interest to me to learn from what you were kind enough to write,
that Ampère, in the definition17 of the coefficient he calls k in his fundamental law, was
guided by other reasons, than the ones from immediate empirical experience which he cites
at the beginning of his treatise, and that hence the derivation, which I first gave, because it
seemed somewhat simpler, is inadmissible, because it does not reproduce Ampère’s law with
exactness; yet, by means of what seems to me to be a slight modification in my premise, I
have easily obtained the exact expression of Ampère’s law.

Through the interest taken in the matter, and through the encouragement of Fechner18

and later Möbius, I have been induced to occupy myself up to a point, with a subject which I
conceived from the start might well be beyond me; I am all the happier that you are inclined
to turn your attention once more to this arduous subject, and to give a complete development
of it. Certainly, the explanation derived from a gradual propagation of the effect would be
the most beautiful solution of the riddle. In response to your kind invitation, I will certainly
not fail to come to Göttingen by the end of this spring.

In conformity with your instructions, I will send to the Royal Society in London a copy
of the five last annual summaries of the Resultate,19 by way of the book dealer, since it will
be difficult for me to pursue the invitation to Cambridge. Whence the Royal Society has
obtained a copy of the first annual summary, I do not know, since they did not buy it.

Möbius, who is now celebrating his silver wedding anniversary, and my sister, remember
themselves to you and your daughter with the greatest regard.

With the most heartfelt respect.

Leipzig, 1845, March 31

Your most devoted,
Wilhelm Weber

15[Note by AKTA:] Johann Heinrich Buff (1805-1878).
16[Note by AKTA:] Friedrich Wöhler (1800-1882).
17[Note by AKTA:] The word in German seems to be: Bestimmung, [Wie60, p. 68]. If this is the case, the

translation here should be “determination” instead of “definition”.
18[Note by AKTA:] Gustav Theodor Fechner (1801-1887).
19[Note by AKTA:] Resultate aus den Beobachtungen des magnetischen Vereins.
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Chapter 3

[Fechner, 1845] On the Connection
between Faraday’s Induction
Phenomena and Ampère’s
Electrodynamic Phenomena

Gustav Theodor Fechner20,21,22,23

20[Fec45] with English translation in [Fec21].
21Translated by H. Härtel, haertel@astrophysik.uni-kiel.de and http://www.astrophysik.uni-kiel.de/

~hhaertel/index_e.htm. Edited by A. K. T. Assis. We thank Frederick David Tombe and João Paulo
Martins de Castro Chaib for relevant suggestions.

22The Notes by G. T. Fechner are represented by [Note by GTF:]; the Notes by Johann Christian Poggen-
dorff (1796-1877), the Editor of the Annalen der Physik und Chemie where Fechner’s paper was published,
are represented by [Note by JCP:]; while the Notes by A. K. T. Assis are represented by [Note by AKTA:].

23[Note by JCP:] All who shared in the remarkable fate of the talented author, who miraculously regained
the strength of his eyes after many years of blindness, will surely receive this first test of his renewed activity
in science with the most sincere joy. But unfortunately this joy must be clouded very much by the letter
with which the author accompanied the sending of his essay to me.

“It is the first time for a long time,” it says, “that I can relate to you again; and Heaven would like

it not to be the last for a long time either. The condition of my eyes had miraculously improved

for a short period of time so that I hoped for a complete recovery, but since then the situation

has gotten so bad that these lines, as well as some parts of the accompanying treatise, had to be

written by a strange hand and I see myself condemned again to almost complete inactivity.”

Let us hope, however, that these gloomy prospects do not turn into reality, but that the force of the years,
which the author enjoys, overpowers the threatening evil once again and forever. In this wish, I am certain
that his numerous friends, near and far, to whom these lines are dedicated, will all agree with me! P.
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Until now, Faraday’s induction phenomena24 have only been related to Ampère’s electro-
dynamic phenomena25 by means of an empirical rule. The connection between them arises,
at least partially as a consequence of the following two fundamental propositions, which are
the generally accepted conclusions of experiments:

1) Every action of a current element consists of the actions of equal positive and negative
particles of electricity passing each other simultaneously through the same spatial element
in opposite directions.

2) The action of two current elements on each other are such that electricities of the same
kind have an attractive action on one another if they go in the same direction or towards
a common angular apex, but for electricities of opposite kind [an attraction takes place] if
they go in the opposite direction, or so that one approaches the common angular apex while
the other moves away from it.26

So far, however, only the interaction of the complete current elements on one another
has been considered; but we can still analyze the interaction between the individual compo-
nents of the current elements as described above, provided that on the one hand it reflects
observation, and on the other hand it offers a means of analyzing the combination.

Incidentally, the interactions of the moving electricity considered above are indisputably
not their actual full interactions, but rather only their net interactions. This is the only
thing that needs to be taken into account here. For it cannot be assumed that the repulsive
forces which two particles of electricity of the same kind exert on one another when at rest,
will immediately turn into attraction if they start moving in the same direction, however
slowly. The only thing that can be assumed is, that the repulsive forces will be reduced,
either absolutely, or, if it should depend only on relative motions, in relation to the case

24[Note by AKTA:] Michael Faraday (1791-1867). See [Far32a] with German translation in [Far32c] and
[Far89], and Portuguese translation in [Far11].

25[Note by AKTA:] See footnote 10 on page 13.
26[Note by AKTA:] Consider two infinitesimal elements of sizes ds and ds′, carrying currents i and i′.

According to Ampère’s force between current elements, there are situations in which they attract one another
when both currents flow towards a common angular apex P . Exceptions to this rule have been studied by
Bertrand, [Ber74] with Portuguese translation in [Cha19]. One of these situations of attraction is shown in
case (a) of the Figure of this footnote. According to Fechner, it might be possible to deduce Ampère’s force
in these situations assuming three conditions: (1) positive and negative particles of the same magnitude
flowing in opposite directions in each current element; (2) particles of the same kind (both positive or both
negative) in both elements attracting one another when both move towards a common angular apex P , as
in case (b) of the next Figure; and (3) the positive particle of one element attracting the negative particle
of the other element when one of them moves towards P , while the other moves away from P , as in case (c)
of the Figure.
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where the movement occurs in the opposite sense.27 ,28 But as regards the interaction of
complete currents, however, as in natural electricity, where all the forces of static electricity
cancel each other,29 it will always be seen, as the analysis of the phenomena itself shows,
as if electricities of the same kind attract each other when they move in the same direction,
and repel each other when they move in the opposite direction. This analysis will be the
fundamental basis of the following case scenario.

Let us now consider the first main case of induction. A wire a′b′, in which no current is
flowing, is brought closer and in a parallel orientation to another wire ab, which is carrying
an electric current.

In this case the opposite electricities of the neutral wire, connected to natural electricity,
are both simultaneously moved perpendicularly towards the current carrying wire. If it
makes no difference to the nature of the motion and its consequences by what means it is
produced, then it does not matter whether this motion is due to the influence of peculiar
galvanic forces or mechanically caused by us.

So we have two currents of equally strong opposite electricity moving together in the
same sense at right angles against a two-way current.30

In order to discover the inducing action which the wire a′b′ suffers due to the wire ab, we
need to consider the action which any double particle of natural electricity np31 experiences

27[Note by GTF:] It emerges from Weber’s investigations mentioned later that one must stop at the latter
assumption.

28[Note by AKTA:] Fechner was referring to Wilhelm Eduard Weber (1804-1891).
29[Note by AKTA:] That is, each current element can be considered as composed of equal and opposite

charges moving in opposite directions relative to the wire. There is no net charge in each current element.
Therefore, there is no net electrostatic force between two current elements.

30[Note by AKTA:] In German: eine doppelsinnige Strömung. That is, a current of positive particles
moving in one direction relative to the conductor, together with a current of negative particles moving in
the opposite direction. Usually the direction of the current was understood as the direction of motion of the
positively charged particles.
In this first case of induction considered by Fechner, the neutral wire ab is at rest relative to the ground

and carries a constant current, let us say from a to b. This current can be considered as a flow of positive
particles from a to b, coupled with a flow of negative particles from b to a. Initially there is no current in
the stationary neutral wire a′b′. However, when a′b′ moves with a constant velocity u towards ab, with a′b′

remaining always parallel to ab, a current is induced in a′b′, flowing from b′ to a′. This motion of the neutral
wire a′b′ towards ab can be considered as a motion of a positively charged wire a′b′ towards ab, together with
an equal motion of a negatively charged wire a′b′ towards ab. It is necessary to show that the positively and
negatively electrified particles moving in opposite direction in ab will exert a force on the positive particles
of a′b′ making them move from b′ to a′, exerting also a force on the negative particles of a′b′ making them
move from a′ to b′. That is, inducing a current in a′b′ directed from b′ to a′.

31[Note by AKTA:] This double particle is composed of a negatively charged particle n and a positively
charged particle p.
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from any two current particles m and m′ that are situated to both sides of the vertical npo.
Thereby it is sufficient only to pay attention to one kind of electricity in the particles m and
m′, since, as it is easy to see, the other will cause the same action.32

Therefore the total action of the particles m and m′ on the positive particle p and on
the negative particle n is composed of four individual forces which we have to decompose
according to the direction of the wire a′b′ in order to find the inducing action on this wire.33

If we just use Ampère’s assumption that the forces between two current elements follow
the direction of their connecting line, and consider the law of angular currents according
to proposition 2), we find that the inducing lateral forces34 of these four individual forces
agree to drive p in the opposite direction from n, resulting in a two-way current, or current
par excellence in the ordinary sense of the word, and this in a direction corroborated with
experience.35 On the other hand, the lateral forces which are oriented perpendicular to the
wire a′b′, tend to drive n in the same direction as p. Therefore, in the case that m and m′ are
taken as symmetrical against the vertical npo, they both neutralize each other and subtract
from each other with respect to the generation of current.

If one should doubt that the manner in which the motion of electricity has arisen does

32[Note by AKTA:] That is, the joint force of the negative particles of m and m′ acting on the positive
particle p will be equal to the joint force of the positive particles of m and m′ acting on p. Likewise, the
joint force of the negative particles of m and m′ acting on the negative particle n will be equal to the joint
force of the positive particles of m and m′ acting on n.

33[Note by AKTA:] These four individual forces acting on p are, (1) the force of the positive particle of m
on p, (2) the force of the positive particle of m′ on p, (3) the force of negative particle of m on p, and (4)
the force of the negative particle of m′ on p. Likewise there will be four individual forces acting on n due to
the positive and negative particles of m and m′.

34[Note by AKTA:] That is, forces decomposed along the direction of the wire a′b′.
35[Note by AKTA:] These forces are illustrated on the Figure of this footnote. There is a current from a

to b. The positive charges of m and m′ move from a to b with velocities v. The positive charge p moves
towards ab with a velocity u. The boldface arrows indicate the forces. The positive charge of m attracts p,
as both of them move towards the apex point o in the middle of ab. The positive charge of m′ repels p, as p
moves towards the apex point o while the positive charge of m′ moves away from it. The sum of these two
forces will yield a net force on p pointing from b′ to a′.
The forces of the negative charges of m and m′ moving from b to a will also yield a net force on p from b′

to a′. On the other hand, the forces of the positive charges of m and m′ will yield a net force on the negative
charge n pointing from a′ to b′. Likewise, the forces of the negative charges of m and m′ on n will also yield
a net force force pointing from a′ to b′. These total forces on p pointing from b′ to a′, coupled with the total
forces on n pointing from a′ to b′, will induce a current from b′ to a′.
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not have any influence on its action, the agreement with experiment would undoubtedly be
one of the best proofs that the above conclusions are correct. It turns out to be irrelevant
whether I cause the flow of electricity by a mechanical motion — with my hands — or
whether it has received the impulse of its motion from galvanic contact.

And the same result occurs whether the wire a′b′ is moved towards the wire ab at rest,
or vice-versa.36 Experimental evidence confirms that only relative motion matters in order
to apply the given principle in the given form.37

In the case so far considered, a two-way current acted on a one-way38,39 current parallel
to it. Another case can be considered where the motion of one of the two currents is oriented
perpendicularly to that of the other, as for instance, when an excited circular conductor or
its equivalent, the cross-section of a magnet, rotates in its plane, while a neutral conductor
at rest is positioned relative to it as shown in the Figure. In this case, too, one finds the
experimental result according to the principles given, taking into account the law of relative
motions.

Lenz’ general rule about the reciprocity between Ampère’s and Faraday’s phenomena

36[Note by AKTA:] That is, if a′b′ remains at rest in the laboratory and ab moves towards it, the same
induction will take place as in the previous case, provided the relative motion between ab and a′b′ is the
same in both cases.

37[Note by AKTA:] In his paper read in 1831 Faraday showed that induction depended only on the relative
motion between two interacting bodies A and B. These interacting bodies A and B might be a magnet
and a closed circuit where induction took place. These interacting bodies A and B might also be a closed
circuit carrying a steady current and another closed circuit where induction took place. In one experiment,
for instance, he kept A at rest in the laboratory and moved B towards A and detected an induced current.
In another experiment he kept B at rest in the laboratory and moved A towards B, detecting once more an
induced current. Provided the relative motion between A and B was the same in both experiments, then
the observed induced currents were also the same. See, for instance, [Far32a], [Far11], [Ass13] and [Ass14,
Section 15.1: Electromagnetic induction].

38[Note by GTF:] For a short description of the contrast it may be allowed to use the latter word for
moving natural electricity.

39[Note by AKTA:] Fechner is here distinguishing the German words doppelsinnige and einsinnige when
referring to the current. A two-way current would be the typical galvanic current, as understood at that
time, in which positive and negative particles move in opposite directions relative to the conductor. An
one-way current, on the other hand, might be the motion of a body charged with only one kind of electricity.
If the body is neutral as a piece of wire, then when it moves relative to the ground there will be an one-way
current of positive electricity and another one-way current of negative electricity, both moving together with
the body.
Fechner has just shown that in order to explain Faraday’s law of induction in this case, a force parallel to

a′b′ must act on the positive particles of a′b′ when a′b′ moves towards ab. A force in the opposite direction
must act on the negative particles of a′b′ when a′b′ moves towards ab.

23



can be related to the above-mentioned principles through the well-known theorem of the
parallelogram of forces, that, if P and Q arise as lateral forces from R, then conversely,
R and Q appear as lateral forces from the decomposition of P , when Q is applied in the
opposite direction from before.40

If the established principles are correct, a means may probably be found of determining
the real or translational velocity of electricity,41 ,42 by establishing a relationship between the
easily determinable velocity at which we move the natural electricity in the conductor to be
induced, and the velocity with which electricity moves itself under the influence of peculiar
forces.

At first it seemed that it would be difficult to find a method by which this determina-
tion could be made with accuracy. But sometime later, Prof. W. Weber suggested a very
promising method.

There are, however, still some conclusions which result from the above:

1) When a rod charged with one kind of electricity is rotated about its axis, then as well
as the usual electrical phenomena, we should expect to observe also magnetic phenomena
or something completely analogous, which should in turn induce currents in approaching
conductors.

2) If an electrically charged rod, free to rotate on an axis, but not actually rotating, is ap-
proached by a magnet, such that if it were an iron rod it would be magnetized longitudinally,
this will cause the rod to rotate.

When the two previous conclusions are combined, but not directly deducible from the
previous principles, then a strange supposition arises, that when a non-electrically conduc-
tive rod rotating around its axis43 approaches a magnet under the appropriate conditions,
the same would show the phenomena of free electricity, and indeed of only one kind of

40[Note by AKTA:] Heinrich Friedrich Emil Lenz (1804-1865). See [Len34] with partial English translation
in [Len69]. Lenz’ rule, [Len69, p. 513]:

If a metallic conductor moves in the neighborhood of a galvanic current or of a magnet, a galvanic

current will be produced in it which will have such a direction that it would have occasioned in the

wire, if it were at rest, a motion which is exactly opposite to that here given to the wire, provided

that the wire when at rest is movable only in the direction of the motion and in the opposite

direction.

41[Note by GTF:] It is worth noting that what has hitherto been referred to as the velocity of electricity is
not the real velocity of its particles, but merely the velocity of its wave propagation, an hitherto neglected,
but yet quite a notable difference, on which to my knowledge W. Weber as the first drew attention.

42[Note by AKTA:] That is, according to Fechner, Wilhelm Weber was the first to distinguish between the
drift velocity of the particles composing the current, from the wave velocity of an electric perturbation in a
wire. Weber believed that the drift velocity would be much lower than the wave velocity. In 1857 Weber
and Kirchhoff deduced independently from one another, although both works were based on Weber’s force
of 1846, that an electric wave propagates along a wire of negligible resistance with light velocity, [Kir57b]
with English translation in [Kir57a], [Pog57] with English translation in [Pog21], and [Web64] with English
translation in [Web21a].

43[Note by AKTA:] In German: wenn man einem, um seine Axe gedrehten, nicht elektrischen leitenden

Stabe. That is, an insulating rod. Probably Fechner was referring here to a charged insulating rod spinning
around it axis.
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electricity.44 ,45

It will undoubtedly be difficult to prove the above conclusions by experiment, for if one
remembers that, according to the experiments of Faraday and Gauss,46 enormous quantities
or [huge] velocities of machine electricity47 are required to produce only moderate current
actions, and that considerable currents are required to produce distinct magnetic or induction
actions, it can be foreseen that only extraordinarily high velocities of rotation or strong
electrification can lead to success in the indicated experiments. This also follows from the
fact that a magnet or a galvanically excited conductor can be regarded as completely filled
with currents, while a spinning electrical conductor is only covered by a single layer of
electricity. Therefore I was not surprised, that I was not able to obtain any results with the
few corresponding experimental means I had available to me. Meanwhile, others who have
more powerful means at their disposal, may consider what has been said as an invitation to
return to these experiments.

It cannot be denied that our concatenation of ideas leave something to be desired, namely,
the proposition that it is only a matter of the relative motion. This can in fact only be
presented as an empirical proposition, but not as a consequence of the principles mentioned
above. The same is true of the additional proposition, which we must add, in order to cover
the complete field of induction phenomena, namely, that the emergence or intensification
of the current has a similar action on approaching,48 as the disappearance or weakening of
the current has when the distance is increased. In the meantime, this incompleteness of our
conclusions is not a reason to drop what we have learned by them for the sake of what we
did not learn.

In fact, the inadequacy that still shows up here, does not lie in a fault of the method of
interpreting the action of the electricity in motion in the case of both electrical components.
The progress made in the foregoing is based solely and exclusively on this method. The
problem rather lies in an inadequacy in how we have phrased the action of electricity in
motion up until now. It can easily be shown that the propositions and wording that we have
used in the theory of electricity really do not really cover the possibility of all scenarios of
electricity in motion, and that new assumptions must therefore be made.

Indeed, both classes of phenomena still to be explained prove irrefutably that moving
electricity can have an influence on electricity at rest. This influence, as it arises in those
phenomena, can neither be contained in the propositions which concern static electricity,
because positive and negative electricity always act with the same strength from the same
distance (therefore, according to these propositions, the result will always be zero in respect

44[Note by GTF:] According to this, a magnetic rod rotated about its axis would have to show the
phenomena of free electricity by itself, of the opposite kind depending on its direction of rotation. That this
is really the case seems to be confirmed by the following: if one connects by a wire a point of the axis and a
point of the circumference of a rotated magnet, a current start flowing. According to the analogy with the
galvanic apparatus, it can be assumed that after removing this connecting wire, free electricity will appear
at the separation points either of a different nature or of a different magnitude. This could also be detectable
by means of a capacitor if the rotation is sufficiently rapid.

45[Note by AKTA:] The experiment that if one connects a point of the axis and a point of the circumference
of a spinning cylindrical magnet by a metal wire, a current start flowing, was first performed by Faraday in
1832, [Far32b] with German translation in [Far32d].

46[Note by AKTA:] Due to a misprint in the original, we have here Gaus. Fechner was referring to Carl
Friedrich Gauss (1777-1855).

47[Note by AKTA:] In German: Maschinen-Elektricität. That is, electricity produced by friction in elec-
trostatic machines when a glass globe spins quickly relative to the ground.

48[Note by AKTA:] That is, on bringing together the two interacting conductors.

25



to other electricities), nor is this influence contained in Ampère’s propositions, because these
allow no action whatsoever to be found between moving and stationary electricity.

Perhaps an attempt could be made to derive an extension of the principles, which would
be able to satisfy what still has to be explained, from an analysis of the phenomena still to be
explained themselves. However, it is now unnecessary to start such an activity, since, as I am
pleased to announce, Prof. W. Weber, through investigations carried out from general points
of view, has arrived at a principle whereby not only all the actions of moving electricity, but
also of static electricity among themselves, as well as in mutual relationship to one another,
can be deduced from a general law. Therefore, the phenomena of static electricity, Ampère’s
law and all induction phenomena come under this law only as special cases. I therefore hope
that this little piece of work will only be seen as a forerunner of the investigations which we
can expect to be published shortly.49

49[Note by AKTA:] Weber’s work was published in 1846, [Web46] with a partial French translation in
[Web87] and a complete English translation in [Web07]. Weber quotes Fechner’s 1845 paper in Section 26
of his work, see Section 5.26 on page 171.
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Chapter 4

Editor’s Introduction to Weber’s First
Memoir on Electrodynamic
Measurements

A. K. T. Assis50

This is the first of Weber’s 8 major Memoirs on Electrodynamic Measurements.51 It is
probably Weber’s most important work.

In the first part of this work Weber introduced his famous bifilar electrodynamometer.52

Weber’s original instrument belongs to the Historical Collection of the Physics Institute
of Göttingen University, Figure 4.1. Weber utilized his electrodynamometer to confirm the
force between current elements developed by André-Marie Ampère (1775-1836) in the period
1820-1827.53 Friedrich Kohlrausch (1840-1910) discussed current measurement with Weber’s
electrodynamometer.54

50Homepage: www.ifi.unicamp.br/~assis
51[Web46] with partial French translation in [Web87] and a complete English translation in [Web07].
52See http://physicalisches-cabinet.uni-goettingen.de/phycab/main.php
53See footnote 10 on page 13.
54[Koh83, Chapter 66a, p. 192].
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Figure 4.1: Weber’s bifilar electrodynamometer.
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James Clerk Maxwell (1831-1879) discussed the bifilar suspension introduced by Gauss
and Weber in Article 459 of his Treatise on Electricity and Magnetism, while Weber’s bifilar
electrodynamometer was discussed in Articles 725 to 729. He made the following comments
on this instrument, [Max54, Vol. 2, Article 725, p. 371]:

The instrument originally constructed by Weber is described in his Elektrody-
namische Maasbestimmungen. It was intended for the measurement of small
currents, and therefore both the fixed and the suspended coils consisted of many
windings, and the suspended coil occupied a larger part of the space within the
fixed coil than in the instrument of the British Association, which was primarily
intended as a standard instrument, with which more sensitive instruments might
be compared. The experiments which he made with it furnish the most complete
experimental proof of the accuracy of Ampère’s formula as applied to closed cur-
rents, and form an important part of the researches by which Weber has raised
the numerical determination of electrical quantities to a very high rank as regards
precision.

Weber’s form of the electrodynamometer, in which one coil is suspended within
another, and is acted on by a couple tending to turn it about a vertical axis, is
probably the best fitted for absolute measurements. A method of calculating the
constants of such an arrangement is given in Art. 700.

Weber also utilized this instrument to verify the law of induction of currents due to
Michael Faraday (1791-1867) which had been published in 1832.55

In the fourth Part of this work Weber succeeded in unifying all branches of electromag-
netism into a single formula. Charles Augustin de Coulomb (1736-1806) obtained in 1785
a force describing the interaction between two electrified particles at rest relative to one
another.56 Weber was able to unify Coulomb’s force with Ampère’s force between current
elements and also with Faraday’s law of induction. To this end he introduced a central
force pointing along the straight line connecting the two electrified particles and complying
with the law of action and reaction due to Isaac Newton (1642-1727) as presented in his
book Mathematical Principles of Natural Philosophy, usually known by its first Latin name,
Principia.57 Moreover, Weber’s force depended not only on the distance r between the elec-
trified particles, but also on their radial relative velocity, dr/dt, and on their radial relative
acceleration, d2r/dt2. These are intrinsic properties of the system. The observer (or frame
of reference) does not matter for the values of r, dr/dt and d2r/dt2. These magnitudes have
the same value in all frames of reference, even for non-inertial frames. Later on I called them
relational magnitudes.58

In a book published in 1994, I discussed Maxwell’s points of view related to Weber’s
electrodynamics.59 It is worth while to present a few quotations here. Since his first paper
on electromagnetism of 1855 (published in 1858), Maxwell always praised Weber’s theory.
For instance, after presenting Faraday’s ideas which he was trying to follow, Maxwell said:60

55See footnote 24 on page 20.
56[Cou88] with a partial English translation in [Cou35] and a complete English translation in [Cou12]. See

also [Pot84]; [Gil71b] and [Gil71a].
57Isaac Newton (1642-1727). See [New34] and [New99]. Portuguese translation in [New90], [New08] and

[New10].
58[Ass98], [Ass99], [Ass13] and [Ass14].
59[Ass94, Section 3.6, pp. 73-77].
60[Max58, p. 207-9 of Niven’s book].
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There exists however a professedly physical theory of electro-dynamics, which
is so elegant, so mathematical, and so entirely different from anything in this
paper, that I must state its axioms, at the risk of repeating what ought to be well
known. It is contained in M. W. Weber Electro-dynamic Measurements, and may
be found in the Transactions of the Leibnitz-Society, and of the Royal Society
of Sciences in Saxony.61,62 The assumptions are [...]. From these axioms are
deducible Ampère’s laws of the attraction of conductors, and those of Neumann
and others, for the induction of currents. Here then is a really physical theory,
satisfying the required conditions better perhaps than any yet invented, and put
forth by a philosopher whose experimental researches form an ample foundation
for his mathematical investigations.

In the Introduction of his paper of 1864 in which Maxwell completed his electromagnetic
theory of light, he presented a similar point of view:63

The most obvious mechanical phenomenon in electrical and magnetical experi-
ments is the mutual action by which bodies in certain states set each other in
motion while still at sensible distance from each other. The first step, therefore,
in reducing these phenomena into scientific form, is to ascertain the magnitude
and direction of the force acting between the bodies, and when it is found that
this force depends in a certain way upon the relative position of the bodies and
on their electric and magnetic condition, it seems at first sight natural to explain
the facts by assuming the existence of something either at rest or in motion in
each body, constituting its electric and magnetic state, and capable of acting at
a distance according to mathematical laws.

In this way mathematical theories of statical electricity, of magnetism, of the
mechanical action between conductors carrying currents, and of the induction
of currents have been formed. In these theories the force acting between the
two bodies is treated with reference only to the condition of the bodies and
their relative position, and without any express consideration of the surrounding
medium.

These theories assume, more or less explicitly, the existence of substances the
particles of which have the property of acting on one another at a distance by
attraction or repulsion. The most complete development of a theory of this kind
is that of M. W. Weber,64,65 who has made the same theory include electrostatic
and electromagnetic phenomena.

In doing so, however, he has found it necessary to assume that the force between
two electric particles depends on their relative velocity, as well as on their dis-

61[Note by Maxwell:] When this was written, I was not aware that part of M. Weber’s Memoir is translated
in Taylor’s Scientific Memoirs, Vol. V. Art. XIV. The value of his researches, both experimental and
theoretical, renders the study of his theory necessary to every electrician.

62Maxwell was referring in his footnote to the 1848 excerpt of Weber’s First major Memoir on Electrody-
namic Measurements, [Web48a] with English translation in [Web52c], [Web66d] and [Web19]. See Chapter 7.

63[Max65, pp. 526-527 of Niven’s book].
64[Note by Maxwell:] Electrodynamische Maassbestimmungen. Leipzic Trans. vol. i. 1849, and Taylor’s

Scientific Memoirs, vol. v. art. xiv.
65Maxwell was referring to [Web46] with English translation in [Web07]; and [Web48a] with English

translation in [Web52c], [Web66d] and [Web19]. See Chapters 5 and 7.
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tance. This theory, as developed by MM. W. Weber and C. Neumann,66,67 is
exceedingly ingenious, and wonderfully comprehensive in its application to the
phenomena of statical electricity, electromagnetic attractions, induction of cur-
rents and diamagnetic phenomena; and it comes to us with the more authority,
as it has served to guide the speculations of one who has made so great an ad-
vance in the practical part of electric science, both by introducing a consistent
system of units in electrical measurement, and by actually determining electrical
quantities with an accuracy hitherto unknown.

The last Chapter of Maxwell’s Treatise is devoted to Weber’s electrodynamics.68 He
showed once more, as Weber had already done, that Ampère’s force between current ele-
ments and Faraday’s law of induction can be deduced from Weber’s law. He also finally
acknowledged that Weber’s law complies with the conservation of energy.

Although many modern textbooks mention that Maxwell was the first scientist to present
a mathematical formulation of Faraday’s law of induction, this had already been accom-
plished by Weber in 1846, many years before Maxwell.

Weber’s force between two electrified particles complies with Newton’s action and reaction
law in the strong form, always pointing along the straight line connecting them. It also
complies with the conservation of linear and angular momentum. In 1848 he presented a
potential energy from which he could deduce his force. He also showed that his force was
compatible with the principle of conservation of energy. The laws of Coulomb, Ampère and
Faraday are only particular cases of Weber’s law.

I consider Weber’s force one of the main achievements in the whole history of physics.

66[Note by Maxwell:] “Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires electricas
vel magneticas declinetur.” — Halis Saxonum, 1858.

67[Neu58]. See also [Neu63].
68Vol. 2, Chapter XXIII: Theories of Action at a Distance, [Max73] and [Max54]. German translation in

[Max83]. Portuguese translation in [Ass92].
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Chapter 5

[Weber, 1846, EM1] Electrodynamic
Measurements, First Memoir, relating
specially to a General Fundamental
Law of Electric Action

Wilhelm Weber69,70,71,72

I - Introduction

The electrical fluids, when they are moved in ponderable bodies, cause interactions of the
molecules of these ponderable bodies, from which all galvanic and electrodynamic phenomena
arise. These interactions of the ponderable bodies, which are dependent upon the motions of
the electrical fluids, are to be divided into two classes, whose differentiation is essential to
the more precise investigation of the laws, namely,

1. such interactions which those molecules exert upon one other, when the distance be-
tween them is immeasurably small, and which one can designate galvanic or electrody-
namic molecular forces, because they occur in the interior of the bodies through which
the galvanic current flows; and

2. such interactions which those molecules exert upon one another, if the distance between
them is measurable, and which one can designate galvanic or electrodynamic forces
acting at a distance (in inverse proportion to the square of the distance). These latter
forces also operate between the molecules which belong to two different bodies, for
instance, two conducting wires.

69[Web46].
70The English version presented in this book is based on the translation by the late Susan P. Johnson,

[Web07], see also [Joh97]. Edited by Laurence Hecht and A. K. T. Assis.
71Treatise at the founding of the Royal Scientific Society of Saxony on the day of the 200th anniversary

celebration of Leibniz’s birthday, published by the Prince Jablonowski Society, Leipzig 1846, pp. 211-378.
72Wilhelm Weber’s Notes are represented by [Note by WW:], the Notes by H. Weber, the editor of the

third volume of Weber’s Werke, are represented by [Note by HW:], the Notes by L. Hecht are represented
by [Note by LH:], while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
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One may easily see, that for a complete investigation of the laws of the first class of
interactions, a more precise knowledge is required of molecular relationships inside the pon-
derable bodies than we currently possess, and that without it, one could not hope to bring
the investigation of this class of interactions to a full conclusion by establishing complete
and general laws. The case is different, on the other hand, with the second class of galvanic
or electrodynamic interactions, whose laws can be sought in the forces which two ponderable
bodies, through which the electrical fluids are moving, exert upon each other in a precisely
measurable position and distance with respect to one another, without it being necessary to
presuppose that the internal molecular relationships of those ponderable bodies are known.

From these two classes of interactions, which were discovered by Galvani and Ampère,73

a third class must meanwhile be fully distinguished, namely, the electromagnetic interactions,
discovered by Oersted,74 which take place between the molecules of two ponderable bodies at
a measurable distance from each other, when in the one [molecule] the electrical fluids are put
into motion, while in the other [molecule] the magnetic fluids are separated. This distinction
between electromagnetic and electrodynamic phenomena is necessary for presenting the laws,
so long as Ampère’s conception of the essence of magnetism has not fully supplanted the
older and more customary conception of the actual existence of magnetic fluids. Ampère
himself gave expression to the essential distinction to be made between these two classes of
interactions in the following way on page 285 of his Treatise:75,76

As soon as Mr. Oersted had discovered the force which the conducting wire exerted
on the magnet, one could in fact suspect that an interaction might exist between
two conducting wires. But this was not a necessary consequence of that famous
physicist’s discovery: for a soft iron bar also acts upon a magnetic needle, without,
however, any interaction occurring between two soft iron bars. As long as one knew
simply the fact of the deflection of the magnetic needle by the conducting wire, could
one not assume, that the electrical current simply imparted to this conducting wire
the property of being influenced by the magnetic needle, in a way similar to that in
which the soft iron was influenced by the same needle, for which it sufficed that it
[the wire] acted on the needle, without any sort of effect resulting thereby between
two conducting wires, if they were withdrawn from the influence of magnetic bodies?
Simple experimentation could answer the question: I carried it out in September
1820, and the interaction of the voltaic conductors was proven.

Ampère rigorously develops this distinction in his Treatise, declaring that it is necessary
for the laws of interaction discovered by himself and Oersted to be separately and completely
derived, each by itself, from experimental evidence. After he has spoken of the difficulties of
precisely observing the interaction of the conducting wires, he says on page 183, loc. cit.:77

It is true that one meets with no such difficulties, when one measures the effect of
a conducting wire on a magnet; however, this method cannot be used when it is

73[Note by AKTA:] Luigi Galvani (1737-1798) and André-Marie Ampère (1775-1836). See footnote 10 on
page 13.

74[Note by AKTA:] Hans Christian Ørsted (1777-1851). See [Oer20b], [Oer20a], [Oer20c], [Oer65], [Ørs86]
and [Ørs98]. See also [Fra81] and [Rei13].

75[Note by WW:] Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement
déduite de l’expérience. Mémoires de l’académie royale des sciences de l’institut de France, 1823.

76[Note by AKTA:] Weber is referring to [Amp23, pp. 285-286] and [Amp26, pp. 113-114]. See, in
particular, [AC15, p. 418].

77[Note by AKTA:] See [Amp23, p. 183], [Amp26, p. 11] and [AC15, pp. 346].
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a matter of determining the forces which two voltaic conductors exert upon each
other. In fact, it becomes clear, that if the action of a conducting wire on a magnet,
proceeds from a cause other than that which occurs between two conducting wires,
the experiments made on the former would prove nothing at all with respect to the
latter.

From this, it becomes clear, that even if many fine experiments have been conducted
more recently in further pursuit of Oersted’s discovery, nothing has directly occurred yet
toward further pursuit of Ampère’s discovery, and that this requires specific and unusual
experiments which hitherto have been sorely lacking.

Ampère’s classic work itself is concerned only in a lesser way with the phenomena and
laws of the interaction of the conducting wires vis-à-vis each other, while the larger part is
devoted to the development and application of his conception of magnetism, based on those
laws. Nor did he consider his work on the interaction between two conducting wires as in
any way complete and final, either from an experimental or theoretical standpoint, but on
the contrary, repeatedly drew attention to what remained to be done in both connections.

He states on page 181 of the cited Treatise,78 that in order to derive the laws of interaction
between two conducting wires from experimental evidence, one can proceed in two different
ways, of which he could pursue only one, and presents the reasons which kept him from
attempting the other way, the most essential being the lack of precise measuring instruments,
free of indeterminable foreign influences. He says the following on page 182 f., loc. cit.:79

There is, moreover, a far more decisive reason, namely, the limitless difficulties of the
experiments, if, for example, one intended to measure these forces by means of the
number of vibrations of a body subjected to their influence. These difficulties arise
from the fact that, when one causes a fixed conductor to act on a moveable part of
a voltaic circuit, those parts of the apparatus, which are necessary to connect it to
the dry battery, act on this moveable part simultaneously with the fixed conductor,
and thus destroy the results of the experiments.

Likewise, Ampère repeatedly drew attention to what remains to be done from the the-
oretical standpoint. For example, he says on page 299, after showing that it is impossible
to account for the interaction of the conducting wires on each other, by means of a certain
distribution of static electricity in the conducting wires:80

If one assumes, on the contrary, that the electrical particles in the conducting wires,
set in motion by the influence of the battery, continually change their position, at
every moment combining in a neutral fluid, separating again, and immediately re-
combining with other particles of the fluid of the opposite kind, then there exists
no contradiction in assuming that from the influences which each particle exerts
in inverse proportion to the square of the distance, a force could result, which did
not depend solely upon their distances, but also on the alignments of the two el-
ements, along which the electrical particles move, combine with molecules of the
opposite kind, and instantly separate, in order to combine again with others. The
force which then develops, and for which the experiments and calculations discussed

78[Note by AKTA:] See [Amp23, p. 181], [Amp26, p. 9] and [AC15, pp. 344].
79[Note by AKTA:] See [Amp23, pp. 182-183], [Amp26, pp. 10-11] and [AC15, pp. 345].
80[Note by AKTA:] See [Amp23, p. 299], [Amp26, p. 127] and [AC15, pp. 424].
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in this Treatise have given me the quantitative data, depends, however, directly and
indeed exclusively, on this distance and these alignments.

Ampère continued on page 301:81

If it were possible to prove on the basis of this consideration, that the interaction
of two elements were in fact proportional according to the formula with which I
have described it, then this account of the fundamental fact of the entire theory
of electrodynamic phenomena would obviously have to be preferred to every other
theory; it would, however, require investigations with which I have had no time to
occupy myself, any more than with the still more difficult investigations which one
would have to undertake in order to ascertain whether the opposing explanation,
whereby one attributes electrodynamic phenomena to motions imparted to the ether
by the electrical currents, could lead to the same formula.

Ampère did not continue these investigations, nor has anyone else published anything
to date, from either the experimental or theoretical side, concerning further investigations,
and since Ampère, science has come to a halt in this area, with the exception of Faraday’s
discovery of the phenomena of galvanic currents induced in a conducting wire when a nearby
galvanic current is increased, weakened, or displaced.82 This neglect of electrodynamics
since Ampère, is not to be considered a consequence of attributing less importance to the
fundamental phenomenon discovered by Ampère, than to those discovered by Galvani and
Oersted, but rather it results from dread of the great difficulty of the experiments, which are
very hard to carry out with present equipment, and no experiments were susceptible of such
manifold and exact determinations as the electromagnetic ones. To remove these difficulties
for the future, is the purpose of the work to be presented here, in which I will chiefly confine
myself to the consideration of purely galvanic and electrodynamic interactions at a distance.

Ampère characterized his mathematical theory of electrodynamic phenomena in the title
of his Treatise as derived solely from experimental results, and one finds in the Treatise itself
the simple, ingenious method developed in detail, which he used for this purpose. In it, one
finds the experiments he selected and their significance for the theory discussed in detail, and
the instruments for carrying them out fully and precisely described; but an exact description
of the experiments themselves is missing. With such fundamental experiments, it does not
suffice to state their purpose and describe the instruments with which they are conducted,
and add a general assurance that they were accompanied by the expected results, but it is
also necessary to go into the details of the experiments more precisely, and to state how often
each experiment was repeated, what changes were made, and what influence those changes
had, in short, to communicate in protocol form, all data which contribute to establishing
a judgment about the degree of reliability or certainty of the result. Ampère did not make
these kinds of more specific statements about the experiments, and they are still missing
from the completion of an actual direct proof of the fundamental electrodynamic law. The
fact of the interaction of conducting wires has indeed been generally placed beyond doubt
through frequently repeated experiments, but only with such equipment and under such
conditions, that quantitative determinations are out of the question, not to speak of the
possibility that these determinations could achieve the rigor required to consider the law of
those phenomena as empirically proven.

81[Note by AKTA:] See [Amp23, p. 301], [Amp26, p. 129] and [AC15, p. 425].
82[Note by AKTA:] See footnote 24 on page 20.
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Now, Ampère, of course, more frequently made use of the absence of electrodynamic
effects which he observed, similar to the use of measurements which yield the result = 0,
and, by means of this expedient, he attempted, with great acuity and skill, to obtain the
most necessary basic data and means of testing for his theoretical conjectures, which, in
the absence of better data, was the only method possible; we cannot, however, in any way
ascribe to such negative experimental results, even if they must temporarily take the place
of the results of positive measurements, the entire value and the full force of proof which
the latter possess, if the negative results are not obtained with the use of such techniques,
and under such conditions, where true measurements can also be carried out, which was not
possible with the instruments used by Ampère.

One may consider more precisely, for example, the experiment which Ampère describes
on page 194 ff. of his Treatise as the third case of equilibrium, where a metal arc lies on two
trays filled with mercury, from one of which the current is introduced and from the other
drawn off, and where, additionally, the arc is fastened by a hinge to an arm which connects
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it with a vertical shaft pivoting between the ends.83,84

83[Note by WW:] Ampère gives in another location the following description of his instrument: On a frame
TT ′ (Figure 1) in the form of a table two vertical poles EF and EF ′ protrude, bound together by crosspieces
LL′ and FF ′; an axle GH is held in a vertical position between these two crosspieces. Its two ends G and
H are sharpened and are seated in conical depressions, one of which is in the lower crosspiece LL′, the other
on the end of a screw KZ which passes through the upper crosspiece FF ′ and which serves to steady the
axle GH without fixing it. An arm QO is fastened at C to the axle. The end of the arm is equipped with a
hinge, into which fits the middle of an arc AA′, which is formed from a conductor. The arm, whose radius
is equal to the distance from O to the axle GH , is always in a horizontal position. This arc is balanced
with a counterpoise at Q, in order to decrease the friction at points GH where it is seated in the conical
depressions.

Under the arc AA′ are two trays M and M ′ filled with mercury, so that the surface of the mercury, which
rises above the rim of the tray, just touches the arc AA′ at B and B′. These two trays communicate through
the metallic conductors MN and M ′N ′ with the mercury-filled cups P and P ′. The cup and the wire MN
which connects it with the tray M are fastened on a vertical axle, which sits on the table so that it can turn
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Ampère now observed that, while a galvanic current is passing through that arc, it is
not displaced from its supports, if a closed circuit of current is made to act upon the arc,
provided that the center of the arc falls on the axis of the shaft to which the arc is attached.
However, one easily sees that, in order to put the arc into motion, a fourfold friction must
be overcome, namely, the friction on the two supports on which the arc is lying (arc AA′

on B and B′ in Figure 1), and the friction on the two ends G and H , on which the vertical
shaft pivots. Further, it is known that the electrodynamic forces which are produced with
the strongest imaginable galvanic current in a simple wire, like the section of the arc BB′

with current flowing through it, are so weak, that the wire must be extremely mobile, in
order to show any perceptible effect at all. One would accordingly be inclined to expect,
that that arc would not be displaced in the case where its center lay in the axis of rotation,
but also that in the opposite case, where its center did not coincide with the axis of rotation,
no displacement would occur, because the just-cited fourfold friction would counterpose far
too great a resistance. Ampère now says, nevertheless, on page 196, loc. cit.:85

When, by means of the hinge O, the arc is placed in such a position that its center
lies outside the GH axis, the arc takes on motion and slides on the mercury of the
little troughsM andM ′, in virtue of the action of the closed curvilinear current which
goes from R′ to S. If, on the contrary, its center is on the axis, it remains immobile.

It is regrettable, that Ampère did not mention the obvious problem of that fourfold
friction, and never explicitly says that he himself saw and observed the movement of the
eccentric arc. However, aside from the doubt that could therefore be raised about the actual
observation of the datum, and assuming that Ampère himself saw the displacement of the arc
under the conditions described, and also made certain that it had actually been the effect of
electrodynamic forces, which were strong enough, to overcome all opposing obstacles, it is still
in no way stated at what eccentricity of the arc this motion began, and within which limits
it did not occur. Yet without determining such limits, no full force of proof can be attributed
to this experiment. It is not known to me whether, since that time, this experiment has been
successfully repeated and more precisely described by other physicists, yet this much can be

freely. This axle passes through the cup P ′, with which the wire M ′N ′ is connected, in order that it may
turn independently from the other cup. The axle is insulated by a little glass tube which surrounds it, and
is kept separate by a little glass disc from the conductor of the tray M , so one may form an arbitrary angle
with the conductors MN and M ′N ′.
Two other conductors, JR and J ′R′, fastened to the table, are submerged respectively in cups P and

P ′, and connect these with mercury-filled depressions in the table R and R′. Finally, between these two
depressions, there is a third, S, also filled with mercury.
The apparatus is used in the following way: One battery lead, for instance, the positive, is dipped into

depression R, and the negative into depression S, and the latter is connected with depression R′ through an
appropriately bent conductor. The current goes through the conductor RJ to cup P , from there through
the conductor NM to tray M , through the conductor J ′R′, and finally from the depression R′ through the
arbitrarily curved conductor to depression S, in which the negative battery lead is dipped.
The voltaic circulation is accordingly formed: (1) from arc BB′ in contact with conductorsMN andMN ′;

(2) from a circuit, which from the part RJP and P ′J ′R′ of the device, out of the curved conductor which
goes from R′ and S and from the pillar itself originates. The latter circuit works like a closed one because it
is only interrupted by the thickness of the glass plate which separates the cups P and P ′; hence, it suffices
to observe its action on the arc BB′ in order to experimentally confirm the effect of a closed current on an
arc at the different positions which one can set up with respect to it.

84[Note by AKTA:] See [Amp23, pp. 194-199], [Amp26, pp. 22-27] and [AC15, pp. 351-355].
85[Note by AKTA:] See [Amp23, p. 196], [Amp26, p. 24] and [AC15, pp. 353-354].
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summarily stated, that even in the most favorable of cases, the displacement occurred only
at great eccentricities, from which, however, it cannot be concluded that the electrodynamic
force acts precisely at right angles to the elements of the arc.

By means of these remarks about Ampère’s experiments, I have only wished to demon-
strate that the electrodynamic laws have found no sufficient proof in these experiments,
communicated as they are without more precise details, and why I believe that such a proof
could not be given by means of observations with Ampère’s instruments, but instead, ob-
servations are required with precise measuring instruments which have not previously been
used. If, despite the lack of direct factual proof, one remains convinced of the correctness
of the laws advanced by Ampère, this conviction is based on grounds which in no way make
direct proof superfluous. Electrodynamic measurements hence remain desirable in order to
provide the direct proof which is lacking.

In fact, amidst the universal attempt to determine all natural phenomena according to
number and measure, and thereby to obtain a basis for theory which is independent of ei-
ther sensory perception or mere estimation, it seems amazing that in electrodynamics, no
attempt of this kind has been made; nevertheless, I am aware of neither refined nor gross
measurements of the interactions of two conducting wires vis-à-vis each other. All the more
do I consider myself authorized to present here the first attempts which I have made toward
such measurements. I hope thereby to prove, that these electrodynamic measurements pos-
sess importance and significance in quite other respects than as proof of the fundamental
electrodynamic laws, namely, by becoming the source of entirely new investigations for which
they are uniquely suited, and which, indeed, cannot be conducted without them.
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II - Proof of Ampère’s Law for the Interaction Between

Electric Currents

5.1 Description of an Instrument for the Measurement

of the Interaction of Two Conducting Wires —

Electrodynamometer

The instruments Ampère used for his electrodynamic experiments, are not of the sort that
allow the probative force of more rigorous measurements to be ascribed to the experiments
made with them. The reason for this lies in the friction which often annuls the entirety of
the electrical force to be observed, or a large part of it, and eliminates it from observation.
Neither is it possible with those instruments, even under favorable conditions, to overcome
this adverse friction by means of the weak electrodynamic forces, while by any more rigorous
measurement it must be presupposed that the friction is a negligible fraction in comparison
with the force to be measured.

Already, twelve years ago, for the purpose of excluding friction and introducing truer
measurements, I equipped a wire wound on a thin wooden frame, through which a galvanic
current was to be conducted, and which then was to be set into motion by the electrodynamic
attraction and repulsion of a multiplier, with a bifilar suspension of two fine metal wires (in
future, I will call these wire spirals with bifilar suspension the bifilar coils) and used one
of these suspension wires for supplying the galvanic current, the other for drawing it off. I
first came to know the full significance of this apparatus for the purpose of measurement,
however, by way of the bifilar magnetometer of Gauss,86 from whom I then borrowed the use
of a mirror fastened to the bifilar coil. In the summer of 1837, I made such an instrument
and carried out a series of experiments with it, all of which prove, that one can achieve the
greatest refinement in the observation of electrodynamic phenomena with currents so weak,
that previously, no one ever succeeded in eliciting these phenomena with them.

The instrument to be described here firstly, was constructed by Inspector Meyerstein in
Göttingen in 1841,87 yet it was in Leipzig that I first found occasion to provide a suitable
setup for a greater series of measurements.

This instrument consists essentially of two parts: the bifilar coil with a mirror, and the
multiplier.88

86[Note by AKTA:] [Gau38b] with English translation in [Gau41c]. See also [Web38a] with English trans-
lation in [Web41c] and [Web66a]; and [Web94].

87[Note by AKTA:] Moritz Meyerstein (1808-1882). See [Hen04], [Hen05], [Hen07] and [Hen20].
88[Note by AKTA:] A photograph of Weber’s original instrument which belongs to the Historical Collection

of the Physics Institute of Göttingen University can be found in Figure 4.1 on page 28.
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The bifilar coil, which is presented in a vertical cross-section in Figure 2, consists of two
thin brass discs aa and a′a′ of 66.8 mm diameter, which are held in a fixed position by a
3-mm thick brass axis bb′ at a distance of 30 mm apart. Around this axis between these
discs is wound roughly 5 000 times a copper wire cc of 0.4 mm diameter, sheathed in silk,
which completely fills up the space between the two discs. Figure 3 presents this coil in a
vertical cross-section perpendicular to the previous one. One end of the wire is led, close to
the brass axis, through a small opening lined with ivory in one disc at e (Figure 3) outward
from e to e′; the other end is fastened at d on the periphery of the cylinder formed by the
wire windings with silk thread. A plane mirror ff ′ (Figure 3) is now attached to this wire
coil, and fixed by three screws to a small brass plate; the brass plate is equipped with two
right-angled extensions g and g′, of which in Figure 3 only the rear one, g, is visible.

Figure 4, which gives the horizontal cross-section, shows both extensions connected with
the brass plate holding the mirror ff ′. These two extensions are screwed at their ends to
the outsides of the two brass discs aa and a′a′. The mirror ff ′ is located in a plane parallel
to the axis bb′ of the wire coil close to the periphery of the coil; diametrically opposite to
it, a counter-weight h is mounted. I use now a square plane mirror ground in Berlin by
Oertling;89 its sides are 40 millimeters long.

The bifilar suspension of this wire coil consists of three parts: the halter fastened onto the
coil, the two suspension wires, and finally the immovable support from which the wires hang.
The halter consists of a forked brass bracket or bow (Figure 3), ll′, with two 100-mm-long

89[Note by AKTA:] Johann August Daniel Oertling (1803-1866).
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parallel vertical arms lk and l′k′, 100-mm apart. The ends of both arms are screwed fast at
k and k′ to the brass plate which holds up the mirror, and, diametrically opposite, to the
holder of the counter-weight. Figure 5 in particular shows this halter; at d and d′, the two
wires coming from b and c pass under two ivory plates which can be adjusted by means of
screw a, and pass through two grooves in the ivory plates, which are in contact with each
other at the center, and vertically upward through the opening e.

Figure 6 gives the view of the halter from below; at f and g, the connection of the screw
a with the two ivory plates d and d′ is represented. The vertical going through the center
of gravity of the coil passes through the middle of the area between the two grooves. At
each arm of the bow, finally, is located at d′ and e′ (Figure 3) a clamp insulated with ivory
for fastening and connecting one of the silk-coated wires from each end of the coil with the
lower end of one of the two uncoated suspension wires. The suspension wire is led from this
clamp d′ or e′ through a small opening lined with ivory o or o′, along the underside of the
bow, to one of the two already mentioned grooves on the ivory plates which meet each other
at the center, whence the wire goes upwards to the little brass cylinder at n and n′ (Figure
2). The two suspension wires are copper, 1 meter long, and 1/6 meter thick; their distance
apart, to be regulated by screw a (Figure 6), is usually 3 to 4 millimeters.

The support, to which both upper ends of the two suspension wires are fastened, consists
of a strong piece of ivory p (Figure 2), which is fitted tight like a lid on the upper end of
a 30-mm-wide brass tube qq′. This brass tube is 150 mm long and allows a second brass
tube, rr′, to pass through it, be rotated, and be adjusted by a set-screw s (Figure 3). These
two tubes surround the two suspension wires along their entire length, and protect them
from the influence of the air. On the underside of the piece of ivory, are attached two little
movable brass rollers t and t′ (Figure 2) of 10 mm diameter, fastened to the ivory with screw
clamps u and u′; over each of these little rollers is led a suspension wire, which terminates
in an eyelet. Both eyelets of the two wire ends are bound together with a strong silk thread
between t and t′, without touching each other. By means of these two little rollers and the
binding together of the two wires, the two suspension wires are made to always have the
same tension. To each of the two clamps u and u′, which fasten the two little rollers to the
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ivory, is, finally, fastened a coated copper wire, of which uv (Figure 2) serves to supply the
galvanic current, u′v′ to draw it off.

The multiplier, finally, consists of two square copper plates ww and w′w′ (Figures 3 and
4), with sides of 140 mm, with a circular hole of 76 mm diameter. These two copper plates
stand parallel and vertical, and are connected by a horizontal brass tube xx′ of 76 mm
diameter, by means of which they are kept at a 70-mm distance from one another. In the
space yy above these tubes between those two parallel plates is wound approximately 3 500
times the 0.7-mm-thick multiplier wire. The upper side of the multiplier is closed off with a
brass cover zzz′z′ (Figure 2), which is screwed tight onto it, and has a circular opening in
the center of its upper side, above which the brass tubes surrounding the suspension wires
stand. On both sides of this cover, slots are placed, through which the bow of the bifilar
coil can pass and swing freely. The space between the uppermost windings of the multiplier
wire and the cover is also wide enough, that each arm of the bow finds sufficient room for
its movements. The bow is first stuck through without the bifilar coil and fastened to the
suspension wires, and only then is it screwed to the bifilar coil. The protruding lower edges
of the two brass plates on the multiplier stand on a wooden plate, which can be made level
by means of three screws. In this wooden plate are two holes aa and a′a′ (Figure 3), through
which the two ends of the multiplier wire are led toward the outside. The whole instrument,
with the exception of the brass tubes in which the suspension wires are located, is contained
in a mahogany casing, for protection against the influence of the air. This mahogany casing
has no floor, but is placed with the level edges of the side walls flush with the wooden plate,
by means of which it is closed off from below. On the upper side is placed a round opening,
through which the already mentioned brass tube passes. A second opening is made on the
front side of the casing and can be closed with a plane of glass. Through it the light of the
scale falls on the mirror of the bifilar coil and is thrown back to the telescope. The entire
casing is vertically divided in two halves, of which an individual half can be taken away. The
arrangement of the telescope and the scale is exactly the same as in the magnetometer. In
future I will designate the instrument described here with the name electrodynamometer, or
dynamometer for short, because its most immediate destiny is to measure the electrodynamic
forces discovered by Ampère.90

5.2 The Electrodynamic Force of Two Components of

a Circuit Is Proportional to the Square of the Cur-

rent Intensity

The intensity of a constant current is determined by the amount of electricity, which during
the time-unit (during a second) goes through a cross-section of the circuit. This determi-
nation of the intensity of the current is, however, not suitable as the basis of a practical
method for measurement of the intensity of the current; for that, two measurements would
be required, of which one cannot be performed at all, the other not with precision: namely, a
definite amount of electricity cannot be precisely measured under the prevailing conditions,
and the length of time in which it flows through the cross-section of the conducting wire
can not be measured at all. For actual practical application, it is necessary to make use of
another method of measuring the current-intensity. Such a method, wholly conforming to re-

90[Note by AKTA:] Chapter 4 presented Maxwell’s comments on Weber’s bifilar electrodynamometer.

46



quirements, is offered by the magnetic effects of the currents, and will always be the standard
method here. Accordingly, two currents, conducted successively through the same multiplier,
that exert the same force on the same permanent magnet at the same distance and in the
same position, have the same intensity; if the force they exert differs, then their intensities
are related as these forces, and can be measured with the help of the usual galvanometer.

If different currents are now put through the same circuit successively, whose intensities,
according to this measurement, are in the ratio 1 : 2 : 3 and so forth, then the electrodynamic
interactions of two components of the circuit, through which these different currents are
passing, are in the ratio of the series of the square of those intensities, i.e., 1 : 4 : 9
and so forth. The correctness of this law is now to be proven by means of the following
electrodynamic measurements, which, even if the above law required no proof, would have
their own interest, as the first example of the general rigor which it is possible to achieve in
electrodynamic measurements.

The dynamometer described in the previous Section was placed on a stone ledge, without
any iron or magnets in its immediate surroundings, in such a way that the plane of the fixed
coil, or multiplier, was parallel to the magnetic meridian, and the plane of the bifilar coil was
also vertical, but formed a right angle with the plane of the multiplier. The position of the
multiplier could easily be adjusted, since it was possible to examine the vertical placement
with sufficient exactness by means of a level, which was set on the cover of the multiplier,
and the orientation was regulated by means of a compass also placed on the cover of the
multiplier. The bifilar coil assumed a vertical position on its own when it was hung up, but
whether the plane of the bifilar coil formed a right angle with the magnetic meridian, had
to be tested by means of special experiments.

That is, it is a proof of the correct position of the latter, if it remains unchanged even when
an arbitrarily strong positive or negative current is put through the bifilar coil alone, because
in the event of any appreciable deviation from that position, the terrestrial magnetism had
to either increase or decrease this deviation. In this way, the magnitude of the deviation
can also be determined. Such a test came about when the western radius of the bifilar coil
was to be turned by 14 minutes toward the north, in order to place the plane of the bifilar
coil exactly perpendicular to the magnetic meridian. The instrument offered no suitable way
to carry out this small correction with precision, and apart from the fact that such a small
deviation did not appreciably affect the results, doing away with it would have had no lasting
utility, because continued observations showed, that hanging the bifilar coil at the upper end
of a one-meter-high free-standing brass cylinder offered no security against rotations on the
part of the bifilar coil which began gradually and increased for a few minutes. Suspension
from an isolated fixed stone column was the only way to provide complete security from such
small deviations.

The mirror fastened to the western radius of the bifilar coil stood vertically, and in the
vertical plane, its horizontal normal was placed about 6 meters distant from a telescope
equipped with crosshairs. A scale, as used in the magnetometer, was mounted on the fixed
base of the telescope, just as in the magnetometer. Measurement showed the horizontal
distance of the mirror from the scale:

= 6018.6 scale divisions,91

from which the arc measure of a scale division resulted:
= 17.136”.

After this setup of the dynamometer for measuring the electrodynamic interaction of the

91[Note by AKTA:] In German: Skalentheile.
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multiplier and the bifilar coil when a galvanic current is put through them, an electromagnetic
apparatus for measuring the intensity of the current was now required for the investigation
in hand.

5.3 Description of an Electromagnetic Apparatus for

Measuring the Intensity of Galvanic Currents, Which

Are Conducted Through the Dynamometer

Measuring the intensity of galvanic currents, which are conducted through the dynamome-
ter, would have been easily effected by means of a so-called sine- or tangent-galvanometer
adapted for fine measurements,92 if it had been installed at a greater distance from the dy-
namometer, and the same current which passed through the dynamometer, had also been
conducted through the multiplier of that galvanometer. This deduction93 of the galvanic
current can be dispensed with when one places a small (transportable) magnetometer in
the magnetic meridian of the dynamometer at a distance from the dynamometer such that
the dynamometer’s fixed coil itself educes a deflection of the magnetometer which can be
measured by fine fractions. It is obvious that at such a slight distance, the use of a large
magnetometer (with a 600-millimeter-long needle) would be unsuitable, since in the case in
question, it was a fundamental advantage to confine the distribution of the magnetism in
the magnetometer to the smallest space possible. This occurred with the small or trans-
portable magnetometer, which I have described in the Resultaten aus den Beobachtungen
des magnetischen Vereins im Jahre 1838 (Results from observations by the Magnetic Society
in 1838).94

I have, however, contrived another instrument which suited this purpose still more fully,
and will describe it here, because not only can it often replace the transportable magne-
tometer to advantage, but it provides for other purposes, especially thermo-magnetic mea-
surements, an instrument which is often more precise than those previously applied. The
advantages are well-known of using for such measurements a needle equipped with a mirror,
along with a telescope and scale, instead of the compass with pointer and graduated scale.
Yet using the mirror with small needles is risky, because the mirror is an inertial mass, which
must be drawn along with the needle, and consequently, when a small needle has to draw
a larger mirror along with it, the force of acceleration is greatly weakened, which is just as
disadvantageous for the precision of the measurements to be made with the needle, as if
a weakly magnetized needle were used. This disadvantage, however, can be removed from
the outset if a magnetic mirror is employed, and this mirror is suspended by a silk thread
as itself a magnetic needle. I have obtained such a mirror from the instrument-maker Mr.
Oertling in Berlin. It consists of a tempered round steel plate ab (Figure 7), 33 millimeters
in diameter and 6 millimeters thick.

92[Note by AKTA:] In German: Sinus-Boussole and Tangenten-Boussole. The tangent galvanometer was
invented by Johan Jakob Nervander (1805-1848) and the sine galvanometer by Claude Servais Mathias
Pouillet (1790-1868), [Ner33], [Pou37] and [Sih21]. Friedrich Kohlrausch discussed measurement of currents
with the tangent and sine galvanometers, [Koh83, Chapters 64 and 65, pp. 188-192].

93[Note by AKTA:] In German: Ableitung: deduction or derivation.
94[Note by AKTA:] [Web39a] with English translation in [Web41d] and [Web66b].
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This steel plate is ground so completely smooth, that the mirror image of a scale appears
very bright and clear through a telescope of tenfold magnification, and is little inferior to
the image in a glass mirror. At the edge of this circular disc, small screw-threads are tapped
at two diametrically opposed points, a and b, into each of which a little brass eyelet can
be screwed, from which the mirror is hung with a silk thread. Only one of these threads is
actually used, but soon the one, soon the other, according to whether the steel plate is to
turn its mirror surface toward east or west. Now, I magnetized this tempered steel plate, by
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placing two 25-pound magnetic rods in a straight line one behind the other, but in such a
way, that there remained an interval of space, equal to the diameter of the mirror, between
the south and north poles of the two rods, the poles being turned toward each other. The
mirror was placed in this space, so that that diameter of the mirror which was perpendicular
to the line connecting the two eyelets, a and b, linked the two magnets. Given the strength
of the magnets and the smallness of the mirror, this sufficed to impart to the mirror the
maximum magnetism it was capable of assuming.

This magnetic mirror was suspended by a silk thread ac (Figure 7) and made to oscillate.
The arc of the oscillation decreased only very slowly, so that the oscillations could still be
observed after a quarter of an hour, without the mirror having received any new impetus in
the meantime. The period of its oscillations, however, was too small for the observational
series to be carried out according to the rules for larger magnetometers, as the maximum
and minimum of the curve of oscillation was repeatedly observed right after one another. In
order to make precise observations of the average position of the mirror, it was an essential
requirement that the oscillations of the mirror be powerfully damped and the mirror brought
to a complete halt in the shortest possible time, without exerting any sort of influence on the
position of the mirror itself. I completely satisfied this essential requirement for using this
sort of magnetic mirror, by constructing a solid copper sphere ddd (Figure 8) of 90-millimeter
diameter.

Into one side, a hole eeee of 40-millimeter diameter was drilled 70 millimeters deep into
this sphere, and this hole could be closed with a flat glass pane. This hole was somewhat
enlarged at its back end for the magnetic mirror, and was also enlarged in the form of a funnel
toward the exterior, in order to give the mirror more access to the light. In the enlarged back
space eeee was suspended the magnetic mirror, which can be seen in Figure 8 in the horizontal
rectangular cross-section ns. From above, an 8-millimeter-wide, 40-millimeter-long opening
ffff (Figure 7) led to this enlarged space, through which the mirror, suspended from a silk
thread, could be let down to the center of the sphere. The silk thread was led through a
brass tube gggg, whose lower end was screwed to the sphere, with the help of a brass plate
hh, which covered the mouth of the opening ff to the sphere. Inside this brass tube was a
second exit-tube kkkk, which bore on its upper end a rotatable torsion circle ll with a hook,
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at c, to which the silk thread was tied. The thread could be raised through the exit tube,
until the mirror swung freely in the center of the copper sphere. Then the exit tube was fixed
in place by means of a push-screw m. To fix this copper sphere in place, a simple copper
ring nnnn was installed, 20 millimeters high, of 70-millimeter diameter, and 2 millimeters
thick, which formed a base into which the copper sphere was put. To level the instrument,
a small box-level was placed on the torsion circle and the copper sphere was rotated in the
ring until the level showed the correct alignment, which had to be carried out with great
delicacy and precision. Owing to its great weight, the copper sphere lay so tightly in the
ring, that no disturbance was ever noted.

The effect of this strong copper sphere on the oscillating mirror now consists in amagneto-
electric damping, in virtue of which the preceding arc of oscillation was in the ratio to the
succeeding one of 11 : 7 (the decrementum logarithmicum was = 0.19697),95 so that after 16
oscillations or about 1 minute (the period of oscillation96 was 3.78 seconds for this damping),
the arc of oscillation was only about 1/1400 its original size, thus negligible. As a rule, given
constant currents, it thus suffices to let 1 minute pass after the current begins, before one
observes the deflected position of the mirror.

If such deflection experiments possess not merely a relative, but an absolute, value, then,
according to the instructions given by Gauss in the Intensitas vis magneticae terrestris ad
mensuram absolutam revocata,97 the deflecting magnet or current must at most be placed
at a distance 3 or 4 times that of the needle’s length, for which in our case the triple or
quadruple of the mirror diameter will be 105 to 140 mm, at which slight distance even very
weak currents of the multiplier suffice to elicit sharp measurable deflections of the mirror.
If now 105 or 140 mm would be a distancing of the multiplier, sufficient to give an absolute
value to the measurement of the deflection, then this would take place still more, by far, at a
distance of 583.5 mm, at which the multiplier was placed from the mirror in our experiments.

95[Note by AKTA:] The logarithmic decrement is defined as the logarithm of the ratio of any two successive
peaks. Therefore, if the logarithmic decrement is log(xn−1/xn) = 0.19697, then xn−1/xn = 100.19697 =
1.573874141≈ 11/7, as 11/7 = 1.571428571.

96[Note by AKTA:] In German: Schwingunsdauer.
Gauss and Weber utilized the old French definition of the period of oscillation t which is half of the English

definition of the period of oscillation T , that is, t = T/2, [Gil71a, pp. 154 and 180]. For instance, the period
of oscillation for small oscillations of a simple pendulum of length ℓ is T = 2π

√

ℓ/g, where g is the local free

fall acceleration due to the gravity of the Earth, while t = T/2 = π
√

ℓ/g.
97[Note by AKTA:] Gauss’ work on the intensity of the Earth’s magnetic force reduced to absolute measure

was announced at the Königlichen Societät der Wissenschaften zu Göttingen in December 1832, [Gau32] with
English translation in [Gau33a] and [Gau37a], see also [Rei02, pp. 138-150].
The original paper in Latin was published only in 1841, although a preprint appeared already in 1833

in small edition, [Gau41b] and [Rei19]. Several translations have been published. There are two German
versions, one by J. C. Poggendorff in 1833 and another one in 1894 translated by A. Kiel with notes by E.
Dorn; a French version by Arago in 1834; two Russian versions, one by A. N. Drašusov of 1836 and another
one by A. N. Krylov in 1952; an Italian version by P. Frisiani in 1837; an English extract was published in
1935, while a complete English translation by S. P. Johnson was published in 2003; and a Portuguese version
by A. K. T. Assis in 2003: [Gau33b], [Gau34], [Gau36], [Gau37b], [Gau94], [Gau35], [Gau52], [Gau75],
[Gau03] and [Ass03].
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The mutual position of the two instruments, the dynamometer and the mirror mag-
netometer, is presented in Figure 9, where the dotted line NS is the magnetic meridian,
which goes through both instruments; A is the horizontal cross-section of the dynamometer,
as in Figure 4; B is the horizontal cross-section of the mirror magnetometer, as in Figure
8, CD are the telescopes for readings, aimed at the mirrors of both instruments; EF are
the attached scales, whose mirror-image is observed. The use of the mirror magnetometer
for thermo-magnetic observations, in which some additional devices come into play, will be
treated on another occasion.

5.4 Experiments

After this description of the essential equipment, which was designed for electromagnetic
measurement of the intensity of currents and for electrodynamic measurement of the interac-
tion of two portions of the circuit, and before we proceed to a description of the experiments

52



themselves, we wish to make a prefatory remark about the elicitation and regulation of the
currents which were used in those experiments.

Three small Grove’s elements98 from the instrument-maker Mr. Kleinert from Berlin
were used, which were brought into the circuit, either all three, or only two, connected
column-wise in series, or individually. Despite the fact that the currents were conducted
through a very long, thin wire circuit, which formed the bifilar coil and the multiplier of
the dynamometer, and which was even further extended by means of a long auxiliary wire,
these currents, even given the great weakening which they underwent because of the great
resistance of such a circuit, remained much too strong and deflected the dynamometer from
its equilibrium position much too far, for this deflection to be measured by means of the
1-meter long scale. On the other hand, the intensity of these currents in the multiplier was
quite suitable for eliciting a rigorously measurable deflection of the mirror magnetometer.
Hence the deflection of the bifilar coil had to be diminished at a constant rate, without
decreasing the intensity of the current in the dynamometer’s multiplier. There were two
ways for this to occur, either by increasing the separation of the suspension wires of the
bifilar coil from each other, which would decrease the sensitivity of the dynamometer at
a constant rate, or, the current could be apportioned so that only a small fraction of the
current passing through the dynamometer, would be conducted through the bifilar coil. I
preferred the latter method, in order to maintain the dynamometer’s sensitivity, which was
necessary for other experiments. A path or bridge was constructed for the current, by means
of a short, thick copper wire, designated vv′ in Figure 2, by which the current, outside the
bifilar coil, was conducted directly to the wire returning back out of the bifilar coil before
the current entered the bifilar coil. A precise comparison of the resistance of this connecting
wire with that of the bifilar coil, yielded the ratio

1 : 245.26,
from which it follows, according to Ohm’s law,99 that the current intensity in the bifilar coil
after this apportionment stood in the constant ratio of100

1 : 246.26
to the current intensity in the multiplier of the dynamometer, by means of which, thusly,
without decreasing the deflection of the mirror magnetometer by the dynamometer’s multi-
plier, the deflection of the dynamometer itself was diminished 246.26-fold. This 246.26-fold
diminished deflection of the dynamometer could then be rigorously measured on the scale;
the current might come from 3, 2, or only 1 Grove’s element.

The measurements contained in the following Table were made in that way.

98[Note by AKTA:] In German: Grove’sche Becher. The Grove voltaic cell or Grove element was named
after its inventor, William Robert Grove (1811-1896), [Gro39].

99[Note by AKTA:] Georg Simon Ohm (1789-1854). Ohm’s law is from 1826: [Ohm26a], [Ohm26c],
[Ohm26d], [Ohm26b] and [Ohm27] with French translation in [Ohm60] and English translation in [Ohm66].
100[Note by WW:] For if a denotes the intensity of the completely unapportioned current, as

it passes through the multiplier, b and c the intensity of the two currents, into which each
divides itself, b passing through the bifilar coil, c through the auxiliary wire vv′ which con-
nects the beginning and the end of the bifilar coil; then a = b + c, and according to
Ohm’s law, the intensities b : c are related inversely to the measured resistances, that is,

b : c = 1 : 245.26;
consequently

b : a = b : (b + c) = 1 : 246.26.
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Table of corresponding positions of the Mirror Magnetometer and
the Dynamometer under the influence of currents of different intensity

No. Number Observed Observed
of Grove’s Position of Position of
elements Magnetometer Dynamometer

1. 3 388.17 650.88
2. 0 279.74 209.79
3. 3 388.30 650.66
4. 0 279.68 209.47
5. 3 388.37 650.07
6. 0 280.05 209.70
7. 3 388.73 649.84
8. 0 279.95 209.55
9. 3 388.35 649.78
10. 0 279.78 209.53
11. 3 388.30 649.71

Average deflection 3− 0 108.566 440.508
12. 0 279.54 209.25
13. 2 352.15 407.52
14. 0 280.00 208.99
15. 2 352.35 407.35
16. 0 280.00 208.82
17. 2 352.50 407.18
18. 0 280.15 208.87
19. 2 352.60 407.15
20. 0 280.17 208.92
21. 2 352.95 406.89
22. 0 280.40 208.80

Average deflection 2− 0 72.438 198.305
23. 0 280.40 208.80
24. 1 316.77 259.68
25. 0 280.50 208.72
26. 1 216.93 259.53
27. 0 280.60 208.68
28. 1 316.90 259.50
29. 0 280.50 208.45
30. 1 316.85 259.38
31. 0 280.60 208.43
32. 1 216.90 259.35
33. 0 280.55 208.33

Average deflection 1− 0 36.332 50.915

The following explanations should be appended to this Table: 1.) During all these
experiments, the relationships of the conductors always remained the same, so that the
conditions of current intensity in all portions of the circuit were always the same. 2.) The
corresponding observations on the magnetometer and dynamometer were always carried
out simultaneously by two different observers at both instruments. The observers were, in
addition to myself, Dr. Stähelin from Basel, and my assistant Mr. Dietzel. 3.) Every
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single dynamometer observation shown in the Table is not a simple reading, but each such
observation is based on 7 readings: namely, as the oscillation occurred, the highest and
lowest position were alternately read and the 6 averages from each two successive readings
taken to begin with; the 5 second averages, taken in turn from two such successive averages,
were considered as partial results, and the average value of these 5 partial results entered
in the Table. 4.) Between every two observations of the deflected position, the circuit was
broken, in order to observe the natural position without galvanic influence, because this
position changes appreciably, though very slowly, over time. This breaking of the circuit is
indicated by a zero in the column which shows the number of elements. 5.) The average
values of the deflection for the observations in the Table from 1 to 11 are derived from the 11
preceding observations, by taking the 10 differences from each two successive observations
during the closed and broken circuit, and the 9 averages were taken from every second such
initial successive difference, of which, as a partial result, the overall average is given in the
Table. 6.) Finally, as for the magnetometer, the horizontal distance of the mirror from the
scale is to be noted during the experiments contained in this Table, because it later had to be
frequently altered: it amounted to 1251 scale units. 7) The 11 observations, from which the
average deflections of the magnetometer and dynamometer were calculated, give a proof of
the exactness of the measurement; for one sees, that the 5 or 6 repetitions of the experiments,
with the circuit closed and broken, which the 11 observations comprise, always agree, up
to a fraction of a scale unit, in which connection it is to be noted, that even these small
differences originate for the most part in the actual changes in current intensity; further,
in the case of the magnetometer, they originate in the variations in declination appearing
during the experiment; and, in the case of the dynamometer, from a placement which was
not perfectly fixed and invariable.

The results of all these experiments can be briefly surveyed in the correlated average
values of the deflection of the magnetometer and dynamometer by the current of 3, 2, and
1 Grove’s elements, namely:

Average Average
deflection of deflection of
magnetometer dynamometer

for 3 elements 108.566 440.508
for 2 elements 72.438 198.305
for 1 element 36.332 50.915

According to the optical law of reflection, these numbers are proportional to the tangent
of the doubled angle of deflection and are to be reduced to the tangents of the simple angle
of deflection, which give the measure of the deflecting forces, in which a small influence on
the part of the eccentricity of the mirror is to be taken into consideration. The corrections
emerging from this are:

0.14 0.47
0.04 0.05
0.00 0.00,

from which, if these corrections are taken into account, the following corrected values are
yielded, i.e., for the deflecting force
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of the magnetometer of the dynamometer
108.426 440.038
72.398 198.255
36.332 50.915 .

Now, according to the measure of electromagnetic intensity taken above as the founda-
tion, the numbers in the first column are proportional to the current intensity, while the
numbers in the second column give the corresponding electrodynamic forces, according to
which, therefore, the dependency of the electrodynamic forces on the current intensity can
be determined, which was the chief purpose of these experiments. Before this occurs, how-
ever, let it be noted, that it could seem as though a small extraneous influence must still
be excluded from the numbers in the first column, i.e., that which originates from the in-
fluence of the bifilar coil on the magnetometer. That is, those numbers, then, could only
hold true as a measure of current intensity, if the magnetometer is always deflected by that
same fixed, uninterrupted segment of the circuit. This segment of the circuit was the unin-
terruptedly fixed multiplier of the dynamometer. In point of fact, this multiplier was located
in a position vis-à-vis the magnetometer, such that it exerted the greatest deflecting force,
while the bifilar coil suspended in the multiplier was brought originally into such a posi-
tion, where, even if a stronger current was conducted through it, it was able to exert no
deflecting force whatever. Now, however, in the foregoing experiments the bifilar coil was
appreciably deflected or twisted, and after this twisting, it had to exert a deflecting force
on the magnetometer, wherefore the numerical values above required a correction, in order
to make them correspond to the exclusive influence of the multiplier. This correction is,
however, merely very small, because the intensity of the current passing through the bifilar
coil amounted to only a 246.26th of the current intensity in the multiplier, because of the
separation [of the current] mentioned above. I have ascertained for myself, that even in the
case where the correction was greatest, it still remained below 1/500 scale units, and hence
can be disregarded.

If one now multiplies the square roots of the observed values for the electrodynamic
interaction, namely,

√
440.038,

√
198.255,

√
50.915, by the constant factor

5.15534,

one obtains nearly the observed values for the electromagnetic effect, namely, the series:
108.144
72.589
36.786,

whose comparison with the observed values yields the following differences:
−0.282
+ 0.191
+ 0.454.

The greatest difference, which appears between these calculated values and the directly
observed values for the electromagnetic force, thus amounts to less than half a scale unit,
in virtue of which, the law underlying the calculation can be considered as proven, that
the electrodynamic force of two portions of a circuit is proportional to the square of the
electromagnetic force, consequently proportional to the square of the current intensity.

This experiment also makes it evident, that the method of electrodynamic measurement
utilized here permits a rigor and precision almost equal to that permitted by the method of
magnetic measurement with the magnetometer.
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5.5 Proof of the Fundamental Electrodynamic Law by

Means of Measurement

After this first test of the precision to be achieved with the described instruments of electro-
dynamic measurement, I proceed at once to a system of the measurements carried out then,
which is suited to a complete examination of the fundamental electrodynamic law.

Ampère, in his Treatise cited above, page 181 f., presents two methods of deriving the
law of interaction of two conducting wires from experimentation:101

The one way, consists of first measuring with the utmost precision the values of
the interaction of two pieces of finite size, by successively bringing them at different
distances and positions vis-à-vis each other; then one must make a hypothesis about
the value of the interaction of two infinitely small parts, conclude from this the
value of the [reciprocal] action, which emerges for the conductors of finite size,
with which one has operated, and modify the hypothesis, until the results of the
calculation agree with those of observation. [...] The other consists of experimentally
confirming, that a moveable conductor stays in perfect equilibrium between equal
forces or equal rotational moments,102 when these forces or moments come from
parts of fixed conductors, whose shape and size can be altered in any way whatever,
under conditions, determined by the experiment, without disturbing the equilibrium,
and from this to directly conclude by means of calculation, what the value of the
interaction of two infinitely small parts must be, in order that the equilibrium may be
actually independent of all changes of form or size, which are compatible with those
conditions.

Ampère preferred the latter method for reasons among which one was already sufficient,
namely that he did not possess the instruments indispensable for the former method. Of
course, under such conditions the second method had to be preferred, which does not require
the performance of actual measurements. Yet Ampère seems to have overvalued the latter
method, when he expressed the view that it deserved an absolute preference over the former.
An instrument for precise measurements has two prerequisites: 1.) a great refinement and
sensitivity, which allows us to recognize the effects to be measured clearly and independently
of extraneous, uncontrollable influences; 2.) a measuring apparatus suited to these effects.
It is clear, however, that this latter requirement can always be easily fulfilled, if the former
is satisfied, thus the former must be regarded as the main requirement. Fulfillment of
this main requirement, however, is just as essential for the second method as for the first,
because otherwise it will be quite illusory. The essential difference between these methods,
in relation to experimentation, is thus simply that according to the former method, one
holds the equilibrium of the electrodynamic forces by means of other known and measurable
forces of nature, while according to the second method, one seeks conditions in which the
electrodynamic forces will mutually maintain the equilibrium between themselves. There
can be no doubt, that the latter method, if it is to lead to reliable and precise results, is less
direct and less simple, in the experimental connection, than the former. Hence, at most, the
fact can be brought to bear in favor of the second method, that in the theoretical connection,

101[Note by AKTA:] See [Amp23, pp. 181-182], [Amp26, pp. 9-10] and [AC15, pp. 344-345].
102[Note by LH and AKTA:] In German: Drehungsmomenten. This can also be translated as rotatory

actions or torques.
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the fundamental law can be more easily and more directly derived from the results achieved
by this method, which, however, is no longer a consideration, if the fundamental laws to be
tested are already fully in hand, as occurs, through Ampère’s services, in the foregoing case.
In virtue of this, we are in a position to carry out a very simple system of measurements,
which meets the requirements.

The two conducting wires, which act reciprocally upon each other, should form circles,
or systems of parallel circles, which have a common axis and are called conducting coils.
These two axes should have a position horizontal and right-angled to each other, specifically,
so that the extension of the one axis goes through the center of the other coil. One of
these coils is fixed, the other can be rotated around its vertical diameter. Now, either the
extended axis of the fixed coil can go through the center of the moveable coil, or, vice versa,
the extended axis of the moveable coil can go through the center of the fixed coil. In both
cases, one can make measurements at different distances of the centers from each other. It is
easily seen, that these two ways of ordering electrodynamic measurements fully correspond
to those of the magnetic measurements, which Gauss has presented in the Intensitas vis
magneticae terrestris ad mensuram absolutam revocata (Commentationes Soc. regiae Scient.
Gottingensis recentiores, Vol. VIII, page 33).103,104 For the electrodynamic interactions, we
can add still a third ordering of measurements, where the centers of the two coils coincide, as
occurs in the dynamometer described above. In all these cases, Ampère’s law can be applied,
and the results calculated, in order to compare them with the results of observation.

If the fixed coil acts at a distance on the moveable coil, then the two coils can have
arbitrarily like or unlike diameters; if, however, the centers of the two coils are to coincide,
as was the case with the measuring instruments described above, then the interior diameter
of the one, ring-shaped coil must be larger than the exterior diameter of the other, so that the
former can contain the latter. In the dynamometer described above, the moveable coil was
the smaller, and was contained by the fixed coil. If, finally, the three series of experiments
just indicated are to be carried out, by simply placing the fixed coil in different places in
succession, without changing the suspension of the moveable coil, which is advantageous for
more precise comparison of all the measurement results with each other, then the moveable
coil must be larger, so that it can contain the fixed coil, because that is the only way the
latter, unimpaired by the suspension wires, can be introduced through the moveable coil.
This is the reason why, for this system of measurements, a special measuring apparatus was
constructed by the instrument-maker Mr. Leyser105 in Leipzig, which will be described here.

The bifilar coil aaa in Figure 10 consists of a thin brass ring of 100.5 mm diameter and
30 mm height, which lies between two parallel brass discs or washers of 122.7 mm exterior
diameter and 100.5 mm interior diameter, and holds them at a distance of 30 mm from one
another. A copper wire of 1/3 mm diameter, coated with silk, is wound around that brass
ring about 3 000 times, between these two discs, so that it entirely fills up the space between
the two discs. After the wire is wound, the two brass discs are held together by a fixed brass
clamp bb, which encloses the wound wire and holds up the torsion-circle cc at its center. The
torsion-circle consists of two horizontal (when the bifilar coil is situated vertically) discs, of
which the lower is rigidly connected by means of the brass clamp to the bifilar coil, while
the upper can rotate on the lower around a vertical axis. The upper disc is furnished with a

103[Note by HW:] Gauss, Werke, Vol. V, page 107.
104[Note by AKTA:] See footnote 97 on page 51.
105[Note by AKTA:] Georg Moritz Ludwig Leyser (1816-1881).
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circular scale of units,106 the lower with an index. On the upper disc rests a wooden peg d,
which at the upper end holds the prong ee of a very moveable roller of 20 mm diameter. A
silk thread ff is led around this roller, passes vertically upward over both sides of the roller,
and is fastened on both sides, a few millimeters above the roller, to the two suspension wires
fg and fg. To these connection-points f and f , the two ends of the wire wound around
the bifilar coil are also brought, in such a way that the galvanic current can be conducted
through the one suspension wire to one end of the bifilar coil, and out the other end of the
bifilar coil into the second suspension wire. The two suspension wires go upward from these
connection-points vertically toward the ceiling, where they are fastened to two brass hooks
insulated from one another. From these two hooks, two other wires are led away, one to a
commutator, the other to the galvanic battery.

With the help of the torsion-circle, one can give the horizontal axis of the bifilar coil any
arbitrary position, while the suspension wires maintain their natural parallel position. The
torsion-circle was adjusted in such a way, that the axis of the bifilar coil coincided with the
magnetic meridian NS, so that the terrestrial magnetism did not alter the position of the
bifilar coil, when a galvanic current passed through the coil.

To the wooden peg on the torsion-plate a vertical flat mirror k was fastened, at which at
about a 3.3 meter distance, a telescope with crosshairs was directed, in order to observe the
image of a horizontal scale set up near the telescope.

The fixed coil lll in Figure 10 consists of two thin parallel brass plates of 88.8 mm diameter,

106[Note by AKTA:] In German: Kreistheilung. This expression can also be translated as “circular division”.
For instance, a circle divided into degrees.
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which are held in a fixed position 300 mm distant from each other by a 5.5 mm thick brass
axle m. This brass axle goes through both plates and extends 10 mm on both sides. Around
the same axle between the two discs, a copper wire of 1/3 mm diameter, sheathed in silk,
is wound roughly 10 000 times, so that it entirely fills the space between the two discs. One
end of this wire is led outward, close to the axle, through a small opening lined with ivory
at m in the one disc, from m to n; the other end is fastened to the periphery of the coil at
m′ with silk thread and goes outward from m′ to n′. The one wire end n′n′ is brought to the
commutator A (Figure 11), the other nn to the multiplier B (Figure 11) of a galvanometer.

A small wooden frame107 pp serves to keep this coil fixed (Figure 10), which presents two
sockets q, into which the two protruding parts of the axle are laid. This frame stands on
three feet which are fitted with screw-tips α, β, γ for levelling. One of these feet is fitted
with a hinge r, and can be pushed open in such a way that one can freely move it, along
with a part of the frame and of the fixed coil, through the bifilar coil, and then can push
it down again. The fixed coil then comes to stand in the center of the bifilar coil, and the
frame then rests with two feet on this side of the bifilar coil, and with the third foot on that
side, on the immovable table, which is close below the bifilar coil.

On the flat horizontal table-top, the positions are precisely drawn ahead of time, at
which the fixed coil is to be successively placed. Namely, the three screw-tips, which, with
concentric placement of the two coils, stand on points α, β, γ of the table-top, are shifted
in such a way that they come to stand either north at points α1β1γ1 or α2β2γ2 and so on, or
south at points ᾱ1β̄1γ̄1 or ᾱ2β̄2γ̄2 and so on, or east at points α1β1γ1 or α2β2γ2 and so on, or
west at points ᾱ1β̄1γ̄1 or ᾱ2β̄2γ̄2 or ᾱ3β̄3γ̄3 and so on. For protection against the influence of
the air, the bifilar coil is surrounded with a wooden casing, in which a glass sheet is inserted,

107[Note by AKTA:] In German: Gestell. This word can also be translated as stand or support.
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through which the light can fall from the scale onto the mirror, and thence back into the
telescope. The casing consists of two parts, one of which can be removed when the fixed coil
is to be placed in the center of the movable coil.

In order, now, to make the system of electrodynamic measurements carried out with this
instrument comparable among themselves, it was necessary to measure, independently of
the system, the intensity of the current which was conducted through the two coils during
each measurement. For this purpose, the apparatus described in Section 5.3 could not be
applied, because of the adjustment of the fixed coil to be undertaken from one measurement
to another. Hence the one end nn of the wire wound around the fixed coil was connected to
a third wire coil B (Figure 11), which consisted of 618 parallel windings, enclosing an area of
8 313 440 square millimeters, and was placed 217 mm west of a transportable magnetometer,
C, 8 meters away from the dynamometer (Figure 11), and which with the magnetometer
formed a galvanometer. With its other end ss, this third wire coil was, finally, connected
with the commutator A (Figure 11), to which one conducting wire tt of the galvanic battery
D also led.

Figure 11 gives a clear representation of the ordering and connection of the different parts
of the apparatus. It may be noted in this connection, that the two wire ends of the fixed
coil, when they were located close to the bifilar coil, were wound around each other in such
a way that the opposite currents passing through them had no influence on the bifilar coil.
E represents the dynamometer in outline, F the accompanying telescope for the readings,
along with the scale; C represents the magnetometer in outline, and G the accompanying
telescope for the readings, along with the scale; B is the multiplier coil through which
the same galvanic current is conducted as through the dynamometer, and which acts at a
distance on the needle of the magnetometer C, whose deflection from the magnetic meridian
is measured, in order to determine the intensity of the applied current and its variations
during the experiments.

The galvanic battery, which was used for these experiments, consisted of 8 Bunsen carbon
elements.108 The direction of this current always remained the same in the wire of the bifilar
coil of the dynamometer E, and was, as is clear from the placement of the commutator
A, reversed in the fixed coil of the dynamometer E and in the third coil B, which took
the place of the multiplier in the galvanometer, simply by means of the alternation of the
commutator. It was necessary for the current in the bifilar coil to maintain its constant
direction, in order to eliminate the influence of terrestrial magnetism. The reversal of the
current in the fixed coil was necessary, in order to deflect the north end of the axis of the
bifilar coil alternately eastward and westward by means of the effect of this fixed coil on the
bifilar coil, and, through repeated measurement of these positive and negative deflections, to
determine this effect with greater rigor. The reversal of the current in the third coil had the
same purpose, in relation to the deflection of the magnetometer, which served to determine
the current intensity. This purpose is attained by means of the equipment described, with
the help of the commutator A; because the direction of the current constantly remained the
same in the battery D and in all those portions of the circuit which the battery D connects
with the commutator A, namely, in the wire tt, in the battery D, in the wire uu, in the
bifilar coil of the dynamometer E and in the wire vv; on the other hand, the direction of the
current can be changed by the commutator A in all those portions of the circuit which are
separated by the commutator A from the battery D, namely, in the wire n′n′, in the fixed

108[Note by AKTA:] In German: Bunsen’schen Kohlenbechern. The Bunsen voltaic cell or element was
named after its inventor, Robert Wilhelm Eberhard Bunsen (1811-1899).
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coil of the dynamometer E, in the wire nn, in the multiplier coil B, and in the wire ss.
The period of oscillation of the bifilar coil without current was = 13.3259”. The horizontal

distance of the mirror of the bifilar coil from the scale was 3 306.3 scale units; the horizontal
distance of the magnetometer’s mirror from the scale was 1103 scale units. The results of
these measurements are contained in the following Table, in the same order in which they
were made.
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A Dynamometer Galvanometer
516.27 250.47

26.41 321.49
542.68 571.96

26.74 321.48
600 515.94 250.48

westerly 26.37 26.35 321.12 320.14
542.31 571.60

26.24 319.41
516.07 252.19

26.00 317.22
542.07 569.41
506.37 254.05

44.47 314.65
550.84 568.70

44.87 314.22
500 505.97 254.48

westerly 43.89 44.31 314.77 314.32
549.86 569.25

44.50 314.33
505.36 254.92

43.84 313.63
549.20 568.55
517.27 566.80

20.34 312.08
537.61 254.72

20.43 312.98
500 517.18 567.70

northerly 20.19 20.30 312.82 312.48
537.37 254.88

20.36 312.63
517.01 567.51

20.19 311.89
537.20 255.62
505.06 257.92

43.04 308.39
548.10 566.31

43.09 308.98
500 505.01 257.33

easterly 42.53 42.89 308.05 308.80
547.54 565.38

42.32 309.09
505.22 256.29

43.46 309.50
548.68 567.79
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A Dynamometer Galvanometer
517.96 564.05

19.51 306.09
537.47 257.96

19.80 306.07
500 517.67 564.03

southerly 19.19 19.49 305.14 305.56
536.86 258.89

19.79 305.47
517.07 564.36

19.17 305.03
536.24 259.33
514.31 260.23

24.19 304.46
538.50 564.69

23.65 305.02
600 514.85 259.67

easterly 24.06 23.72 304.58 304.92
538.91 564.25

23.72 305.36
515.19 258.89

23.85 305.17
539.04 564.06
568.21 562.50

81.67 303.54
486.54 258.96

81.85 304.67
400 568.39 563.63

easterly 81.77 81.64 303.35 303.79
486.62 260.28

81.57 303.32
568.19 563.60

81.35 304.08
486.84 259.52
546.32 261.44

36.27 300.95
510.05 562.39

36.25 302.42
400 546.30 259.97

northerly 36.14 36.15 302.73 302.07
510.16 562.70

35.96 301.58
546.12 261.12

36.12 302.69
510.00 563.81
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A Dynamometer Galvanometer
488.36 261.99

79.71 300.99
568.07 562.98

79.78 301.45
400 488.29 261.53

westerly 79.60 79.60 300.97 300.80
567.89 562.50

79.49 300.80
488.40 261.70

79.40 299.83
567.80 561.53
510.23 561.18

35.34 298.95
545.57 262.23

35.53 299.67
400 510.04 561.90

southerly 35.45 35.43 299.40 299.30
545.49 262.50

35.56 299.37
509.93 561.87

35.28 299.11
545.21 262.76
566.29 263.73

79.45 298.81
486.84 562.54

79.39 300.31
300 566.23 262.23

southerly 78.13 78.85 300.30 299.89
488.10 562.53

78.64 300.30
566.74 262.23

78.62 299.71
488.12 561.94
431.18 263.96

192.57 298.05
623.75 562.01

192.40 298.25
300 431.35 263.76

westerly 192.02 192.17 297.99 297.81
623.37 561.75

191.96 297.30
431.41 264.45

191.91 297.45
623.32 561.90
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A Dynamometer Galvanometer
566.96 265.93

78.30 297.12
488.66 563.05

78.37 299.13
300 567.03 263.92

northerly 77.93 78.08 299.12 298.33
489.10 563.04

77.98 298.15
567.08 264.89

77.80 298.14
489.28 563.03
433.52 266.49

190.26 296.69
623.78 563.18

109.43 298.16
300 433.35 265.02

easterly 190.23 190.08 296.98 297.30
623.58 562.00

189.89 297.09
433.69 264.91

189.59 297.60
623.28 562.51

The following explanations are to be appended to the Table. In column A, the distance
between the centers of both coils of the dynamometer is given in millimeters, and it is noted,
in which direction, taking the bifilar coil as the point of origin, the fixed coil was placed; under
north and south, the direction is to be understood as aligned with the magnetic meridian;
under east and west, the direction is to be understood as perpendicular to the magnetic
meridian. — In the second column, headed Dynamometer, the position of the bifilar coil
is given in scale units, alternating between the direct and reversed direction of the current
in the fixed coil. Each of these numbers is based on 7 readings, in which from oscillation
to oscillation, the maximum and minimum of the oscillation arc were alternately taken 7
times after one another, and from this, according to recognized rules, the average state of
equilibrium of the oscillating coil was calculated. With the reversal of the current in the
fixed coil, a procedure was applied which did not increase the arc of oscillation of the bifilar
coil. In the Table, next to the observations of position, which relate alternately to the direct
and reversed current in the fixed coil, are noted the differences for every second immediately
successive observation, which provide in scale units the double deflection of the bifilar coil
by means of the influence of the fixed coil. Finally, next to these particular values of the
double deflection, their average value for each placement of the fixed coil is noted. — In the
third column, headed Galvanometer, the position of the galvanometer is given, alternately
with direct and reverse current direction in the coil B serving as multiplier. This position
has been observed and calculated in the same way as with the dynamometer, and next to it
are noted the differences and the average value of the double deflection of the galvanometer.
The corresponding observations at the dynamometer and at the galvanometer were always
made simultaneously by two observers at the two instruments.

All the observations assembled in the Table above were made in the order presented, on
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one day, immediately after one another, and, since all external conditions remained exactly
the same, all the results are directly comparable with one another. On this day, it had
not been possible to carry out as well those observations, whereby the fixed coil received its
placement in the center of the bifilar coil, because the re-positioning of the fixed coil required
several time-consuming precautionary measures. This last series of experiments was hence
postponed to the next day. However, because it was then no longer possible to be confident
that all external conditions remained exactly the same as in the earlier experiments, on
this second day, for comparison, two series of experiments, which had already been made
on the first day, were repeated, namely, at a 300-mm east and west distance of the fixed
coil from the bifilar coil, which could be used to reduce the last series of experiments in
such a way, that the results became comparable with the results of the earlier experiments,
independently of the small variations which might have occurred in the external conditions
in the meantime. Also, the fact that on the next day, another galvanic battery was used,
namely of 2 Grove (platinum-zinc) elements instead of 8 Bunsen carbon elements, had no
influence on this comparison. This was necessary because otherwise, the deflection of the
dynamometer when the fixed coil was placed in the center of the bifilar coil would have been
too large to be measured on the scale. Finally, it may be noted that the constant direction of
the current in the bifilar coil was the opposite on the next day from the first, which likewise
had no influence on the reduced results. The results of this second series of experiments are
contained in the following Table.
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A Dynamometer Galvanometer
48.05 359.78

905.69 64.51
953.74 424.29

904.84 64.46
48.90 359.83

0 904.00 903.97 64.47 64.45
952.90 424.30

903.01 64.40
49.89 359.90

902.31 64.39
952.20 424.29
485.70 329.30

27.58 125.08
513.28 454.38

27.18 124.99
300 486.10 329.39

easterly 27.25 27.54 124.89 125.08
513.35 454.28

28.26 125.10
485.09 329.18

27.43 125.35
512.52 454.53
512.37 454.50

25.65 125.18
486.72 329.32

27.77 125.29
300 514.49 454.61

westerly 27.43 27.20 125.35 125.23
487.06 329.26

27.60 125.30
514.66 454.56

27.55 125.05
487.11 329.51

Herewith it is to be noted that the current of 2 Grove’s elements also elicited a larger
deflection of the dynamometer than could be measured with the 1000-unit scale, when the
fixed coil was placed in the center of the bifilar coil, and that therefore in this case the
current was weakened through increasing the resistance of the circuit by inserting a long,
thin conducting wire, which was removed again when the coils were placed 300 mm apart,
because otherwise the deflection of the dynamometer would turn out to be too small for an
exact measurement. This is discerned from the difference in the magnetometer deflection,
which measures the current intensity, and in the latter case amounted to almost double that
of the former.

The results of this series of experiments can easily be surveyed in the following com-
pilation of all the average values of the simultaneous deflections of the dynamometer and
galvanometer, namely:
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Distance in mm Dynamometer Galvanometer
0 903.97 64.45

300 easterly 27.54 125.08
300 westerly 27.20 125.23.

These numbers are, according to the optical law of reflection, proportional to the tangents
of the doubled angles of deflection, and are to be reduced to the tangents of the simple
angles of deflection, because these will give the measure of the deflecting force. Here a slight
influence of the eccentricity of the mirror is still to be taken into consideration. One obtains
from this the following reduced values:

0 899.79 64.44
300 easterly 27.54 124.98
300 westerly 27.20 125.13.

We take the average from the last two series, which differ very little from one another,
because they should be almost equal if the current intensity is the same and the position of
the fixed coil easterly and westerly of the bifilar coil is totally symmetric, whereby we obtain
the following values:

0 899.79 64.44
300 27.37 125.055

The results of the foregoing series of experiments can be surveyed in the compilation of
all the average values for the dynamometer and galvanometer deflections in the following
Table:

Distance Easterly Westerly Southerly Northerly
Milli- Dyna- Galva- Dyna- Galva- Dyna- Galva- Dyna- Galva-
meter mo- no- mo- no- mo- no- mo- no-

meter meter meter meter meter meter meter meter
300 190.08 297.30 192.17 297.81 78.85 299.89 78.08 298.33
400 81.64 303.79 79.60 300.81 35.43 299.30 36.15 302.07
500 42.89 308.80 44.31 314.32 19.49 305.56 20.30 312.48
600 23.89 304.92 26.35 320.14 — — — —

I have convinced myself, that the influence of the reduction of these numbers to the
tangents of the simple deflection angles for the dynamometer is so slight, that it can be left
out of consideration; that is, it is smaller than the unavoidable observational errors. This
correction also comes into consideration in the galvanometer observations, because no large
differences emerge in the deflection of the galvanometer.

5.6 Reduction of the Observations

The observed electrodynamic forces in the foregoing Section can not immediately be used
for the intended test of the dependence of these forces, determined by Ampère’s law, on the
mutual position of the conducting wires acting upon each other, because they are based on
different current intensities. Hence these observations are first to be reduced to the same
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current intensities, for which the law proven in Section 5.4 comes into application, according
to which the dynamometer deflections are proportional to the square of the galvanometer
deflections. The application of this law to the observations at hand, however, itself presup-
poses another reduction, namely, the reduction to the same directive force109 of the bifilar
coil, which underwent appreciable changes during these experiments. In the observational
results presented in Section 5.4, through which the cited law was proven, the correction
resulting from this was negligible and hence did not need to be taken into account, because
there the current which passed through the fixed coil of the dynamometer, was divided, and
only a small part, namely 1/246 of the entire current, was conducted through the bifilar
coil, which had no appreciable influence on the directive force of this coil. With regard to
the present observational results, on the contrary, this reduction cannot be ignored, because
here the entirety of the current conducted through the fixed coil, went further through the
bifilar coil.

The directive force of the bifilar coil separates into a constant and a variable component.
The constant component, which is called the static moment, depends on the weight of the
bifilar coil and on the length and distance of separation of the suspension wires, and can
be calculated from the observed period of oscillation and from the inertial moment of the
bifilar coil. The period of oscillation of the bifilar coil, if no current is passing through it,
was determined by means of special observations,

t = 13.3259”.
The inertial moment K was found according to the formula given by Gauss in the Intensi-
tas,110

K = 864 800 000,
in which millimeters and milligrams are the basis for measuring length and mass. The static
moment S is obtained from111

S =
π2K

t2
= 48 064 000 .

The variable component of the directive force of the bifilar coil, which is called the elec-
tromagnetic moment, depends on the intensity of the horizontal component of the terrestrial
magnetism T , on the intensity of the current of the bifilar coil, χ, and on the size of the
area, λ, which is demarcated by the wire windings of the bifilar coil, and is to be set equal
to the product of these three magnitudes. The intensity of the horizontal component of the
terrestrial magnetism was found to be, at the location of the bifilar coil,

T = 1.83 .
The size of the area, which was demarcated by the wire windings of the bifilar coil, could not
be determined by direct measurement, because the number of wire windings was not precisely
known. Hence this area was indirectly determined by comparison of the electromagnetic
effect of this coil with that of another of known area on a distant galvanometers, by which

λ = 29 314 000 square mm

109[Note by AKTA:] In German: auf gleiche Direktionskraft. The concept of “directive force” (or directional
force) was introduced by Gauss in 1838, [Gau38b, p. 4] with English translation in [Gau41c, p. 254].
Consider, for instance, a compass needle of magnetic momentm. Utilizing Gauss and Weber’s terminology,

let T be the horizontal component of the Earth’s magnetic force. The torque τ exerted by the Earth on the
needle when it is deflected by an angle θ relative to the local magnetic meridian is given by τ = mT sin θ.
The so-called magnetic directive force is here given by mT .
110[Note by AKTA:] See footnote 97 on page 51.
111[Note by AKTA:] See footnote 96 on page 51.
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was obtained. The current intensities, finally, were given for all individual experiments by
means of the galvanometer observations in scale units, which nevertheless are to be reduced
for present purposes to the fundamental electromagnetic measure of current intensity. To
do this, the observed number of scale units is multiplied by a constant factor, which in
accordance with the proof to be given in Section 5.9 is to be

= 0.000 361 4.

Thus, if y denotes the number of scale units observed on the galvanometer, then the
current intensity is

χ = 0.000 361 4 · y .

From these elements results the electromagnetic moment of the bifilar coil

χλT = 19 400 · y .

This value for the electromagnetic moment is to be subtracted, in the first series of
experiments, from the static moment, in the second series of experiments, however, it is
to be added to the static moment, in order to obtain the directive force of the bifilar coil,
because, as already noted on page 67,112 the direction of the current in the bifilar coil in the
last series was opposite to that in the first. For the first series of experiments, the directive
force in units of static moment resulted as

= 1− 19400

48064000
· y ,

for the second series of experiments

= 1 +
19400

48064000
· y .

The observed dynamometer deflections are accordingly reduced to a constant directive
force equal to the static moment, if one multiplies the number of scale units observed on the
dynamometer x in the first series of experiments by (1 − 194 · y/480640), in the second by
(1 + 194 · y/480640).

After performing this reduction, one obtains for the first series the values of the dy-
namometer and galvanometer deflections, assembled in the following Table.

Distance Easterly Westerly Southerly Northerly
Milli- Dyna- Galva- Dyna- Galva- Dyna- Galva- Dyna- Galva-
meter mo- no- mo- no- mo- no- mo- no-

meter meter meter meter meter meter meter meter
300 167.26 297.30 169.06 297.81 69.30 299.89 68.67 298.33
400 71.63 303.79 69.93 300.81 31.15 299.30 31.74 302.07
500 37.54 308.80 38.69 314.32 17.09 305.56 17.74 312.48
600 20.95 304.92 22.94 320.14 — — — —

For the second series one obtains the following correlated values:

112[Note by LH and AKTA:] [Web46, p. 62 of Weber’s Werke].

71



Distance Easterly or Westerly
Millimeter Dynamometer Galvanometer

0 923.19 64.44
300 28.75 125.055

The sensitivity of an instrument is inversely proportional to its directive force, i.e. the
force to be measured generates an all the greater deflection, the smaller its directive force is.
The foregoing observational data, reduced to the same directive force, are thus equivalent to
those obtained under the condition of equal sensitivity of the dynamometer.

After this reduction of the dynamometer observations to the same directive force, it
is now possible to bring into application the law proven in Section 5.4 and to reduce all
observations, for better comparison among themselves, to the same current intensity. For
this, it is only necessary to determine more closely the normal current intensity for which
the reduced observational data are supposed to be valid. Since it is not necessary to utilize
for both series of experiments equal normal current intensities, that intensity may be chosen
for the first series which corresponds to a galvanometer deflection in scale units, whose
square = 100 000, for the second series a five-times-smaller one, for which this square =
4 000. According to the law proven in Section 5.4, one then obtains from the dynamometer
deflection x, given in the Table, which corresponds to the galvanometer deflection y, likewise
given in the Table, the reduced value for the first series

= 100 000 · x
y2

,

for the second series

= 4000 · x
y2

.

In the following Table, the values of the first series reduced by this method are assembled:

Distance Easterly Westerly Southerly Northerly
300 189.24 190.62 77.06 77.16
400 77.61 77.28 34.77 34.78
500 39.37 39.16 18.30 18.17
600 22.53 22.38 — —

The reduced values of the second series are as follows:

Distance Easterly or Westerly
0 889.29
300 7.35.

From this latter it results that the electrodynamic force of the fixed coil on the bifilar
coil, when the centers coincide, was

88929

735
= 120.9

times greater, than when the centers were 300 mm distant from one another in the west-east
direction.
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In the Table for the first series, we see that the corresponding values very closely agree,
in east and west as well as in south and north, which is a proof for the precision of the
measurement, as well as for the symmetrical placement of the fixed coil on both sides of the
bifilar coil. If we now take the mean of these already closely agreeing values, and introduce
for 0 distance, in conformity with the results just taken from the second series, the 120.9-fold
value for the effect for 300-mm distance perpendicular to the magnetic meridian, we obtain
the following Table:

Distance Perpendicular to In the direction of
Magnetic Meridian Magnetic Meridian

0 22960 22960
300 189.93 77.11
400 77.45 34.77
500 39.27 18.24
600 22.46 —

5.7 Comparison with the Law of Magnetic Interaction

Before we use this system of measurements of the interaction of two conducting wires in
order to directly test Ampère’s law, we wish to make an interesting, if only indirect and
partial, prefatory test. Namely, it is known, that one of the most important consequences
of Ampère’s law for the interaction of two current elements, is, that the interaction of two
magnets, given all the differences in their respective positions, would also be elicited by
means of constant galvanic currents, which occur in a specific way on the surface or in the
interior of the magnets, and, conversely, that the interactions of two galvanic coils, like those
with which our measurements were carried out, given all the differences in their respective
positions, would also be elicited by two constant magnets, contained in areas surrounded by
the wire windings of those coils, if the free magnetism were distributed in a specific way in
the interior or on the surface. Accordingly, all the results which Gauss has proven for such
magnets in the Intensitas vis magneticae...,113 can be carried over to our two coils, and this
can happen all the more easily, because we have ordered our measurements of the interactions
of the two coils precisely as Gauss determined the measurements of the interactions of the
two magnets. Gauss, ibid., gave the distance of the two magnets in meters, and instead
we use millimeters; further, Gauss determined the simple deflections, calculated with the
natural state of rest of the needle as the starting-point, in degrees, minutes, and seconds,
while we have stated the doubled tangents of the simple angle of deflection in scale units
(that is, multiplied by the constant coefficient 6612.6). If, therefore, we wish to bring our
measurements of the interaction of the two conductor coils into the same form as those
magnetic measurements, we obtain the following Table of measured deflections:

R v v′

0.3 m 0o49′22′′ 0o20′3′′

0.4 m 0o20′8′′ 0o9′2′′

0.5 m 0o10′12′′ 0o4′44′′

0.6 m 0o5′50′′ —

113[Note by AKTA:] See footnote 97 on page 51.
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The tangents of v and v′ should then, here as there, be developed according to the
descending odd powers of R, and specifically,

tan v = aR−3 + bR−5

tan v′ =
1

2
aR−3 + cR−5

where a, b, c are to be experimentally determined. If, now, in our case

tan v = 0.0003572R−3 + 0.000002755R−5

tan v′ = 0.0001786R−3 − 0.000001886R−5

so the following Table of calculated deflections is yielded, to which the differences from the
measured deflections is adjoined:

R v Difference v′ Difference
0.3 m 0o49′22′′ 0 0o20′4′′ −1
0.4 m 0o20′7′′ +1 0o8′58′′ +4
0.5 m 0o10′8′′ +4 0o4′42′′ +2
0.6 m 0o5′49′′ +1 —

A better agreement between observed and calculated values can not be hoped for, and
accordingly, Ampère’s law finds itself experimentally confirmed in one of its most general
and most important consequences.

5.8 Comparison of Ampère’s Law with the Observa-

tions

The Ampère formula for the interaction of two current elements, which is to be tested with
respect to the present system of measuring this interaction, itself consists essentially of the
following: The interaction of two current elements is the inverse of the square of their distance
from one another, and directly proportional to the current intensity and the length of each
current element, and moreover to a factor, which depends on the angle which the directions
of the two current elements form with each other, and on the two angles, which the two
current elements form with their straight connecting-line. Let r be the distance of the two
current elements from each other, i and i′ the two current intensities, ds and ds′ the lengths
of the two current elements, ε the angle which the directions of the two current elements
form with one another, and finally ϑ the angle of the one current element with the line r,
and ϑ′ the angle of the other current element with the extended line r, then114

− ii
′

rr

(

cos ε− 3

2
cos ϑ cosϑ′

)

dsds′

is an expression for the magnitude of the interaction of both elements; the direction of
this action for both current elements coincides with their connecting-line, and for the two

114[Note by AKTA:] These angles appear in the Figure of this footnote, [AC15, Section 2.8]:
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opposed current elements it is repulsive, when the above expression has a positive value, in
the opposite case attractive.

From this law it is now possible first of all to find the expression for the combined effect
which a number of current elements, which together form a closed line, exert on any other
current element.

This effect can be separated according to three rectilinear coordinate axes. If these three
components are denoted X , Y , Z, and the angles are denoted λ, µ, ν, which the current
element ds′ which is acted upon forms with the three coordinate axes, and the center of the
element ds′ is the point of origin of the coordinates, Ampère has already proven that

X = −1

2
ii′ds′

(

cosµ

∫

xdy − ydx

r3
− cos ν

∫

zdx− xdz

r3

)

Y = −1

2
ii′ds′

(

cos ν

∫

ydz − zdy

r3
− cosλ

∫

xdy − ydx

r3

)

Z = −1

2
ii′ds′

(

cosλ

∫

zdx− xdz

r3
− cosµ

∫

ydz − zdy

r3

)

(see Mémoires de l’acad. roy. des sc. de l’Institut de France, 1823, page 214).115 If now,
the closed line is a circular line of radius m, and the x-axis is parallel to the projection
onto the plane of the circle of the straight line connecting the center of the circle with the
point of origin of the coordinates, and the y-axis [is parallel] to the diameter of the circle
perpendicular to that projection; further, if p denotes the distance projected onto the plane
of the circle, of the center of the circle from the point of origin of the coordinates, and ω
denotes the angle which the line p forms with the radius of a circle element ds; finally, if
q denotes the perpendicular from the point of origin of the coordinates to the plane of the
circle, than in this case, in the foregoing values of X , Y , Z [we have:]

z = q, y = m sinω, x = p−m cosω ,

therefore, since r2 = x2 + y2 + z2,

∫

xdy − ydx

r3
= mp

∫

cosωdω

r3
−m2

∫

dω

r3

wr
ids’

ids

(a) (b)

J’

Jids

ids’

ɛ

Here ω is the angle between the planes drawn through each element and the straight line joining their
midpoints. These angles have the following values in radians: 0 ≤ ε ≤ π, 0 ≤ ϑ ≤ π, 0 ≤ ϑ′ ≤ π and
0 ≤ ω ≤ π. Moreover, for Ampère i ≥ 0 and i′ ≥ 0.
115[Note by AKTA:] See [Amp23, p. 214], [Amp26, p. 42] and [AC15, pp. 366].
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= mp

(

sinω

r3
+ 3

∫

sinω · dr
r4

)

−m2

∫

dω

r3

∫

zdx− xdz

r3
= mq

∫

sinωdω

r3

∫

ydz − zdy

r3
= −mq

∫

cosωdω

r3
= −mq

(

sinω

r3
+ 3

∫

sinω · dr
r4

)

.

If, finally, we substitute for dr the value yielded by the equation for r, namely:

r2 = x2 + y2 + z2 = m2 + p2 + q2 − 2mp cosω ,

that value being

dr =
mp sinωdω

r
,

and extend the integral value to the entire perimeter of the circle, then we obtain

∫

xdy − ydx

r3
= 3m2p2

∫

sin2 ωdω

r5
−m2

∫

dω

r3

∫

zdx− xdz

r3
= 0

∫

ydz − zdy

r3
= −3m2pq

∫

sin2 ωdω

r5
;

consequently

X = −1

2
ii′ds′ ·m2 cosµ

(

3p2
∫

sin2 ωdω

r5
−
∫

dω

r3

)

Y = +
1

2
ii′ds′ ·m2

(

3pq cos ν

∫

sin2 ωdω

r5

+ 3p2 cosλ

∫

sin2 ωdω

r5
− cos λ

∫

dω

r3

)

.

If the element ds′ is part of a circle, whose radius is n, and whose plane is parallel to the
coordinate axis z, and a denotes the perpendicular from the center of the circle m to the
plane of circle n, c denotes the perpendicular from the center of circle n to the plane of
circle m, b the distance between the two perpendiculars, and, as was the case in the previous
experiment,

b = 0 ,

so we obtain the following equations for the angle α, β, γ, which the perpendicular to the
plane of circle n forms with the coordinate axes:

γ = 90o
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cos2 α + cos2 β = 1

cosα cosλ+ cos β cosµ = 0 .

Since, moreover, it is posited that

cos2 λ + cos2 µ+ cos2 ν = 1

we obtain

cosα =
cosµ

sin ν
, cos β = −cos λ

sin ν
.

For p and q we further obtain the following equations:

p cos β = n cos ν

p2 = a2 + n2 cos2 ν

q = c+ n sin ν .

If we now multiply the components X , Y , Z respectively with the cosine of angles α, β, γ,
which the perpendicular makes on the plane of the circle with the coordinate axes, then the
sum of these products yields the component in the direction perpendicular to the plane of
the circle,116 namely:

= X cosα+ Y cos β + Z cos γ ,

or, if one substitutes the derived values for X , Y , cosα, cos β, and γ, and eliminates p and
q,

= −1

2
ii′m2ds′ ·

[

3
(

a2 sin ν − cn cos2 ν
)

∫

sin2 ωdω

r5
− sin ν

∫

dω

r3

]

,

in which

r2 = a2 + c2 +m2 + n2 + 2cn sin ν − 2m cosω ·
√

(a2 + n2 cos2 ν) .

If one writes in the foregoing expression for the length of the circle elements ds′ its value
expressed in terms of arc value and radius = ndν, and then multiply by the distance of the
elements of the vertical diameter of the circle = n sin ν, one obtains the rotational moment
of the force, in relation to the vertical diameter of the circle as rotational axis,

= −1

2
ii′ ·m2n2 sin ν · dν

[

3
(

a2 sin ν − cn cos2 ν
)

∫

sin2 ωdω

r5
− sin ν

∫

dω

r3

]

.

If this expression is now integrated between the limits ν = 0 to ν = 2π, then one obtains
the rotational moment which the circular current m exerts on circular current n.

116[Note by AKTA:] That is, the component of the total force along the direction perpendicular to the
plane of the circle.
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For the given placement of the two circles with respect to each other (namely, where their
planes are perpendicular to one another, and the perpendiculars to their centers intersect
one another), three principal cases can be differentiated, which occur solely in the foregoing
experiments, namely, either

1. the plane of circle m halves the plane of circle n, or c = 0; or

2. the plane of circle n halves the circle m, or a = 0; or, lastly,

3. both elements mutually halve each other, or a = 0 and c = 0.

For the first case, there results the following expression for the rotational moment acting
on circle n, namely:

−1

2
ii′ ·m2n2

∫ 2π

0

sin2 νdν

(

3a2
∫

sin2 ωdω

r5
−
∫

dω

r3

)

;

in which

r2 = a2 +m2 + n2 − 2m cosω ·
√

(a2 + n2 cos2 ν) .

For the second case, the following rotational moment results:

+
1

2
ii′ ·m2n2

∫ 2π

0

sin νdν

(

3cn cos2 ν

∫

sin2 ωdω

r5
+ sin ν

∫

dω

r3

)

,

in which

r2 = c2 +m2 + n2 + 2cn sin ν − 2mn cos ν cosω .

For the third case the following rotational moment results:

+
1

2
ii′m2n2

∫ 2π

0

sin2 νdν

∫

dω

r3
,

in which

r2 = m2 + n2 − 2mn cos ν cosω .

The first integration of the foregoing expressions, namely, with respect to ω, can only be
carried out by developing 1/r3 and 1/r5 in series of rising powers of cosω. Since r2 has the
form:

l2 (1− k cosω) ,

the result is:

1

r3
=

1

l3

(

1 +
3

2
k cosω +

15

8
k2 cos2 ω +

35

16
k3 cos3 ω +

315

128
k4 cos4 ω + ...

)

1

r5
=

1

l5

(

1 +
5

2
k cosω +

35

8
k2 cos2 ω +

105

16
k3 cos3 ω +

1155

128
k4 cos4 ω + ...

)

.
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Since, further

π =
1

2

∫ 2π

0

dω =

∫ 2π

0

sin2 ωdω =

∫ 2π

0

cos2 ωdω = 4

∫ 2π

0

sin2 ω cos2 ωdω

=
4

3

∫ 2π

0

cos4 ωdω = 8

∫ 2π

0

sin2 ω cos4 ωdω = etc.

0 =

∫ 2π

0

cosωdω =

∫ 2π

0

sin2 ω cosωdω =

∫ 2π

0

cos3 ωdω

=

∫ 2π

0

sin2 ω cos3 ωdω = etc. ,

we obtain

∫ 2π

0

sin2 ωdω

r5
=
π

l5

(

1 +
35

32
k2 +

1155

1024
k4 + ...

)

∫ 2π

0

dω

r3
=

2π

l3

(

1 +
15

16
k2 +

945

1024
k4 + ...

)

.

If we substitute these values, we obtain for the first principal case, where c = 0, the value of
the electrodynamic rotational moment

= −π
2

m2n2

l3
ii′ · Σ ,

where Σ denotes the following integral value:

∫ 2π

0

sin2 νdν

[

3
a2

l2

(

1 +
35

32
k2 +

1155

1024
k4 + ...

)

− 2

(

1 +
15

16
k2 +

945

1024
k4 + ...

)]

.

Therein,

a2 +m2 + n2 = l2 and 4
(

a2 + n2 cos2 ν
)

· m
2

l4
= k2 .

If we substitute this value of k2, and integrate the expression ordered according to the powers
of cos2 ν, then we obtain the electrodynamic rotational moment

= −π
2

2

m2n2

l3
ii′
[

3
a2

l2
− 2 +

15

32

(

7
a2

l2
− 4

)(

4 +
n2

a2

)

a2m2

l4
+ ...

]

.

Thus this expression yields for the first principal case under consideration the measure of
the rotational moment, which a ring of radius = m exerts on a ring of radius = n. For a
system of rings, whose radii progress arithmetically from 0 to m, one obtains as measure of
the rotational moment, which the system exerts on the ring of radius = n, the integral of
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the above expression multiplied by dm, taken between the limits m = 0 to m = m. If, for
the sake of brevity, we set

m2

a2 + n2
= v2;

n2

a2 + n2
= w2;

4a2 + n2

16 (a2 + n2)
= f ;

8a4 + 4a2n2 + n4

64 (a2 + n2)2
= g ,

then the sought-for electrodynamic rotational moment

= −π
2

2
v3n2ii′ · S ,

where S denotes the following series:

S = +

[

1

3
− w2

]

−3

2

[

3

5
− w2 −

(

3− 7w2
)

f

]

v2

+
15

8

[

5

7
− w2 − 2

(

5− 9w2
)

f + 3
(

5− 11w2
)

g

]

v4

−35

16

[

7

9
− w2 − 3

(

7− 11w2
)

f + 11
(

7− 13w2
)

g

]

v6

+
315

128

[

9

11
− w2 − 4

(

9− 13w2
)

f + 26
(

9− 15w2
)

g

]

v8

− etc.

A precise comparison with the observational results requires a determination of the rotational
moment which a system of such ring-systems with a common axis would exert on another
similar system, for which still further integrations would be necessary. Meanwhile, it is easily
seen that, if one proceeds from the most central of these ring systems located on an axis, its
effect must be taken as the median value for each two symmetrical systems lying on both
sides of it, because the effect of one of the two latter nearly exceeds by just as much that
median value, as the effect of the other remains below it. This is all the more true, the
smaller the fractions which the radii m and n are of the distance a of the centers of both
systems. Hence we can hold to the last given expression as the measure of the effect.

If we now insert the values known from observation ofm and n, specifically, in millimeters:

m = 44.4

n = 55.8 ,

and the successively following different values for a:

1. a′ = 300

2. a′′ = 400
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3. a′′′ = 500 ,

then one obtains the following values of the rotational moment, to be multiplied by π2i2:

1. − 1.454 4

2. − 0.654 7

3. − 0.345 2 .

If a similar procedure is applied to the second principal case, where a = 0, then one
obtains the value of the electrodynamic rotational moment

= +π2v3n2ii′ · S ,

in which, for brevity’s sake,

m2

c2 + n2
= v2;

c2

c2 + n2
= f ;

n2

c2 + n2
= 4gv2

is formulated, and S denotes the following series:

S = +

[

1

3

]

−3

2

[

1

5
− 10

3
fg

]

v2

+
15

8

[

1

7
+

2

5
(1− 14f) g + 42f 2g2

]

v4

−35

16

[

1

9
+

3

7
(2− 18f) g − 54

5
(1− 11f) fg2 − 572f 3g3

]

v6

+
315

128

[

1

11
+

4

9
(3− 22f) g +

12

7

(

1− 22f + 143f 2
)

g2

+
1144

5
(1− 10f) f 2g3 +

24310

3
f 4g4

]

v8

− etc.

If one now inserts in this expression the values known from observation of m and n, specifi-
cally in millimeters:

m = 44.4

n = 55.8 ,

and the successively following different values for c:
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1. c′ = 300

2. c′′ = 400

3. c′′′ = 500

4. c′′′′ = 600 ,

then one obtains the following values of the rotational moment, to be multiplied by π2i2:

1. + 3.562 5

2. + 1.466 1

3. + 0.742 0

4. + 0.426 7 .

For the third principal case, finally, where a = c = 0 and m/n is a proper fraction, it does
not suffice for our purpose to assume for n a median value, but rather one must multiply any
value found for n by dn, and take the integral of this product between the limit values of n
given by observation, which we choose to denote by n′ and n′′. The resulting expression is
then to be divided by n′′ − n′, in order to reduce its value to the measure of the expressions
given for the first and second cases, which have not been integrated with respect to n. One
then obtains for this third case, where a = 0 and c = 0, the following expression for the
rotational moment:

+
π2m3

n′′ − n′ ii
′
[

1

3
ln
n′′

n′ +
9

160

(

1

n′′2 − 1

n′2

)

m2 − 225

14336

(

1

n′′4 − 1

n′4

)

m4

+
6125

884736

(

1

n′′6 − 1

n′6

)

m6 +
694575

184549376

(

1

n′′8 − 1

n′8

)

m8 + ...

]

If one inserts in this expression the values of m, n′, and n′′ known from observation, specifi-
cally in millimeters:

m = 44.4

n′ = 50.25

n′′ = 61.35 ,

one then obtains the following value of the rotational moment, to be multiplied by π2i2:

442.714 .
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Given the proximity of the coils in this case, heed must be taken, finally, that the combined
windings of each coil do not lie in one plane. Hence, if for the midpoint of the central cross-
section of both coils, the distances are also a = 0 and c = 0, this does not hold true for the
remaining cross-sections. From this results, as one easily sees, a diminution of the effect. In
what relation this diminution stands to the total effect, can be determined with sufficient
rigor, if, in the general formula given on page 77,117 after substitution of the values of 1/r3

and 1/r5, one simply keeps to the first term, independent of χ, and integrates its integral,
taken between the limiting values ω = 0 to ω = 2π, after it is multiplied by n sin ν and with
dmdndadc, and ndν is substituted for ds′, between the limits ν = 0 to ν = 2π, m = 0 to
m = 44.4, n = 50.25 to n = 61.35, a = 0 to a = 15 and c = 0 to c = 15. If this calculation
is carried out, an expression of the following form is obtained

A

(

1− α2

5000
+

γ2

22000

)

· αγ ,

in which A is simply dependent on i and i′ and depends on the limiting values of m and n,
and α and γ denote the greatest values for a and c. The sought-for reduction, expressed in
components of the total effect, is accordingly

=
1

5000
α2 − 1

22000
· γ2 ,

and amounts to, according to the given numerical values, α = γ = 15,

1

29
.

Thus if 1
29

· 442.714 is subtracted from the foregoing values, one obtains the following value,
to be multiplied by π2i2, for the electromagnetic rotational moment, corresponding to the
third case,

= 427.45 .

If, by analogy with the observations, one compiles the results of the calculations, one obtains
the following Table for the calculated values of the electrodynamic rotational moment:

Distance Perpendicular to the In the direction of the
magnetic meridian magnetic meridian

0 + 427.45 + 427.45
300 + 3.5625 − 1.4544
400 + 1.4661 − 0.6547
500 + 0.7420 − 0.3452
600 + 0.4267 —

These values, if Ampère’s law is correct, must be proportional to the observed values. In
fact, if all the values are multiplied by the constant factor

53.06 ,

then one obtains values very closely approaching the observed ones, which are contained
together with the differences from the latter in the following Table.

117[Note by LH and AKTA:] [Web46, p. 72 of Weber’s Werke].

83



Distance Perpendicular to the Difference In the direction of Difference
magnetic meridian the magnetic meridian

0 + 22680 + 280 + 22680 + 280
300 + 189.03 + 0.90 − 77.17 − 0.06
400 + 77.79 − 0.34 − 34.74 + 0.03
500 + 39.37 − 0.10 − 18.31 − 0.07
600 + 22.64 − 0.18 — —

Here the first calculated value, namely, +22680, is compared with the 120.9-fold values
of those which were obtained at distances of 300 millimeters east or west, because this value,
in accordance with the results drawn from the second series of experiments in Section 5.6,
corresponds to the effect of the fixed coil, when its center coincides with that of the bifilar
coil. The indicated difference of 280 units appears exaggerated, and corresponds to an
observational error of 1/3 scale units, which was made in the second series of experiments
(Section 5.5) in the determination of the dynamometer deflection at a 30-mm distance.

This complete agreement between the values calculated according to Ampère’s formula
and the observed values (namely, the differences never exceed the possible amount con-
tributed by unavoidable observational error) is, under such diverse conditions, a full proof
of the truth of Ampère’s law.

From the foregoing Table, one sees that the calculated values of the electrodynamic
rotational moment result partly as positive, partly as negative. The significance of the
difference in signs is as follows. The planes of the two wire coils were presumed to be at
right angles to one another. The electrodynamic rotational moment, which the fixed coil
exerts on the moveable one (the bifilar coil), endeavors to make the plane of the latter
parallel to the plane of the former, which can occur in a double fashion, starting from the
original right-angled position, namely, by means of rotation toward both sides. The one
rotation leads to the kind of parallelism of the planes, in which the currents go around an
axis perpendicular to both planes in the same way; the other rotation, in contrast, leads
to the kind of parallelism in which the currents go around such an axis in opposite ways.
The electrodynamic rotational moment, according to whether it effects the former or the
latter rotation, will be designated in the calculation as positive or negative. The signs of
the calculated values in the foregoing Table thus teach us, that if the fixed coil acts on the
bifilar coil at a distance from north or south, a rotation of the bifilar coil results, which, if
it amounts to 90 degrees, will cause the currents to go in opposite directions around axes
aligned in the same way. The latter then takes place, according to calculation, if the centers
of both coils coincide.

These results of calculation also find themselves fully confirmed by the results of all
observations. The conditions to be therefore taken into consideration are not extensively
discussed in the description given above, simply because to completely state the direction of
the current in all particular parts of the conducting circuit and the direction of the observed
rotations would have expended too much space. Moreover, since no exact measurements
are necessary for testing these results of calculation, it was also possible to achieve their
confirmation, by the methods used up to now, and that confirmation has already been
thereby obtained, for which reason it suffices here, to take note merely in a general way of
the agreement of the observations communicated with the foregoing results of calculation.
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5.9 Reduction to Absolute Measure

Ampère’s law gives the calculated rotational moments expressed in absolute measures,118

assuming that, for the values of the current intensity i, an absolute measure of intensity is
taken as the basis; specifically, in so doing, the fundamental measure of current intensity is
to be considered as that current intensity, with which two equal, parallel current elements
perpendicular to the connecting-line, at the distance equal to the unit of length, exert a force
on each other, which forms the same fraction of the unit of force established in mechanics, as
the square of the length of those current elements does of the unit of area. Then we put into
Ampère’s formula for the magnitude of the electrodynamic force of two current elements of
length α and of equal intensity, namely:

−α
2

r2
i2
(

cos ε− 3

2
cosϑ cosϑ′

)

,

1.) the angle ε, which the two current elements form with each other, = 0o or = 180o; 2.)
the angles ϑ and ϑ′ which both current elements form with the connecting line, = 90o or
= 270o; 3.) the distance r = 1; and so the value of the electrodynamic force obtained for the
unit of current intensity is

±α2 ,

i.e. in Ampère’s formula, a unit of current intensity is presupposed, in which the electrody-
namic force in the designated case is in the ratio to the unit of force, as

α2 : 1 ,

that is, as the square of the length of those current elements is to the unit of area.119 Thus
the electrodynamic principle itself underlies this fundamental measure of current intensity.

For the purpose of our measurements, we have, however, based the electromagnetic prin-
ciple on the unit of current intensity, according to which the fundamental unit of current
intensity is to be posited as that current intensity, which must occur in a conductor limiting
the unit area, in order to elicit the same effects on a distant magnet, as a magnet in the same
place, whose magnetic moment is equal to that specified by Gauss in the Intensitas...,120 and
whose axis has the same direction as the normal of the plane of the current.

These two fundamental measures may now be compared with each other according to the
relationship given by Ampère between electrodynamics and electromagnetism. For, according
to this relationship, the other distant magnet can also be replaced, in the same way as the
first, by a closed current.

The rotational moment of a magnet on another distant magnet, when their magnetic
moments = m and m′ according to the absolute measure, as easily results from Gauss’ given
prescriptions (Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1840,
pp. 26-34),121,122,123

118[Note by AKTA:] In German: in absoluten Maassen.
119[Note by AKTA:] In German: Flächenmaass.
120[Note by AKTA:] See footnote 97 on page 51.
121[Note by HW:] Gauss’ Werke, Vol. V, page 427 to 435.
122[Note by AKTA:] See [Gau41d].
123[Note by AKTA:] In the original this equation is written as
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=
mm′

r3
sin δ ·

√

1 + 3 cos2 ψ

will be found, where ψ designates the angle which the axis of the first magnet makes with
the connecting line r, and δ the angle, which the axis of the second magnet defines with that
alignment, for which the rotational moment is = 0.

If a current of intensity χ is now applied at the location of the first magnet, which bounds
the small plane λ, whose normal has the same alignment as the magnet’s axis, then according
to the electromagnetic law (which gives the strength of the electromagnetic force of a current
element of length α and intensity χ on an element of magnetic fluid µ at distance r, when
r and α enclose the angle ϕ, as = αχµ sinϕ/r2, specifically normal to the plane which is
parallel to α and r) the rotational moment exerted by this current on the distant magnet

=
χλ ·m′

r3
sin δ ·

√

1 + 3 cos2 ψ ,

in which for the current intensity χ, the electromagnetic measure given above is the basis.
Thus, according to this measure, it must be the case that

χλ = m

if this rotational moment is to equal the preceding one.
According to the relationship given by Ampère, without changing the effect, in the same

way the second magnet can be replaced by a closed circuit, for which

χ′λ′ = m′ ,

and this yields the magnitude of the rotational moment, which the first current exerts on
the second,

=
χχ′λλ′

r3
sin δ ·

√

1 + 3 cos2 ψ ,

in which the electromagnetic measure given above is the basis for the current intensities χ
and χ′.

If, however, we now calculate according to Ampère’s formula (page 74)124 the rotational
moment, which such a small plane-current exerts on another at a great distance, the result
is125

=
mm′

r3
sin δ ·

√

1 + 3 cosψ2 .

The expression cosψ2 should be understood as (cosψ)2. I replaced everywhere in this translation the general
formula cos θ2 by its modern expression, cos2 θ, where θ is an arbitrary angle.
124[Note by LH and AKTA:] [Web46, p. 70 of Weber’s Werke].
125[Note by WW:] The case in which δ = ψ = 90o, and consequently the electrodynamic rotational moment

= −1

2

ii′λλ′

r3
,

corresponds to the first major case considered above, for which the strength of the rotational moment on
page 79, [Note by LH and AKTA: [Web46, p. 74 of Weber’s Werke].], was found

= −π
2

2

m2n2

l3
ii′
[

3
a2

l2
− 2 +

15

32

(

7
a2

l2
− 4

)(

4 +
n2

a2

)

a2m2

l4
+ ...

]
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= −1

2

ii′λλ′

r3
sin δ ·

√

1 + 3 cos2 ψ ,

in which the current intensities i and i′ are based on the electrodynamic measure given above.
Now, from this it follows that, if the latter value, according to the electrodynamic mea-

sure, is to be identical with the former, according to the electromagnetic measure, the elec-
trodynamic and electromagnetic measures of current intensity defined above must stand in

For large distances, as assumed here, m and n become negligible vis-à-vis l, and r can be substituted for a
and l; thus for this case, the rotational moment will be

= −π
2

2

m2n2

r3
ii′ ,

which is identical with the values derived for this case from the formula above, because πm2 and πn2

designate the areas λ and λ′.
The above-cited analogous laws of magnetism, electromagnetism, and electrodynamics, from which the

simple association of these different classes of phenomena can easily be perceived, which does not immediately
appear from the fundamental laws, can be derived from the latter in the following way.

1. Derivation of the law of magnetic action, which one magnetic rod exerts on another at a distance.

Gauss, in the Resultaten, etc. 1840, p. 26 ff., [[Note by HW:] Gauss, Werke, Vol. V, page 427. [Note by
AKTA:] See [Gau41d].], derived from the fundamental law of magnetism, the law of magnetic action, which
one magnetic rod exerts on the unit of north-magnetic fluid, conceived of as concentrated in a distant point.
This law is the following:

If (Figure 12) A is the midpoint of the magnetic rod, whose magnetic moment is designated as m, n an
arbitrary other point on the north pole side of its magnetic axis, which goes through A, C the point, for which
the magnetic action of the magnetic rod on the unit of north magnetic fluid conceived of as concentrated in
that very place, is to be determined, and if CB is a normal with respect to CA in the plane in which n, A,
C lie, and B its point of intersection with the magnetic axis, and if, finally, D cuts from AB the segment
AD = AB/3: then the strength of the force, which the magnetic rod exerts on the unit of north magnetic
fluid, conceived of as concentrated at point C,

=
CD

AD
· m

AC3
.

The direction of this force is, if nAC is an obtuse angle, CD, and, if nAC is an acute angle, DC.
Now, in triangle ABC, because ACB = 90o,

AC = AB cosBAC = 3AD cosDAC .
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relation to one another such that χ and χ′, according to the latter measure, designate the
same current intensities as i

√

1/2 and i′
√

1/2 according to the former. Consequently, all
determinations of current intensity made according to the fundamental electromagnetic mea-
sure are to be multiplied by the constant factor

√
2, in order to reduce them to the measure

of electrodynamic intensity underlying the Ampère formula.
Assuming this, the constant factor, by which all calculated values are to be multiplied, in

Further, in triangle ACD,

CD =
√

AC2 +AD2 − 2AC · AD · cosDAC = AD ·
√

1 + 3 cos2DAC ,

and therefore,

CD

AD
=
√

1 + 3 cos2DAC .

If we make AC = r and nAC = ψ, then, because DAC2 = cos2 nAC = cos2 ψ, the strength of the force

CD

AD
· m

AC3
=
m

r3
·
√

1 + 3 cos2 ψ .

If, in a steel rod, the north magnetic mass +µ and the south magnetic mass −µ are divided at C by line
α, which is infinitely small with respect to r, then αµ = m′ is the magnetic moment of the steel rod and
+mµ

r3

√

1 + 3 cos2 ψ and −mµ
r3

√

1 + 3 cos2 ψ are the two forces, which act on it in the direction CD or DC.
If n′ is the end-point of the small line α, in which the mass +µ is thought of as concentrated, and C its
midpoint, and δ designates the angle which Cn′ forms with the direction CD or DC of the force given above,
then α sin δ is the distance of the points of action of both forces, estimated perpendicular to their direction.
The product of this distance into the value of the force above, then yields the rotational moment, which the
magnetic rod at A exerts on the magnetic rod at C,

= α sin δ · mµ
r3

√

1 + 3 cos2 ψ =
mm′

r3
sin δ

√

1 + 3 cos2 ψ .

The magnet at C is thereby rotated in the plane ACD in the way in which Cn approaches the direction CD
or DC of the force given above.

2. Derivation of the law of electromagnetic action, which a closed plane current exerts on a magnetic rod.

From the electromagnetic law, the action of a closed current on the north magnetic mass +µ of the magnetic
rod, which is thought of as concentrated in a point at C (Figure 12), can first of all be determined. One puts
through C and through the midpoint A of the plane delimited by the current, a plane ACB perpendicular
to the latter, CB being perpendicular to CA; s and s′ are the intersection-points of the current with this
plane. Further, each current element is separated into three elements perpendicular to each other, the first
directed to C, and the second perpendicular to the direction CB. The elements directed toward C do
not act on the magnetism at C, and thus can remain entirely out of consideration, because, in the general
expression for the force strength, = αχµ sinϕ/r2, the value for them of ϕ is = 0. To the second class belong
the two perpendicular elements in s and s′ on the plane ACB, whose length is designated as ds. The force
which the former exerts on the magnetism at C has, according to the electromagnetic law, the direction Cσ
perpendicular to Cs; the force of the latter has the direction Cσ′ perpendicular to Cs′, and the strength of
this force is, if χ designates the current intensity according to the basic electromagnetic measure,

χµds

Cs2
and

χµds

Cs′2
.

If one now separates these forces parallel to CA and perpendicular to it, then we obtain

the component parallel with CA = χµds
Cs2 cosACσ + χµds

Cs′2
cosACσ′

the component perpendicular to CA = χµds
Cs2 sinACσ − χµds

Cs′2
sinACσ′ .

If we now use ψ to designate the angle which the normal of the current plane AB forms with AC = r, and
take note that As and As′ will become negligible with respect to r, then we obtain
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order to give the observed values, can also be derived from the galvanometer observations,
and the comparison of the factors thusly determined with those utilized above, namely, with

53.06 ,

then finally there results a touchstone for the correctness of the absolute values calculated

Cs = r −As cosψ , Cs′ = r +As′ cosψ

or

1

Cs
=

1

r

(

1 +
As

r
cosψ

)

,
1

Cs′
=

1

r

(

1− As′

r
cosψ

)

;

cosACσ = sinACs = ACs

cosACσ′ = sinACs′ = ACs′

sCs′ =
(ss′)

r
cosψ .

Substituting these values, and designating the distance ss′ as x, we obtain the component parallel to CA

=
χµ

r3
cosψ · xds .

Since all current elements surround A very closely, the factor χµ
r3 cosψ can be regarded as constant, and we

thus obtain the component parallel to CA for all current elements of the second class:

=
χµ

r3
cosψ ·

∫

xds .

But the integral
∫

xds represents the area = λ delimitated by the current; accordingly the component parallel
to CA for all current elements of the second class is given by

=
χλµ

r3
cosψ .

Likewise, the component perpendicular to CA for all current elements of the second class is

=
χλµ

r3
sinψ .

In a similar way we further find the component parallel to CA for all current elements of the third class

=
χλµ

r3
cosψ ,

the component perpendicular to CA for all current elements of the third class

= 0 .

The resultant of all these forces is thus

=
χλµ

r3

√

4 cos2 ψ + sin2 ψ =
χλµ

r3

√

1 + 3 cos2 ψ .

The direction of this resultant falls on the plane ACB and forms with CA an angle, whose tangent is
equal to the components perpendicular to AC, = χλµ sinψ/r3, divided by the component parallel to AC,
= 2χλµ cosψ/r3, that is,

=
1

2
tanψ .
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from Ampère’s formula, or for the correctness of the relation posited between electrodynamics
and electromagnetism.

For this purpose, there is a triple requirement: 1. determining the factor with which all
dynamometer effects observed by us are to be multiplied, in order to reduce them to the
absolute measure of rotational moment; 2. determining the factor with which all galvanome-
ter effects observed by us are to be multiplied, in order to reduce them to the fundamental
electromagnetic measure of current intensity; 3. determining the areas which are demarcated

Since CAB = ψ and ACB = 90o, then, if AD = AB/3,

sinACD : sinψ =
1

3
AB : CD

cosACD : cosψ =
2

3
AB : CD ,

therefore

tanACD =
1

2
tanψ ,

whose result is that CD is the direction of the resultant. It is assumed in these derivations, that if one thinks
of oneself as perpendicular to the current plane standing on A, with the head at B, the current circulates in
the manner of the apparent daily motion of the sun. If the opposite is the case, then the force direction DC
is to be substituted for CD. Accordingly, the closed circuit at A has the same action on the magnetism at
C, as according to [derivation] (1) a magnetic rod at A, whose magnetic moment is

m = χλ ,

and whose magnetic axis coincides with the normal of the current plane, specifically, the south pole on that
side of the current plane, taking which as the point of observation, the current flows in the direction of the
apparent daily motion of the sun. It follows from this, that if we place, as in (1), a magnetic rod at C, whose
magnetic moment = m′, and whose magnetic axis forms the angle δ with CD, the rotational moment, which
the closed circuit at A exerts on this magnetic rod, is equal to that rotational moment found in (1), if one
substitutes therein χλ for m, thus

=
χλm′

r3
sin δ

√

1 + 3 cos2 ψ ,

which was to be proven.

3. Derivation of the law of electrodynamic action, which a closed plane current exerts upon another at a

distance.

The law of the action exerted by a closed plane-current on a current element at a distance, was already
derived by Ampère on pp. 214 and 227 of his Treatise from the fundamental law of electrodynamics, [[Note
by AKTA:] See [Amp23, pp. 214 and 227], [Amp26, pp. 42 and 55] and [AC15, pp. 366, 376 and 377].].
It can be expressed in the following way: If the current element is located at C (Figure 12) and the closed
planar current at A, AB is the normal to the current plane, CB is perpendicular to CA, and AD = AB/3,
then the force, which the current at A exerts on the current element at C, is perpendicular to the two
directions of the current element itself and of the line CD; and if, according to the basic electrodynamic
measure we designate the intensity of the closed current as i, and that of the current element as i′, and
further, the length of the current element as ds′, r = AC, and ψ = CAD, the strength of the force is then

=
1

2
ii′ds′

λ

r3

√

1 + 3 cos2 ψ .

If, now, a closed planar current is also located at C, and the normal to its plane forms with CD the angle
δ, then each element of this current can be separated into two elements, one parallel to the line in which
a plane normal to CD cuts the plane of the current, the other perpendicular to this cutting-line. The first
elements can be ordered pairwise in the same length ds′ and connected to that cutting-line by means of a
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by the bifilar coil and by the fixed coil of the dynamometer.

1. Determination of the factors for reduction of the observed dynamometer effects to
absolute measure.

The observed dynamometer deflections are measured according to scale units and hence,
in order to transform them into absolute angular measurement, given the smallness of the
angle, are to be divided simply by the doubled horizontal displacement of the scale mirror (=
6 612.6 scale units). Further, the given number of scale units corresponds to the difference
between the positive and negative displacement, and hence, moreover, is still to be divided
by 2, in order to reduce it to the simple deflection. Thus if x designates the number of scale
units in the foregoing Tables, then

x

13 225.2

yields the simple angular displacement in radius units.126 Further, if S designates the static
moment of the bifilar coil given in Section 5.6, to which the deflections have been reduced,
then, if x designates the reduced value, one need only multiply the angular displacement
= x/13225.2 with that value of S, to obtain the electrodynamic rotational moment, which
the deflection elicited, expressed according to the fundamental measure specified by statics.
Thus, this moment is

=
x

13 225.2
· S = 3 634 · x .

Consequently, 3 634 is the constant factor, with which the dynamometer deflections stated
at the end of Section 5.6 are to be multiplied, in order to be reduced to absolute measure.

2. Determination of the factors for reduction of observed galvanometer effects to absolute
measure.

perpendicular. If the length of this perpendicular is designated as x, then the result is that the effect of the
closed circuit at A on such a pair consists of a rotational moment, which is equal to the product of x sin δ in
the force cited above, that is,

=
1

2
ii′
λ

r3
sin δ

√

1 + 3 cos2 ψ · xds′ .

The current at A thus exerts on all current elements parallel with the cutting-line above the rotational
moment

=
1

2
ii′
λ

r3
sin δ

√

1 + 3 cos2 ψ ·
∫

xds ,

where the integral
∫

xds′ designates the area = λ′ demarcated by the current at C; therefore this rotational
moment is

=
1

2
ii′
λλ′

r3
sin δ ·

√

1 + 3 cos2 ψ .

If one considers in a similar way the action of the closed circuit at A on the elements perpendicular to the
foregoing cutting-line, then the rotational moment will be = 0, from which it follows, that the just-given
rotational moment is the entire action, which the closed current at A exerts on the closed current at C,
which was to be proven, Q.E.D.
126[Note by AKTA:] In German: in Theilen des Halbmessers. This expression can also be translated as “in

parts of the radius”.
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The galvanometer effects are likewise stated above in scale units, and specifically, the
given number y corresponds to the difference between the positive and negative deflection.
Since the horizontal distance of the mirror from the scale amounts to 1 103 scale units on
the galvanometer, the simple angular displacement according to absolute angular measure,
i.e. in radius units, will be

=
y

4 412
.

This angular displacement is elicited by means of a wire coil, through which the current to
be determined is passing, and which was placed at a 217-millimeter distance west of the
small magnetometer.

If the sine of this angular displacement is multiplied by the directive force = m′T ,127

which the terrestrial magnetism = T exerts on the compass with magnetic moment = m′,
then we obtains the rotational moment with which the terrestrial magnetism drives the
deflected compass back to the magnetic meridian,

= m′T · sin y

4 412
· 180

o

π
.

According to absolute measure, in this formula the value of

T = 1.91

is to be used, as it was found at the location of the compass.128

The compass was now kept in equilibrium in that deflected position, by means of that
rotational moment, which the current in the 217-mm-distant wire coil exerted on it, and
consequently the strength of this latter rotational moment was

= 1.91 ·m′ sin
y

4 412
· 180

o

π
.

According to the law demonstrated on page 88 in item 2 of the footnote,129 if the current
had acted from a great distance r, this latter rotational moment would be

=
χλm′

r3
sin δ ·

√

1 + 3 cos2 ψ ,

in which the value of ψ for our case = 0, and δ is the expansion of the observed displacement
angle to 90o, by means of which this expression becomes

= 2
χλm

r3
cos

y

4 412
· 180

o

π
.

Now, however, the distance of 217 millimeters becomes far too small to bring this law into
immediate application. Hence, in order to facilitate this application, I carried out special
experiments to compare the effect of the coil at the 217-mm distance with its effect at greater
distances r, for which the foregoing law is applicable, and found the ratio of these effects to
be

127[Note by AKTA:] See footnote 109 on page 70.
128[Note by WW:] The compass stood near the wall of an adjoining room, in which large magnets were

installed; if these magnets were removed, the value of T sank to 1.83, which is approximately the present
value for the horizontal component of terrestrial magnetism in Leipzig.
129[Note by LH and AKTA:] See item 2 of footnote 125 on page 86, [Web46, p. 84 of Weber’s Werke].
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1 : 1388 · 10
4

r3
.

The observed rotational moment = 1.91 · m′ sin y
4 412

· 180o

π
must thus be multiplied by the

factor

1388 · 104

2173

if it is to be made equivalent for the expression which is valid for large distances; thus we
obtain

1388 · 104

2173
· 1.91 ·m′ sin

y

4 412
· 180

o

π
= 2

χλm′

2173
· cos y

4 412
· 180

o

π
,

and from this results, by small arcs, the value

χλ = 3004 · y .

By means of precise measurement, however, it was found that

λ = 8 313 440 square millimeters .

From this results

χ = 0.000 361 4 · y ,

from which it follows that

0.000 361 4

is the factor for reduction of the observed galvanometer effects to the fundamental elec-
trodynamic measure of current intensity. This is the factor already introduced above in
Section 5.6 for the purpose of reducing the observations to equal directive force of the bifilar
coil. The current intensity i according to the fundamental electrodynamic measure under-
lying Ampère’s formula is finally obtained by means of multiplying the effects observed in
scale units by the factor 0.0003614 ·

√
2. It is to be noted, however, that this reduction factor

rests on empirical data, which were in part obtained only in approximation, and therefore
make claim to no great precision.

3. Determination of the area, which is demarcated by the bifilar coil and by the fixed
coil of the dynamometer.

The area of the bifilar coil is already given in Section 5.6 as

= 29 314 000 square millimeters.

In the same way, the area of the other fixed coil of the dynamometer was also determined,
namely,

= 31 327 000 square millimeters.
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It is evident that, in view of the indirect method by which it was made, this determination,
too, can make claim to no great precision.

With the help of these three determinations, it is finally possible to also subject to
empirical proof the absolute value of electrodynamic effects, as yielded by Ampère’s law.
Namely, from (2)130 is obtained the value of i2, which corresponds to the normal current
intensity, to which the observations are reduced. That is, if, in accordance with page 72,131

for [the intensity] we make

y2 = 100 000 ,

then

i2 = 2χ2 = 2 · 0.000 361 42 · y2 = 0.026 12 .

Further, one easily sees that in the calculation of electrodynamic rotational moment on
page 80 made according to Ampère’s formula,132 the area of the bifilar coil was taken into
account only as

π · 55.82 square millimeters

instead of, according to (3)133

= 29 314 000 square millimeters,

and that in the same way, the area of the fixed coil of the dynamometer (in the place cited)
was calculated only as

1

3
π · 44.43 square millimeters

instead of, according to (3)

= 21 327 000 square millimeters .

From this it follows that the calculated values presented in the Table on page134 83 are to be
multiplied by

29 314 000 · 21 327 000
1
3
π2 · 55.82 · 44.43

· π2i2 = 180 000

in order to determine the electrodynamic rotational moment according to Ampère’s law in
absolute measure. From (1),135 however, one sees that the dynamometer effects observed
in scale units in the Table on page136 73 are to be multiplied by the factor 3 634, in order
to reduce them to absolute rotational moments. Thus if the previous factor is divided by
this latter one, the factor 49.5 is obtained, with which the calculated values presented in

130[Note by AKTA:] That is, from item “2.” on page 91.
131[Note by LH and AKTA:] [Web46, p. 67 of Weber’s Werke].
132[Note by LH and AKTA:] [Web46, p. 76 of Weber’s Werke].
133[Note by AKTA:] That is, from item “3.” on page 93.
134[Note by LH and AKTA:] [Web46, p. 78 of Weber’s Werke].
135[Note by AKTA:] That is, from item “1.” on page 91.
136[Note by LH and AKTA:] [Web46, p. 68 of Weber’s Werke].
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the Table on page137 83 are to be multiplied, in order to be compared with the observed
values presented in the Table on page138 73. This factor is about 6% smaller than the factor
53.06 above, which was immediately derived from the comparison of the calculated and
observed values, a difference of the kind that had to be expected with so many elements taken
from experimental evidence which are necessary for the determination of factors, among
which several were only approximately determined (see [2] and [3]). Thus, the correctness
of the absolute values calculated from Ampère’s formula, or the correctness of the relation
between electrodynamics and electromagnetism, is thereby confirmed only in so far as the
experiments which were made can be validated. This test of the absolute values or of the
stated relationship between electrodynamics and electromagnetism was not originally among
the purposes of the experiments communicated here, which merely concerned the dependence
of the electrodynamic force on the mutual position and distance of the conducting wires which
acted on each other, otherwise arrangements would have been made to determine the galvanic
current with greater precision also according to its absolute intensity, as well as to directly
ascertain the number of windings on the part of the two coils of the dynamometer; that test,
however, is presented at the same time in approximate fashion, because the experiments
described placed the essential data at our disposal. Yet, because not all these data possess
the requisite precision, a more rigorous execution of this test must be reserved for a future
occasion. It is readily evident which arrangements and alterations are to be made in the
experiments in order to lend greater precision to the data determined here with less exactness,
and requires no further discussion.

137[Note by LH and AKTA:] [Web46, p. 78 of Weber’s Werke].
138[Note by LH and AKTA:] [Web46, p. 68 of Weber’s Werke].
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III - Volta-Induction with the Electrodynamometer

5.10 Observations

Up to now we have considered the first class of electrodynamic phenomena, namely, those
discovered by Ampère, having to do with the forces with which the conductors seek to move
one another at a given current intensity, and we have confirmed the law established by
Ampère for this class of phenomena. Ten years later, Faraday’s discovery adds to this first
class of electrodynamic phenomena a second class, where the electrodynamic effects consist
of forces which seek to move, not the conductors, but the electricity in the conductors. For
these phenomena, comprehended under the name Volta-induction,139 we can distinguish two
fundamental experiments, both of which originate from Faraday.

At the very beginning of his Experimental Researches in Electricity (Poggendorff’s An-
nalen 1832, Vol. XXV, page 93, Article 10),140 Faraday describes the first fundamental
experiment in voltaic induction, where two insulated copper wires were wound close to an-
other on a block of wooden, and one was connected with the galvanometer, the other with
a voltaic battery, and where the generation of a current in the first wire was observed each
time at the moment when the circuit involving the second wire, was either broken or closed
again. The second fundamental experiment follows in Article 18, where he fastened two cop-
per wires bent in the same zigzags, separated from each other, to two boards, and connected
one with the galvanometer, the other with the voltaic battery, and where the generation of
a current in the first wire was observed each time at the moment when the board with this
wire was either suddenly brought close from far away and laid on the board with the second
wire, or the board lying on the other board was suddenly lifted and taken away from that
other board.

After Faraday, Nobili141 and Lenz142 in particular occupied themselves with this kind of
induction, and the latter established a simple law, by means of which the induction of a
current in a conductor which is moved, can be reduced to Ampère’s law of electrodynamic
motions. Says Lenz (Poggendorff’s Annalen 1834, Vol. XXXI, page 484 f.)143

Immediately upon reading Faraday’s Treatise, it seemed to me as though it must be
possible to very simply reduce the collective experimental results of electrodynamic
distribution144 to the formulations for electrodynamic motions, so that if one assumes

139[Note by LH and AKTA:] The expression utilized by Weber, Volta-induktion, had been first suggested
by Faraday himself in paragraph 26 of his first paper on electromagnetic induction of 1831, [Far32a, § 26,
page 267 of the Great Books of the Western World] with German translation in [Far32c] and Portuguese
translation in [Far11, p. 159]:

For the purpose of avoiding periphrasis, I propose to call this action of the current from the voltaic

battery, volta-electric induction.

In this English translation ofWeber’s work we utilized the expressionsVolta-induction and voltaic induction

for this class of phenomena which is nowadays called Faraday’s law of induction.
140[Note by AKTA:] See [Far32a], with German translation in [Far32c] and [Far89], and Portuguese trans-

lation in [Far11].
141[Note by AKTA:] Leopoldo Nobili (1784-1835). See [Nob33] and [LA98].
142[Note by AKTA:] See footnote 40 on page 24.
143[Note by AKTA:] [Len34] with partial English translation in [Len69].
144[Note by AKTA:] In German: elektrodynamischen Vertheilung. In the English translation of Lenz’ work

in Magie’s book this expression was translated as “electrodynamic induction” because Lenz was referring to
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these to be established, those too are determined, and since this view confirmed itself
for me through multiple experiments, I will discuss them in what follows, and test
them partly with familiar experiments, partly with experiments carried out expressly
for this purpose. The law, according to which the reduction of magneto-electric
phenomena to electromagnetic phenomena occurs, is as follows:

If a metallic conductor moves in the vicinity of a galvanic current or a magnet, a
galvanic current will be induced in it, whose direction is such that it would have
elicited motion in the wire at rest, which would be directly opposite to that given to
it, assuming that the wire were movable only in the direction of the movement or
opposite to it.145

For confirmation of this law, insofar as it concerns the induction of a current in a con-
ductor which is put into motion, Lenz now introduces the following three experiments by
Faraday, by himself, and by Nobili.

“a) When, of two straight-line conductors parallel to one another, one has a galvanic
current flowing through it, and if the other conductor is brought closer to it in a
parallel direction, during the movement, an opposite current will be induced in the
conductor which is moved from that in the unmoved conductor; however, if it is moved
away, the induced current is in the same direction as the arousing one.” (Faraday.)

“b) When, of two vertical circular conductors of approximately the same diameter,
which stand with their planes perpendicular to each other, the one, standing fixed,
has a galvanic current flowing through it, and if then the other, which is rotatable
around the common vertical diameter as its axis, is suddenly brought out of the
perpendicular into a position lying parallel, then a current is generated in it, which is
opposite to the current in the other conductor. I carried out this last experiment,”
says Lenz, “with two circular conductors, each consisting of 20 windings of covered
copper wire; one was connected to a 2-square-foot large zinc-copper couple, the other
to a sensitive Nobili multiplier.”

“c) If a bounded conductor, standing perpendicular on an unbounded conductor which
has a galvanic current flowing through it, moves along this unbounded conductor
and in the direction of its current, then a current is generated in it, which is directed
toward the bounded conductor; however, if the bounded conductor moves against
the direction of the current in the unbounded conductor, the direction of the current
induced in it by means of distribution is toward the unbounded current.” (Nobili,
Poggendorff’s Annalen 1833, No. 3, page 407).146

Faraday’s law of induction, [Len69, p. 512].
145[Note by AKTA:] This sentence has been translated as follows in Magie’s book, [Len69, p. 513]:

If a metallic conductor moves in the neighborhood of a galvanic current or of a magnet, a galvanic

current will be produced in it which will have such a direction that it would have occasioned in the

wire, if it were at rest, a motion which is exactly opposite to that here given to the wire, provided that

the wire when at rest is movable only in the direction of the motion and in the opposite direction.

146[Note by AKTA:] [Nob33].
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By means of the above law, first stated by Lenz, the induced currents are determined, to
begin with, only according to their direction: Lenz did not give a quantitative determination
for the intensity of the induced currents. This, however, was provided by Neumann in a
still unpublished Treatise, of which an excerpt has just appeared in Poggendorff’s Annalen,
1846, Vol. LXVII, page 31.147 The quantitative determinations thereby obtained, however,
require a test by experiment, for which the necessary measurements are still lacking.

Henry reported original experiments on the induction of currents in a stationary con-
ductor by breaking the circuit of a nearby voltaic battery (Poggendorff’s Annalen 1842,
supplementary volume, page 282),148 putting the induced wire at varying distances and in
varying positions. He also re-used the induced current itself, in order to induce a current in a
third conductor, and so forth. After these experiments, he directed these induced currents in
parallel wires alternately in opposite directions; the first, however, being the same direction
as the voltaic battery’s current which was lost due to the breaking of the circuit.

In this Section, it will now be shown, first, how the phenomena of voltaic induction can
also be observed with the electrodynamometer, then some measurements for the second of
Faraday’s fundamental experiments will be reported.

In representing the phenomena of voltaic induction, two different things must be essen-
tially distinguished, namely, first, the apparatus for inducing currents, and second, because
the induced current is not immediately perceptible, an apparatus for observing a perceptible
effect of the induced current. In the second Faraday fundamental experiment, for example,
the two zigzag-shaped bent copper wires, of which one is attached to a galvanic circuit, along
with the device by which both wires are suddenly brought closer to each other or farther
distant from each other, constitutes the first apparatus, which is for inducing the current;
the galvanometer, on the other hand, which is connected with the other wire, constitutes
the second apparatus, for observing a visible effect of the induced current. Thus the two
essential pieces of apparatus for the experiment are distinguished and separated from each
other.

Now, however, an essential simplification of the experiment can be achieved by means
of the electrodynamometer, where it is possible to use the same apparatus which serves to
induce the current, for observing a visible effect of the current as well. That is, the bifilar
coil of the electrodynamometer is made to oscillate, and this motion is used for induction;
then the decrease of the arc of the oscillations of this bifilar coil is observed, which, as will be
shown forthwith, is the result of the electrodynamic interaction of the inducing and induced
currents. The lawfulness of the induction mediated oscillations, as well as of the decrease of
the arc of the oscillations, observed as the visible effect of the induced current, permits us
to carry out precise measurements for these phenomena of induction.

Namely, if one connects the wire of the one coil of the dynamometer, while the bifilar
coil is swinging, with a voltaic current, then, in order to induce a current in the other coil,
one need only join the two wire ends to one another. This induced current, which in itself
is of course imperceptible in the second coil, now immediately exerts in the dynamometer
itself a perceptible electrodynamic force on the current of the first coil, and thereby changes
the oscillation of the bifilar coil. Thus, if one observes this change, one can come to know
the electrodynamic force which causes it, and in turn, from the electrodynamic force, to
know the induced current, to which it is proportional, without it being necessary to conduct

147[Note by AKTA:] Franz Ernst Neumann (1798-1895). See [Neu46], [Neu47], [Neu48] and [Neu49].
148[Note by AKTA:] Joseph Henry (1797-1878). See [Hen38] with partial German translation in [Hen42].

See also [Smi17].
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the induced current through the multiplier of a galvanometer. The dynamometer itself thus
serves for inducing the current as well as for observing a visible and measurable effect of the
induced current.

If the bifilar coil is stationary, no current will be induced; consequently the electrodynamic
force = 0, and the bifilar coil will then not be moved by the fixed coil. However, if the bifilar
coil is swinging, there are two cases to distinguish: i.e., either the fixed coil is connected to
the voltaic battery and the bifilar coil is a closed circuit in itself; in that case a current is
induced in the swinging bifilar coil: or the swinging bifilar coil itself is connected by its two
suspension wires to the voltaic battery, and the fixed coil is a closed circuit in itself; in that
case, a current is induced in the fixed coil. In both cases, an electrodynamic force is yielded
which changes the oscillation of the bifilar coil in the same way.

The observation of these changes in oscillation, as a result of an induced current, and
of the electrodynamic interaction between the induced and inducing wire coils, which is
dependent on that induced current, according to Ampère’s law, must be carried out, however,
in an altogether different way from the observations with the dynamometer described in the
preceding Section. Observations of the decrease of the arc of the oscillationsmust replace the
previous observations of position on the dynamometer. The necessity of this altered method
of observation is easily shown, as follows.

The electrodynamic interaction of the two coils, which is to be observed with the electro-
dynamometer, consists, according to Ampère’s law, of a rotational moment, which acts on
the swinging bifilar coil and corresponds to an altered rest position of this coil. However, this
rest position of the bifilar coil can not be directly observed when the coil is swinging, but can
only be determined from several observations, which diverge from one another as to period
of oscillation, that is, only under the precondition, that in the interim, the external forces
acting on the coil, have remained constant, or have changed continuously and proportionally
over time. Therefore, if the electrodynamic influence which occurs on the swinging coil as
a result of the induced current, reverses itself from oscillation to oscillation, then the rest
position of the coil, as determined from a system of observations during the oscillation, will
be unchanged despite the presence of the electrodynamic influence. Observation shows, in
fact, that the latter occurs, that the electrodynamic influence, if it actually exists as a result
of an induced current, would thus have to reverse itself from oscillation to oscillation, and
cannot be investigated by means of mere observations of position on the dynamometer.

Now, if such an electrodynamic influence on the swinging coil now actually occurs, which
reverses itself from oscillation to oscillation: then it will certainly not be discernible by means
of determining the rest position of the coil; it must, however, be recognizable in the arcs of
oscillation of the coil; namely, the size of the arcs of oscillation must change from oscillation
to oscillation, either always increasing, or always decreasing.

In actuality, empirical results show that, while the calculated rest position of the swinging
coil always remains the same, the arc of oscillation always decreases, and it emerges from the
succeeding experiments, that this decrease actually originates from electrodynamic influences
and not from extraneous external causes, if the ordinary influence of the resistance of the
air is taken into account.

Therefore, in order to observe this second class of phenomena with the electrodynamome-
ter, it will be necessary for precise measurement of the decrease of the arcs of oscillation, to
make oscillation experiments with the bifilar coil of the dynamometer, while for purposes of
the Ampère electrodynamic phenomena, we could confine ourselves to deflection experiments
or observations of position.
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For our purposes, it is of primary importance to indicate that the observations of oscil-
lation can be carried out on the dynamometer by the same method, and with just as great
precision, as on a magnetometer. First, I wish to present a prefatory series of oscillation
experiments which I made with the dynamometer, in which no electrodynamic influence oc-
curred, given that no galvanic current whatever was conducted through the instrument and
the wire ends even remained unconnected.

The method of setting up these experiments is the same method presented by Gauss
in the Resultaten aus den Beobachtungen des magnetischen Vereins in Jahre 1837, page 58
ff.,149,150 and thus it is not necessary to fully cite the original protocols; it will suffice to cite
the extract which is derived from these protocols, just as in other locations.

The Meyerstein dynamometer,151 depicted in Figures 2, 3 and 4, served for the following
observations, where the swinging coil was suspended at the center of the fixed coil, and the
telescope was placed about 6 meters from the instrument. The distance of the mirror from
the scale was 6 018.6 scale units, and

1 scale unit = 17.135 6” .

The observations were made in alternation by different observers, namely, by Dr. Stähelin
from Basel, by my assistant Mr. Dietzel, and by me. Each made a set of observations
according to the formulation given in loc. cit., page 61,152,153 which comprises six instances
of going past a designated scale point lying close to the midpoint of the arc of oscillation and
seven elongation points. In the following Table, each horizontal line gives the results of such
a set of observations, namely, the numerical ordering of the oscillation,154 the corresponding
time, the corresponding rest position in scale units, the corresponding arc of oscillation in
scale units, and the logarithm of the latter.

149[Note by HW:] Gauss, Werke, Vol. V, page 374.
150[Note by AKTA:] [Gau38a].
151[Note by AKTA:] See footnote 87 on page 41.
152[Note by HW:] Gauss, Werke, Vol. V, page 376.
153[Note by AKTA:] [Gau38a].
154[Note by AKTA:] In German: die Bezifferung der Schwingung. This expression can also be translated

as “the numbering of the oscillation” or “the numbering of the vibration”.
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Observations for determining the period of oscillation and the
decrease of the arcs of oscillation of the bifilar coil of the

dynamometer in open circuits.
Oscillation Time Position Arcs of Log.
Number Oscillation

0. 5h 16’ 28.53” 457.10 650.80 2.813 448
14. 20’ 10.20” 457.38 601.43 2.779 185
25. 23’ 4.39” 457.15 564.90 2.751 972
52. 30’ 12.50” 457.19 485.28 2.685 992
82. 38’ 8.02” 457.29 409.62 2.612 381
109. 45’ 16.16” 457.15 353.08 2.547 873
134. 51’ 25.08” 457.65 306.70 2.486 714
163. 59’ 31.80” 457.41 261.08 2.416 774
189. 6h 6’ 23.90” 457.56 226.33 2.354 742
212. 12’ 28.22” 457.69 198.68 2.298 154
232. 17’ 45.45” 457.63 178.26 2.251 054
254. 23’ 33.89” 457.78 157.98 2.198 602
284. 31’ 29.30” 457.73 134.17 2.127 655
309. 38’ 5.53” 456.55 116.30 2.065 580
328. 43’ 6.90” 458.02 105.25 2.022 222
369. 53’ 56.24” 457.81 83.68 1.922 622
387. 58’ 41.96” 457.90 75.45 1.877 659

If the difference between the first and last time is divided by the number of oscillations,
one obtains a rather precise determination of the period of oscillation of the swinging coil,
because the correction by reduction to infinitely small arcs contributes only a little in the case
of such small arcs of oscillation as occurred here. This approximated period of oscillation is

= 15.848 65” .

If this approximated period of oscillation is used to reduce all the times in the Table, by
deducting the product of the oscillation number155 times the period of oscillation, from the
first time, then the values contained in the third column of the following Table are obtained:

155[Note by AKTA:] In German: Zahl der Schwingung. See the first column in the previous Table.
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Oscillation Time Reduced time Variation from
Number the mean

0. 5h 16’ 28.52” 5h 16’ 28.53” + 0.13”
14. 20’ 10.20” 28.32” −0.08”
25. 23’ 4.39” 28.17” −0.23”
52. 30’ 12.50” 28.37” −0.03”
82. 38’ 8.02” 28.43” + 0.03”
109. 45’ 16.16” 28.66” + 0.26”
134. 51’ 52.08” 28.36” −0.04”
163. 59’ 31.80” 28.47” + 0.07”
189. 6h 6’ 23.90” 28.50” + 0.10”
212. 12’ 28.22” 28.31” −0.09”
232. 17’ 45.45” 28.56” + 0.16”
254. 23’ 33.89” 28.33” −0.07”
284. 31’ 29.30” 28.28” −0.12”
309. 38’ 5.53” 28.30” −0.10”
328. 43’ 6.90” 28.54” + 0.14”
369. 53’ 56.24” 28.07” −0.33”
387. 58’ 41.96” 28.53” + 0.13”

From the agreement of these reduced values, whose variation from the mean values always
remains less than 1/3 second, it is obvious, that the determination of the period of oscillation
of the dynamometer’s bifilar coil is capable of the same rigor and precision as in the case
of the magnetometer, in which connection it is to be taken into consideration, that that
variation appears to be magnified by the constant variation which is known to always occur
between two observers. The determinations of the rest position of the swinging coil from
the elongation observations in the third column of the first Table show great agreement,
as proven by the following overview of their deviations from the mean values, expressed
according to their arcs:

− 6.3” + 3.1 + 4.5
− 1.5” − 1.0 − 15.8
− 5.5” + 1.5 + 9.4
− 4.8” + 3.8 + 5.8
− 3.1” + 2.7 + 7.4
− 5.5” + 5.3

One could not wish for greater agreement of all observations of position, particularly
when one takes into consideration, that the telescope stand was placed on the wooden floor
of the room, where, it is evident, the orientation of the telescope could easily be somewhat
altered by footsteps on the floor.

Lastly, it remains for us to consider the decrease in the arcs of oscillation. The individual
sets of observations succeed each other, in part, in such a short time, that the decrease in
the arcs of oscillation in the interim is not large enough to give a precise determination
of the ratio between two successive arcs of oscillation. Hence the logarithms of this ratio
may be determined, by, instead of dividing the difference of each two immediately successive
logarithm of the arcs of oscillation, dividing the difference between the first and fifth, the
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second and sixth, and so forth, by the number of oscillations in between. One then obtains
from the above 17 sets of observation, instead of 16 values, only 13 values, but more precise
values of the logarithmic decrement, namely, the following. Before each value the oscillation
number is noted, to whose mean it appertains.

Oscillation No. Logarithmic decrement Variation from the mean
41. 0.002 452 + 0.000 038
611

2
. 0.002 435 + 0.000 021

791
2
. 0.002 433 + 0.000 019

1071
2
. 0.002 425 + 0.000 011

1351
2
. 0.002 408 − 0.000 006

1601
2
. 0.002 424 + 0.000 010

183. 0.002 405 − 0.000 009
2081

2
. 0.002 397 − 0.000 017

2361
2
. 0.002 390 − 0.000 024

2601
2
. 0.002 398 − 0.000 016

280. 0.002 384 − 0.000 030
3111

2
. 0.002 400 − 0.000 014

3351
2
. 0.002 427 + 0.000 013

Mean = 0.002 414.

Thus there results a mean decrease in the arcs of oscillation, according to which the size of
the arc, after 124.7 swings, or after 32 minutes 561

3
seconds, declines by half. The agreement

of the partial values proves, that even these small decreases in the arcs of oscillation can be
rigorously measured.

On the same day, immediately before the series of observations just described, another
similar series of observations was made under altogether the same external conditions, merely
with the difference, that the two ends of the fixed coil were connected with a battery of three
small Grove’s elements, exactly as in Section 5.4, and that the free ends of the suspension
wires of the bifilar coil were linked to each other. More precise information about the current
conducted through the fixed coil, was provided by observation of the deflection which this
coil itself produced on the mirror magnetometer (described in Section 5.3), which was placed
583.5 mm north of the coil. This observed deflection of the mirror magnetometer is noted
in the last column of the following Table. The value of the scale unit of this magnetometer
depends on the horizontal distance of the mirror from the scale, which was = 1301 scale
units. The observers and the methods of observation were the same. The following Table
gives the extract of this series of observations exactly as the preceding Table gives the other.
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Observations for determining the period of oscillation and the decrease
of the arcs of oscillation of the bifilar coil of the dynamometer
when a current from three Grove’s elements is passing through

the fixed coil, while the conducting wire of the bifilar coil was closed.
Oscillation Time Position Arcs of Log. Deflection
Number oscillation of mirror

magnetometer
0. 3h 29’ 44.88” 464.05 764.10 2.883 150 108.50
9. 32’ 7.03” 464.44 679.15 2.831 966
18. 34’ 29.58” 464.23 604.05 2.781 073
35. 38’ 50.17” 464.07 484.15 2.684 980 108.60
47. 42’ 9.10” 464.20 414.60 2.617 629
57. 44’ 47.66” 464.25 365.50 2.562 887
74. 49’ 16.79” 464.22 292.27 2.465 784 109.10
85. 52’ 10.80” 464.30 253.30 2.403 635
103. 56’ 56.11” 464.40 200.80 2.302 764
118. 4h 0’ 53.43” 464.25 165.56 2.218 955 108.95
130. 4’ 3.26” 464.37 141.37 2.150 357
143. 7’ 28.90” 465.23 119.33 2.076 750
157. 11’ 11.11” 464.96 100.49 2.002 123 109.20
179. 16’ 59.23” 465.20 75.59 1.878 464
196. 21’ 28.65” 464.88 60.58 1.782 329 190.40
210. 25’ 10.23” 464.96 50.08 1.699 664

For this series of observations, which is otherwise very similar to the preceding one, I
confine myself to considering the decrease in the arcs of oscillation. The logarithm of the
ratio of two successive arcs of oscillation, or the logarithmic decrement, is to be determined
here by dividing the difference between the first and fourth, the second and fifth, and so
forth, logarithm by the number of the oscillations in between. From the 16 sets of observation
above, this yields 13 values of the logarithmic decrement, as contained in the following Table,
with the addition of the oscillation number to whose mean each appertains.

Oscillation No. Logarithmic decrement Variation from the mean
171

2
. 0.005 662 + 0.000 042

28. 0.005 640 + 0.000 020
371

2
. 0.005 595 − 0.000 025

541
2
. 0.005 620 0.000 000

66. 0.005 631 + 0.000 011
80. 0.005 655 + 0.000 035
96. 0.005 610 − 0.000 010

1071
2
. 0.005 628 + 0.000 008

123. 0.005 650 + 0.000 030
1371

2
. 0.005 560 − 0.009 060

1541
2
. 0.005 549 − 0.000 071

1691
2
. 0.005 555 − 0.000 065

1831
2
. 0.005 707 + 0.000 087

Mean = 0.005 620.
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Thus there results a mean decrease in the arcs of oscillation, according to which the size
of the arc, after 53 564 swings, or after 14 minutes 8.187 seconds, declines by half. Here
too the agreement of the partial values attests to the rigor of the measurement, and it is
not remarkable that at the end, where the arcs of oscillation had become very small, the
differences appear somewhat larger.

The difference which occurs between this latter determination of the logarithmic decre-
ment and the previous one, is based, not on different external conditions influencing the
swinging coil, for these remain completely the same, but on the inducing influence of the
fixed coil on the swinging coil, which constitutes the sole difference between the first and sec-
ond series of experiments. Both series of experiments were repeated on several days, and not
only yielded almost exactly the same difference in values of the logarithmic decrement, but
also yielded nearly equal absolute values for both decrements, whereby no doubt remains,
that an induction of galvanic currents actually takes place in the closed bifilar coil by means
of the galvanic current in the fixed coil: in fact, an induction whose strength was such that
the effect of the induced current which is visible in the decrease of the arcs of oscillation, is
susceptible of precise measurement.

5.11 Law of Damping Produced by Volta-Induction

After this demonstration of the practical usefulness of the electrodynamometer for displaying
the phenomena of voltaic induction, secondly, we proceed to derive some lawful determina-
tions for these phenomena from the observations of the oscillations and of the decrease of
the arcs of oscillation of the bifilar coil.

First, it has already been noted, that the changing magnitude of the arcs of oscillation
as a result of the induced currents, given an unchanged mean position of the bifilar coil,
proves that the direction of the induced current changes with the direction of motion of
the swinging bifilar coil, and that consequently opposite currents are induced by means of
opposite motions, as is also the case in magnetic induction.

Second, the decrease in the arcs of oscillation proves, that as parallel elements of the
inducing wire approach, a current opposite to that inducing wire is induced; as parallel
elements withdraw, a current in the same direction as that in the inducing wire is induced. If
the opposing relation of the current directions of the inducing and induced currents existed,
there would have to result a continuous increase in the arcs of oscillation. This determination
as well is analogous to the one empirically established for magnetic induction.

Third, the geometric law of the decrease in the arcs of oscillation due to the induced
current, proves that the intensity of the induced current is proportional to the velocity of the
inducing motion; for the geometric law of the decrease of arcs of oscillation proves that the
force which produces this decrease, i.e. the intensity of the induced currents, always remains
proportional to the magnitude of the arcs of oscillation: it is known, however, that the
magnitude of the arcs of oscillation of an isochronous swinging body is always proportional
to the velocity it reaches in the corresponding moments of its period of oscillation.

Fourth, as for the lawful determination of the absolute strength of the voltaic induction,
we wish lastly to derive the following principle from observations on the dynamometer.

The voltaic induction is equal to the magnetic induction in the oscillating closed
circuit bifilar coil, when the former is elicited by a galvanic current conducted through
the fixed coil, the latter elicited by magnets which are located in a position with
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respect to the bifilar coil such that when a current goes through the bifilar coil, the
electrodynamic rotational moment of that current is equal to the electromagnetic
rotational moment of these magnets.

By means of this principle, as can easily be seen, the determination of voltaic induction
with the help of known electromagnetic and electrodynamic forces is reduced to the laws of
magnetic induction, which have already been investigated more precisely by other means. At
the moment, admittedly, in order to prove this principle, I can only give a few measurements
carried out with the dynamometer, which were made under circumstances in which no precise
determinations down to small fractions were possible; however, these measurements may be
regarded as sufficient for the present, because, if the foregoing principle were incorrect,
there would be no basis for that approximate agreement which undoubtedly arose from the
observations. For a more refined test of the foregoing principle, all the involved measurements
would have to be carried out with greater precision. However, in order to set up all the
conditions fully appropriately for attaining this uniform precision, it would be necessary to
prepare special instruments simply for this purpose, which up to now it has not been possible
for me to do.

Here I will briefly assemble the results of the observations, without going into the de-
tails of the observations themselves, which generally conformed to those of the preceding
observations.

The first series of observations concerned measurement of magnetic induction. This is
exactly the series for which conditions could be shaped least favorably, and which accordingly
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set narrower limits to the precision of the entire measurement, which under somewhat more
favorable conditions could have easily been significantly extended. That is, the bifilar coil of
the dynamometer described in Section 5.1 and depicted in Figures 2, 3 and 4, was made a
closed circuit and put into oscillation, while outside the casing which protected the swinging
bifilar coil from the air, several small magnets NS, N ′S ′ (Figure 4) were fixed in the position
in which they induced the strongest magneto-electric currents in the swinging bifilar coil.
Namely, all of these small magnets together lay perpendicular to the magnetic meridian
passing through the axis of the bifilar coil, i.e., symmetrically north and south of the bifilar
coil, and their corresponding poles were thereby turned toward the same side, as the diagram
shows, in which N and N ′ denote the north poles, S and S ′ the south poles. Then the
oscillations of the bifilar coil, as earlier, were observed, starting from the moment when
they could be measured by means of the scale, until they became too small for precise
determination of the decrease of the arcs of oscillation. These observations were calculated
in the same way as above, and yielded the logarithmic decrement for the decrease of the arcs
of oscillation

= 0.002 638 .

The same series of experiments was once again repeated, with the sole difference, that the
bifilar coil was unclosed, and there resulted for the logarithmic decrement of the decrease of
the arcs of oscillation the following somewhat smaller value:

= 0.002 541 .

The slight difference between these two values,

= 0.000 097 ,

is the effect of the magneto-electric currents, which were induced in the swinging, closed-
up bifilar coil by means of the fixed magnets. The greatest care was taken to determine
this small difference with the utmost possible precision, and the experiment leaves nothing
more to be desired in that respect; nevertheless, it is in the nature of the smallness of the
difference, that, as the repetitions of the experiments showed, it must be considered as 6 to
8 percent uncertain.

The second series of experiments concerned the electromagnetic rotational moment. The
small magnets remained undisturbed in their place, while a weak current was conducted from
a constant voltaic battery; this battery’s current passed as well through a galvanometer, by
means of which its intensity was measured. Now the rest position of the bifilar coil was
observed, alternately, when the voltaic battery was closed and when it was open. From a
series of repetitions, after the reduction of the results to the same current intensity (which
had varied only very little), there resulted, with great agreement, the difference

= 19.1 scale units.

This difference is a measure of the electromagnetic rotational moment, which the magnetic
rods mentioned above exerted on the current in the bifilar coil.

The third series of experiments concerned the electrodynamic rotational moment. The
small magnets were distanced, and the two wire ends of the fixed coil of the dynamometer
were connected to a strong voltaic battery, while the same weak current of a constant voltaic
battery was conducted through the bifilar coil, as in the previous series. The intensity of
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both currents was measured by means of a galvanometer.156 Now, as in the previous series
of experiments, the rest position of the bifilar coil was observed, alternately when the voltaic
battery was closed and when it was open. From a series of repetitions, after the reduction of
the results to the same current intensity, there resulted, with great agreement, the difference

= 101.9 scale units.

This difference is a measure of the electrodynamic rotational moment, which the strong
current in the fixed coil exerts on the weak current in the bifilar coil.

Lastly, the fourth series of experiments concerned voltaic induction. The bifilar coil was
closed up and put into oscillation, while the current of the same voltaic battery was conducted
through the fixed coil of the dynamometer, as in the previous series of experiments. Then the
oscillations of the bifilar coil were observed just as in the first series of experiments, and from
this the logarithmic decrement of the decrease in the arcs of oscillation was calculated. After
reduction to that current intensity in the fixed coil, on which the value of the electrodynamic
rotational moment found by means of the preceding series of experiments is based, this
decrement resulted

= 0.005 423 .

The same series of experiments was once again repeated with the sole difference, that the
bifilar coil was open, and the following smaller value resulted for the logarithmic decrement
of the decrease in the arcs of oscillation:157

= 0.002 796 .

The difference between these two values,

= 0.002 627 ,

is the effect of the voltaic induction, which took place in the closed and oscillating bifilar
coil, by means of the current in the fixed coil.

Since, therefore, the electrodynamic force of our current in the fixed coil, after the third
series of experiments, was not equal to the electromagnetic force of our magnets in the second
series of experiments, but were in the ratio of

101.9 : 19.1 ,

the forces of the two induced currents, induced under altogether the same conditions in the
bifilar coil, should also not be equal, but should likewise be in the ratio of

101.9 : 19.1 .

If, however, the intensities of the currents induced in the swinging bifilar coil stand in the
given ratio, then, from the interaction of these currents with those generating them (and

156[Note by WW:] Both currents originated from the same constant battery, and their differing intensity in
the two coils was effected by means of a division of the current.
157[Note by WW:] This value would be still smaller, if at the same time, the current in the fixed coil were

interrupted, because this current, even given an open bifilar coil, still induced currents in the brass mounting
of the coil during the oscillation, exactly as was the case in the first series of experiments with the magnets,
which, however, worked far more weakly.
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therefore galvanic and magnetic forces proportional to them) must result in an attenuation
of the oscillations of the bifilar coil, whose logarithmic decrements are in the ratio of the
squares of 101.9 : 19.1, i.e., like

28.5 : 1 .

Instead of that, from the observations of the decrease of the arcs of oscillation, we have
found in both cases the ratio of the portions of the logarithmic decrement stemming from
the induced current according to the fourth and first series of experiments to be

0.002 627 : 0.000 097 = 27.1 : 1 ,

a ratio differing from the calculated one by about 5 percent; the small logarithmic decrements
proceeding from the magneto-electric currents in the observed cases, as already mentioned
above158 on page159 107, can no longer be relied upon.

5.12 An Induced Current of Equal Strength to the In-

ducing Current

The constancy of the logarithmic decrement of the swinging bifilar coil under the influence
of a constant current in the fixed coil, and of the currents thereby induced in the swinging
bifilar coil, already resulted160 on page161 105 in the law for induction, that the intensity of
the induced current is proportional at any moment to the velocity of the swinging coil at that
moment. If hereby this law is now placed beyond doubt, then it follows that, in the case of a
given constant inducing current, one could arbitrarily strengthen the current induced by it, if
one increased that velocity, and that there would have to be a velocity, at which the intensity
of the induced current would be just as strong as that of the inducing current. It may not be
uninteresting to give a more precise determination of this velocity. This determination can
easily be obtained, if one

1. calculates from the measured arcs of oscillation of our coil and from its periods of
oscillation, likewise measured according to known laws, the velocity which the coil
possesses in the center of its oscillation;

2. if one calculates, from the likewise measured values of the logarithmic decrement caused
by the voltaic induction, the deflection of the coil, which would be produced by the
force which retards the velocity of the swinging bifilar coil at the moment when it finds
itself in the center of its oscillation, if it continues uniformly in the same direction; and

3. lastly, if a current is put through the bifilar coil, and the intensity of this current is
varied until the electrodynamic deflection of the coil as a result of the interaction of
this current and of the constant current in the fixed coil is equal to that deflection,
and if one then determines the ratio of the intensities of both currents.

158[Note by LH and AKTA:] Regarding the 6-8% uncertainty.
159[Note by LH and AKTA:] [Web46, p. 105 of Weber’s Werke].
160[Note by LH and AKTA:] Third law at the beginning of Section 5.11.
161[Note by LH and AKTA:] [Web46, p. 103 of Weber’s Werke].
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It is then clear that, when the velocity of the swinging coil is increased according to
the ratio of these intensities, the induced current will be equal in strength to the inducing
current at the moment when the coil finds itself in the center of its arc of oscillation. In this
way it turned out that the bifilar coil of the dynamometer described in Section 5.1 would
have to be turned around its perpendicular axis of rotation

31 times

in one second, in order for the current induced by the arbitrarily strong or weak current of
the fixed coil of this instrument to have the intensity of the original current at the moment
when both coils were perpendicular to one another. At this velocity of the coil’s rotation,
the greatest linear velocity of the current elements would amount to 6.5 meters or about
20 feet in one second, since, according to page162 44, the radius of the bifilar coil was 33.4
millimeters.

162[Note by LH and AKTA:] [Web46, p. 36 of Weber’s Werke].
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IV - Applications of the Electrodynamometer

5.13 Determination of the Duration of Momentary Cur-

rents with the Dynamometer, Along with Appli-

cation to Physiological Experiments

In order to portray and to measure the interaction of two conducting wires with the help
of the dynamometer, no strong currents are required, as the data presented prove; on the
contrary, weak currents suffice, which, if other devices are used, are barely perceptible, such
as, for example, the induced currents produced by the oscillations of the bifilar coil, according
to Section 5.10, which were barely visible without an optical device. This circumstance is
of practical importance, because these experiments thereby received a far greater expansion,
and the way was paved for the most manifold applications of the dynamometer, especially to
galvanometric determinations as well. A compass or a magnetometer is called a galvanometer
when it is equipped with a multiplier, because it serves to measure the intensity of the
galvanic currents which are led through the multiplier wire. The measurement of the intensity
of galvanic currents is hereby based, not on purely galvanic, but on electromagnetic effects.
By the same right a Voltameter,163 too, deserves the name of a galvanometer, because it
likewise serves to measure the intensity of galvanic currents which are conducted through
the Voltameter; it is merely that the latter is an electrochemical galvanometer, the former an
electromagnetic one. Now, the electrodynamometer is also a galvanometer, because it serves
to measure the intensity of galvanic currents which are conducted through it; it is, however,
a purely galvanic or electrodynamic one, because it is the interaction of the galvanic currents
itself which is used therein for measuring the current intensity, and hence it merits even
preferentially the name galvanometer.

Nevertheless, it does not seem possible to ascribe any great practical importance to the
electrodynamometer, if it is no longer a matter of testing the fundamental electrodynamic
laws, but merely of galvanometric determinations, because the multifarious apparatus of the
Voltameters and of the electromagnetic galvanometers for measuring the intensity of galvanic
currents already performs such good and convenient service, that no reason presents itself to
replace this already utilized instrument with a new one. As long as it is simply a matter of
objectives which have already been attained with the latter instruments, or can be attained
with them, a new instrument like the dynamometer can, in fact, have no great practical
importance attached to it. However, things are different in those cases, where the existing
devices are inadequate, as, for example, when it is a matter of determining the current
intensity at particular moments.

That is, the sine or the tangent of the deflection of the magnetic needle in the sine or
tangent-galvanometer only gives a correct measure of the current intensity in the multiplier
at a definite moment, if the current in the multiplier acting on the needle is constant; if,
on the contrary, its intensity is variable, then the intensity of the current for a particular
moment cannot be derived at all from the deflection of the magnetic needle, or only by means
of calculating with the help of a given law designed for those variations. Of course, we may

163[Note by AKTA:] A Voltameter, Volta-electrometer or Coulometer is an instrument used for measuring
quantity of electricity through electrolytic action. Faraday used an apparatus that he termed a Volta-
electrometer, [Far34b, Article 565, Note 1] and [Far34a, article 704] with German translation in [Far34c].
Later on this term was shortened to Voltameter. The present-day term is Coulometer.
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then let the current act on the needle for only a moment, but the deflection of the needle
elicited by this momentary influence, even if it is large enough for precise observation and
permits refined measurement, in no way suffices per se for the determination of the current
intensity at that moment; on the contrary, knowledge of another element is required, namely,
knowledge of the duration of that momentary influence, which cannot be achieved with the
instrument. Only when one knows the amount of electricity which the momentary current
puts through, and the time in which this electricity has gone through a cross-section, can the
intensity be determined by dividing the former by the latter. However, from the deflection
of the needle elicited by that momentary influence, only a determination of that amount of
electricity can be derived; the time remains undetermined.

Now, the dynamometer serves in such cases essentially to supplement the electromagnetic
galvanometer, for both instruments give us two intrinsically different, mutually indepen-
dent determinations, from which the two unknown elements, on which the current intensity
depends, can be derived. The difference of the determinations obtained with the two instru-
ments already manifests itself, when one conducts continuous constant currents of differing
intensity through a circuit, in which the usual galvanometer, and also the dynamometer, is
included, and the angle of deflection is observed, at which for each of these currents, equi-
librium exists on these instruments. These angles of deflection increase on both instruments
with the intensity, but according to different laws; for the tangents of the angles of deflection
of the dynamometer are, as was proven in Section 5.2, proportional to the squares of the
tangents of the angle of deflection of the magnetometer.

That difference in the determinations provided by the two instruments shows itself even
more remarkably, if a constant current, as just described, is put through both instruments,
and the corresponding deflections of both are observed, and then, without changing the
current intensity, simply the direction of the current in all the conducting wires of the two
instruments is reversed with the help of a commutator; it is known, that after this reversal
of the direction of the current direction in the multiplier, the multiplier’s magnetic needle is
deflected just as far as before the reversal, but to the opposite side. In the dynamometer this
does not take place, but rather, the deflection occurring before the reversal of the current
remains unchanged even after the reversal of the current, so that, provided that the reversal
of the current has actually been momentary, without interruption, no influence at all on
the dynamometer is to be perceived from this reversal. The dynamometer in this case acts
as an electromagnetic galvanometer would act, if, at the moment when the current in the
multiplier were reversed, the poles of the needle were also switched, assuming that the needle,
like the bifilar coil of the dynamometer, possessed a definite directive force independent of
the state of its poles. This sameness of the effects of positive and negative currents in the
dynamometer in this easily executed experiment, ought to arouse all the more attention, the
more one is accustomed to see opposite currents correspond to opposite effects.

This experimentally proven difference in the determinations provided by the two instru-
ments can now easily be more precisely defined. The direct effect of the current passing
through the conducting wires of both instruments is a rotational moment, which strives to
put the compass or bifilar coil on which it acts, into a rotational motion. This rotational
moment is proportional in the magnetic galvanometer to the intensity i of the current acting
on the needle, and to the magnetic moment m of the needle, which is acted upon, and is
thus represented by the formula

a ·mi
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in which, if we confine ourselves to small angles of deflection, a is to be considered as a
constant to be determined once and for all for each instrument. The effect of this rotational
moment in the time element dt is then expressed by the product

ami · dt
and is equal to the product of the rotational velocity, in which the rotatable body is thereby
put, with the moment of inertia of this body.

In the dynamometer, on the contrary, the rotational moment is proportional to the inten-
sity i of the current in the fixed coil, which acts on the bifilar coil, and also to the intensity
i of the current in the bifilar coil itself, which is acted upon, and is thus represented by the
formula

b · i2 ,
where b, if we confine ourselves to small angles of displacement, denotes a constant to be
determined once and for all for each dynamometer. The effect of this rotational moment in
the time element dt is thus expressed by the product

bi2 · dt ,
and is likewise equal to the product of the rotational velocity produced with the moment of
inertia of the rotatable body.

Now, if this current persists uniformly during the short time from t = 0 to t = ϑ, and if
the inertial moment of the needle and of the bifilar coil are denoted with p and q, then the
angular velocity which is thereby produced is

for the needle =
∫ ϑ

0
a
p
·midt = am

p
· iϑ

for the bifilar coil =
∫ ϑ

0
b
q
· i2dt = b

q
· i2ϑ .

If both instruments were previously at rest, then they are put into oscillation by the
transmission of this angular velocity, and if s and ζ denote the periods of oscillation of the
two instruments, then, according to well-known laws of oscillation, if no attenuation takes
place, and if the time interval ϑ, in which the needle and the bifilar coil receive that angular
velocity, is so small, that the disturbance itself during this small time interval, as with a
shock, does not need to be taken into consideration, then the rotational velocity for any
moment at the end of time t is expressed by

eπ

s
· cos π

s
(t− ϑ) and

επ

ζ
· cos π

ζ
(t− ϑ) ,

where e and ε denote the elongation lengths, which can be determined for both instruments
by observation. If now the first moment after the cessation of the current is substituted
for t, that is, t = ϑ, then the velocities originally transmitted by the current to the two
instruments are obtained:

am

p
· iϑ =

eπ

s
,

b

q
· i2ϑ =

επ

ζ
,

or one has two equations for determining the current intensity i and the duration of the
current ϑ, by means of which they can be calculated from the measured deflections of both
instruments e and ε, namely:
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iϑ =
πp

ams
· e , i2ϑ =

πq

bζ
· ε ,

where πp/ams and πq/bζ denote constants to be determined once and for all. The sought-for
current intensity i results from this:

i =
am

b
· q
p
· s
ζ
· ε
e
,

and the sought-for duration of this current:

ϑ =
πbp2ζ

a2m2qs2
· e

2

ε
.

Since the periods of oscillation of the two instruments s and ζ can be directly determined,
it is merely necessary for the complete determination of the constants of both instruments,
to put through both instruments a constant standard current, whose intensity = 1, and to
observe the tangents of the angles of deflection e′ and ε′, for which equilibrium then exists.
The tangents of the angles of deflection are then, according to well-known laws, to be equated
with the ratios of the deflecting rotational moments for the current intensity = 1, namely

am and b ,

to the directive forces of the compass and the bifilar coil, namely

π2p

s2
and

π2q

ζ2
,

thus:

e′ = am · s
2

π2p
, ε′ = b · ζ

2

π2q
.

If these values are substituted in the above equations, one obtains

iϑ =
s

π
· e
e′
, i2ϑ =

ζ

π
· ε
ε′
,

and consequently

i =
ζ

s
· e

′

ε′
· ε
e

ϑ =
1

π
· s

2

ζ
· ε

′

e′2
· e

2

ε
,

in which by means of a one-time observation of the deflections e′ and ε′ as well as the
period of oscillation of the compass and the bifilar coil s and ζ , the constant coefficients
ζ/s, e′/ε′, s2/ζ and ε′/e′2 are determined for ever. Thus it follows from this, that the
observations simultaneously made on both instruments of the deflections e and ε supplement
each other, by jointly providing complete data for determining the intensity and the duration
of a momentary current, while each one, considered individually, acquaints us with neither
the one nor the other.

The cases where this complete determination of momentary currents, attainable by means
of simultaneous use of both instruments, finds useful applications, are not far to seek; they
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present themselves in a manifold way. Momentary currents, for example, are frequently used
for physiological experiments, in order to investigate the influence of galvanism on the nervous
system; for it turns out that a continued action of the galvanic current very quickly deadens
the nerves through which it goes, particularly when it is a sensory nerve, so that no extended
series of rapidly successive experiments can be carried out in this manner, which becomes
possible, if the current is always allowed to go through the nerve only for a moment. These
highly interesting observations, however, can lead to no definite results, without a knowledge
of the currents which elicit those effects, especially of their intensity and their duration. A
thorough investigation of the physiological effects of galvanic currents on the nervous system
hence requires the complete determination of these two elements, which, however, can only
be achieved according to the just-developed method of simultaneous observations of the
galvanometer and dynamometer. In any case, it is an interesting task for the physiology of
nerves, to establish the time limits for how long a current must act on the nerves, in order
to elicit a definite effect, and how this necessary time interval varies with the strength of
the current. I venture to hope that the electrodynamometer will be used for the purpose
presented, especially since in the local Physiological Institute, some experimental tests have
already been made with good results, which will be communicated on another occasion. At
present, I will confine myself above all to applications which can be made in the realm of
physics itself, specifically, above all in the field of pure electrical theory.

5.14 Repetition of Ampère’s Fundamental Experiment

with Common Electricity, and Measurement of

the Duration of the Electrical Spark During Dis-

charge of a Leyden Battery

Ampère’s fundamental experiment regarding the interaction of two conducting wires at a
distance had up to now been carried out with a single form of galvanic currents, namely,
currents which originated from a voltaic battery. If one now finds oneself justifiably moved
to the conjecture, that all galvanic currents, from whatever source they might originate,
are subject to the same laws, and that therefore Ampère’s law regarding the interaction
of two conducting wires would be confirmed for all kinds of galvanic or electrical currents,
this confirmation itself is in no way superfluous. Thus far, it already seems important
that according to the experiments communicated in the preceding Sections, the Ampère
interaction has been proven as well for magneto-electric currents and by means of currents
induced by means of voltaic induction. However, it seems still more important to repeat
Ampère’s fundamental experiment with common electricity,164 as it occurs in the discharge
of a Leyden jar or battery by means of the applied discharge wire, since there are such
considerable differences between this current of common electricity and all other galvanic
currents, that only empirical experimentation can show, whether Ampère’s fundamental
experiment can hold good, or not. In particular, so long as empirical experimentation had not
decided this question, one could easily conjecture, that either the extremely short duration of
a current of common electricity, or, given a longer duration, the discontinuity of the current
might be inherently obstructive to the interaction of two long conducting wires, like those of
the two coils of the dynamometer, because it would be possible that the current in one wire

164[Note by AKTA:] In German: gemeiner Electricität.
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had already stopped again while it was just beginning in the other. Experimentation with
the electrodynamometer has proven, however, that the fundamental Ampère experiment also
succeeds with common electricity, of which I will now give a more precise account here.

It is known, that the repetition of Oersted’s fundamental experiment165 with the common
electricity collected in a Leyden jar is made most reliably, when one end of a wet string is
fastened to the discharging rod, the other end to the conducting wire which forms the
multiplier of the galvanometer, and the wire’s other end is in a conducting connection with
the outer coating of the Leyden jar. If the Leyden jar is then discharged with the discharging
rod while the wet string hangs on it, a deflection of the magnetic needle is observed in that
direction which can be predetermined by means of the electromagnetic laws. The use of a wet
string is, however, not absolutely necessary to this fundamental experiment, but seems to
be advantageous only when one wants to directly connect the wire ends of the multiplier of
a sensitive galvanometer with the positive and negative conductor of an electrical machine.
It is also not necessary to insulate the wires better than for other galvanic circuits. In the
first case the use of a wet string was advantageous, because without it, the intensity of the
discharge entails the danger of a confluence of the divided electricities which are collected
in the battery, by other paths than through all the windings of the conducting wires. This
danger is prevented by means of inserting a wet string, which diminishes the intensity of the
discharge and nevertheless permits very large masses of electricity to unite with each other
in a very short time through the conducting wire.

Now, while the main point of performing Oersted’s fundamental experiment with common
electricity is simply to conduct very large masses of electricity through the multiplier, whereas
the time in which the electricity goes through the wire, comes less into consideration, the
successful execution of Ampère’s fundamental experiment essentially rests instead on leading
large masses of electricity in the shortest possible time through the conducting wire, for which,
therefore, the collection of electricity in batteries and the discharge of the batteries by means
of a wet string seems especially suited. The effect of equal masses of electricity is always
the same in the first experiment, the amount of time of flow may be smaller or larger, as
long as it does not become so large that it requires a considerable portion of the period of
oscillation; with the latter experiment, however, in conformity with the preceding Section,
the effect is to be inversely proportional to the transit time. Accordingly, it seems that the
use of the Leyden jar along with a wet string must be considered as especially favorable, if
not necessary, for our experiment, and hence I have in fact used both in my first experiments.

Thus I joined together for this purpose two wire ends of the two coils of the dynamometer,
and led one of the two other wire ends to the outer lining of a Leyden jar, the other to a wet
string which was fastened onto the insulated discharging rod. The battery was charged, and
lastly, the discharging rod was brought toward the metal knob which was connected with
the interior lining of the battery. At the moment when the discharge of the battery through
the wet string and through the dynamometer coils took place, the dynamometer, which had
previously been at rest, was put into an oscillation, which often comprised an arc of several
hundred scale units, of which several examples are to be presented forthwith. The observer
standing at the telescope could easily determine the magnitude of the first elongation and
the side toward which it occurred.

If thereupon the experiment was repeated, by re-charging the Leyden jar or battery in
the same manner, but with the difference, that the wire which was previously connected to
the outer lining, was fastened to the end of the wet string of the discharging rod, and the

165[Note by AKTA:] See footnote 74 on page 34.
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other wire end was instead disconnected from the string and connected to the outer lining of
the battery, then the effect was the same, not only with respect to the magnitude, but also
with respect to its direction, so that, as with ordinary currents, no difference whatever took
place in the effect of the positive and negative currents. And this direction of the deflection
of the dynamometer as a result of the current of common electricity passing through, turned
out to be like that which was already predetermined by means of Ampère’s law. It is hereby
proven, that the fundamental Ampère experiment can also be made with a current of common
electricity.

It was also of further interest, however, to test whether the use of the wet string was
necessary or dispensable for the success of this experiment, as well as whether there might
exist any cases at all, where the current of common electricity would yield Oersted’s funda-
mental experiment, but not Ampère’s, or whether with respect to common electricity, both
kinds of effects are always associated. For this purpose, more extensive series of experiments
are required, than I have undertaken up to now; yet a few preliminary experiments may
meanwhile be relevant.

The earlier experiments were repeated, both utilizing the wet string and excluding it,
and also in association with the electromagnetic experiments, by inserting the multiplier of a
magnetic galvanometer into the same circuit which included the two coils of the dynamome-
ter. The latter effect then served as a criterion and a measure,166 whether and how much
electricity went through the wire circuit when the Leyden jar was discharged. When the
wet string was excluded, in order to replace by other means the large resistance which it
provided, a fine German silver [Argentan] wire of 0.3-millimeter diameter was wound around
two glass columns 3.75 meters distant from each other, in such a way that the individual 7.5-
meter-long windings were approximately 40 millimeters from each other, whereby they were
completely insulated from one another. The German silver wire formed 32 such windings,
and the end of this wire was now led freely through the air to the charged battery. In the
following Table I assemble the results of two series of experiments for comparison, namely,
one in which the current went through the wet string, the other in which the wet string was
excluded from the circuit. The electric battery consisted of 4 jars each of about 2 square feet
coated surface, which were charged moderately strongly and so uniformly in all experiments
as could be discerned on the quadrant electrometer. The string was made of hemp, 320
millimeters long, 4 millimeters thick, and was dipped in water before each experiment.

1. Discharge using the wet string:
No. Elongation of galvanometer Elongation of dynamometer

= e = ε
1. 51.75 206.99
2. 56.26 214.94
3. 61.36 236.98
4. 52.68 216.63
5. 55.31 223.88

2. Discharge using the wire circuit, without string:
6. 7.06 0.85
7. 7.04 0.85

The observations on the galvanometer show that, if when using the string, all the elec-
tricity went through the circuit, without the string only 7 to 8 parts of it went through,

166[Note by AKTA:] In German: Maassstab. This word can also be translated as standard or scale.
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according to which, under the presupposition, that the discharge without the string resulted
faster, or at least not slower, than with the string, an effect would be expected of at least
50 parts of the previous amount of electrodynamic effect. This did not occur, however, but
instead, as the comparison of the observations presented in the third column under ε shows,
the effect was almost six times smaller. Although this latter effect was so small, it was
nevertheless clearly perceptible.

The influence which the water exerted when the electricity was conducted through it,
seemed to be susceptible of more precise investigation when the wet string was replaced with
a glass tube filled with water. Hence a 1200-millimeter-long, 13-millimeter wide empty glass
tube was bent into a U shape and filled with water, inserted between the discharging rod and
the rest of the circuit, and the earlier experiments repeated, yielding the following results,
with the same charge in the battery as earlier, which prove that water contained in a glass
tube could not replace a wet string in this case.

Discharge with a glass tube filled with water:
No. Elongation of galvanometer Elongation of dynamometer

= e = ε
1. 4.68 3.23
2. 4.50 1.57

In vain were all precautionary measures which were taken in this experiment and in the
preceding one with the exclusion of the wet string, in order to compel the electricity to take
its path through the water in the tube, and thence through the German silver wire, in order
to diminish the intensity of the discharge by means of the resistance of these bodies, and
to make all the electricity take its path through the instrument’s conducting wires; only a
slight portion of the electricity seemed to actually adopt the latter path. If, on the contrary,
the glass tube was exchanged for a string of glass threads, this string, when it was externally
moistened, performed comparable service to the wet string. The discharge through such a
500-millimeter-long string dampened with ammonia gave the following elongations on the
galvanometer and dynamometer respectively:

100.55 70.35 .

The electricity coming out of a Leyden jar seems to especially spread on the surface of
the body, and therefore a moist conductor seems to have more effect, when it externally
covers the surface of this body, than when it is enclosed.

Lastly, the results of a series of experiments performed with the wet string may be
relevant, in which a battery of 8 jars just like the ones used earlier, and a hemp string of
7 millimeters thickness and 2 000 millimeters length was inserted; this length, however, was
gradually shortened to 125 millimeters.
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Length of string Elongation of Elongation of e2

ε

galvanometer = e dynamometer = ε
2 000 mm 79.9 65.6 97.3
1 000 mm 76.6 153.0 38.3
500 mm 82.3 293.8 23.0
250 mm 87.3 682.0 11.2
125 mm 93.2 out of scale
250 mm 82.9 609.1 11.3
500 mm 95.6 422.8 21.6
1 000 mm 95.8 210.1 43.7
2 000 mm 101.5 98.0 105.0

It may be further noted, that, when the string was dipped into dilute sulphuric acid,
a discharge of the battery gave a deflection of 83 scale units on the galvanometer, while
the deflection on the dynamometer itself was too large, when the string length was 2 000
millimeters, to be measured on the scale.

It is easily seen, that a broad field of interesting experiments stands open here, which
I have not further pursued, because of the need to subject the amount of electricity in the
battery used for the experiments to a direct precise measurement, according to the model
given by Ries167 in his electrical experiments, for which I do not currently have at my disposal
the appropriate equipment, and therefore I am postponing this work to a more favorable time.

Meanwhile, however, the last series of experiments performed already shows, apart from
the strength of the effects, such a degree of regularity, that it becomes probable that, in dis-
charging the Leyden battery by means of a wet string, all the electricity in fact goes through
the conducting wire and forms a current in it which might be comparable in continuity to the
current of a galvanic battery.168 Were this the case, one could make an important applica-
tion of the preceding observations, by applying to them the rules developed in Section 5.13,
in order to determine the duration of the current which may be considered as equal to the
duration of the discharge spark, according to an absolute time measure. It is well known that
Wheatstone effected the determination of the duration of the discharge spark in a completely
different manner,169 and it would be interesting to compare with each other the results found
in such different ways. In order to reduce to an absolute time measure the relative time mea-
sure which we have already included for the above experiments themselves in the column
headed e2ε, it requires, according to page170 114, simply an experiment with a constant cur-
rent passing through both instruments, which I have carried out for this purpose, and have
found that the values for e2/ε in the Table above are to be divided by

1 188 ,

in order to obtain the duration of the current in seconds. The following Table is calculated
accordingly:

167[Note by AKTA:] Peter Theophil Rieß (1804-1883).
168[Note by WW:] Electrodynamic experiments can be arranged with two dynamometers in such a way that

the electricity is conducted successively in one, simultaneously in the other, through the fixed and suspended
coils. By comparing the results for both instruments, when a battery is discharged through them, it would
be possible to investigate more precisely the continuity or discontinuity of the current.
169[Note by AKTA:] Charles Wheatstone (1802-1875). See [Whe34].
170[Note by LH and AKTA:] [Web46, p. 114 of Weber’s Werke].
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Length of string Duration of spark
Millimeters Seconds

2 000 0.081 9
1 000 0.032 2
500 0.019 3
250 0.009 4
250 0.009 5
500 0.018 2
1 000 0.036 8
2 000 0.088 3

or in mean values:

Length of string Duration of spark
Millimeters Seconds

2 000 0.085 1
1 000 0.034 5
500 0.018 7
250 0.009 5

It follows that the duration of the spark is almost proportional to the length of the string,
as the following overview of the thus calculated values and their difference from the observed
values proves:

Length of string Calculated duration Difference from
of spark observed value

2 000 0.081 6 − 0.003 5
1 000 0.040 8 + 0.006 3
500 0.020 4 + 0.001 7
250 0.010 2 + 0.000 7

If one compares the results found by Wheatstone, according to which the duration of the
spark by discharges merely through a metallic conductor, is negligibly small in relation to
the duration found here, then this stands in complete accord with the proportionality found
here between the duration of the spark and the length of the wet discharge string. In any
case, the fact that the motion of the electricity in water occurs so slowly, that the time it
requires for the short path of 2 meters amounts to roughly 1/12 seconds, merits particular
attention. Apart from the objection derived from the discontinuity of the currents of common
electricity (which was already discussed above, and which may be largely diminished or
entirely eliminated by means of the influence of the water), it could, of course, be objected
against the application of the rule by which these time determinations were made, that the
current is most intense in the first moments, and will gradually decline, while the above rule
can only be applied with precision, when the current always possesses the same intensity
during its short duration. If, however, one empirically finds, in this case as well, not the
true duration, but that duration which would correspond to a mean current strength, the
value of the determination may lose little on this account, because it will generally be of
more interest to know the latter duration, than the former. It is also noteworthy that for
the same reasons, a similar difference was occasioned in Wheatstone’s determination of the
duration of the spark, because the spark was extended in a line which as a result of that
decrease gradually dispersed without sharp delimitation.
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5.15 Velocity of Current Distribution and Electromo-

tive Force of a Circuit

Two investigations in the field of pure electrical theory are still to be presented here, for
which the use of the dynamometer opens a new path; however, I will not go more precisely
into these investigations for the present, because the necessary experiments are still lacking,
in order to demonstrate conjointly the method and the results obtained by it. These two
investigations concern:

1. the determination of the velocity of current distribution,171 for which up to now merely
a few experiments by Wheatstone are in hand,172 which, however, according to Wheat-
stone’s own statement, have still not led to any certain results;

2. the determination of the electromotive force173 of a galvanic circuit, independent of the
polarization of its plates.

The first application requires that the bifilar coil is separated from the fixed coil by
means of long conducting wires, and in this long circuit a current is produced, whose di-
rection changes as fast as Wheatstone’s mirror is rotated. The use of the dynamometer, by
comparison with Wheatstone’s method, provides the advantage of using galvanic currents
instead of common electricity, and the circuit is never interrupted, which was necessary for
Wheatstone for producing the spark. The latter application is based on the measurement of
momentary currents according to Section 5.13.

5.16 Application of the Dynamometer to Measurement

of the Intensity of Sound Vibrations

It still remains, to describe an application of the dynamometer to researches in another
domain of physics, which seems to have a special interest associated with it, because it
casts a bright light on a specific aspect of what can be done with this instrument. We
possess extraordinarily refined galvanoscopes, with which we are in a position to discover
and investigate even the weakest currents found in Nature. We need merely recall the fine
work of Melloni,174 in order to place the greatest weight for science in general upon the use
of these refined instruments and the traces of electrical motions which we find by means
of them. Despite this refinement in the instruments, however, in many cases success has
not been achieved in demonstrating electrical currents everywhere we surmise that they
exist, perhaps because those instruments, despite their refinement, were not suited to the
purpose. This reason deserves all the more consideration, in that one sort of current can be
demonstrated and exactly described, to which even the finest instruments are insensitive, in
the nature of the case. This occurs, when we are dealing with an alternating current, which in

171[Note by AKTA:] In German: Geschwindigkeit der Stromverbreitung. This expression can also be trans-
lated as velocity of current propagation. Weber is referring here to the velocity of propagation along the
circuit of a perturbation in the current, or the velocity of propagation along the circuit of the distribution
of free electricity. See also footnote 42 on page 24.
172[Note by AKTA:] See footnote 169 on page 119.
173[Note by AKTA:] In German: der elektromotorischen Kraft.
174[Note by AKTA:] Macedonio Melloni (1798-1854).

121



very short sequential time intervals constantly changes its direction. The alternating opposite
actions of the current on the most sensitive magnetic needle must cancel each other, if the
magnetism of the needle always remains the same. The phenomena observed by Poggendorff
(Annalen 1838, Vol. LXV, page 355 ff.),175 in which this does not seem to occur, originate
from a changeability in the needle’s magnetism, and, given a very accelerated change in
current, would disappear again. Such currents, whose direction changes very rapidly, can
thus exist to a great extent in Nature, without us having an inkling of their existence,
because we possess no way to discover them. And it is not at all improbable, that such
currents exist, for the movement of electricity in them would differentiate itself from the
movement of electricity in the usual currents, only by the fact that the former consists of
an oscillation, while in the latter, the motion of the electricity is progressive. Since the
progressive motion of electricity occurs so abundantly in Nature, it is not obvious why, given
such great mobility occasional conditions should not also occur, which favor a vibrating
movement. If, e.g., light undulations exert an action on the electrical fluids, and have the
power to disturb their equilibrium, it would certainly be expected that these effects of light
undulations would be structured in time with the same periodicity as the light undulations
themselves, so that the result would consist of an electrical vibration, which, however, we are
unable to discover with our instruments. Now, the undulations of light occur so rapidly, that,
if the vibrations they elicit follow an equally rapid alternation, we could scarcely hope to
observe their effects with any instrument. Slower vibrations also occur in Nature, however,
e.g. acoustical ones, and hence the question arises, whether there are not electrical motions
in Nature whose origin is due to them, and if there are such motions, in what way we could
discover and investigate them.

I want to give at least one example here of such electrical vibrations, elicited by sound
vibrations, and provide the actual proof of how such electrical vibrations can be observed
and investigated with the help of the dynamometer, and how the measurable effects of these
electrical vibrations can in turn be used to elucidate the sound vibrations from which they
originate, and thereby to open a new path for many acoustical investigations, for which we
still altogether lack suitable means of measuring the intensity of sound vibrations.

In fact, the peculiarity of the dynamometer, which most characterizes it and distinguishes
it from all other galvanometers, consists in the fact, that it is indifferent to the direction of the
current acting upon it, while other galvanometers undergo opposite effects, given opposite
directions of the currents. Attention was already called to this in Section 5.13 above. We can
express this succinctly by saying that the dynamometer with respect to constant currents
gives a measure for the square of the current intensity, while other galvanometers provide a
measure for the current intensity itself.

From this characteristic property of the dynamometer, it is now obvious, that the rapidly
successive actions of the opposed currents do not, as in an electromagnetic galvanometer, can-
cel each other, but rather must be additive; and that in virtue of its nature the dynamometer
consequently finds its true purpose in bringing to light such otherwise unobservable currents.

Now, the sound vibrations are mostly, of course, contained in such narrow, almost mi-
croscopic boundaries, that we can scarcely hope to use them to elicit electrical vibrations
whose boundaries have the breadth necessary to register an effect upon the dynamometer.
If, however, we calculate the absolute velocities, with which the resonating bodies move in
the middle of their vibrations, it turns out that these velocities, considering the short du-
ration of the vibrations, are not entirely inappreciable, despite the small oscillation curves,

175[Note by AKTA:] [Pog38].
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but often amount to a foot or more in one second. Building upon this, I have carried out an
experiment so that it seemed the first to be capable of producing results.

I prepared a sounding-rod of steel (aaa, Figure 13) and let it harden, magnetized it,
and fastened its nodal lines at the end-points b, b, b′, b′ between screw-heads as axes of
rotation, as I have described in Poggendorff’s Annalen 1833, Vol. XXVIII, page 4,176,177 and
divided it into three sections simultaneously vibrating toward opposite sides. Hence the two
end sections made their vibrations simultaneously in the same direction, alternately upward
and downward. The free magnetism, which is disseminated in these rods, can be thought
of as disseminated on the surface of the rod, according to Gauss’ ideal distribution, which
represents the actual distribution in all outward effects;178 and, specifically in the case of
strong magnetization, the free north magnetism must be thought of as almost entirely on
the surface of one vibrating end-section, the free south magnetism almost entirely on the
surface of the other vibrating end-section, and indeed the closer to the end, the greater
the concentration, i.e., exactly the most [concentrated] where the sound vibrations are the
greatest. I wound these two vibrating end-sections with strong inductors ccc and c′c′c′ made
of fine copper wire, which, however, never touched the rod, so that its vibrations would not
be inhibited. In addition, there was a gap in the windings on the sides of the inductors turned
toward each other, through which the ends of the rod were inserted into the inductors. The
windings of the inductors were parallel to each other and lay in a plane perpendicular to
the sound vibrations of the sounding-rod. The two inductors were connected to each other
with two of their wire ends dddd, so that they formed spirals wound in opposite directions.
Their two wire ends ee and e′e′ were connected with two wire ends of the fixed and moveable
coils of the dynamometer, whose other two wire ends were connected to each other. The
dynamometer was completely at rest. After everything had been prepared in this way, the
sounding-rod was made to vibrate strongly by means of a sharp rap at its midpoint with a
soft clapper. There appeared at once a deflection of the bifilar coil of 20 to 30 scale units,
and thereupon, when the maxima and minima of the vibration curve of the bifilar coil, which
was vibrating from then on, were recorded, it was seen, that the state of rest calculated from
this, around which the vibration occurred, was altered, but that it quickly returned again to
its original state as the sound vibrations decreased in strength. I would note that I elongated
the bifilar coil by several hundred scale units, letting the sounding-rod vibrate only so long,
as the elongation was increasing, while on the other hand I deadened the sounding-rod, while
the bifilar coil swung back again, and struck the sounding-rod again as soon as the bifilar

176[Note by HW:] Wilhelm Weber’s Werke, Vol. I, page 367.
177[Note by AKTA:] [Web33].
178[Note by AKTA:] [Gau39] with English translations in [Gau41a] and [GT14].
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coil began to move in the original direction, and so forth.

It hardly need be mentioned, that if more precise determinations of the intensity of
sound vibrations are really to be obtained according to the method presented, the sounding-
rod cannot be put into vibration by means of a clapper stroke, because the intensity of
the vibrations elicited in this way decrease very quickly and almost entirely disappear; but
they must be maintained in a state of constant vibration for a longer time by means of a
continually adjusted intervention.

It can safely be presumed, that the electrical vibrations which are actually demonstrated,
take place under the conditions in which we made our observations; hence it was only a
question of testing the method by which such vibrations are made observable. After this
method has been found to be proven, however, one can further build upon it, and it is certain
that using this method will lead to the discovery of electrical vibrations under previously
unthought-of conditions. To illustrate the manifoldness of these phenomena, the following
experiment may be cited here. If a strong galvanic current is introduced close to a vibrating
string, which forms a component of a wire circuit running back into itself, then as a result of
that vibration, alternating positive and negative currents are induced in the circuit, whose
intensity can be measured with the dynamometer, similarly to the way it is induced by the
vibrating magnetized rod.

5.17 On Various Constructions of the Dynamometer

There are essentially three different constructions which can be given to the dynamometer,
all of which are suited to exact measurements, and provide special advantages under differing
conditions. In addition to the first construction, which has been applied up to now, a second
presents itself almost automatically to begin with, since it is already frequently used, with
regard to its most essential components, for observing the effects of the Earth’s magnetism
on a conductor. Specifically, for this purpose, a conductor wound in circles, together with the
battery from which the current issued, was hung up on a thread or wire, like a magnet, and
the rotational moment which the Earth exerts on this kind of closed circuit, was observed in
the same way as on a suspended magnetic needle. In fact, this apparatus provides a rotatable
conductor, whose oscillations and deviations can be observed with as great a refinement as
those of our bifilar coil, and it is only necessary to surround the suspended battery with a fixed
multiplier, through which a current likewise flows, in order to complete the dynamometer.
Now, add to this the fact that the discovery of constant batteries by Daniell179 and Grove
has paved the way for more refined applications of such an instrument, which was previously
blocked by the variability of the currents. For this a small Grove’s element is particularly
suited, which, considering its small dimensions and low weight, provides a fairly strong and
constant current. If mirror, telescope, and scale are added, the most refined observations can
be carried out with this instrument. Figure 14 depicts such an instrument, as used by me
for this purpose. A is the wire wound around in a ring, whose ends are connected by means
of brass couplings ab and a′b′ to the platinum and zinc poles of a small Grove’s element B
from the instrument-maker Kleinert in Berlin. This element rests on a wooden stand, whose
upper part is equipped with a torsion ring C, to which the suspension filaments are fastened
at D.

179[Note by AKTA:] John Frederic Daniell (1790-1845).
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However suitable this construction of the dynamometer may be for a few special purposes,
nonetheless it is far from able to replace the first construction, because it lacks two properties
which the dynamometer with the bifilar coil possesses, and which are based on the fact that
the current going through the bifilar coil can be further conducted, both through the fixed
coil serving as multiplier, and through any other conductor as well. The first property
consists in the fact that this dynamometer can be used together with a galvanometer, by
means of which an independent measurement of the intensity of the current in the bifilar coil
can be obtained, which is not the case with the other instrument, because there the current
from the suspended battery can not be drawn off through the multiplier of a galvanometer.
However, the simultaneous observations on the galvanometer and dynamometer permit us
to reduce the electrodynamic effects to the same current intensity, as repeatedly occurred
in the previous undertakings. The lack of this property is not completely overcome by the
use of constant batteries, because the current intensity even in such batteries is still always
subject to considerable variations, which can in no way be disregarded in the course of more
precise determinations.

The second property consists in the fact that, by letting the currents to be investigated
with the dynamometer pass through both coils, the fixed coil as well as the rotatable one, one
can determine the square of the current intensity, which is independent of the direction of
the current. On this was based the peculiar characteristic of the instrument, which made it
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possible, in association with the electromagnetic galvanometer, to provide the elements nec-
essary for knowledge of momentary currents. See Section 5.13 above. The other instrument
whose rotatable coil formed a suspended, self-contained battery, also lacked this property; for
here the different currents to be investigated can simply be brought through the conducting
wire of the fixed coil, while the current in the rotatable coil remains unchanged, whereupon
the effect of the current intensity, as with an electromagnetic galvanometer, is proportional
to the current intensity itself, and consequently the instrument is capable of simply serving
the role of an electromagnetic galvanometer, but not of supplementing it.

I now proceed to the third construction of the dynamometer, which, in that it shares
the most essential properties of the first, is suited to give to electrodynamic measurements
a still greater expansion, especially in cases where the first fails us because of the necessary
fineness of the suspension wires through which the current is conducted.

This third construction is based on the same principle, which I have developed in the
Commentat. Soc. Reg. Sc. Gottingensis recentiores, Vol. VIII,180,181 for the purpose
of describing a perfectly rotatable, friction-free balance scale,182 namely, on the principle
of compensation between the force of gravity and elastic force. There I hung the horizontal
balance beam on two elastic vertical springs. These springs bent, of course, when the balance
beam was turned, and thus, the more the beam was turned, the more they sought by means
of their elastic force to inhibit the rotation; but if the rotation of the balance beam took place
around an axis, which lay lower than its center of gravity, then, when the balance beam was
rotated, the more the balance beam was rotated, the more the force of gravity sought to
accelerate the rotation, and it turned out that, in this construction, the inhibiting influence
of elasticity and the accelerating influence of gravity balanced each other, and consequently
the beam remained firmly in equilibrium not merely in a horizontal position, but also in an
inclined position, and, without becoming hampered by friction, was able to switch from one
of these positions to the other at the slightest impulsion.

I now used this kind of compensated balance beam for the dynamometer, and thereby
replaced the rotatable coil, by making the same use of the two suspension springs to feed in
and draw off the current, as I make of the two suspension wires. These springs are especially
preferable to those fine wires, when it is a question of high-intensity currents, which should
not be conducted through fine wires. It is sufficient to put the current through the strongest
and shortest possible circuit; then the balance beam, through which this current is to pass,
consists of a moderately long bar, held up by one of those two springs, to which bar, however,
a mirror for more refined observation is attached. Finally, the fixed coil is replaced for the
same reason with another moderately long fixed bar, by means of which the galvanic current
is likewise conducted, and which then acts on that rotatable bar, and deflects it, like a balance
scale. The sensitivity of this instrument primarily depends on the two bars (the fixed one
and the rotatable one) being placed parallel to each other at a slight distance apart. I have
designed this instrument above all to give a greater range to electrodynamic experiments with
common electricity, by rendering dispensable the special conditions which were necessary to
achieve a truly reliable discharge in a Leyden jar through the many windings of the two coils
of the first dynamometer. As yet, this latter instrument has not been perfected to the degree
necessary for such a series of experiments.

Before I conclude this Section on the construction of the dynamometer, I wish to add

180[Note by HW:] Wilhelm Weber’s Werke, Vol. I, page 497.
181[Note by AKTA:] [Web41a].
182[Note by AKTA:] In German: Wage.
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another remark about its transformation into a magnetic galvanometer. I have already men-
tioned, that the wholly self-contained, suspended battery used for the second construction
described above, was used earlier in electromagnetic experiments, specifically in order to
observe the influence of Earth magnetism on a current conductor. With this self-contained
suspended battery, if one were able to fully rely on the constancy of its current, all experi-
ments on, and measurements of, Earth magnetism could be carried out exactly as with the
magnetometer, and to that extent it would warrant the name of a galvanic magnetometer.
Our first dynamometer, on the other hand, could be used as a magnetic galvanometer, which
offers great advantages, even in comparison with a magnetometer equipped with a multiplier,
if it is a question of absolute, not merely relative, determination of current intensity. The
current conductor is in a fixed position with respect to the magnetometer equipped with a
multiplier, and the magnet is rotatable; however, there is no essential influence on the effect,
when one reverses this relationship and fixes the magnet, while the conductor is rotatable.
The coil of our dynamometer, suspended by two wires, can now serve as the rotatable con-
ductor, and the Earth itself can be used as the fixed magnet (which substitutes here for the
fixed coil). However, if the Earth is now to actually perform this role, the bifilar coil must
be oriented in a different way, namely, instead of being oriented like a declination magne-
tometer, as it was earlier, so that its axis is parallel to the magnetic meridian, it must be
oriented, like the intensity magnetometer, so that its axis is perpendicular to the magnetic
meridian. It can then be called a magnetic bifilar galvanometer. This simple instrument
then presents great advantages for the absolute determination of current intensity, precisely
because the position and distance apart of the individual components of the conducting wire
compared with the individual components of the magnets no longer need be taken into ac-
count, because of the great distance at which the Earth magnetism acts, and hence, what
is required for the purpose of this absolute determination of current intensity, in addition
to the knowledge of the Earth magnetism, the deflection, the period of oscillation, and the
inertial moment, in terms of absolute measure, is only the knowledge of one single element,
namely, knowledge of the area surrounded by the wire, as I have already discussed in the
Resultaten aus den Beobachtungen des Magnetischen Vereins im Jahre 1840, page 93,183,184

where I have communicated several such determinations of intensity according to absolute
measure, which were made with this instrument.

Hitherto, the investigation primarily had the purpose of leading to experimental paths
to measurements for electrodynamic forces, and to expressing those forces according to the
absolute measure, reduced to measure of space, time, and mass. This was the motivation for
the construction given to the instruments, which, as in the case of Gauss’ magnetometer, lays
claim to a more solid arrangement and a greater scope than is called for by other physical
apparatus, in which the scale of measurement is directly mounted on the instrument to be
observed. Given the appropriate construction, it was possible to carry out larger individual
series of experiments with precision; this construction, however, is not so easily altered again
and adjusted to different kinds of purposes. In this connection I must acknowledge, as an
especially favorable circumstance, that the spaciousness of the Leipzig Physics Institute was
on the whole advantageous for this construction; nevertheless, as mentioned several times, I
had to confine myself for the present to preliminary experimental tests, because not all the
constructions could be adequately manufactured in the same way. In consideration of these
external constraints, present elsewhere still more than here, and because many experimenters

183[Note by HW:] Wilhelm Weber’s Werke, Vol. III, page 15.
184[Note by AKTA:] [Web41e] with English translation in [Web20a]. See also [Web42].
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are less accustomed to make observations with such instruments, I commissioned the local
instrument-maker Mr. Leyser to complete smaller portable instruments for easier and more
convenient manual use, without catoptric equipment, in the usual simple manner with pointer
and subdivided circular scale, which suffice for conducting most experiments and for ordinary
measurements. I call these smaller instruments to the attention of those who wish to engage
in similar experiments, under conditions which do not permit the use of the instruments
described.
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V - On the Connection between Electrostatic and Elec-

trodynamic Phenomena with Application to Electrody-

namic Measurements

5.18 On the Meaning of a General Fundamental Law

of Electrical Action

Since the fundamental law of electrodynamics put forward by Ampère is found to be fully
confirmed by precise measurements, the foundations of electrodynamics could perhaps be
considered as definitively established. This would be the case, if all further research consisted
of nothing but developing the applications and results which can be based on that law. For,
granted that we could inquire into the connection, which exists between the fundamental
laws of electrodynamics and electrostatics, yet, however interesting it may be, and however
important for a more precise acquaintance with the nature of bodies, to have investigated this
connection, nothing further would have been yielded for the explanation of electrodynamic
phenomena, if these phenomena have really found their complete explanation in Ampère’s
law. In short, essential progress for electrodynamics itself would not be achieved by reducing
its fundamentals to the fundamentals of electrostatics, however important and interesting
such a reduction might be in other respects.

This view of the conclusions which the fundamentals of electrodynamics has reached
through Ampère’s basic law and its confirmation, essentially presupposes, however, that all
electrodynamic phenomena are actually explained by that law. If this were not the case, if
there existed any class of electrodynamic phenomena, which it does not explain, then that
law would have to be considered merely as a provisional law, to be replaced in future by a
truly universally valid, definitive law applicable to all electrodynamic phenomena. And in
that case it could well occur, that this definitive law would be arrived at, by first seeking
to reduce Ampère’s law to a more general one, encompassing electrostatics. Namely, it
would be possible that, under different conditions, the law of the remaining electrodynamic
phenomena, which could not be directly traced to Ampère’s law, would emerge out of the
same sources from which both the electrostatic law and Ampère’s law were derived, and that
the foundation of electrodynamics in its greatest generality, would then be represented, not
in isolation per se, but solely as dependent on the most general law of electricity, subsuming
the foundation of electrostatics.

Now, in fact, there does exist such a class of electrodynamic phenomena, which, as we
assume throughout this Treatise, depend on the interactions which electrical charges exert
on each other at a distance, and which are not included in Ampère’s law and cannot be
explained by it, namely, the phenomena of Volta-induction discovered by Faraday, i.e., the
generation of a current in a conducting wire through the influence of a current to which it
is brought near; or the generation of a current in a conducting wire, when the intensity of
the current in another nearby conducting wire increases or decreases.

Ampère’s law leaves nothing to be desired, when it deals with the interactions of conduct-
ing wires, whose currents posses a constant intensity, and which are fixed in their positions
with respect to one another; as soon as changes in the intensity of the current take place,
however, or the conducting wires are moved with respect to one another, Ampère’s law gives
no complete and sufficient account; namely, in that case, it merely makes known the actions
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which take place on the ponderable wire element, but not the actions which take place on
the imponderable electricity contained therein. Therefore, from this it follows, that this law
holds only as a particular law, and can be only provisionally taken as a fundamental law;
it still requires a definitive law with truly general validity, applicable to all electrodynamic
phenomena, to replace it.

We are now in a position, to also predetermine in part the phenomena of Volta-induction;
however, this determination is based, not on Ampère’s law, but on the law of magnetic
induction, which can be directly derived from experience, and which up to now has had no
intrinsic connection with Ampère’s law. And that predetermination of Volta-induction is
in fact able to proceed, not through a strict deduction, but according to a mere analogy.
Since such an analogy can indeed give an excellent guideline for scientific investigations, but
as such must be deemed insufficient for a theoretical explanation of phenomena, it follows
that the phenomena of Volta-induction are still altogether lacking theoretical explanation,
and in particular have not received such explanation from Ampère’s law. In addition, that
predetermination of the phenomena of Volta-induction merely extends to those cases, where
the inductive operation of a current, by analogy with its electrodynamic operation, can be
replaced by the operation of a magnet. This, however, presupposes closed currents whose
form is invariable. We can, however, claim, with the same justification as Ampère did for
his law with respect to the interaction of constant current elements, that the law of Volta-
induction holds true for all cases, in that it gives a general determination for the interaction
of any two smallest elements, out of which all measurable effects are composed and can be
calculated.

Thus, if we take up the connection between the electrostatic and electrodynamic phenom-
ena, we need not simply be led by its general scientific interest to delve into the existing
relations between the various branches of physics, but over and above this, we can set our-
selves a more closely defined goal, which has to do with the measurement of Volta-induction
by means of a more general law of pure electrical theory. These measurements of Volta-
induction then belong to the electrodynamic measurements which form the main topic of
this Treatise, and which, when they are complete, must also include the phenomena of
Volta-induction. It is self-evident, however, that establishing such measurements is most
profoundly connected with establishing the laws, to which the phenomena in question are
subject, so that the one can not be separated from the other.

5.19 Development of a General Fundamental Law of

Electrical Action

In order to obtain for this investigation the most reliable possible guideline based on ex-
perience, the foundation will be three special facts, which are in part based indirectly on
observation, in part contained directly in Ampère’s law, which is confirmed by all measure-
ments.

The first fact is, that two current elements lying in a straight line which coincides with
their direction, repel or attract each other, according to whether the electricity flows through
them in the same or opposite way.

The second fact is, that two parallel current elements, which form right angles with a
line connecting them, attract or repel each other, according to whether the electricity flows
through them in the same or opposite way.
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The third fact is, that a current element, which lies together with a wire element in a
straight line coinciding with the directions of both elements, induces a like- or opposite-
directed current in the wire element, according to whether the intensity of its own current
decreases or increases.

These three facts are, of course, not directly given through experience, because the effect
of one element on another can not be directly observed; yet they are so closely connected
with directly observed facts, that they have almost the same validity as the latter. The first
two facts were already comprehended under Ampère’s law; the third was added by Faraday’s
discovery.

The three adduced facts are considered as electrical, viz., we consider the indicated forces
as actions of electrical masses on each other. The electrical law of this interaction is still
unknown, however; for, even if the first two facts are comprehended under Ampère’s law,
nevertheless, even apart from the third fact, which is not comprehended by it, Ampère’s law
is itself, in the strict sense, no electrical law, because it identifies no electrical force, which an
electrical mass exerts on the other. Ampère’s law merely provides a way to identify a force
acting on the ponderable mass of the conductor. Ampère did not deal with the electrical
forces which the electrical fluids flowing through the conductor exert on one another, though
he repeatedly expressed the hope that it would be possible to explain the reciprocal effect
of the ponderable conductors identified by his law, in terms of the interactions of the electric
fluids contained in them.

If we now direct our attention to the electrical fluids in the two current elements them-
selves, we have in them like amounts of positive and negative electricity, which, in each
element, are in motion in an opposing fashion. This simultaneous opposite motion of pos-
itive and negative electricity,185 as we are accustomed to assume it in all parts of a linear
conducting wire, admittedly can not exist in reality, yet can be viewed for our purposes as
an ideal motion, which, in the cases we are considering, where it is simply a matter of actions
at a distance, represents the actually occurring motions in relation to all the actions to be
taken into account, and thereby has the advantage, of subjecting itself better to calculation.
The actually occurring lateral motion through which the particles encountering each other
in the conducting wire (which latter forms no mathematical line) avoid each other, must be
considered as without influence on the actions at a distance, hence it seems permissible for
our purpose, to adhere to the foregoing simple view of the matter (see Section 5.31).

We have, then, in the two current elements we are considering, four interactions of electri-
cal masses to consider, two repulsive, between the two positive and between the two negative
masses in the current elements, and two attractive, between the positive mass in the first and
the negative mass in the second, and between the negative mass in the first and the positive
mass in the second.

Every two repulsive forces would have to be equal to these two attractive forces, if the
recognized laws of electrostatics had an unconditional application to our case, because the
like, repulsive masses are equal to the unlike, attractive masses, and act on one another at
the same distance. Whether those recognized electrostatic laws, however, find an uncondi-
tional application to our case, can not be decided a priori, because these laws chiefly refer

185[Note by AKTA:] According to the context of the discussion presented in this work, we can conclude that
these opposite motions of the positive and negative electricities should be understood as the drift velocities
of these electrified particles relative to the matter of the conductor. That is, Weber assumes that a positively
electrified particle moves in one direction relative to the conductor, while a negatively electrified particle
moves in the opposite direction relative to the conductor.
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only to such electrical masses, which are situated in equilibrium and at rest with respect to
one another, while our electrical masses are in motion with respect to one another. Conse-
quently, only experience can decide, whether that electrostatic law permits such an enlarged
application to our case as well.

The two first facts adduced above refer, of course, chiefly to forces, which act on the
ponderable current carriers; we can, however, consider these forces as the resultants of those
forces, which act on the electrical masses contained in the ponderable carrier. Strictly speak-
ing, that way of considering these forces is, to be sure, only permissible, when these electrical
masses are bound to their common ponderable carrier in such a way, that they cannot be
put in motion without it, and because this is not the case in the galvanic circuit, but on
the contrary, the electrical masses are also in motion when their carrier is at rest, Ampère,
as is stated in the introduction on page 35,186 particularly called attention to this circum-
stance, with the consideration that the force acting on the ponderable carrier could thereby
be essentially modified. Although, however, the electrical masses are susceptible of being
displaced in the direction of the conducting wire, they are in no way freely moveable in this
direction; otherwise they would have to persist in the motion once it were transmitted to
them in this direction, without a new external impetus (that is, without ongoing electro-
motive force), which is not the case. For no galvanic current persists of itself, even with
a persistent closure of the circuit. Rather, its intensity at any moment corresponds only
to the existing electromotive force, as determined by Ohm’s law; thus it stops by itself, as
soon as this force disappears. From this it follows, that not simply those forces, which act
on the electrical masses in such directions (perpendicular to the conducting wire) that the
masses can only be moved in tandem with the ponderable carrier, have to be transmitted
to the latter, but that this very fact also holds true even of such forces, which act in the
direction of the conducting wire and which move the electrical masses in the carrier, only
with the difference, that the latter transmission requires an interval of time, although a very
short one, which is not the case for the former. The direct action of the forces parallel to
the conducting wire consists, to be sure, simply of a motion of the electrical masses in this
direction; the effect of this motion is, however, a resistance in the ponderable carrier, by
means of which, in an immeasurably short time, it is canceled once more. Through this
resistance, during the time interval in which this motion is canceled, all forces, which had
previously induced this motion, are indirectly transmitted to the ponderable bodies which
exercise the resistance. Finally, since we are dealing with the effects of forces, which have the
capacity to communicate a measurable velocity to the ponderable carrier itself, then on the
other hand, those effects of forces, which only momentarily disturb the imponderable masses
a little, can be disregarded with the same justification with which we disregard the mass
of the electricity compared with the mass of its ponderable carrier. From this, however, it
follows, that the force acting on the current carrier acts, as stated above, as the resultant of
all forces acting on the electrical masses contained in the current carrier.

This presupposes, as shown by the first two facts stated above, that the resultant of
those four interactions of the electrical masses contained in the two current elements under
consideration, which, according to the electrostatic laws, ought to be zero, departs more from
zero, the greater the velocity, with which the electrical masses flow through both current
elements, that is, the greater the current intensities.

From this it follows, therefore, that the electrostatic laws have no unconditional applica-
tion to electrical masses which are in motion with respect to one another, but on the contrary,

186[Note by LH and AKTA:] [Web46, p. 29 of Weber’s Werke].
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they merely provide for the forces, which these masses reciprocally exert upon each other, a
limiting value, to which the true value of these forces approximates more closely, the slighter
the reciprocal motions of the masses, and from which, on the contrary, the true value is more
divergent, the greater the reciprocal motions. To the values, which the electrostatic laws
give for the force exerted by two electrical masses upon one another, must thus be added
a complement dependent upon their reciprocal motion, if this force is to be correctly deter-
mined, not simply for the case of mutual rest and equilibrium, but universally, including any
arbitrary motion of the two masses with respect to one another. This complement, which
would confer upon the electrostatic laws a more general applicability than they presently
possess, will now be sought.

The first fact stated above further shows, not simply that the sum of the repulsive forces
of like electrical masses in the current elements under consideration diverges from the sum
of the attractive forces of unlike masses, but also shows, when the first sum is greater and
when it is smaller than the latter, and all determinations resulting therefrom can be unified
in the simple statement,

that the electrical masses, which have an opposite motion, act upon one another
more weakly, than those which are moved in the same direction.

For, 1) if the direction of the current is the same in the two elements, then repulsion
occurs, consequently the attractive force of the unlike masses must be weaker than the re-
pulsive forces of the like masses. In this case, however, it is the unlike masses, which are in
opposite motion. If, however, 2) the direction of the current in the two elements is opposite,
then attraction occurs; consequently the repulsive forces of the like masses must be weaker
than the attractive forces of the unlike masses. In this case, however, it is the like masses,
which are put into opposite motion. In both cases it is thus the masses in opposite motion,
which act more weakly upon one another, confirming the statement above.

The first fact, to which the statement above was referred, further permits the following,
more precise, determination to be added,

that two electrical masses (repulsive or attractive, according to whether they are
like or unlike) act more weakly upon one another, the greater the square of their
relative velocity.

The relative velocity of two electrical masses can, if r denotes the distance between the
two masses, be expressed as dr/dt, and is positive or negative, according to whether the
two masses are withdrawing from or approaching one another; since, however, this difference
between approach and withdrawal, or, in short, the difference of the sign for dr/dt, has
no influence upon the magnitude of the force, it was necessary in the just-stated rule to
introduce, instead of the relative velocity itself, its square.

If we denote by e and e′ the positive electrical masses in both elements, and by u and u′

their absolute velocities, which have a positive or negative value according to the direction
of the current, then −e and −e′ will be the negative masses, and −u and −u′ their absolute
velocities.187 In the cases subsumed by the first fact, where all electrical masses are in motion

187[Note by AKTA:] According to the context of the discussion presented in this work, these absolute
velocities should be understood as the drift velocities of the electrical masses relative to the matter of the
conductors.
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in one and the same straight line, the relative velocities, however, result from the absolute
by means of simple subtraction, namely, for the like masses:

+e and + e′ the relative velocity
dr

dt
= u− u′ ,

−e and − e′ the relative velocity
dr

dt
= −u+ u′ ;

for the unlike masses:

+e and − e′ the relative velocity
dr

dt
= u+ u′ ,

−e and + e′ the relative velocity
dr

dt
= −u− u′ .

From this results, according to the foregoing principle of the interaction of like (two positive,
as well as two negative) masses, a diminution dependent upon188

dr2

dt2
= (u− u′)

2
,

in comparison with the case considered in electrostatics, of rest and equilibrium; for the
interaction of unlike masses, on the contrary, a decrease dependent upon

dr2

dt2
= (u+ u′)

2
.

The simplest form, which the law of this decrease can have, is that in which the value of the
force for the case of rest and equilibrium is multiplied by the factor

(

1− a2
dr2

dt2

)

,

whereby the following expression would therefore serve for the complete determination of the
force:

ee′

r2

(

1− a2
dr2

dt2

)

,

in which e and e′ have positive or negative values, according to whether the electrical masses
which they denote are part of the positive or negative fluids. a2 is a constant.

For our case, when we try to make use of this simplest form, there result the following
four interactions between the electrical masses in the two current elements:

1. between + e and + e′ the force +
ee′

r2

(

1− a2 (u− u′)
2
)

,

2. between − e and − e′ the force +
ee′

r2

(

1− a2 (u− u′)
2
)

,

3. between + e and − e′ the force − ee′

r2

(

1− a2 (u+ u′)
2
)

,

188[Note by LH and AKTA:] The notation dr2

dt2 should be understood as
(

dr
dt

)2
.
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4. between − e and + e′ the force − ee′

r2

(

1− a2 (u+ u′)
2
)

.

The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus

= +2
ee′

r2

(

1− a2 (u− u′)
2
)

;

the sum of the two latter forces, that is, the sum of the attractions of unlike masses, is

= −2
ee′

r2

(

1− a2 (u+ u′)
2
)

.

These two sums are thus, apart from their signs (distinguishing repulsion and attraction),
distinguished according to their magnitude. Their algebraic sum, which yields the resultants
of all four interactions, and consequently the force, which is transmitted from the electrical
masses to the current carrier itself, and on which Ampère’s law is based, is accordingly

= +8
ee′

r2
a2 · uu′ ,

i.e., it follows that this force, in complete agreement with Ampère’s law, is directly propor-
tional to the current intensity in both current elements, and inversely proportional to the
square of the distance between the two current elements.

We further observe, that the foregoing expression is positive, and consequently denotes a
repulsion of the current-elements, if u and u′ both have either a positive or negative value, i.e,
if the electricity flows through both current elements in the same sense; and that if only one
of the two is positive, the other negative, the foregoing expression becomes negative, which
denotes an attraction of current-elements, if the electricity is flowing through them in the
opposite sense. All these results precisely correspond to the first fact stated above.

If we now proceed to the second fact stated above, it is clear that the supplement to the
electrostatic law just provided will no longer suffice here, because for all cases included under
this second fact, it yields the value of the relative velocity of the electrical masses

dr

dt
= 0 .

That is to say, if we follow two electrical particles in their paths, the result is that their
relative distance decreases up to the moment in question, and from then on increases again,
and therefore, at the moment in question itself, neither increase nor decrease in the distance
takes place; consequently, for all these cases, the electrostatic law itself, would be brought
into application in order to determine the four interactions of the electric masses in both
current elements, without applying a supplement to the law, according to which the two
current elements ought to have no effect at all upon one another, which is not the case.

It is easily proven, however, that for this second class of cases, where the value of the
relative velocity dr/dt disappears, the value of the relative acceleration d2r/dt2 stands out
all the more significantly, while for the first class, where the latter value d2r/dt2 disappears,
the first dr/dt stood out all the more significantly.

Thus we assume, that the magnitude of the interaction of electrical masses in motion,
as determined by the electrostatic law, requires a supplement, which depends, however, not
simply on the square of the relative velocity of both masses = dr2/dt2, but also on their
relative acceleration = d2r/dt2; the simplest form, which the general law of interaction of
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two electrical masses can have, is that in which the value of the force for the case of rest and
equilibrium is multiplied by the factor

(

1− a2
dr2

dt2
+ b

d2r

dt2

)

and in which, therefore, the following expression would serve for the complete determination
of the force:189

ee′

r2

(

1− a2
dr2

dt2
+ b

d2r

dt2

)

,

in which e and e′ have positive and negative values, accordingly as the electrical masses which
they denote, are part of the positive or negative electrical fluid. a2 is the same constant as
before; b is another magnitude independent of velocity and acceleration, whose value and
sign remain to be more closely determined.

If, as before, e and e′ now denote the positive electrical masses in both current elements,
u and u′ their absolute velocities, −e and −e′, the negative masses, and −u and −u′ their
absolute velocities, and R denotes the distance between the current elements, r the distance
of the two positive electrical masses, then for the first moment r = R, but because the
electrical masses are in motion, r soon changes, while R remains unchanged, and after the
time-interval t has occurred, the following equation is yielded for determining the value of
r, calculated from that moment on:

r2 = R2 + (u− u′)
2
t2 ,

consequently, because R, u and u′ are constant,

rdr = (u− u′)
2
tdt

and

rd2r + dr2 = (u− u′)
2
dt2 ,

which yields the values of the relative velocity and relative acceleration at the end of time-
interval t, namely:

dr

dt
=

(u− u′)2

r
t

d2r

dt2
=

(u− u′)2

r

(

1− (u− u′)2

r2
t2

)

.

If we apply these general determinations to the considered moment, for which t = 0, we
will obtain the values for the relative velocity and acceleration of both positive masses to be
introduced into our expression:

189[Note by AKTA:] The following equation should be understood as:

ee′

r2

[

1− a2
(

dr

dt

)2

+ b
d2r

dt2

]

.
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dr

dt
= 0

d2r

dt2
=

(u− u′)2

r
,

consequently, for the first of the four interactions we obtain:

1. between + e and + e′ the force +
ee′

r2

(

1 +
b

r
(u− u′)

2

)

.

It is self-evident, that the remaining interactions can be derived from this first one, through
substitution of the corresponding masses and velocities; then we obtain

2. between − e and − e′ the force +
ee′

r2

(

1 +
b

r
(u− u′)

2

)

.

3. between + e and − e′ the force − ee′

r2

(

1 +
b

r
(u+ u′)

2

)

.

4. between − e and + e′ the force − ee′

r2

(

1 +
b

r
(u+ u′)

2

)

.

The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus

= +2
ee′

r2

(

1 +
b

r
(u− u′)

2

)

.

The sum of the last two forces, that is, the sum of the attractions of unlike masses, is,
however,

= −2
ee′

r2

(

1 +
b

r
(u+ u′)

2

)

.

These two sums are, therefore, apart from their signs (distinguishing repulsion and attrac-
tion), distinguished by their magnitude. Their algebraic sum, which yields the resultant of
all four forces, consequently the force which is transmitted from the electrical masses to the
current carrier itself, and on which Ampère’s law is based, is accordingly

= −8
ee′

r2
· b
r
· uu′ ,

i.e., this force accordingly emerges in complete agreement with Ampère’s law, directly pro-
portional to the current intensity in both current elements, and inversely proportional to the
square of the distance between the two current elements.

We further observe, that if b is positive, the above expression would be negative, and
consequently would denote an attraction of current elements, if u and u′ both have either
a positive or a negative value, i.e., if electricity flows through both current elements in the
same way; if, however, only one of the two is positive, the other negative, then the above
expression will be positive, which denotes a repulsion of the current elements, if the electricity
flows through them in an opposite way. All these results precisely correspond to the second
fact stated above.
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If, finally, we return to Ampère’s formula itself, which includes both facts as special cases,
according to which the repulsion of two current elements is the following:

ii′

r2

(

cos ε− 3

2
cosϑ cos ϑ′

)

dsds′ ,

wherein the letters have the significance given on page190 74, then, for the cases included
under the first fact,

ε = 0o or = 180o ,

according to whether ϑ and ϑ′ both

= 0o or = 180o ,

or only one of the two
= 0o, the other = 180o.

Consequently, the sought-for value for the force in the cases included under the first fact is,
according to Ampère’s law

= ∓1

2
· ii

′

r2
dsds′ .

For the cases included under the second fact,
ε = 0o or 180o,

according to whether ϑ and ϑ′ both
= 90o or = 270o,

or only one of the two
= 90o, the other = 270o.

Consequently, the sought-for value for the force in the cases included under the second fact
is, according to Ampère’s law

= ±ii
′

r2
dsds′ .

According to Ampère’s fundamental law, we also obtain (apart from signs) a value for the
latter case double that of the first.

This also results from our own determinations, if we make

a2 =
1

2

b

r

whereby the value and the sign of b are more closely determined, namely:

b = 2ra2 .

If we substitute this value of b in our general expression for the interaction of two electrical
masses, the resulting repulsive force is

=
ee′

r2

(

1− a2
dr2

dt2
+ 2a2 · rd

2r

dt2

)

.

190[Note by LH and AKTA:] [Web46, p. 70 of Weber’s Werke].
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The third fact stated above is ultimately based, not, like the two previous ones, on forces,
which merely act on the current carrier, but rather on forces which act on the electrical
masses themselves and move them in their carrier, seeking to separate unlike masses; that
is, on electromotive forces, which are exerted by electrical masses in motion in a galvanic
conductor on electricity at rest. These forces, however, are not only not determined by the
electrostatic law, but also not determined by Ampère’s electrodynamic law, because the latter
relates merely to the forces transmitted to the current carrier, and the former, were it to be
applicable, would yield the value of the electromotive force = 0. Thus these forces form an
essentially new class, with which Faraday’s discovery has first acquainted us.

If we consider once more simply the electrical masses in the current element as well as
in the element without current, we again have in each one, equal masses of positive and
negative electricity; specifically, at any time in the current element these two masses are
in motion with equally great velocity in opposed directions, and these velocities increase
or decrease simultaneously by equal amounts; in the element without current, on the other
hand, both masses are still at rest and in equilibrium. Further, among these four masses,
four interactions are now to be distinguished, namely, two repulsive and two attractive, the
former between the like masses, the latter between the unlike.

Now, from the fact, that a current is produced in the element, in which previously there
was no current, we must conclude, that another force, than the one acting on the negative
mass, must be acting on the positive electrical mass in this element, in the direction of the
latter, because those masses can only receive that opposite motion through such a difference
in the forces acting upon them, of which motion the current which manifests itself essentially
consists. We thus express the fact initially in this way,

that the sum of the two forces, which are exerted by the positive and negative
electrical masses in the current element on the positive mass at rest in the element
without current, in the direction of the latter, is different from the sum of those
two forces, which those masses exert in the cited current element on the negative
mass at rest in the element without current, in the direction of the latter; that,
however, the difference of the two sums, that is, the electromotive force itself,
is dependent on the change in velocity of the two electrical masses in the given
current element, and increase or decrease and disappear with this change.

Thus we are led by this third fact, as well, to add to the electrical forces determined by
the electrostatic law, a supplement contingent upon their motion, and the question is merely,
whether this justifies exactly the same supplement, as that which was established on the
basis of the first two facts. This third fact therefore yields a criterion for testing the results
already obtained, and is especially suited to their rejection or their firmer substantiation.

If we now denote, as above, e and e′ the positive electrical masses in both wire elements, u
and 0 their absolute velocities, and R the distance between the wire elements, r the distance
between the two positive electrical masses: then for the first moment of time, r = R, but
because mass e distances itself from, or approaches, the mass at rest e′ with variable velocity
u, r soon changes, while R remains unchanged, and we have for the determination of the
value of r, after time-interval t has occurred, and calculated from that moment forward,

r = R±
∫ t

0

udt ,
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where the upper sign is in effect, if mass e lies on the positive side of mass e′, and consequently
is still further distanced from it with a positive velocity; conversely, if mass e lies on the
negative side of mass e′, and consequently approaches it with a positive velocity, the lower
sign is in effect.

By means of differentiation, we obtain:

dr = ±udt

d2r = ±dudt .
According to this, the values of relative velocity and relative acceleration of both masses at
the end of time-interval t are thus:

dr

dt
= ±u

d2r

dt2
= ±du

dt
;

in which u and du are functions of t. If we now apply these general determinations to the
considered moment under consideration, and denote the values which u and du assume if
t = 0, as u0 and du0, then, according to the general law of interaction of two electrical
masses, to which the two first facts led, we obtain as the first of four interactions:

1. between +e and +e′ the force + ee′

r2

(

1− a2u20 ± 2a2r du0
dt

)

.

It also becomes clear, that the remaining interactions can be derived from this first one,
through substitution of the corresponding masses, velocities, and accelerations; we then
obtain:

2. between −e and +e′ the force −ee′

r2

(

1− a2u20 ∓ 2a2r du0
dt

)

.

3. between +e and −e′ the force −ee′

r2

(

1− a2u20 ± 2a2r du0
dt

)

.

4. between −e and −e′ the force + ee′

r2

(

1− a2u20 ∓ 2a2r du0
dt

)

.

The sum of the two first forces, that is, the sum of the forces acting on the positive mass +e′

in the element without current, is therefore

= ±4
ee′

r
a2
du0
dt

.

The sum of the two latter forces, that is, the sum of the forces acting on the negative mass
−e′ in the element without current, is, however,

= ∓4
ee′

r
a2
du0
dt

.

These two sums are differentiated by their opposing signs (distinguishing repulsion and at-
traction). Their difference yields the electromotive force, which seeks to separate the positive
and negative masses in the element without current,

= ±8
ee′

r
a2
du0
dt

,
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i.e., the electromotive force is directly proportional to the self-initiated change in the drift
velocity191 at the moment under consideration, and inversely proportional to the distance of
the current element from the element without current.

Further, as for the double signs in our expression for the electromotive force, they can be
eliminated, if we base them on the distance r and thus impute to it positive and negative
values, calculating r from the locus of the mass at rest e′ as the initial point, and specifically
as a positive magnitude, when the mass e calculated from this initial point lies on the positive
side (toward which the positive velocities are directed), and as a negative magnitude, when
the mass e lies on the negative side from this initial point. If, for example, in Figure 15, A
denotes the locus of the mass at rest e′, BAC the given line of direction, and the side on
which C lies is established as the positive side, then r is positive, if mass e is at point C,
negative, when mass e is at point B.

If, therefore, two like current elements are located at B and C, through which electricity
is flowing in the same sense, and the intensity of their current increases or decreases by the
same amount, then these two current elements will exert opposite electrical forces on the
electrical masses at rest at A, such that that mass, which is repulsed from C, is attracted by
B, and vice versa; the force which seeks to separate the positive and negative masses at A,
is thus doubled by means of the combined operation of the two current elements at B and C.

Finally, if r is positive, if, e.g., the current element is located at C, and if, further,
u and du both have either negative or positive values, i.e., if the absolute drift velocity
at C increases, regardless of its direction, then the foregoing expression has a positive or
negative value, according to whether u has a positive or negative value, i.e., therefore, under
increasing current intensity, an electromotive force acts from C repulsively or attractively
on the positive electrical mass at A, according to whether the current at C itself is directed
forwards or backwards, and thus excites at A a current opposite to the one present at C,
fully corresponding to the determinations contained in the third fact stated above.

From this it follows, that this third fact confirms the result derived from the first two, in
that the same complement of the electrostatic law into a general law, which served to explain
the first two facts, also suffices to explain the third.

5.20 Comparison with Other Fundamental Laws

In the foregoing Section, following the guideline of experience, we have sought to add to the
electrostatic formulation for the repulsive or attractive force, with which two like or unlike
electrical masses act upon one another at a distance, in such a way, that the formulation is
applicable, not simply when both masses are at rest with respect to one another, but also
when they are in motion with respect to one another. We have tested and confirmed this

191[Note by AKTA:] In German: Stromgeschwindigkeit. This expression can also be translated as current
velocity. Weber is referring here to the velocity of each electrified particle relative to the matter of the
conductor. See also footnotes 41 and 42 on page 24.
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expansion on particular facts, and in the following Section, will present this test with greater
generality.

Assuming the correctness of the results which we achieved, a case would arise here, in
which the force, with which two masses act upon one another, would depend, not simply
upon the magnitude of the masses and their distance from one another, but also on their
relative velocity and relative acceleration. The calculation of these forces will thus in many
cases come up against greater mathematical difficulties, than the calculation of such forces
which simply depend upon the magnitude of the masses and their distances. It should also
be expected, if this dependency of the electrical forces, not simply on the magnitude of the
electrical masses and their distances, but also on their relative velocities and accelerations,
were firmly established, that this very dependency, even if to a lesser extent, would exist in
other forces, according to more exact investigation.

Thereby a completely new element would be introduced into the dependency of forces
on given physical relationships, and the domain of forces, whose determination would re-
quire taking this new element into account, would form a specific class, requiring a special
investigation.

As, however, it must also appear highly desirable, for the purpose of simplifying and
facilitating our investigations, that the domain of those forces which depend simply on the
magnitude of the masses and their distances, be extended as widely as possible, then, only
experience can decide whether other forces, which are also dependent on the mutual velocities
and accelerations of the masses, must be assumed to be present, or not. This question
cannot be decided a priori, because formally, the assumption of such forces contains neither
a contradiction, nor anything unclear or indeterminate.

The law of the dependence of forces upon given physical relationships is called the fun-
damental law of physics, and, in accordance with the goals of physics, it is not supposed to
provide an explanation of the forces based on their true causes, but only a clearly demon-
strated and useful general method for quantitative determination of forces, according to the
fundamental measures192 established in physics for space and time. Hence, from the stand-
point of physics, one can not take offense at the fact that a force is made into a function
of a relationship dependent on time, any more than one can take offense at the fact that
it is made into a function of distance, because a relationship dependent on time is just as
measurable a magnitude as a distance; therefore, in virtue of their nature, both are suited
to more rigorous quantitative determination, even if it is not appropriate to seek in them the
inherent reason for a force.

At most, accordingly, against the introduction of a time-dependent relationship in the
general expression for a force, the analogy with another fundamental law of physics, e.g.
with the law of gravitation, may be asserted, where this time-dependent relationship does
not occur. Yet such an analogy can only be viewed as binding, when it offers ways and means
to achieve the goal; where the analogy with known cases does not suffice, in the nature of
the case new paths must be sought.

If, therefore, the introduction of such time-dependent relationships in the general expres-
sion for a force cannot be rejected in general, then all the less so, if those relationships are an
essential part of the complete determination of the existing condition of masses acting upon
one another, since in any case the force, which two masses exert upon one another, since it
does not always remain the same, must be thought of subject to the condition existing at the
time. Complete determination of the present condition of two masses, however, essentially

192[Note by AKTA:] In German: Grundmaassen.
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involves, in addition to the determination of their relative position by means of their mutual
distance r, the determination of their relative movement by means of their relative velocity
dr/dt. For, according to the principle of inertia, one has no choice but to calculate the
velocity of a body essentially in its present condition, because the reason for the inertia lies,
according to that principle, in the body itself, and consequently the persistence in different
motion must correspond to different internal conditions of the body, which, themselves in-
accessible to our observation, can only be distinguished by means of their effects emerging
over time.

5.21 Deduction from Ampère’s Law for the Interac-

tion of Electric Currents — Transformation of

Ampère’s Law

What was proven in the foregoing Sections for a few special facts, is now to be proven
more generally and more precisely for all facts contained under Ampère’s law. Ampère’s law
determines the total effect which one current element exerts on the other, depending on the
distance of the two elements from each other, on their two current intensities, and on the
three angles which the directions of the current elements make with each other and with
the straight lines connecting them. Now, if it is to be possible to reduce this total effect,
thus determined, to elementary electrical forces, then first Ampère’s formula must be able to
be broken down into several parts, which correspond to the effects of each pair of electrical
masses in both current elements, in particular to the effect of the positive mass of the one
element on the positive mass of the other, of the negative mass of the one element on the
negative mass of the other, of the positive mass of the former on the negative of the latter,
and finally of the negative mass of the former on the positive of the latter. Secondly, each of
these parts, as elementary electrical force, must be wholly dependent on such magnitudes,
which exclusively appertain to the nature and the mutual relations of the two electrical
masses, to which the part refers, and be completely determined thereby, independently of
other conditions. Thirdly and finally, all these elementary electrical forces would have to be
susceptible of being brought under a general law. It is, however, not necessary, to make any
sort of hypothesis in advance about this general law; rather, Ampère’s law, under such a
transformation, would have to lead directly to the statement of this general law and decide
on the admissibility or inadmissibility of such a hypothesis posed in advance. At the outset,
the following question is to be answered:

whether Ampère’s formula permits a transformation, such that the current intensities
contained therein, i and i′, and the angles ε, ϑ, and ϑ′, which the two current elements
form with each other and with the straight line connecting the two elements, vanish
from the formula, and instead of these, only such new magnitudes are introduced,
which fully and exclusively refer to the electrical masses themselves and their mutual
relations.

This transformation is now actually to be carried out here, and then it will be examined
whether the expression for the electrodynamic force, transformed in this way, permits the
requisite decomposition into four parts, corresponding to four partial effects, of which the
total effect would be composed.

143



Ampère’s formula for the repulsive force of two current elements is as follows:

−ii
′

r2

(

cos ε− 3

2
cosϑ cos ϑ′

)

· dsds′ ,

in which the letters have the signification given in Section 5.8, page193 74.

In Figure 16, AB is a segment of the one conducting wire of length = 1, and the quantity
of the uniformly distributed positive electricity in it is denoted by e, so that eds is the mass
of positive electricity which the current element contains, whose length = ds.

With the constant velocity u, which all positive electrical components possess in the
conducting wire AB when a constant current passes through, in one second the one farthest
forward traverses the path BD, the one farthest back the path AC, and the electrical mass
e, which at the beginning of the second was uniformly distributed in the segment AB = 1,
is located at the end of the second in segment CD = 1. Hence, during one second, all
the electricity which, at the end of the second, is contained on the other side from B in
the segment of the conducting wire BD = u, has passed through the cross-section of the
conducting wire at B. This electricity, in conformity with the definition of current intensity
given at the beginning of Section 5.2 (according to which it is proportional to the amount
of electricity passing through a cross-section of the circuit in one second), can now be set
= i/a, where a denotes a constant. There then results

i

a
: e = u : 1 ,

consequently i = aeu. The value of a is different from that in Section 5.19.
It likewise results that, if u′ denotes the drift velocity194 of the electricity in another

conducting wire,

i′ = ae′u′ .

If one substitutes these values in Ampère’s formula, the formula will be

−eds · e
′ds′

r2
a2uu′

(

cos ε− 3

2
cosϑ cosϑ′

)

,

where, therefore, the first factor eds · e′ds′/r2 denotes the product of two electrical masses
acting on one another in the two current elements, divided by the square of their distance.

Further, Ampère has already shown on page 207 of his Treatise,195 that it would be the
case that

193[Note by LH and AKTA:] [Web46, p. 70 of Weber’s Werke].
194[Note by AKTA:] In German: Strömungsgeschwindigkeit. See also footnote 191 on page 141.
195[Note by AKTA:] See [Amp23, p. 207], [Amp26, p. 35] and [AC15, p. 360].
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cosϑ =
dr

ds
, cosϑ′ = − dr

ds′

and

cos ε = −r d2r

dsds′
− dr

ds

dr

ds′
.

If one substitutes these values, the Ampère formula takes the following form:

−eds · e
′ds′

r2
· a2uu′

(

1

2

dr

ds

dr

ds′
− r

d2r

dsds′

)

.

Let the element ds of the conducting wire ABS be located at B in Figure 17; the initial
point of the conducting wire would be put at A, consequently AB = s. Let the element ds′

of the conducting wire A′B′S ′ lie at B, A′ be the initial point of this wire, A′B′ = s′ and
BB′ = r. The last magnitude r, if the conducting wires ABS and A′B′S ′ are given, is a
function of s and s′, and the following expressions obtain for dr and d2r:

dr =
dr

ds
ds+

dr

ds′
ds′

d2r =
d2r

ds2
ds2 + 2

d2r

dsds′
dsds′ +

d2r

ds′2
ds′

2
.

If s and s′ now denote the lengths of the conducting wires from their initial points to the
current elements themselves which are under consideration, then s and s′ have constant
values for two given current elements. However, s and s′ can also signify the length of
the conducting wires from their initial points to the electrical masses just now existing in
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the current elements under consideration, but flowing through them further. In this last
signification, s and s′ are variable with the time t, and then one has

dr

dt
=
dr

ds
· ds
dt

+
dr

ds′
· ds

′

dt
,

d2r

dt2
=
d2r

ds2
· ds

2

dt2
+ 2

d2r

dsds′
· dsds

′

dt2
+
d2r

ds′2
· ds

′2

dt2
.

Here ds/dt is the path element of the electrical mass divided by the time element in which it
is passed through, i.e., the velocity of the electrical mass, and therefore ds/dt = u, when the
positive mass is considered first. Likewise, then ds′/dt = u′. If these values are substituted,
then

dr

dt
= u

dr

ds
+ u′

dr

ds′
,

d2r

dt2
= u2

d2r

ds2
+ 2uu′

d2r

dsds′
+ u′

2 d
2r

ds′2
.

From the latter equation, and from the one derived from the first

dr2

dt2
= u2

dr2

ds2
+ 2uu′

dr

ds

dr

ds′
+ u′

2 d
2r

ds′2

the following values obtain for 2uu′ d
2r

dsds′
and 2uu′ drdr

dsds′
:

2uu′
d2r

dsds′
=
d2r

dt2
− u2

d2r

ds2
− u′

2 d
2r

ds′2
,

2uu′
drdr

dsds′
=
dr2

dt2
− u2

dr2

ds2
− u′

2 dr
2

ds′2
,

from which it follows:

uu′
(

1

2

drdr

dsds′
− r

d2r

dsds′

)

=

(

1

4

dr2

dt2
− 1

2
r
d2r

dt2

)

−
(

1

4

dr2

ds2
− 1

2
r
d2r

ds2

)

u2

−
(

1

4

dr2

ds′2
− 1

2
r
d2r

ds′2

)

u′
2
.

If these values are substituted, then Ampère’s formula takes the following form:

−eds · e
′ds′

r2
a2
{(

1

4

dr2

dt2
− 1

2
r
d2r

dt2

)

−
(

1

4

dr2

ds2
− 1

2
r
d2r

ds2

)

u2

−
(

1

4

dr2

ds′2
− 1

2
r
d2r

ds′2

)

u′
2

}

.

In this transformation of Ampère’s formula, there are first introduced merely the positive
electrical masses, which move in their trajectories with the velocities u and u′. It is clear that
one can also introduce the negative electrical masses instead of the positive ones. It then
results, if this occurs for both current elements alike, that both of the masses introduced are
therefore again of the same kind, but their velocities, in accordance with the determinations
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given for galvanic currents on page196 133, both maintain the opposite values, namely −u
and −u′, in turn in the same expression. Then if r1, ζ and ζ ′ denote for the negative masses
the same thing that r, s, and s′ denote for the positive, Ampère’s formula would be obtained
at first in the following form:

−eds · e
′ds′

r21
· a2
{(

1

4

dr21
dt2

− 1

2
r1
d2r1
dt2

)

−
(

1

4

dr21
dζ2

− 1

2
r1
d2r1
dζ2

)

u2

−
(

1

4

dr21
dζ ′2

− 1

2
r1
d2r′1
dζ ′2

)

u′
2

}

.

For the moment under consideration, where those positive masses (to which r, s, and s′

refer) and these negative masses (to which r1, ζ , and ζ
′ refer) go through the same current

elements, however,

r = r1 , s = ζ , s′ = ζ ′ .

Further, it is also the case that

dr1
dζ

=
dr

ds
,

d2r1
dζ2

=
d2r

ds2
,

dr1
dζ ′

=
dr

ds′
,

d2r1

dζ ′2
=
d2r

ds′2
,

because all these values are simply dependent upon the position of the current elements
through which those positive and these negative masses flow, but independent of the motion
of the masses in these current elements. Finally,

dζ

dt
= −u = −ds

dt
,

dζ ′

dt
= −u′ = −ds

′

dt
,

consequently,

dr1
dt

=
dr1
dζ

· dζ
dt

+
dr1
dζ ′

· dζ
′

dt
= −

(

dr

ds
· ds
dt

+
dr

ds′
· ds

′

dt

)

= −dr
dt

,

which yields197

dr21
dt2

=
dr2

dt2

Likewise one finds

d2r1
dt2

=
d2r

dt2
.

By substitution of these values, the latter expression changes into the former.
It is a different case when a positive and a negative mass are introduced, viz., with unlike

kinds of masses. If one keeps the positive mass in the first current element, the negative in

196[Note by LH and AKTA:] [Web46, p. 139 of Weber’s Werke].
197[Note by AKTA:] Due to a misprint, the next equation appeared in the original text as:

dr1
dt2

=
dr2

dt2
.

The correct equation should be
dr2

1

dt2 = dr2

dt2 , as we corrected it, that is, (dr1/dt)
2 = (dr/dt)2.
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the second, and denotes their distance with r2, then Ampère’s formula is obtained in the
following form:

+
eds · e′ds′

r22
· a2
{(

1

4

dr22
dt2

− 1

2
r2
d2r2
dt2

)

−
(

1

4

dr22
ds2

− 1

2
r2
d2r2
ds2

)

u2

−
(

1

4

dr22
dζ ′2

− 1

2
r2
d2r′2
dζ ′2

)

u′
2

}

.

On the other hand, if one keeps the negative mass in the first current element, the positive
in the second, and denotes their distance with r3, then Ampère’s formula is obtained in the
following form:

+
eds · e′ds′

r23
· a2
{(

1

4

dr23
dt2

− 1

2
r3
d2r3
dt2

)

−
(

1

4

dr23
dζ2

− 1

2
r3
d2r3
dζ2

)

u2

−
(

1

4

dr23
ds′2

− 1

2
r3
d2r′3
ds′2

)

u′
2

}

.

Here too, if it is now the case that r2 = r3 = r, then

dr2
ds

=
dr3
dζ

=
dr

ds
,

d2r2
ds2

=
d2r3
dζ2

=
d2r

ds2
,

dr2
dζ ′

=
dr3
ds′

=
dr

ds′
,

d2r2
ds′2

=
d2r3
ds′2

=
d2r

ds′2
;

however, it results that

dr2
dt

=
dr2
ds

· ds
dt

+
dr2
dζ ′

· dζ
′

dt
= +

dr

ds
· ds
dt

− dr

ds′
· ds

′

dt
,

dr3
dt

=
dr3
dζ

· dζ
dt

+
dr3
ds′

· ds
′

dt
= −dr

ds
· ds
dt

+
dr

ds′
· ds

′

dt
= −dr2

dt
,

consequently dr22/dt
2 = dr23/dt

2 is different from dr2/dt2. Likewise, one finds d2r2/dt
2 =

d2r3/dt
2 to be different from d2r/dt2. By substituting these values, in both cases where one

introduces masses of a different kind, one obtains the same expression for Ampère’s formula,
namely:

+eds · e′ds′ · a2
{

1

r22

(

1

4

dr22
dt2

− 1

2
r2
d2r2
dt2

)

−
(

1

4

dr2

ds2
− 1

2
r
d2r

ds2

)

u2

r2

−
(

1

4

dr2

ds′2
− 1

2
r
dr2

ds′2

)

u′4

r2

}

.

Now, since both expressions, the earlier one, which was obtained by introducing masses
of the same kind, as well as the later one, obtained by introducing masses of a different kind,
represent the force with which two current elements act upon each other, are both identical
with Ampère’s formula, yet a third will be derived from them for the same force, likewise
identical with Ampère’s formula, if one takes their half-sums, that is,

−a
2

2

eds · e′ds′
r2

(

1

4

dr2

dt2
− 1

2
r
d2r

dt2

)

+
a2

2

eds · e′ds′
r22

(

1

4

dr22
dt2

− 1

2
r2
d2r2
dt2

)

.
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This last expression, equivalent to Ampère’s formula, is the sought-for transformation.
For thereby the magnitudes i, i′, ε, ϑ and ϑ′ are eliminated, and only such magnitudes
introduced in their place which have to do with, partly the same, partly the different kind
of electrical masses themselves and their mutual relations.

This transformed expression for Ampère’s formula can now be represented as a sum of four
parts, which can be considered as the elementary electrical forces, namely, in the following
way:

+ eds·e′ds′
r2

(

1− a2

16
dr2

dt2
+ a2

8
r d

2r
dt2

)

, as action of +eds on +e′ds′ ;

+ eds·e′ds′
r2
1

(

1− a2

16

dr2
1

dt2
+ a2

8
r1

d2r1
dt2

)

, as action of −eds on −e′ds′ ;

−eds·e′ds′
r2
2

(

1− a2

16

dr2
2

dt2
+ a2

8
r2

d2r2
dt2

)

, as action of +eds on −e′ds′ ;

−eds·e′ds′
r2
3

(

1− a2

16

dr2
3

dt2
+ a2

8
r3

d2r3
dt2

)

, as action of −eds on +e′ds′ ;

Each of these four partial actions reduces itself, for the case of rest, where dr/dt =
dr1/dt = dr2/dt = dr3/dt = 0 and likewise d2r/dt2 = d2r1/dt

2 = d2r2/dt
2 = d2r3/dt

2 = 0,
to the same values, as are given for this case by the fundamental law of electrostatics; for
these four forces are expressed in that case by the product of the masses acting upon each
other, divided by the square of their distances. Accordingly as each product has a positive
or negative value, the force acts to repel or attract.

If, as in electrostatics, the electrical masses are denoted simply by e and e′, and these
masses themselves are given positive or negative values, according to whether they belong to
the positive or negative fluid, then all those partial effects can be brought under the general
law, in which the repulsive force of those masses is represented by198

ee′

r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

.

Therefore, from this analysis of Ampère’s law, which is a more precise expression of a
very extensive class of facts, there follows the same fundamental electrical law, which in
the preceding Sections was established merely by introducing particular facts, and this was
demonstrated without hypothesis.

5.22 Theory of Two Constant Current Elements

Having attained the fundamental electrical law expressed in the previous Section, we can
place it at the head of the theory of electricity, and from it synthetically derive a system of
consequences, which is the ultimate purpose of such a law.

The consequences which can be derived from it for static electricity, are found in Poisson’s
classic Treatise in the Mémoires de l’academie des sciences de l’institut de France, for the
year 1812.199 For the foregoing fundamental law is, for the case of statics, identical with that
law which Poisson, in the cited location, placed at the head of electrostatics.

198[Note by AKTA:] The following equation should be understood as:

ee′

r2

[

1− a2

16

(

dr

dt

)2

+
a2

8
r
d2r

dt2

]

.

199[Note by AKTA:] Siméon Denis Poisson (1781-1840). See [Poi12a], [Poi12b] and [Poi13].

149



For moving electricity, first the uniform motion of the electricity of galvanic currents
in conductors at rest is to be considered, to which Ampère’s law relates. Now, since the
above fundamental electrical law was developed analytically from Ampère’s law, Ampère’s
law must in turn follow synthetically from this fundamental law. This derivation is actually
to be given here.

In two current elements α and α′, which, with the straight line connecting them, lie in
planes which make the angle ω with one another,200 four electrical masses are given, namely,
one positive and one equally large negative in each current element.

For element α, +αe would denote the positive mass, which moves with constant velocity
+u in the direction of element α, which forms the angle ϑ with the straight line r directed
from the first element to the second; for the same element, −αe would denote the negative
mass, which moves in the same direction with the constant velocity −u, viz., backwards.

The letters with primes ±α′e′, ±u′ and ϑ′ denote the same thing for the other element
α′, as the letters without primes denote for the first element α.

Among these four masses, the following four actions are to be considered:
of +αe on +α′e′ ,
of −αe on −α′e′ ,
of +αe on −α′e′ ,
of −αe on +α′e′ .

The four distances of these masses acting upon each other at a distance are equal at the
moment under consideration, when all these masses are located in the two given elements α
and α′, to the given distance of these two elements r. These four distances, because they do
not always remain equal, on account of the differing motions of the masses, are denoted by
r1, r2, r3, r4, and therefore, at the moment under consideration

r1 = r2 = r3 = r4 = r .

The application of the fundamental law given at the end of the previous Section then
directly yields the values for these four partial actions, in succession,

+
αe · α′e′

r21

(

1− a2

16

dr21
dt2

+
a2

8
r1
d2r1
dt2

)

,

+
αe · α′e′

r22

(

1− a2

16

dr22
dt2

+
a2

8
r2
d2r2
dt2

)

,

−αe · α
′e′

r23

(

1− a2

16

dr23
dt2

+
a2

8
r3
d2r3
dt2

)

,

−αe · α
′e′

r24

(

1− a2

16

dr24
dt2

+
a2

8
r4
d2r4
dt2

)

.

These four forces are transferred from the electrical masses +α′e′ and −α′e′, on which
they directly act, according to Section 5.19, page201 132, to the ponderable mass of the
element α′, and combine therein into a resultant, which is equal to the algebraic sum of
those forces. This sum is, with respect to the already mentioned equality of the distances,

200[Note by AKTA:] See footnote 114 on page 74.
201[Note by LH and AKTA:] [Web46, p. 137 of Weber’s Werke].
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−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)}

.

If the mass +αe now progresses in its path in the time element dt with velocity +u by
the element of displacement +udt, which path forms the angle ϑ with the straight line r1,
while the mass +α′e′ progresses in its path in the same time element dt with the velocity
+u′ by the element of displacement +u′dt, which path forms the angle ϑ′ with the extended
straight line r1, and if these small displacements are projected onto the direction r1, then

r1 + dr1 = r1 − udt · cosϑ+ u′dt · cosϑ′ ,

in which dr1 denotes the change of length of the straight line connecting the two positive
masses during the time element dt. From this follows

dr1
dt

= −u cosϑ+ u′ cosϑ′ .

Likewise there results for the two negative masses −αe and −α′e′:

dr2
dt

= +u cosϑ− u′ cosϑ′ ;

further, for the positive +αe and for the negative −α′e′:

dr3
dt

= −u cosϑ− u′ cosϑ′ ;

finally for the negative −αe and for the positive +α′e′:

dr4
dt

= +u cosϑ+ u′ cosϑ′ .

Hence,

(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

= −8uu′ cos ϑ cosϑ′ .

Now, since, further, the velocities u and u′ are constant, when the changes in the angles ϑ
and ϑ′ (which themselves of course have the same value at the moment under consideration
for all four pairs of masses, but which values change with time and become unequal) during
the time element dt, are denoted

for the first pair of masses, dϑ1 and dϑ′1
for the second pair of masses, dϑ2 and dϑ′2
for the third pair of masses, dϑ3 and dϑ′3
for the fourth pair of masses, dϑ4 and dϑ′4,

there results through differentiation of the first differential coefficients:

d2r1
dt2

= +u sinϑ · dϑ1
dt

− u′ sin ϑ′ · dϑ
′
1

dt
,
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d2r2
dt2

= −u sinϑ · dϑ2
dt

+ u′ sin ϑ′ · dϑ
′
2

dt
,

d2r3
dt2

= +u sinϑ · dϑ3
dt

+ u′ sinϑ′ · dϑ
′
3

dt
,

d2r4
dt2

= −u sinϑ · dϑ4
dt

− u′ sin ϑ′ · dϑ
′
4

dt
.

Hence

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= +u sinϑ

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

− u′ sin ϑ′
(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

.

Now, let AB in Figure 18 represent the line r.

Let the mass +αe be located at A and move in the direction AC with the velocity +u in
the time element dt through AD = +udt. The angle which the current direction AC forms
with AB, is BAC = ϑ. As a result of the motion of A to D, the angle BAC becomes BDC,
and

BDC = BAC + ABD = ϑ+
udt

r
sinϑ .

The line AB in Figure 19, which again represents r, is extended to B′.
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The mass +α′e′ is located at B and moves in the direction BE with velocity +u′ in the
time element dt through BF = +u′dt. The angle which the current direction BE forms with
BB′, is B′BE = ϑ′. As a result of the motion of B to F , the angle B′BE becomes F ′FE,
and

ϑ′ = B′BE = AFB +BAF = F ′FE +
u′dt

r
sinϑ′ ,

accordingly is

F ′FE = ϑ′ − u′dt

r
sin ϑ′ .

Finally, if, through the center of a sphere, lines are drawn parallel to the direction AB
and to the two current directions AC and BE in Figures 18 and 19, which cut the sphere’s
surface at R, U , and U ′ in Figure 20, and R is connected with U and U ′ by the arcs of great
circles, then the plane of the arc UR = ϑ is parallel to the plane BAC in Figure 18, and the
plane of the arc U ′R = ϑ′ is parallel to the plane B′BE in Figure 19, and the angle formed
by the two planes at R is the angle denoted ω.
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Let arc UR be extended to S, U ′R to S ′, and make

RS = +
udt

r
sinϑ′ , RS ′ = −u

′dt

r
sin ϑ′ .

Then US is the arc of the angle BDC in Figure 18, and U ′S ′ is the arc of the angle F ′FE
in Figure 19. The element of the surface of the sphere, in which R, S, and S ′ lie, can also be
considered as an element of the plane touching the surface of the sphere at R, and the arc
elements RS and RS ′ as straight lines in this plane. If the parallelogram RSR′S ′ is completed
in this plane, then a line drawn through the center of the sphere parallel to the straight line
connecting both masses at the end of the time element dt, goes through the point R′. From
this it follows that the direction of this straight line is changed by the simultaneous motion
of both masses exactly as it would change, if the one mass were at rest and its motion, taken
as being opposite, were attributed to the other mass. Both motions, transferred to a point in
this way, can then be combined according to the law of parallelograms, and the cited result
is obtained.

Finally, if R′ is connected with U and U ′ by means of the great circle arcs, then

UR′ = ϑ+ dϑ1 = UR + dϑ1

U ′R′ = ϑ′ + dϑ′1 = U ′R + dϑ′1 .

It follows that:

dϑ1 = UR′ − UR = RS +RS ′ cosω

dϑ′1 = U ′R′ − U ′R = RS ′ +RS cosω .

Now, since RS = +udt
r
sin ϑ, RS ′ = −u′dt

r
sin ϑ′, it follows that:
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dϑ1 = +
udt

r
sin ϑ− u′dt

r
sin ϑ′ cosω

dϑ′1 = −u
′dt

r
sin ϑ′ +

udt

r
sinϑ cosω .

Accordingly,

r
dϑ1
dt

= +u sinϑ− u′ sinϑ′ cosω

r
dϑ′1
dt

= −u′ sinϑ′ + u sinϑ cosω .

In the same way, there results for the two negative masses −αe and −α′e′:

r
dϑ2
dt

= −u sinϑ+ u′ sinϑ′ cosω

r
dϑ′2
dt

= +u′ sinϑ′ − u sinϑ cosω ,

further, for the positive mass +αe and for the negative −α′e′:

r
dϑ3
dt

= +u sinϑ+ u′ sinϑ′ cosω

r
dϑ′3
dt

= +u′ sinϑ′ + u sinϑ cosω ,

finally, for the negative mass −αe and for the positive +α′e′:

r
dϑ4
dt

= −u sinϑ− u′ sin ϑ′ cosω

r
dϑ′4
dt

= −u′ sinϑ′ − u sinϑ cosω .

If these values are now substituted, the following equation is obtained:202

202[Note by WW:] This equation can also be derived from the equations of motion of the four electrical
masses. Let a plane be laid parallel with α′ through the element α. Let O be that point in this plane, at which
direction α is cut by direction α′, which is projected on this plane. Let O be the origin of the coordinates,
direction α as the x axis, and the z axis be perpendicular to the above-mentioned plane. Further, imagine
that both masses always move forward uniformly in the same directions, and choose that moment as the
initial point of time t, for which the coordinates of the mass later considered in α′ are

x′ = 0, y′ = 0, z′ = c .

If ε then denotes the angle which the directions α and α′ form with each other, x, y, z the coordinates of
the mass later considered in α, and u and u′ the velocities of both masses, then the equations of motion are

for the one mass: for the other mass:
x = b+ ut x′ = u′t · cos ε
y = 0 y′ = u′t · sin ε
z = 0 z′ = c

where b and c are given constants. Accordingly,
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r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= −8uu′ sin ϑ sinϑ′ cosω .

If these values and those found for
(

dr2
1

dt2
+

dr2
2

dt2
− dr2

3

dt2
− dr2

4

dt2

)

are substituted in the above

expression for the resultant of the four partial actions, then one obtains the following value
for it:

x′ − x = (u′ cos ε− u) · t− b

y′ − y = u′t · sin ε

z′ − z = c

and, since r21 = (x′ − x)2 + (y′ − y)2 + (z′ − z)2,

r21 = [(u′ cos ε− u) · t− b]
2
+ u′

2
t2 sin2 ε+ c2 .

If this equation is differentiated with respect to r1 and t, one obtains:

dr1
dt

=
1

r1
· [(u′ cos ε− u) · t− b] (u′ cos ε− u) + u′

2
t · sin2 ε ,

and, through repeated differentiation,

r1
d2r1
dt2

+
dr21
dt2

= u2 + u′
2 − 2uu′ cos ε .

Now, for the moment where the two masses have reached α and α′, if ϑ denotes the angle which the direction
from α to α′ forms with the first coordinate axis,

x′ − x = r1 cosϑ .

If lines are drawn parallel with the three coordinates, further with the direction from α to α′, and finally
with the direction α′ itself, through the center of a sphere, whose surface is cut into

X, Y, Z, R and P ,

then RY is the arc of the angle, which the line from α to α′ forms with the second coordinate axis, and
hence for the moment, where the two masses reach α and α′,

y′ − y = r1 cosRY .

Now, however, in the spherical triangles PRX and PRY , because the radius P (which is parallel to the
direction α′) lies in the same greatest circle with the radii X and Y (which are parallel to the plane of the
coordinate axes x and y),

cosRX sinPY + cosRY sinPX = cosPR sinXY ,

and further,

XY = 90o , PX = ε , RX = ϑ , PR = ϑ′ ,

where ϑ′ denotes the angle which the line from α to α′ forms with the direction of α′ itself. If these values
are substituted, there results

cosRY =
cosϑ′ − cosϑ cos ε

sin ε
,

hence
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−αα
′

r2
· aeu · ae′u′

(

sin ϑ sinϑ′ cosω − 1

2
cosϑ cos ϑ′

)

.

If one substitutes here, according to page203 144,

aeu = i , ae′u′ = i′ ,

then, according to this derivation from the established fundamental electrical law, there
results for the repulsive force of two current elements the same value as according to Ampère’s
law, namely:

−αα
′

r2
ii′
(

sinϑ sin ϑ′ cosω − 1

2
cosϑ cosϑ′

)

,

or, when ε denotes the angle which the two elements α and α′ themselves make, and where
then cos ε = sin ϑ sinϑ′ cosω + cosϑ cos ϑ′,

−αα
′

r2
ii′
(

cos ε− 3

2
cos ϑ cosϑ′

)

.

The actions at a distance of uniform electrical currents in conducting wires at rest are hereby
fully determined. The derivations of the established fundamental law carried out up to now
are all empirically confirmed.

y′ − y = r1 ·
cosϑ′ − cosϑ cos ε

sin ε
.

If now t in the above equations for x′ − x and y′ − y denotes that value, which correspond to the moment at
which the two masses reach α and α′, then the above values of x′ − x and y′ − y are to be set equal to the
ones just found, or

(u′ cos ε− u)t− b = r1 cosϑ

u′t · sin ε = r1 ·
cosϑ′ − cosϑ cos ε

sin ε
.

If these values are substituted in the expression for dr1
dt , the result is:

dr1
dt

= + u′ cosϑ′ − u cosϑ .

If from this is subtracted the square of the value found for r1
d2r1
dt2 +

dr2
1

dt2 , then it remains the case that

r1
d2r1
dt2

= u2 sin2 ϑ+ u′
2
sin2 ϑ′ − 2uu′ (cos ε− cosϑ cosϑ′)

or, if the angle ω is introduced, in accordance with the equation cos ε = sinϑ sinϑ′ cosω + cosϑ cosϑ′,

r1
d2r1
dt2

= u2 sin2 ϑ+ u′
2
sin2 ϑ′ − 2uu′ sinϑ sinϑ′ cosω .

The corresponding differential coefficients of the other pairs of masses are found in the same way, which then
together give the above equation.
203[Note by LH and AKTA:] [Web46, p. 152 of Weber’s Werke].
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5.23 Theory of Volta-Induction

It still remains to develop, from the established fundamental electrical law, the effects of
variable electrical currents in moving conductors, which development comprises the theory
of voltaic induction.

Voltaic induction204 differentiates itself from Ampère’s electrodynamics in that it has to
do with the generation of currents, which is wholly excluded from the latter.

The following is empirically known about voltaic induction. We know, first, that it can
be elicited in two essentially different ways: namely, currents can be induced by means of
constant currents and by means of variable ones. Induction occurs by means of constant
currents, either when a conducting wire, through which the constant current is passing,
approaches the conducting wire in which a current is to be induced, or is moved away from
it, or when, vice versa, the latter approaches the former or is moved away from it. It seems
to be a matter of indifference for the effect, whether only the one, or only the other wire, or
both alike are moved, provided that their relative motion is the same. If the two wires are
parallel to each other, then a current of opposite direction will be induced by bringing them
closer, a current of like direction will be induced by drawing them apart. Induction occurs
by means of variable currents, even when the conducting wire, through which the variable
current passes, remains immovable205 with respect to the wire in which a current is to be
induced. If the two wires are parallel to each other, increasing current intensity induces a
current of opposite direction, decreasing intensity a current of like direction.

We empirically know, secondly, that the induction caused by a constant current in a
conducting wire moving toward it is the same as the induction caused by a magnet in the
same conducting wire, if the electrodynamic force of repulsion or attraction, which that
current would exert on this conducting wire when a determined current passed through the
latter, is equal to the electromagnetic force, which the magnet would exert on the same wire
under the same conditions. See Section 5.11, page206 105.

These empirical findings can serve to test the correctness of the laws of voltaic induction
which are to be established.

Moreover, it should be noted, that the theory of voltaic induction is a theory of electro-
motive forces, by means of which the induced currents themselves are still not completely
determined. In order to completely determine the induced currents themselves, also accord-
ing to their intensity, as well as the electrodynamic forces of repulsion and attraction and
secondary inductions which they themselves further elicit, it requires, besides the determina-
tion of the electromotive force to be drawn from the theory of voltaic induction, a statement
of the resistance of the entire circuit to which the induced conducting wire belongs, as is ob-
vious from the dependency given by Ohm’s law of the current intensity on the electromotive
force and the total resistance of the circuit.

The complete development of the actions of non-uniform electrical currents in moving
conductors comprises, finally, not merely the theory of voltaic induction, that is to say, it
not merely accounts for the generation, strengthening, and weakening of currents in the
ponderable conductors, but it also encompasses all electrodynamic forces of repulsion and
attraction, which are effects of the above-cited currents, and which move the ponderable
conductors themselves.

204[Note by AKTA:] See footnote 139 on page 96.
205[Note by AKTA:] In German: unverrückt. This word can also be translated as undisturbed or unmoved.
206[Note by LH and AKTA:] [Web46, p. 103 of Weber’s Werke].
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In the following Sections, we intend first to begin with a prefatory consideration of par-
ticular cases, and then to follow with the general development of the actions of electrical
currents which are not uniform, as they take place in galvanic currents of variable intensity,
while the ponderable conductors are in motion.

5.24 Law of Exciting a Current in a Conductor, which

Approaches a Constant Current Element at Rest,

or is Distanced from It

The simplest case of voltaic induction to which the established fundamental law can be
applied, is the one in which, of the two elements, only one, namely, the inducing one, already
contains a current, specifically, a current of constant intensity, and the distance between the
two elements is altered simply by means of the motion of the other element, namely, the
induced one.

If α now denotes the length of the inducing element, α′ the length of the induced element,
then four electrical masses are to be differentiated in these two elements, namely:

+αe , −αe , +α′e′ , −α′e′ .

The first of these masses, +αe, moves with constant velocity +u in the direction of the
element at rest α, which forms the angle ϑ with the straight line drawn from α to α′;207

the second, −αe, moves in the same direction with velocity −u, viz., backwards; the third,
+α′e′, which indeed rests in the element α′, is carried forward by it with velocity +u′ in
that direction which forms the angle ϑ′ with the extended straight line drawn from α to α′;
and with the same straight line, lies in a plane, which, with the plane containing element
α and that straight line, forms the angle ω; the fourth, finally, −α′e′, which likewise rests
in element α′, is carried forward by this element with the same velocity +u′ in the same
direction as the third mass. The distances of the first two masses from the second two are all
equal at the moment in question to distance r, at which the elements α and α′ are found at
that moment; since, however, they do not remain equal, they are denoted,208 as on page209

207[Note by AKTA:] The angles ϑ, ϑ′, ω, ε and ϕ for this case are represented in the Figure of this footnote:

w
r

u’u’

u
u
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a

e
J’

J

j

(a) (b)

Here ε is the angle between the directions u and u′. Moreover, the directions u′ and r form a plane.
Likewise, the directions u and r form another plane. The angle between these two planes is denoted by ω.
208[Note by LH and AKTA:] See beginning of Section 5.22.
209[Note by LH and AKTA:] [Web46, p. 158 of Weber’s Werke].

159



150, r1, r2, r3, r4.
The application of the fundamental law then yields, as on page210 150, the following four

partial actions among these four masses:

+
αe · α′e′

r21

(

1− a2

16

dr21
dt2

+
a2

8
r1
d2r1
dt2

)

+
αe · α′e′

r22

(
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16

dr22
dt2

+
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8
r2
d2r2
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)

−αe · α
′e′

r23

(
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16

dr23
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8
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d2r3
dt2

)

−αe · α
′e′

r24

(

1− a2

16

dr24
dt2

+
a2

8
r4
d2r4
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)

These four partial actions can now first be combined into two forces, of which one is the
action of the two masses of the inducing elements +αe and −αe on the positive mass +α′e′ of
the induced element, the other [force is] the action of the same masses on the negative mass
−α′e′ of the induced element. The former force is the sum of the first and fourth, the latter
is the sum of the second and third. The former force is thus, with regard to the equality of
r1, r2, r3 and r4 with r at the moment in question,

= −a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

− d2r4
dt2

)}

;

the latter force is

= −a
2

16
· αe · α

′e′

r2

{(

dr22
dt2

− dr23
dt2

)

− 2r

(

d2r2
dt2

− d2r3
dt2

)}

.

Now, insofar as the motions elicited by these forces in both electrical masses, +α′e′ and
−α′e′, in their ponderable carrier α′ are cancelled almost instantaneously by the resistance
of the carrier, and thereby all the forces acting on those masses are immediately transferred
to this carrier, the sums of the above two forces, as on page211 151, gives the force which
moves the carrier α′ itself,

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)}

.

Before the transference to their carriers of those forces which originally acted on the electrical
masses, the electrical masses themselves are, however, somewhat displaced in their carriers,
and when this displacement is different for the positive mass +α′e′ and the negative mass
−α′e′, the two thus being thereby separated from each other, then a galvanic current is
produced in carrier α′, and the force which causes this separation, is called the electromotive
force. It is clear, that this electromotive force depends upon the difference of the above two
forces, i.e., on

210[Note by LH and AKTA:] [Web46, p. 158 of Weber’s Werke].
211[Note by LH and AKTA:] [Web46, p. 159 of Weber’s Werke].
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−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)}

.

According to the determinations given in Section 5.22 for two constant current elements at
rest in relation to the motion of their electrical masses, the value obtained there for that
former sum was equal to the force determined by Ampère’s law,

= −αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cos ϑ′

)

;

there the value of this latter difference would then, however, be

= 0 .

According to the determinations given in this Section for a constant current element at
rest and for a moving wire element without current with respect to their electrical masses,
the value of that former sum, however,

= 0 ,

and the value of this latter difference

= −αα
′

r2
ae′u′i

(

cos ε− 3

2
cosϑ cos ϑ′

)

,

as is to be proven in what follows.
It is merely necessary for this purpose, in the differential coefficients determined on

page212 151, to put +u′ instead of −u′ for the velocity of the negative mass; one then obtains:

dr1
dt

=
dr3
dt

= −u cosϑ+ u′ cosϑ′

dr2
dt

=
dr4
dt

= +u cosϑ+ u′ cosϑ′ .

Hence, then

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

= 0 .

On the other hand:

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

= −8uu′ cosϑ cos ϑ′ .

Further, one obtains:

d2r1
dt2

= +u sinϑ · dϑ1
dt

− u′ sin ϑ′ · dϑ
′
1

dt

212[Note by LH and AKTA:] [Web46, p. 159 of Weber’s Werke].
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d2r2
dt2

= −u sinϑ · dϑ2
dt

− u′ sinϑ′ · dϑ
′
2

dt

d2r3
dt2

= +u sinϑ · dϑ3
dt

− u′ sin ϑ′ · dϑ
′
3

dt

d2r4
dt2

= −u sinϑ · dϑ4
dt

− u′ sin ϑ′ · dϑ
′
4

dt
,

hence:

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

= +u sinϑ

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

−u′ sinϑ′
(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

+
dϑ′4
dt

)

.

In contrast is

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

= +u sinϑ

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

−u′ sin ϑ′
(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

.

Further, according to page213 155 and the following, if one also attributes the velocity +u′

to the negative mass of the induced element −α′e′, it follows that

r
dϑ1
dt

= r
dϑ3
dt

= +u sinϑ− u′ sin ϑ′ cosω

r
dϑ2
dt

= r
dϑ4
dt

= −u sinϑ− u′ sinϑ′ cosω

r
dϑ′1
dt

= r
dϑ′3
dt

= −u′ sin ϑ′ + u sinϑ cosω

r
dϑ′2
dt

= r
dϑ′4
dt

= −u′ sinϑ′ − u sinϑ cosω ,

from which it results that:

r

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

= r

(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

− dϑ′4
dt

)

= 0 ;

however, on the other hand,

r

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

= −4u′ sinϑ′ cosω

r

(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

= +4u sinϑ cosω .

213[Note by LH and AKTA:] [Web46, p. 162 and the following of Weber’s Werke].
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From this it follows that:

r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= 0

r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= −8uu′ sin ϑ sinϑ′ cosω .

Substituting these values, it is obtained the sum of both forces, which act at the positive and
negative masses of the induced element,

= 0 ,

in contrast, their difference is

= −αα
′

r2
aeu · ae′u′

(

sin ϑ sinϑ′ cosω − 1

2
cosϑ cosϑ′

)

,

or, since, according to page214 157, cos ε = sin ϑ sinϑ′ cosω + cos ϑ cosϑ′ and according to
page215 144, aeu = i,

= −αα
′

r2
i · ae′u′

(

cos ε− 3

2
cosϑ cos ϑ′

)

,

which was to be proven.
Now, the force hereby determined seeks to separate from each other the positive and

negative electricities in the induced element α′ in the direction of the straight line r. In
reality, however, this separation can only ensue in the direction of α′, because in a linear
conductor, a galvanic current can only take place in the direction of the conductor. Hence, if
one takes the components of the above force in the direction of element α′ and perpendicular
to it, then only the first part comes under consideration as electromotive force, and, if ϕ
denotes the angle which the element α′ makes with the extended straight line r,216 this term
is

= −αα
′

r2
i

(

cos ε− 3

2
cosϑ cos ϑ′

)

· ae′u′ cosϕ .

Ordinarily, by electromotive force is understood the accelerating force which the given
absolute force exerts on the electrical mass e′ contained in the unit of length of the induced
conducting wire, which is obtained by division of the above value by e′. Finally, the electro-
motive force of a constant current element at rest on a moving wire element would hence be
maintained as

= −αα
′

r2
i

(

cos ε− 3

2
cos ϑ cosϑ′

)

· au′ cosϕ .

Now, accordingly as this expression has a positive or negative value, the inducing current is
positive or negative, where by positive currents is understood one whose positive electricity

214[Note by LH and AKTA:] [Web46, p. 164 of Weber’s Werke].
215[Note by LH and AKTA:] [Web46, p. 152 of Weber’s Werke].
216[Note by AKTA:] See footnote 207 on page 159.
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moves in that direction of element α′ which forms the angle ϕ with the extended straight
line r.

If, for example, the elements α and α′ are parallel to each other, and the direction in
which the latter moves with velocity +u′ is in the plane of both elements and perpendicular
to them, then, when α′ distances itself from α by means of its motion,

ϑ = ϕ , cosϑ′ = sinϑ , cos ε = 0 ,

hence the electromotive force

= +
3

2

αα′

r2
i sin ϑ cos2 ϑ · au′ .

This value is always positive, when ϑ < 180o, and this positive value here denotes an induced
current of the same direction as the inducing, in accord with what empirical experience has
yielded for this case.

Under the same conditions, with the mere difference that the element α′ approaches the
element α by means of its motion,

ϑ = ϕ , cos ϑ′ = − sinϑ , cos ε = 0 ,

hence the electromotive force

= −3

2
i sinϑ cos2 ϑ · au′ .

The negative value of this force denotes an induced current of opposite direction from the
inducing one, likewise in accord with what empirical experience has yielded for this case.

5.25 Comparison with the Empirical Propositions in

Section 11

The experiments communicated in Sections 5.10 and 5.11 relate to the case of voltaic induc-
tion considered in the previous Section. For quantitative determination of voltaic induction
in this case, the proposition has been set forth and empirically tested there,

that the induction by a constant current at rest in a conducting wire in motion
toward it is the same, as the induction in the same conducting wire by a magnet,
if the electrodynamic force, which that constant current would exert on that con-
ducting wire with a current flowing through it, were equal to the electromagnetic
force, which the magnet would exert on the wire through which the same current
were flowing.

In order to empirically establish this proposition, the following experiments were made:

1. the electrodynamic force was measured, which a closed circuit A did exert on another
closed circuit B;

2. the closed circuit A was replaced with a magnet C, and the electromagnetic force which
C did exert on B was measured;
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3. the closed conductor B, without current, was put into a specific motion, and the current
was measured, which was then produced by current A in the moving conductor by
means of voltaic induction;

4. given the same motion of the closed conductor B, the current produced by means of
magnetic induction by the magnet C, which had been substituted for the current A
was measured.

In conformity with these four experiments, the following four laws are now to be listed
for comparison:

1. the law of the electrodynamic action of a closed circuit on a current element;

2. the law of the electromagnetic action of a magnet on a current element;

3. the law of voltaic induction by a closed circuit in an element of a moving conductor;

4. the law of magnetic induction by a magnet in an element of a moving conductor.

5.25.1 The Law of the Electrodynamic Action of a Closed Circuit
on a Current Element

This law is developed on page217 90 in item 3 of the footnote, for the case where the closed
circuit delimits a plane and acts at a distance. Instead of returning to this special law,
here I shall return to the more general one which Ampère has given on page 214 of his
Treatise,218 and which is presented on page219 75 of this Treatise. According to this law, the
electrodynamic force acting on the current element α′ is decomposed along three right-angled
coordinate axes, whose origin lies in the center of element α′, into the components X , Y , Z,
which are defined as follows:

X = −ii
′

2
α′ (C cosµ− B cos ν)

Y = −ii
′

2
α′ (A cos ν − C cosλ)

Z = −ii
′

2
α′ (B cos λ−A cosµ) ,

in which A =
∫

ydz−zdy
r3

, B =
∫

zdx−xdz
r3

, C =
∫

xdy−ydx
r3

, α′ denotes the length of the current
element which is acted upon, λ, µ, ν the angles which α′ forms with the three coordinate
axes, and i and i′ the intensities of the closed current and of the current element.

217[Note by LH and AKTA:] See item 3 of the footnote 125 on page 86, [Web46, p. 86 of Weber’s Werke].
218[Note by AKTA:] See [Amp23, p. 214], [Amp26, p. 42] and [AC15, p. 366].
219[Note by LH and AKTA:] [Web46, p. 70 of Weber’s Werke].
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5.25.2 The Law of the Electromagnetic Action of a Magnet on a

Current Element

According to the fundamental law of electromagnetism, the electromagnetic force which a
mass of north or south magnetic fluid ±µ exerts on a current element of length α′ and
of current intensity i′ at distance r, when ϕ denotes the angle which α′ forms with r, is
represented by

±i
′α′
√
2
· µ sinϕ

r2

in which i′
√

1
2
replaces χ′ according to page220 88, and this force seeks to move the current

element in a direction perpendicular to α′ and r. It follows from this the magnitude and
direction of both forces, which the two masses of north and south magnetic fluid contained in
a small magnet exert on the current element. These two forces can be combined according to
the law of parallelograms, and from this results the magnitude of the resultant, when m′221

denotes the magnetic moment and ψ denotes the angle which the magnetic axis makes with
the straight line r, and ε the angle which direction α′ makes with the direction D lying in
the plane of the magnetic axis and of line r, and the sine of this angle with line r is to sinψ
as 1 :

√

1 + 3 cos2 ψ, and finally, if for the sake of brevity, 1
r3

√

1 + 3 cos2 ψ is denoted by d,

=
i′√
2
α′m′d sin ε .

The direction of this resultant is perpendicular to the directions α′ and D. If, now, one
denotes by

a, b, c

the cosines of the angles which the resultant, thus determined, forms with three right-angled
coordinate axes, whose origin lies in the center of element α′, and decomposes the resultant
according to the direction of the latter, then the following three components are obtained:

i′√
2
· α′m′ · ad sin ε

i′√
2
· α′m′ · bd sin ε

i′√
2
· α′m′ · cd sin ε

and for a, b, c the following equations are obtained, when the angles which the direction of
element α′ forms with the coordinate axes are denoted

λ , µ , ν ,

and the cosines of the angles which the direction D forms with the same coordinate axes are
denoted

220[Note by LH and AKTA:] [Web46, p. 86 of Weber’s Werke].
221[Note by LH and AKTA:] In the original it appears m instead of m′. We replaced the m by m′.
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a

d
,

b

d
,

c

d
,

namely:

aa+ bb + cc = 0

a cosλ+ b cosµ+ c cos ν = 0

aa + bb+ cc = 1

a

d
cos λ+

b

d
cosµ+

c

d
cos ν = cos ε .

These equations, by elimination of b and c, yield the value of a as

a =
b cos ν − c cosµ

√

1−
(

a
d
cosλ+ b

d
cosµ+ c

d
cos ν

)2
=

b cos ν − c cosµ

d sin ε
,

and in the same way, the following values of b and c:

b =
c cosλ− a cos ν

d sin ε

c =
a cosµ− b cosλ

d sin ε
.

If these expressions are substituted into those for the three components of the electromagnetic
force, the following values are obtained for the latter:

− i′√
2
· α′m′ (c cosµ− b cos ν)

− i′√
2
· α′m′ (a cos ν − c cosλ)

− i′√
2
· α′m′ (b cosλ− a cosµ) .

For a large magnet, which is composed of many small ones, the three components X ′, Y ′, Z ′

of the electromagnetic force it exerts on the current element α′ are hereafter determined as
follows:

X ′ = − i′√
2
· α′ (C ′ cosµ−B′ cos ν)

Y ′ = − i′√
2
· α′ (A′ cos ν − C ′ cosλ)

Z ′ = − i′√
2
· α′ (B′ cosλ− A′ cosµ) ,
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in which A′ = S(am′), B′ = S(bm′), C ′ = S(cm′).222

5.25.3 The Law of Voltaic Induction by a Closed Circuit in an

Element of a Moving Conductor

The elementary law of induction developed in the previous Section, which holds for any
inducing element α, yields the following value for the electromotive force with which one
such element α seeks to separate from each other the positive and negative electrical masses
in the induced element α′ in the direction of the straight line r:

−αα
′

r2
i

(

cos ε− 3

2
cos ϑ cosϑ′

)

· au′ ,

in which +u′ denotes the velocity with which the induced element α′ is moved, and ε and ϑ′

the angles which the direction of this motion forms with the direction in which the positive
electricity flows in the inducing current element α, and with the extended straight line r. ϑ
denotes, as in the theory of two constant current elements in Section 5.22, the angle which
the direction in which the positive electricity flows in the first element α, forms with the
straight line r.

If this value for the electromotive force is compared with the value found on page223 157
for the electrodynamic force in the theory of two constant current elements, in accordance
with Ampère’s law, then the following simple relation results between the two, namely, that
the former force is obtained from the latter by multiplication with the constant factor au′/i′,
provided that the direction, in which the positive electricity flows in element α′, in the latter
force, were the same as the direction in which the induced element α′ itself moves, in the
former force, that is

β = λ , γ = µ , δ = ν ,

when the angles formed by both directions with three right-angled coordinate axes are re-
spectively denoted

λ , µ , ν and β , γ , δ

for then the values of ε and ϑ′ are equal in both expressions.
From this it is now obvious, under the presupposition made, that the values stated under

(1)224 for the electrodynamic force X , Y , Z also need only to be multiplied by the constant
factor au′/i′, in order to obtain the components X, Y, Z of the electromotive force which a
closed circuit exerts on the induced element α′. From this it follows that

X = −au
′

2
· iα′ (C cos γ −B cos δ)

Y = −au
′

2
· iα′ (A cos δ − C cos β)

222[Note by LH and AKTA:] The symbol S here means summation. That is, A′ =
∫

(am′), B′ =
∫

(bm′)
and C′ =

∫

(cm′).
223[Note by LH and AKTA:] [Web46, p. 164 of Weber’s Werke].
224[Note by AKTA:] That is, in Subsection 5.25.1.

168



Z = −au
′

2
· iα′ (B cos β −A cos γ) ,

in which A, B, C have the same signification as under (1).225

5.25.4 The Law of Magnetic Induction by a Magnet in an Element

of a Moving Conductor

From the elementary electromagnetic force, determined according to the basic law of electro-
magnetism, which a mass of north or south magnetic fluid, ±µ, exerts on a current element
of length α′ and of current intensity i′ at distance r, when ϕ denotes the angle which the
direction of flow of the positive electricity in α′ forms with the straight line r, namely, from
the active force cited under (2),226 normal to the plane parallel with r and α′227

±i
′α′
√
2
· µ sinϕ

r2
,

we obtain, by multiplication with the constant ku′/i′, according to the basic law of magneto-
induction, the elementary electromotive force with which that magnetic mass seeks to sepa-
rate the positive and negative electricity in the induced element α′, in a direction normal to
the plane parallel with r and α′, when the induced element α′ is moving here with the veloc-
ity u in the same direction that the positive electricity flows there in element α′. Therefore
this electromotive force is

= ±kα
′u′√
2

· µ sinϕ
r2

.

Here k denotes a constant factor independent of u′, whose value, however, has thus far not
been more closely determined by any measurement.

If one denotes the angles, which in the one case the direction in which the positive
electricity in element α′ is moved, in the other case the direction in which the induced
element α′ itself is moved, form with three right-angled coordinate axes, as respectively

λ , µ , ν and β , γ , δ ,

then under the just-presupposed identity of the directions specified,

β = λ , γ = µ , δ = ν .

Here too, it is obvious that, under the presupposed identity of the two directions mentioned,
the values of X ′, Y ′, Z ′ stated under (2)228 need only be multiplied by the constant factor

225[Note by AKTA:] That is, in Subsection 5.25.1.
226[Note by AKTA:] That is, in Subsection 5.25.2.
227[Note by AKTA:] Due to a misprint in the original German text, the next equation appeared with a′

instead of α′, namely

± i
′a′√
2
· µ sinϕ

r2
.

228[Note by AKTA:] That is, in Subsection 5.25.2.
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ku′/i′ in order to obtain the components X′, Y′, Z′ of the electromotive force, which a whole
magnet exerts on the induced element α′. From this it follows that

X′ = −ku
′

√
2
· α′ (C ′ cos γ − B′ cos δ) ,

Y′ = −ku
′

√
2
· α′ (A′ cos δ − C ′ cos β) ,

Z′ = −ku
′

√
2
· α′ (B′ cos β − A′ cos γ) ,

in which A′, B′, C ′ have the same signification as under (2).229

The relations will now be examined between the laws set forth here and the empirical
proposition mentioned in the beginning. Now, from the foregoing laws there results, when
the electrodynamic forces stand to the electromagnetic forces in the ratio 1 : n, viz., when

X ′

X
=
Y ′

Y
=
Z ′

Z
= n

or, if for X , Y , Z, and X ′, Y ′, Z ′, their values found above are substituted, when

C ′ cosµ− B′ cos ν

C cosµ− B cos ν
=
A′ cos ν − C ′ cosλ

A cos ν − C cosλ
=
B′ cosλ− A′ cosµ

B cosλ− A cosµ
=

i√
2
· n ,

hence

A′ =
i√
2
· nA , B′ =

i√
2
· nB , C ′ =

i√
2
· nC ,

the following ratio of the electromotive force obtained by means of voltaic induction and by
means of magnetic induction:

X′

X
=
k
√
2

ai
· C

′ cos γ − B′ cos δ

C cos γ − B cos δ
=
k

a
· n ,

Y′

Y
=
k
√
2

ai
· A

′ cos δ − C ′ cos β

A cos δ − C cos β
=
k

a
· n ,

Z′

Z
=
k
√
2

ai
· B

′ cos β − A′ cos γ

B cos β − A cos γ
=
k

a
· n .

This, finally, yields the following result:

X ′

X
:
X′

X
=
Y ′

Y
:
Y′

Y
=
Z ′

Z
:
Z′

Z
= a : k ,

which is in agreement with the empirical proposition mentioned at the beginning, because
the ratio a : k is constant. That empirical proposition, however, shows us still more than the
comparison of the above laws, in that it makes this constant ratio equal to unity, by means
of which the constant factor in the fundamental law of magnetic induction, k, a factor still
undetermined by any measurement as yet, becomes equal to the constant factor a in the

229[Note by AKTA:] That is, in Subsection 5.25.2.

170



fundamental electrical law. Specifically, that would also have to take place, if there existed
no magnetic fluid in the magnet, but, in accord with Ampère, all the effects of the magnets
were produced by electrical currents in them.

5.26 Comparison with the Theorems Established by

Fechner and Neumann

Fechner has been the first to attempt, by developing their intrinsic connection, an explanation
of the Faraday phenomena of induction in terms of the Ampère electrodynamic phenomena,
which Lenz230 previously put into relation with one another merely by means of an empirical
rule; Fechner has published the explanation in Poggendorff’s Annalen, 1845, Vol. LXIV,
page 337.231 In so doing, Fechner has confined himself to that form of voltaic induction,
with which the foregoing Section dealt, namely, to that by a constant current at rest in a
conducting wire moving toward it. For this form of voltaic induction, Fechner has actually
succeeded in discovering its intrinsic connection with Ampère’s electrodynamic phenomena,
and in basing an explanation of it on a somewhat more generalized form of Ampère’s law
which holds for the latter phenomena. — That intrinsic connection consists essentially in
the fact that, with regard to that induction, apart from the current first elicited by the
induction, one is dealing, just as in the Ampère phenomena, with interactions of electrical
currents, hence the explanation of both kinds of phenomena would have to rest on the laws of
these interactions. The electricity in the induced conducting wire, Fechner says specifically,
would also begin to flow, as soon as this conducting wire were moved, specifically because it
participates in the motion of its carrier. The electrical currents in such induced conducting
wires are only differentiated from the galvanic currents in the inducing wires in that equal
masses of positive and negative electricity move simultaneously with the same velocity in
opposite directions in the latter, in the same directions in the former. — The generalization
which Fechner has given to Ampère’s law, consists first in the fact that the force which,
according to Ampère, acts on the ponderable carrier, would originally act with the same
strength and in the same direction on the electrical masses located in the carrier, and would
first be communicated from them to the carrier; secondly, in the fact that Ampère’s law does
not merely hold for the total action of a galvanic current on another, but also for the two
partial actions, which the first current would exert on the positive and negative electricity of
the second.

This explanation accords with the theory of this induction developed in the previous
Section; for one finds there the justification of the right to generalize Ampère’s law, on
which that explanation is founded. This can be proven, if one considers in particular the
two forces acting on the positive or negative electricity, as stated on page232 150, where one
finds that Ampère’s law holds not merely for all four forces, but also for any two of them.

Moreover, Fechner himself has already remarked that the standpoint from which he has
interpreted the connection of Faraday’s induction phenomena with the Ampère electrody-
namic phenomena is not so general that it could be extended over all of Faraday’s induction
phenomena. As soon as the induced wire is at rest, the induction phenomena cannot be
grasped from this standpoint, because then the motion of electricity in the induced wire is

230[Note by AKTA:] See footnote 40 on page 24.
231[Note by AKTA:] [Fec45] with English translation in [Fec21]. See Chapter 3.
232[Note by LH and AKTA:] [Web46, p. 158 of Weber’s Werke].
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out of the question. On this point, Fechner says, loc. cit., page 341:233

In the induction experiments, instead of moving the (neutral) wire a′b′ away from
the (excited) wire ab at rest, one could do the opposite, and the induction would
always still occur. This must be accepted as an empirical datum, for proving that
what matters here is simply the relation of the motions, and that it is permissible to
substitute the converse for motion of the excited wire and rest in the neutral wire, in
order to be able to apply the principle in the stated form.

Neumann has based his investigation on the empirical rule by which Lenz linked the
Faraday induction phenomena to the Ampère electrodynamic phenomena, and has found a
supplement to it in the proposition, that the strength of the induction is proportional to the
velocity of the motion of the induced wire, when the induction was elicited by a motion of
the latter. These two empirical rules complement each other in such a way, that Neumann
has been able to derive from them the general laws of induced currents, since the laws
immediately following from them for the case in which the induction is elicited by a motion
of the induced conductor, are of the kind that can immediately find application in wider
domains without undergoing modification, and can be extended to all forms of induction.
These general laws of induced currents admit of virtually no doubt, with respect to their
intrinsic connection or also to the empirical rules implied in them, and for that reason it
is interesting to compare the results of the theory developed above with these laws which
Neumann derived in completely different ways.

Since Neumann’s Treatise, submitted to the königliche Akademie der Wissenschaften
in Berlin, has not yet been printed, I can only refer to the excerpt just now appearing in
Poggendorff’s Annalen, in this year’s first issue, from which I take the following passage:234

From Lenz’s theorem that the action which the inducing current or magnet exerts on
the induced conductor, always produces, when the induction is elicited by a motion of
the latter, an inhibiting influence on this motion, conjointly with the theorem that the
strength of the momentary induction is proportional to the velocity of this motion, is
derived the general law of linear induction:

Eds = −εvCds .
Here ds signifies an element of the induced wire, and Eds the electromotive force
induced in the element ds; v is the velocity, with which ds is moved, C is the action
of the inductor on ds, resolved according to the direction in which ds is moved,
this element being thought of as having the unit of current flowing through it. The
magnitude ε, independent of the nature of the induced conductor, can be treated
as a constant in the case of linear induction, but is a function of time, such that it
very quickly decreases, when its argument has an appreciable value, and be treated
as such in the case of surface induction and of induction in bodies.

From the theory developed above, has resulted the following expression, at the end of
Section 5.24, for the electromotive force induced in element α′, in which u′ denotes the
velocity with which α′ is moved:

233[Note by AKTA:] [Fec45, p. 341].
234[Note by AKTA:] [Neu46] and [Neu48].
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−αα
′

r2
i

(

cos ε− 3

2
cosϑ cosϑ′

)

· au′ cosϕ .

This expression was the value, resolved in the direction of element α′, of the total sep-
arating force235 exerted by the inductor α in the direction of the connecting straight line
r, from which, by elimination of the factor cosϕ, the total force is once more obtained. In
Section 5.25, at (3),236 this total force is compared with the electrodynamic force, determined
by Ampère’s law, which the inductor α would exert on element α′, when α′ were parallel to
the direction in which the element α′ were moved for purposes of induction, and through
which a current flowed in this direction, whose intensity were = i′. Namely, one obtains
that total electromotive force exerted in the direction of the connecting straight line r by
multiplying this electrodynamic force by the factor au′/i′. The above expression itself is
obtained by multiplying the same force, resolved in the direction of the induced element α′,
by the factor au′/i′. If, therefore, this electrodynamic force, resolved in the direction of the
induced element α′, is denoted

i′α′ ·D ,

then the above expression is to be made

= −au′Dα′ .

235[Note by AKTA:] In German: scheidenden Kraft. This expression can also be translated as “force of
separation” or “segregating force”.
I present here a simple example of a separating force. Consider a metal plate AB insulated from the

ground by a dielectric support I as in Figure (a) of this footnote:
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(a)

A AB B

I

If a negatively charged straw is placed close to side A of the plate, the charges on the plate become
separated as illustrated in Figure (b). Side A of the plate becomes positively electrified, while side B
becomes negatively electrified. This polarization of the plate is caused by the electric force of the negatively
electrified straw acting on the free electrons of the plate. I presented several interesting experiments on this
topic made with simple material, together with many quotes from original sources, in the 2 volumes of the
book The Experimental and Historical Foundations of Electricity which is available in English, Portuguese,
Italian and Russian: [Ass10a], [Ass10b], [Ass15], [Ass17], [Ass18a], [Ass18b] and [Ass19].
Another effect of a separating force takes place in electrolysis. The electric forces in general are proportional

to the charge q of the test particle on which they are acting. A positively electrified particle with q > 0
experiences a force in one direction, while a negatively electrified particle with q < 0 will be forced in the
opposite direction. If these particles are free to move as in electrolysis, a double current will be produced due
to this separating electric force. That is, the positive particles will move in one direction and the negative
particles will move in the opposite direction.
236[Note by AKTA:] That is, in Subsection 5.25.3.
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Here, u′ and α′ are to be written v and ds, in accordance with Neumann’s notation; hence
the theory developed above, yields the equation, in this notation:

Eds = −avDds ,

in which a denotes a constant factor independent of the nature of the induced conductor,
like ε in Neumann’s equation, because here it is a matter of linear induction. Both equations
are thus in agreement with each other up to the factors C and D. These factors also have
in common their ability, multiplied by ds, to express the electrodynamic force, resolved in a
definite direction, which the inductor would exert on an element ds, thought of as located
in the place through which the induced unit of current flows. Yet the two factors are
differentiated from one another

1. by the direction, which the element ds, thought of as at the point of induction, would
be given, and

2. through the direction in which the electrodynamic force exerted on this element is to
be resolved. Specifically, these two directions are exchanged in Neumann’s law.

Neumann’s law would, as can be seen from this, contradict ours, if one wanted to apply
it to an individual current element as inductor, because factors C and D would then have
entirely different values. It is obvious, however, that Neumann’s law, in accordance with
its derivation, holds first of all not for that individual inducing current element, but only
for a closed circuit or for a magnet as inductor, specifically because Lenz’s theorem, from
which it is derived, can, being experimentally based, hold merely for closed circuits and
magnets. That apparent contradiction now automatically dissolves, as soon as the application
of Neumann’s law is confined to closed circuits, interchangeable with magnets, as inductors,
in which case the identity of factors C and D can then be proven in the following way.

According to Ampère, the three components X , Y , Z of that force which a closed circuit
of intensity i, for which the position of the elements is defined by the coordinates x, y, z,
exerts on any other current element ds′ of current intensity i′, whose direction makes the
angles λ, µ, ν with the coordinate axes, when the origin of the coordinates lies in the center
of the element ds′, are

X = −1

2
ii′ds′

(

cosµ ·
∫

xdy − ydx

r3
− cos ν ·

∫

zdx− xdz

r3

)

Y = −1

2
ii′ds′

(

cos ν ·
∫

ydz − zdy

r3
− cosλ ·

∫

xdy − ydx

r3

)

Z = −1

2
ii′ds′

(

cosλ ·
∫

zdx− xdz

r3
− cosµ ·

∫

ydz − zdy

r3

)

.

From this the values for the factors C and D can now be derived for closed circuits as
inductors.

For, first, factor C in Neumann’s law is obtained, if X1, Y1, Z1 denote the values taken
on by X , Y , Z when we make i′ = 1 and λ, µ, ν are the angles which the induced element
forms with the coordinate axes. Namely, if α, β, γ are the angles which the direction in
which the induced element is moved, forms with the three coordinate axes, then
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Cds′ = X1 cosα+ Y1 cos β + Z1 cos γ .

This expression is simplified, if a coordinate system is chosen in which the direction of the
x axis coincides with the direction in which the induced element is moved. Namely, then

cosα = 1 , cos β = 0 , cos γ = 0 ,

hence

Cds′ = X1 = −1

2
ids′

(

cosµ

∫

xdy − ydx

r3
− cos ν

∫

zdx− xdz

r3

)

.

Secondly, factor D is obtained, if the values assumed by X , Y , Z are denoted X ′, Y ′,
Z ′, when we make i′ = 1, and λ = α′, µ = β ′, ν = γ′, where α′, β ′, γ′ are the angles which
the direction in which the induced element is moved, forms with the three coordinate axes
(which would thus be identical with α, β, γ, if the same coordinate system were chosen).
Namely, if, according to the present coordinate system, λ′, µ′, ν ′ are the angles which the
induced element forms with the three coordinate axes (which would thus be identical with
λ, µ, ν, if the present coordinate system were identical with the former one), then:

Dds′ = X ′ cosλ′ + Y ′ cosµ′ + Z ′ cos ν ′ .

This expression is simplified, if one chooses a different coordinate system, as earlier, namely,
one in which the direction of the x-axis coincides with the direction of the induced element
itself, because then

cos λ′ = 1 , cosµ′ = 0 , cos ν ′ = 0

hence:

Dds′ = X ′ = −1

2
ids′

(

cos β ′
∫

xdy − ydx

r3
− cos γ′

∫

zdx− xdz

r3

)

.

Now the two coordinate systems, namely, that in which the x-axis is parallel to the
direction in which the induced element is moved, and that in which the x-axis is parallel to
the direction of the induced element itself, can have in common the y-axis, if it is normal to
both directions, that of the induced element and its motion. Assuming this, it will be the
case that

cosµ = 0 , cos β ′ = 0 , cos ν = cos γ′ ,

and since, moreover, it can be proven that

∫

zdx− xdz

r3

would have an equal value according to both coordinate systems, then

C = D ,

which was to be proven. That zdx − xdz would have the same value for all right-angled
coordinate systems in which, as in the two above, the origin coincides with the y-axis, is
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evident from the fact that 1
2
(zdx− xdz) represents the area projected on a plane normal to

the common axis y, which is formed by the common coordinate-origin, and by the current
element in question. The straight line r, which connects the current element in question with
the induced element, has a value altogether independent of the coordinate system chosen.
From this it results that the value of the quotient237 (zdx − xdz)/r3 for the two coordinate
systems employed above is always the same, hence also is [equal] the value of the integral
extended over the entire closed circuit

∫

zdx−xdz
r3

.

It follows from this that Neumann’s law for the domain of phenomena to which, in virtue
of its derivation, it refers, namely, where all inductors are either magnets or closed circuits,
concurs with the law derived from the theory developed above, but that the application of
Neumann’s law outside that domain to non-closed circuits as inductors is not permitted.

5.27 Law of Excitation of a Current in a Conductor

at Rest, when a Constant Current Element Ap-

proaches or Withdraws from It

The law of voltaic induction for this case, where the induced conductor is at rest, and the
inducing current element is in motion, can be derived just as it was for the first case, from the
established fundamental electrical law. It is, however, not necessary to give this derivation,
because a simple consideration shows that, for the second case, it would have to lead back
to the same law as for the first.

Namely, the fundamental electrical law, from which all laws of voltaic induction are
to be derived, makes the action of one electrical mass on another dependent merely upon
their relative distance, velocity, and acceleration. These, however, remain unchanged by
a common motion attributed to both masses; hence, the action of one electrical mass on
another is also not changed by such a common motion. Consequently, such a common
motion can be attributed to all electrical masses without changing their actions, hence also
without changing the induction dependent upon them. Therefore, if one has an inducing
current element α, which is in motion with the absolute velocity u′ in any direction, while
the induced element α′ is at absolute rest, then, without changing the induction, one can
attribute to both elements, along with the electrical masses contained in them, a common
motion of velocity u′ in that direction which is diametrically opposite to the direction in
which current element α actually is in motion. By adding this common motion, the inducing
element α is brought to rest, while now the induced element α′ moves with the same velocity,
but in the opposite direction, as the current element is actually moving. Therefore, from the
established fundamental law, the same induction must result for the same relative motion
of both elements, independently of whether, during this relative motion, one or the other
or neither of the two elements is at absolute rest. As is well known, empirical experience
accords with this result.

237[Note by AKTA:] Due to a misprint, the next equation appeared in the original as zdx− xdz/r3.
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5.28 Law of Excitation of a Current in a Conductor by

Changing the Current Intensity in an Adjacent

Conductor

If α and α′ denote the lengths of the inducing and induced elements, then in both elements
four electrical masses can be further distinguished:

+αe , −αe , +α′e′ , −α′e′ .

The first of these masses +αe would move with the variable velocity u in the direction of the
element at rest α, which makes the angle ϑ with the straight line drawn from α to α′, and
du would denote the change in u during time-element dt; the second, −αe, would move, in
accordance with the determinations relating to a galvanic current, in the same direction with
velocity −u, that is backwards, and −du would denote the change in this velocity during
time-element dt; the third, +α′e′, would move with constant velocity +u′ in the direction of
the element at rest α′, which makes the angle ϑ′ with the straight line drawn and elongated
from α to α′; the fourth, −α′e′, would, finally, move, again according to the determinations
relating to a galvanic current, in the same direction with velocity −u′, viz., backwards. The
distances of the first two masses from the second two are themselves all the same at the
moment in question as distance r between the two elements α and α′; since, however, they
do not remain equal, they are to be denoted r1, r2, r3, r4.

For the sum of the forces which are acting on the positive and negative electricity in
element α′, i.e., for the force, which moves element α′ itself, one obtains the same expression
as in Section 5.24, namely:

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)}

.

However, for the difference of those forces, on which the induction depends,

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)}

.

Further, the same values hold here for the first differential coefficients as were found in
Section 5.22, namely:

dr1
dt

= −dr2
dt

= −u cosϑ+ u′ cosϑ′ ,

dr3
dt

= −dr4
dt

= −u cosϑ− u′ cosϑ′ .

Hence

(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

= −8uu′ cos ϑ cosϑ′ ,
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(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

= 0 .

Since the velocity u is now variable, however, there result values for the second differential
coefficients other than those in Section 5.22, where it was constant, namely:

d2r1
dt2

= +u sinϑ · dϑ1
dt

− u′ sin ϑ′ · dϑ
′
1

dt
− cosϑ · du

dt
,

d2r2
dt2

= −u sinϑ · dϑ2
dt

+ u′ sinϑ′ · dϑ
′
2

dt
+ cosϑ · du

dt
,

d2r3
dt2

= +u sinϑ · dϑ3
dt

+ u′ sin ϑ′ · dϑ
′
3

dt
− cosϑ · du

dt
,

d2r4
dt2

= −u sinϑ · dϑ4
dt

− u′ sinϑ′ · dϑ
′
4

dt
+ cosϑ · du

dt
.

Therefore, there results for

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= +u sinϑ

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

− u′ sinϑ′
(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

the same value as in Section 5.22, namely, when one substitutes the values of dϑ1/dt, dϑ
′
1/dt,

and so forth, developed there on page238 155,

r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= −8uu′ sin ϑ sinϑ′ cosω .

On the other hand,

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= +u sinϑ

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

− u′ sinϑ′
(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

− dϑ′4
dt

)

− 4 cosϑ · du
dt

.

Since, however, according to page239 155, the values

dϑ1
dt

+
dϑ2
dt

=
dϑ3
dt

+
dϑ4
dt

=
dϑ′1
dt

+
dϑ′2
dt

=
dϑ′3
dt

+
dϑ′4
dt

= 0

then

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= −4 cosϑ · du
dt

.

If these values are substituted, one obtains the sum of the forces acting on the positive
and negative electricity in element α′, as [in] Section 5.22

238[Note by LH and AKTA:] [Web46, p. 162 of Weber’s Werke].
239[Note by LH and AKTA:] [Web46, p. 162 of Weber’s Werke].
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= −αα
′

r2
· aeu · ae′u′

(

sinϑ sin ϑ′ cosω − 1

2
cosϑ cosϑ′

)

,

viz., the force acting on element α′ is, when the current intensity is variable, determined just
as it is when the current is constant, and Ampère’s law is applicable to variable currents as
well.

The difference between those two forces acting on the positive and negative electricity in
element α′, on which the induction depends, results, on the other hand, as

= −1

2

αα′

r
· a2ee′ · cosϑ · du

dt
,

or, since according to page240 144, aeu = i, hence u is variable, and ae · du = di,

= −1

2

αα′

r
· ae′ · cosϑ · di

dt
.

The force determined in this way tries to separate the positive and negative electricities
in the induced element α′ in the direction of the straight line r. But in this direction the
separation can not succeed, it can only happen in the direction of the induced element α′

itself, which forms the angle ϑ′ with the extended straight line r. Decomposing then this total
force, which tries to separate both electricities in α′, along this direction, that is, multiplying
the difference above with cosϑ′, we obtain the force which produces the real separation,

= −1

2

αα′

r
· ae′ · cosϑ cosϑ′ · di

dt
.

If this value is divided by e′, there results the electromotive force, in the ordinary sense,
exerted by the inducing element α on the induced element α′ (see Section 5.24, page241 163):

= −a
2
· αα

′

r
· cosϑ cosϑ′ · di

dt
.

The induction during the time element dt, viz., the product of this time element with the
acting electromotive force, is therefore

= −a
2
· αα

′

r
· cosϑ cosϑ′ · di ,

hence the induction for any period of time, in which the intensity of the inducing current
increases to i, while r, ϑ and ϑ′ remain unchanged,

= −a
2
· αα

′

r
i cosϑ cosϑ′ .

The positive value of this expression denotes an induced current in element α′ in the direction
of α′, which makes the angle ϑ′ with the extended straight line r; the negative value denotes
an induced current of opposite direction.

If both elements α and α′ are parallel to each other, and ϑ = ϑ′, the above expression has
a negative value for increasing current intensity, or for a positive value of i, viz., when the
current intensity increases in α, a current in the opposite direction from the inducing current

240[Note by LH and AKTA:] [Web46, p. 152 of Weber’s Werke].
241[Note by LH and AKTA:] [Web46, p. 170 of Weber’s Werke].
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is excited in α′. The reverse takes place when the current intensity decreases. Both results
agree with known facts. The proportionality of the induction to the change in intensity i of
the inducing current also corresponds to empirical experience, to the degree that estimates
suffice without precise measurement.

5.29 Comparison of Induction Effects of Constant Cur-

rents on a Moving Conductor with Those of Vari-

able Currents on Conductors at Rest

In the previous Section, the laws of voltaic induction have been derived from the fundamental
electrical law, in agreement with empirical experience, not only for the case where the voltaic
induction is elicited by constant currents in moving conductors, but also for the case, where
it is elicited by variable currents in conductors at rest. The laws of induction for these two
cases are very different, and on that account it is very interesting, that nevertheless they
yield very simple relationships between the effects of both inductions.

One such simple relationship between the induction effect of constant currents on a mov-
ing conductor and the induction effect of variable currents on a conductor at rest, results from
the laws already developed in Sections 5.24 and 5.28 for individual inducing and induced
elements, when the motion of the induced element occurs, in the first case, in the direction
of the straight line r. For if one calculates under this assumption the total induction effect,
which a current element of constant intensity i elicits, while the induced element is with-
drawn from a given position infinitely far in the direction of the straight line r, or, from an
infinite distance, approaches that position, then one finds that this total induction effect is
equal to that which the inducing element would elicit, if its current intensity were to decrease
or increase by i, in the induced element, if it continued in the given position. Therefore this
yields the rule, for this special case, to begin with, that, by means of the appearance or disap-
pearance of a current in the proximity of a conductor, the same current would be induced in
this conductor, as if that current would have uniformly persisted, but were either transferred
from a great distance into that proximity to the conductor, or, conversely, transferred from
that proximity to a great distance.

For the cited special case, this theorem easily results, as follows. The expression found at
the end of Section 5.24 for the electromotive force is to be multiplied by the time element dt,
in order to obtain the induction effect corresponding to this time element dt, or corresponding
to the element of displacement u′dt traversed during this time element. The value of the
integral of this product between definite time or displacement limits then yields the total
induction effect corresponding to the time interval or to the displacement traversed in that
time interval

= −ai
∫

αα′

r2

(

cos ε− 3

2
cosϑ cos ϑ′

)

cosϕ · u′dt .

In our case, where the motion occurs in the straight line r, is now

u′dt = dr , and cosϑ′ = 1 .

According to Section 5.24, cos ε = sinϑ sin ϑ′ cosω + cosϑ cos ϑ′, therefore here:
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cos ε = cosϑ .

Since, finally, the angles ϑ and ϕ have constant values during the motion in the direction of
straight line r of the element α′ constantly parallel to itself, that induction effect is

= +
ai

2
· αα′ cosϑ cosϕ ·

∫

dr

r2
.

The value of this integral between the limits r = r to r = ∞, viz., the induction effect, while
the induced element is infinitely distant from a given position, is

= +
ai

2

αα′

r
cos ϑ cosϕ ;

between the limits r = ∞ to r = r, viz. the induction effect, while the induced element,
from an infinite distance, reaches a given position, is, on the contrary,

= −ai
2

αα′

r
cos ϑ cosϕ .

If it is taken into consideration that ϕ denotes here, in accordance with Section 5.24, the
same angle which is ϑ′ in Section 5.28, namely, the angle which the induced element α′ makes
with the prolonged straight line r, then it is seen that the induction effect is equal to that
which, according to the law given in Section 5.28, is obtained when the induced element α′

persists in the given position, and the current intensity i in the inducing element α vanishes
or arises.

The relation found for both induction effects can be expressed more generally, not, of
course, for individual elements, but for closed currents and conductors. The case may first of
all be considered, where all elements of the induced closed conductor have the same, parallel,
motion.

The induction effect of current element α on the induced element α′ is, as before,

= −ai
∫

αα′

r2

(

cos ε− 3

2
cosϑ cos ϑ′

)

cosϕ · u′dt .

If β and β ′ now denote the angles, which the two elements α and α′ make with the plane
produced by the straight line r by the motion of the element α′, and further, if γ and γ′

denote the angles, which the projections of α and α′ make in the plane with the direction of
the motion, then

cosϑ = cos β cos(ϑ′ − γ) ,

cosϕ = cos β ′ cos(ϑ′ − γ′) ,

cos ε = cos β cos γ .

The projection of the displacement element u′dt on the straight line r yields the value of dr
for the time-element dt,

dr = u′dt · cos ϑ′ or u′dt = sec ϑ′ · dr .
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If these values are substituted, the induction effect of α on α′ becomes

= −
∫

aiαα′ cos β cos β ′
(

cos γ secϑ′ − 3

2
cos(ϑ′ − γ)

)

cos(ϑ′ − γ′) · dr
r2

,

or, when cos(ϑ′ − γ) and cos(ϑ′ − γ′) are developed,

= +
ai

2

∫

αα′ cos β cos β ′ · dR ,

in which, for the sake of brevity, the following expression is denoted by dR:

(

cos γ cos γ′ − 2 cos γ sin γ′ tanϑ′ − 3 cos(γ + γ′) sin2 ϑ′

+ 3 sin(γ + γ′) sinϑ′ cosϑ′) · dr
r2

.

If it is taken into consideration, that in the like and parallel motion of all elements, each of
them is displaced parallel with itself, hence the angles β, β ′, γ, γ′ are constant, and if one
makes

sinϑ′ =
b

r
, cosϑ′ =

√
r2 − b2

r
, tanϑ′ =

b√
r2 − b2

,

in which b denotes the perpendicular from α to the path of induced element α′, then the
integration can be carried out, and the following expression is obtained as an indefinite
integral:

−ai
2

αα′

r
cos ϑ cosϕ− ai

2

αα′

r
cos β cos β ′ sin(γ′ − γ) cotϑ′ .

The sought-for induction effect is the definite integral or the difference between the two
values, which the expression receives, when the two limiting values for r, ϑ, ϕ, and ϑ′ are
substituted in it.

If the same expression as that for elements α and α′ is formed for all combinations of
inducing and induced elements, which are contained in the closed circuit and conductor, and
if the summation of all of them is denoted

−ai
2
S
αα′

r
cos ϑ cosϕ− ai

2
S
αα′

r
cos β cos β ′ sin(γ′ − γ) cotϑ′ ,

then the induction effect of the closed circuit on the closed conductor is equal to the difference
between the two values, which this summation receives, when the values for r, ϑ, ϕ and ϑ′,
corresponding to those at the beginning and end of the induction, are substituted in it.

Now, the above summation consists of two terms, and it will be proven, that the latter
term is null for all values of r and ϑ′. Then the induction effect of a closed circuit on a closed
conductor reduces itself to the difference between the two values, which the first term of the
above summation assumes, when the values for r, ϑ, ϕ, corresponding to the beginning and
end of the induction are substituted in it.

That the latter term of the above summation is, namely,

−ai
2
S
αα′

r
cos β cos β ′ sin(γ′ − γ) cotϑ′ = 0
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can easily be proven, if one analyzes the inducing and induced elements according to the law
that, for determining the interaction of two elements, for any one of them, three others can
be put in, which form the three edges of a parallelepiped, whose diagonal is taken up by the
given elements. On this theorem, see Section 5.31 below.

Accordingly, if the elements α and α′ are each decomposed into three elements, of which
the first would be parallel to the direction of the motion, the second perpendicular to r, in
the plane produced by r when α′ is in motion, the third perpendicular to the two others, and
if they are denoted

α1 , α2 , α3 , and α′
1 , α′

2 , α′
3 ,

then [αα′/r]·cosβ cos β ′ sin(γ′−γ) cotϑ′ becomes a summation of 9 terms. For the two terms
proportional to α3α

′
1 and to α3α

′
2, the factor is cos β = 0; for the two terms proportional to

α1α
′
3 and to α2α

′
3, the factor is cos β

′ = 0; for the term proportional to α3α
′
3 the two factors

are cos β = cos β ′ = 0; finally, for the 6th and 7th terms, which are proportional to α1α
′
1 and

to α2α
′
2, the factor is sin(γ

′−γ) = 0. Hence there remain only two more terms, namely, those
proportional to α1α

′
2 and to α2α

′
1, for which cos β = 1, cos β ′ = 1, sin(γ′ − γ) = ∓ cosϑ′;

these two terms are thus:

±ai
2
· α1α

′
2

r
cosϑ′ cotϑ′ and ± ai

2
· α2α

′
1

r
cos ϑ′ cotϑ′ ,

and for the sake of brevity, may be denoted A and B. If one now proceeds in like manner
with each two elements of the closed circuit and conductor, then one finds that, among the
remaining terms formed in just this way, two terms exist, by which A and B are cancelled,
and which are to be denoted A′ and B′. If this holds true in general, then it follows that

−ai
2
S
αα′

r
cos β cos β ′ sin(γ′ − γ) cotϑ′ = 0 ,

which was to be proven.
Now, the element A′, by which A was cancelled, is found in the following way. Through

the center of the inducing element α as apex, let two cones be put, whose common axis would
be parallel to the direction of motion, i.e., to α1. Let these two cones delimit the induced
element α′. It is evident, that at least a second element a′ of the closed circuit would still
have to be delimited. And specifically, a current, which goes into α′ from the outer cone to
the inner, must go into a′ conversely from the inner to the outer. The value of ϑ′ is the same
for both elements. If one now decomposes the second element a′ in just the same way as the
first α′, and denotes as a′2 that lateral element which, perpendicular to the r′ connecting a′

with α, lies in the plane produced by r′ by the motion of a′, then the term proportional to
α1a

′
2 will be the term A′, by means of which A is cancelled. However,

A′ = ∓ai
2
· α1a

′
2

r′
· cosϑ′ cotϑ′ ,

and α′
2 : a

′
2 are in the ratio of their distances from the common apex of the two cones, i.e.,

the ratio r : r′, hence

a′2
r′

=
α′
2

r
.

If these values are substituted, then
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A′ = ∓ai
2

α1α
′
2

r
· cos ϑ′ cotϑ′ ,

and is, irrespective of the sign, equal to the value of A. From the opposite direction in
which, as stated above, the elements α′ and a′, or α′

2 and a′2, have the same current flowing
through them, it can be easily recognized, that if in A, sin(γ′ − γ) = ∓ cos ϑ′, and in A′,
sin(γ′ − γ) = ± cosϑ′, that therefore the values of A and A′ always have opposite signs;
hence the two cancel each other out.

It can occur, that in addition to α′ and a′, yet a third element of the conductor is defined
by the same cones; then, however, there must necessarily exist, if the conductor is closed,
yet a fourth as well, and the same is true of the third and fourth as of the first and second,
and so forth.

In a similar way, B′, which cancels B, is found, when the center of the induced element α′

is made the apex of two cones, whose common axis is parallel to the direction of the motion,
and which delimit the inducing element α. The same cones then delimit, from the closed
inductor, yet a second element, from whose decomposition B′ results, as A′ did previously
from the decomposition of element a′.

From the mutual cancellation of all terms denoted A, A′, B, B′, and so forth, it now
follows that for closed currents and conductors, the equation is valid:

−ai
2
S
αα′

r
cos β cos β ′ sin(γ′ − γ) cotϑ′ = 0 .

Now, from this it follows, first, when a closed conductor with all its parts is moved identically
and parallel always in the same direction, the induction effect is

=
ai

2
S
αα′

r0
cosϑ0 cosϕ0 −

ai

2
S
αα′

r1
cosϑ1 cosϑ1 ,

in which the values of r, ϑ, ϕ are denoted r0, ϑ0, ϕ0 for the beginning of the induction,
and r1, ϑ1, ϕ1 for the end. If one makes r1 = ∞, viz., the closed conductor, from a given
position, is removed infinitely far distant from the inducing current, then the total induction
effect elicited thereby is

=
ai

2
S
αα′

r0
cosϑ0 cosϕ0 ,

the same, which results, according to the preceding Section, for the same inducing current
conductor and for the same induced conductor, when they persist in their initial mutual
positions and the current i vanishes in the former.

Secondly, when a closed conductor with all its parts is only slightly displaced identically
and parallel in any definite direction, and then displaced again in a somewhat changed
direction, and so forth, and when the values of r, ϑ, ϕ are denoted r0, ϑ0, ϕ0 at the start of
the induction, at the end of the first or beginning of the second displacement are denoted
r1, ϑ1, ϕ1, at the end of the second or beginning of the third displacement r2, ϑ2, ϕ2, and so
forth, it follows that the total induction effect is

= +
ai

2
S
αα′

r0
cosϑ0 cosϕ0 −

ai

2
S
αα′

r1
cos ϑ1 cosϕ1

+
ai

2
S
αα′

r1
cosϑ1 cosϕ1 −

ai

2
S
αα′

r2
cosϑ2 cosϕ2

184



+ and so forth.

If rn, ϑn, ϕn denote the values of r, ϑ, ϕ at the end of all these motions effected successively
in different directions, then, because all terms with the exception of the first and last cancel
each other out, the indicated value of the total induction effect reduces itself to

ai

2
S
αα′

r0
cos ϑ0 cosϕ0 −

ai

2
S
αα′

rn
cos ϑn cosϕn ,

from which one sees, when rn = ∞, that the induction effect is the same, when a closed
conductor is removed, from a given position with respect to a closed current, infinitely far
from the inducing current through an arbitrarily curved trajectory, but in such a way that
all parts always remain parallel to each other, as if the same thing would occur through a
straight trajectory, or as if the closed conductor would persist in its original position and the
current i in the inducing conductor would vanish, namely

=
ai

2
S
αα′

r0
cosϑ0 cosϕ0 .

If, thirdly and finally, the closed conductor moves with complete arbitrariness, then the
motion of any one of its elements at any moment can be resolved into a rotation around its
center, and into a parallel displacement of the whole element. The induction effect of the
rotation of an element around its center is = 0, because r remains unchanged thereby, hence
dr = 0. The displacement of each element can be decomposed into three displacements in
the directions of three coordinate axes. For the parallel displacement of all elements of the
closed conductor in any of these directions, then,

S
αα′

r
cos β cos β ′ sin(γ′ − γ) cosϑ′ = 0 ,

from which it can easily be seen that even in arbitrary motion of the closed conductor, it
follows that the induction effect

=
ai

2
S
αα′

r0
cosϑ0 cosϕ0 −

ai

2
S
αα′

rn
cosϑn cosϕn

in which r0, ϑ0, ϕ0 and rn, ϑn, ϕn denote the values of r, ϑ, ϕ at the beginning and end of
the induction.

The relationship discussed here between the induction effect of a closed constant cur-
rent on a closed conductor in motion, and between the induction effect of a closed variable
current on a closed conductor at rest, has already been presented with greater generality
by Neumann, loc. cit. Namely, Neumann bases on the empirical foundation cited in Sec-
tion 5.26, the conclusion that the total induction effect corresponding to the transference
of the induced conductor from one position to another, is independent of the intermediate
positions, which it passes through, and merely depends upon the difference in the potential
values of the inductor at the start and end of the trajectory. After Neumann has stated this
theorem for the induction effect of constant currents on moving conductors, he continues on
page 39, loc. cit.:242

242[Note by AKTA:] [Neu46, p. 39].
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From the independence of the induced electromotive force from the motion per se,
it is inferred, that any cause, which elicits a change in the value of the potential
of a closed current with respect to a closed conductor, induces a current, whose
electromotive force is expressed by means of the change which the potential has
undergone.

With the help of this theorem, Neumann has reduced the determination of the second
kind of voltaic induction, namely, that of a variable current on a conductor at rest, to that of
the first kind, namely, of a constant current on a conductor in motion. The above-mentioned
relationship between both induction effects follows self-evidently. The final basis of all these
relationships can now be directly proven according to the above, in the fundamental electrical
law, according to which every two electrical masses act on each other at a distance.

5.30 General Law of Volta-Induction

After considering the two main cases of voltaic induction, namely, where either the current is
constant, but the conductor is in motion, or where the current is variable, but the conductor
is unmoved, the general law of determination of the effects of arbitrarily moving conductors
through which a current flows according to the laws of galvanism can easily be developed.

α and α′ denote once again the lengths of two elements, of which the first, α, is assumed to
be at rest. In accordance with Section 5.27, this assumption does not restrict the generality of
the treatment, because each motion of element α can be carried over to α′, by attributing to
it the opposite direction in α′. In these two elements, as earlier, the following four electrical
masses are distinguished:

+αe , −αe , +α′e′ , −α′e′ .

The first of these masses, +αe, would move with velocity +u in the direction of the element
at rest α, which makes the angle ϑ with the straight line drawn from α to α′. This velocity
would change during time-element dt by +du. The second mass −αe, in conformity with
the determinations given for a galvanic current, would move in the same direction, with
velocity −u, viz., backwards, and this velocity would change during time-element dt by −du.
The third mass +α′e′ would move with velocity +u′ in the direction of element α′, which
makes the angle ϑ′ with the straight line drawn and extended from α to α′. This velocity
changes in time-element dt by +du′. However, this electrical mass also shares the motion of
element α′ itself, which occurs with velocity v in a direction which makes the angle η with
the straight line drawn and extended from α to α′, and is contained in a plane laid through
this straight line, which forms the angle ̟ with the plane laid through the same straight line
parallel to element α. Velocity v would change during the time-element dt by dv. The fourth
mass −α′e′ would move, in conformity with the determinations for a galvanic current, in the
same direction as element α′ with velocity −u′, which changes in time-element dt by −du′;
additionally, however, it would share with the preceding mass the velocity v of element α′

itself in the already signified direction. The distances of the two former masses from the two
latter ones are all, at the moment in question, equal to the distance r of the two elements
themselves; however, since they do not remain equal, they are to be denoted r1, r2, r3, r4. If
two planes are laid through the straight line drawn from α to α′, the one parallel to α, the
other with α′, then ω denotes the angle formed by these two planes.
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For the sum of the forces which act on the positive and negative electricity in element α′,
that is, for the force, which moves element α′ itself, one then obtains the same expression as
in Section 5.24, namely:

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)}

.

for the difference of those forces, however, on which induction depends,

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)}

.

Further, when, along with the motion of the electrical masses in their conductors, one also
takes into calculation the motion they share with their conductors, the first differential
coefficients are found in the way presented in Section 5.22, by adding to the values found
there the velocity of element α′, resolved in the direction of straight line r. One then obtains:

dr1
dt

= −u cosϑ+ u′ cos ϑ′ + v cos η

dr2
dt

= +u cosϑ− u′ cos ϑ′ + v cos η

dr3
dt

= −u cosϑ− u′ cosϑ′ + v cos η

dr4
dt

= +u cosϑ+ u′ cosϑ′ + v cos η .

Therefore:

(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

= −8uu′ cos ϑ cosϑ′ ,

(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

= −8uv cosϑ cos η .

The second differential coefficient is obtained as in Section 5.22, when, in addition, the
variability of velocities u, u′, v is considered, namely:

d2r1
dt2

= +u sinϑ · dϑ1
dt

− u′ sin ϑ′ · dϑ
′
1

dt
− v sin η

dη1
dt

− cosϑ
du

dt
+ cosϑ′

du′

dt
+ cos η

dv

dt

d2r2
dt2

= −u sinϑ · dϑ2
dt

+ u′ sin ϑ′ · dϑ
′
2

dt
− v sin η

dη2
dt

+ cos ϑ
du

dt
− cosϑ′

du′

dt
+ cos η

dv

dt
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d2r3
dt2

= +u sinϑ · dϑ3
dt

+ u′ sinϑ′ · dϑ
′
3

dt
− v sin η

dη3
dt

− cos ϑ
du

dt
− cosϑ′

du′

dt
+ cos η

dv

dt

d2r4
dt2

= −u sinϑ · dϑ4
dt

− u′ sinϑ′ · dϑ
′
4

dt
− v sin η

dη4
dt

+ cosϑ
du

dt
+ cosϑ′

du′

dt
+ cos η

dv

dt
.

Hence

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= +u sinϑ

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

−u′ sinϑ′
(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

− v sin η

(

dη1
dt

+
dη2
dt

− dη3
dt

− dη4
dt

)

and

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= +u sinϑ

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

− u′ sin ϑ′
(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

− dϑ′4
dt

)

− v sin η

(

dη1
dt

− dη2
dt

+
dη3
dt

− dη4
dt

)

− 4 cosϑ · du
dt

.

For the determination of the differential coefficients dϑ1/dt, dϑ
′
1/dt, dη1/dt, and so forth,

one now proceeds as on page243 151 and the following, or as in the footnote on page244 155.
Namely, the resulting changes in the direction of straight line r1

in the plane of angle ϑ = +udt
r1

· sinϑ
in the plane of angle ϑ′ = −u′dt

r1
· sin ϑ′

in the plane of angle η = −vdt
r1

· sin η.

If one now draws lines parallel to line r, and with the directionalities of velocities u, u′

and v, through the center of a sphere, which cut the surface (Figure 21) at R, U , U ′, and V ,
and connects R with U , U ′ and V through the greatest arcs, then the plane containing the
arc UR = ϑ, forms the angle designated ω, with the plane of the arc U ′R = ϑ′, and forms
the angle designated ̟ with the plane of the arc V R = η.

243[Note by LH and AKTA:] [Web46, p. 159 and the following of Weber’s Werke].
244[Note by LH and AKTA:] See footnote 202 on page 155, [Web46, p. 162 of Weber’s Werke].
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Let the arc UR be extended to S, U ′R to S ′, and V R to T ,245 and let

RS = +
udt

r1
sinϑ , RS ′ = −u

′dt

r1
sinϑ′ , RT = −vdt

r1
sin η .

The element of the sphere’s surface in which R, S, S ′ and T lie, can now, as on page246 154,
be considered as an element of the plane touching the sphere at R, and the arc elements RS,
RS ′ and RT as straight lines in this plane. If the parallelogram RSR′S ′ is completed in this
plane, the diagonal RR′ is drawn, and the second parallelogram RR′R′′T is completed, then
a line drawn through the center parallel to straight line r1, which connects the two positive
masses +αe and +α′e′ at the end of time element dt, goes through point R′′.

Finally, if R′′ is connected with U , U ′ and V by the greatest arc, then

UR′′ = ϑ+ dϑ1 = UR + dϑ1

U ′R′′ = ϑ′ + dϑ′1 = U ′R + dϑ′1

V R′′ = η + dη′ = V R + dη1 .

From this follows that

dϑ1 = UR′′ − UR = RS +RS ′ cosω +RT cos̟

dϑ′1 = U ′R′ − U ′R = RS ′ +RS cosω +RT cos(ω +̟)

dη1 = V R′′ − V R = RT +RS cos̟ +RS ′ cos(ω +̟) .

245[Note by AKTA:] The point T , in the extension of the arc V R, was not represented on Figure 21.
246[Note by LH and AKTA:] [Web46, p. 161 of Weber’s Werke].
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If the values presented above of RS, RS ′ and RT are substituted, then one obtains:

r1
dϑ1
dt

= +u sinϑ− u′ sinϑ′ cosω − v sin η cos̟

r1
dϑ′1
dt

= −u′ sinϑ′ + u sinϑ cosω − v sin η cos(ω +̟)

r1
dη1
dt

= −v sin η + u sinϑ cos̟ − u′ sin ϑ′ cos(ω +̟) .

In the same way, the result for the two negative masses −αe and −α′e′ is:

r2
dϑ2
dt

= −u sinϑ+ u′ sinϑ′ cosω − v sin η cos̟

r2
dϑ′2
dt

= +u′ sin ϑ′ − u sinϑ cosω − v sin η cos(ω +̟)

r2
dη2
dt

= −v sin η − u sinϑ cos̟ + u′ sin ϑ′ cos(ω +̟) ;

further for the positive mass +αe and for the negative mass −α′e′:

r3
dϑ3
dt

= +u sinϑ+ u′ sinϑ′ cosω − v sin η cos̟

r3
dϑ′3
dt

= +u′ sinϑ′ + u sinϑ cosω − v sin η cos(ω +̟)

r3
dη3
dt

= −v sin η + u sinϑ cos̟ + u′ sin ϑ′ cos(ω +̟) ;

finally, for the negative −αe and for the positive +α′e′:

r4
dϑ4
dt

= −u sinϑ− u′ sinϑ′ cosω − v sin η cos̟

r4
dϑ′4
dt

= −u′ sinϑ′ − u sinϑ cosω − v sin η cos(ω +̟)

r4
dη4
dt

= −v sin η − u sinϑ cos̟ − u′ sinϑ′ cos(ω +̟) .

Now, since for the moment under consideration, r1 = r2 = r3 = r4 = r, from this one obtains

r

(

dϑ1
dt

− dϑ2
dt

− dϑ3
dt

+
dϑ4
dt

)

= −4u′ sinϑ′ cosω

r

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

= −4v sin η cos̟ ;

further:

r

(

dϑ′1
dt

− dϑ′2
dt

+
dϑ′3
dt

− dϑ′4
dt

)

= +4u sinϑ cosω
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r

(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

− dϑ4
dt

)

= 0 ,

finally:

r

(

dη1
dt

+
dη2
dt

− dη3
dt

− dη4
dt

)

= 0

r

(

dη1
dt

− dη2
dt

+
dη3
dt

− dη4
dt

)

= +4u sinϑ cos̟ .

If one substitutes these values into the aggregates of the second differential coefficients given
above, then one obtains

r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= −8uu′ sinϑ sin ϑ′ cosω

r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= −8uv sinϑ sin η cos̟ − 4r cos ϑ · du
dt

.

These values, finally, yield the sum of the forces which act on the positive and negative
electricity in element α′,

−αα
′

r2
· aeu · ae′u′

(

sin ϑ sinϑ′ cosω − 1

2
cosϑ cos ϑ′

)

,

viz., the electrodynamic force acting on the ponderable element α′ is determined for moving
conductors and variable current intensities, as well as for conductors at rest and constant
current intensities, and Ampère’s law finds general application with regard to these forces
for given positions of the current elements and given current intensities. The application of
this law only requires that the current intensities for each individual moment be given, with
inclusion of the portion added as a result of induction.

The difference of the forces acting on the positive and negative electricity in element α′

results in the same way,

−αα
′

r2
· aeu · ae′u′

(

sin ϑ sin η cos̟ − 1

2
cosϑ cos η

)

− 1

2

αα′

r
a2ee′ · cosϑ · du

dt
,

or, since, in accordance with page247 144, aeu = i, and, because u is variable, ae · du = di,

= −αα
′

r2
i

(

sinϑ sin η cos̟ − 1

2
cosϑ cos η

)

· ae′v

− 1

2

αα′

r
ae′ · cos ϑ · di

dt
.

Now, the force determined in this way seeks to separate the positive and negative electricity
in the induced element α′ in the direction of straight line r. The separation cannot succeed
in this direction, but only in the direction of the induced element α′ itself, which makes the
angle ϑ′ with the extended straight line r. If, therefore, one resolves that entire force in this

247[Note by LH and AKTA:] [Web46, p. 152 of Weber’s Werke].
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direction, viz., if one multiplies the above value by cosϑ′, then one obtains the force which
actually brings about the separation,

= −αα
′

r2
i

(

sinϑ sin η cos̟ − 1

2
cosϑ cos η

)

· ae′v cosϑ′

− 1

2

αα′

r
ae′ · cosϑ cos ϑ′ · di

dt
.

If this value is divided by e′, then the result is the electromotive force, in the usual sense (see
Section 5.24, page248 163), exerted by the inducing element α on the induced element α′

= −αα
′

r2
i

(

sin ϑ sin η cos̟ − 1

2
cosϑ cos η

)

· av cosϑ′ − 1

2

αα′

r
a cosϑ cosϑ′ · di

dt
.

If the change in the current intensity is made

di

dt
= 0 ,

then once more we find the same law which was found in Section 5.24 for the induction of a
constant current element on the moving element of a conductor, and then the electromotive
force is

= −αα
′

r2
i

(

sin ϑ sin η cos̟ − 1

2
cosϑ cos η

)

· av cosϑ′ ,

in which the same angles, which were denoted ϑ′, ω, ϕ in Section 5.24, are named η, ̟ and
ϑ′, and the velocity, which was called u′, is denoted v.

On the other hand, if, in the general value, one makes

v = 0 ,

one obtains the same law which was found in Section 5.28 for the induction of a variable
current element on the element of a conductor at rest, and then the electromotive force is

= −1

2

αα′

r
a cosϑ cosϑ′ · di

dt
.

The electromotive force of a variable current element on the moving element of a conductor
is therefore the sum of the electromotive forces which would take place,

1. if the element of the conductor were not in motion at the moment under consideration,

2. when the element of the conductor were indeed in motion, but the current intensity of
the inducing element at the moment under consideration were unchanged.

The general law of determining the effects of arbitrarily moving conductors with a current
flowing through them according to the galvanic laws, is herewith completely given, if it
may be assumed, that all electrical motions in linear conductors comprised under the name
galvanic currents, actually conform precisely to the determinations given on page249 131 and

248[Note by LH and AKTA:] [Web46, p. 170 of Weber’s Werke].
249[Note by LH and AKTA:] [Web46, pages 135 and 139 of Weber’s Werke].
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page 133. However, even if it is not to be doubted that all galvanic currents come close
to those determinations, small deviations can nevertheless rightly be expected, given the
great dissimilarity in the sources of galvanism. These deviations and their influence on the
electrodynamic measurement will be further discussed here.

According to the determinations given on page 131 and page 133,250 each current ele-
ment should contain the same amount of positive and negative electricity, and both should
flow through the element with the same velocity, but in opposite directions. If a constant
current were to consist of nothing but such elements, whose respective positions remained
unchanged, then they would mutually exert no electromotive force whatever on each other.
See Section 5.24, page251 161. The electromotive forces, which would overcome the resis-
tance of the individual elements, and would thereby, according to page252 132, bring about
the continuation of the current in all elements simultaneously, would then have to exist in-
dependently of the current elements, and would be distributed on all current elements in
proportion to their resistance, if the current is to uniformly continue to exist in all elements.

Depending on the nature of the sources of galvanism generating the original electromotive
forces, which are independent of the interaction of the current elements themselves, that
equal relation between the forces and the resistance to be overcome by them in all elements
of the conductor will sometimes occur, sometimes not. Serving an example of the first case,
is a homogeneous, circularly shaped conductor, in which a galvanic current is induced by
the motion of a magnet in the normal passing through the center of the circle to the plane
of the circle. In this case an electromotive force acting uniformly on all the elements of the
circle would be obtained by means of magneto-induction, and, since the resistance is likewise
the same for all elements, the conditions are hereby fulfilled for the uniform presence of the
current in all segments. Given the nature of things, however, such a case seldom occurs;
as a rule, no equal relation between the original electromotive forces and the resistance
in all the elements will occur, and the inequalities must then be equalized by means of the
interaction of the elements. Now, if such an interaction of the elements of a constant current,
an interaction consisting of electromotive forces, is not to be excluded, then the definition
of galvanic currents must be broadened.

By a galvanic current, as opposed to other electrical motions not comprised under this
name, should be understood a motion of the electricity in a closed conductor, such that the
same amounts of positive and negative electricity flow through all its cross-sections simul-
taneously in the opposite directions. This equality of the positive and negative electricity
flowing through does not necessarily presuppose the equality of the moving positive and neg-
ative masses, which was previously assumed, but rather, it can exist even when the latter are
of unequal magnitudes, if the larger mass flows slower, the smaller one faster. In a galvanic
current of the latter kind, new electromotive forces arise from the interaction of the elements,
by means of which forces the unequal relationship of the original electromotive forces can
be equalized. For as soon as the positive amount of electricity in an element is not equal to
the negative, viz., as soon as the element, because of an excess of one electricity, is charged
with free electricity, this free electricity itself, in accordance with the laws of the excitation
of electricity by means of separation, becomes a source of electromotive forces for all other
elements, which, through intensifying that charge, can be increased such that, added to the
original electromotive forces, they become proportional to the resistance in all elements, for

250[Note by LH and AKTA:] [Web46, pages 135 and 139 of Weber’s Werke].
251[Note by LH and AKTA:] [Web46, p. 168 of Weber’s Werke].
252[Note by LH and AKTA:] [Web46, p. 136 of Weber’s Werke].
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which, in the galvanic circuits with which we are familiar, a very low degree of electrical
charge suffices.

The investigation of how this charge in the individual elements in a closed galvanic circuit
arises spontaneously in virtue of the initial inequality of the current in the different parts
of the circuit, and increases until the given condition of a current uniform in all parts of
the circuit is satisfied, leads to the internal mechanics of the galvanic circuit and is outside
the scope of this Treatise, because there the action of electrical masses on adjacent masses
must be taken into calculation, while here, merely the actions exerted at a distance need be
considered. Independently of the investigation of the generation of these charges, and the
resulting laws of their strength and distribution, here we will only discuss the influence which
they have, when they are present, on the electrodynamic measurements. The discussion of
this influence is important in this connection, because the presence of such charges is to be
viewed as a rule having only infrequent exceptions. Even if this influence is so slight that,
even without taking it into consideration, the calculation accords with empirical experience
in most cases, nevertheless, it can be useful to know what this influence consists of and how
it can become appreciable.

Under the conditions stated on page253 186, think of the positive mass +αe in the element
α as increased by mαe, where m denotes a small fraction, while the velocity +u of this mass,
however, is thought of as decreasing by the small magnitude +mu; likewise think of the
positive mass254 +α′e′ as increased by nα′e′, its velocity +u′ as decreased by nu′. The forces
acting on both electrical masses in element α′ are to be determined, which come about
through these changes.

The two forces which the positive mass +αe in element α exerted on the positive and
negative masses +α′e′ and −α′e′ in element α′, were

+
αe · α′e′

r2

(

1− a2

16

dr21
dt2

+
a2

8
r
d2r1
dt2

)

−αe · α
′e′

r2

(

1− a2

16

dr23
dt2

+
a2

8
r
d2r3
dt2

)

,

in which, in accordance with page255 187, we are to make

dr1
dt

= −u cosϑ+ u′ cos ϑ′ + v cos η

dr3
dt

= −u cosϑ− u′ cos ϑ′ + v cos η ,

and, in accordance with page 187 and page 190:256

r
d2r1
dt2

= +u2 sin2 ϑ+ u′
2
sin2 ϑ′ + v2 sin2 η

− 2 (uu′ sinϑ sinϑ′ cosω + uv sin ϑ sin η cos̟ − u′v sinϑ′ sin η cos(ω +̟))

253[Note by LH and AKTA:] [Web46, p. 196 of Weber’s Werke].
254[Note by AKTA:] Due to a misprint in the original German text, the next mathematical expression

appeared as +α′e instead of +α′e′.
255[Note by LH and AKTA:] [Web46, p. 198 of Weber’s Werke].
256[Note by LH and AKTA:] [Web46, pages 198 and 200 of Weber’s Werke].
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− r

(

cosϑ
du

dt
− cosϑ′

du′

dt
− cos η

dv

dt

)

r
d2r3
dt2

= +u2 sin2 ϑ+ u′
2
sin2 ϑ′ + v2 sin2 η

+ 2 (uu′ sinϑ sin ϑ′ cosω − uv sin ϑ sin η cos̟ − u′v sinϑ′ sin η cos(ω +̟))

− r

(

cos ϑ
du

dt
+ cos ϑ′

du′

dt
− cos η

dv

dt

)

.

The difference between the above two forces, on which the electromotive force depends,
can be made

= 2
αe · α′e′

r2
,

because the remaining terms are very small in comparison with this first one. Now, if (1+m)e
is substituted for e and multiplied by cosϑ′/e′, and the original value multiplied by cosϑ′/e′

is subtracted, one obtains, in accordance with page 163 and page 192,257 the electromotive
force which arises from the charging of element α with free electricity and which acts on
element α′

= 2m
αα′

r2
e cosϑ′ .

Charging element α′ itself, which is acted upon, does not change the electromotive force; for
if, in the above difference, (1 + n)e′ is substituted for e′ and multiplied by cosϑ′/(1 + n)e′,
and the original value multiplied by cosϑ′/e′ is subtracted, there is no remainder.

The sum of the above two forces, on which the electrodynamic force acting on the pon-
derable carrier depends, is obtained by substitution of the values arrived at

= −1

2

αα′

r2
· ae · ae′ [uu′ sinϑ sin ϑ′ cosω − u′v sinϑ sin η cos(ω +̟)

− 1

2
uu′ cosϑ cosϑ′ +

1

2
u′v cosϑ′ cos η − 1

4
r cosϑ′ · du

dt

]

.

From this is obtained

1. the portion arising from the increase in the mass +αe, of the force with which the
elements α and α′ repel each other, when (1+m)e is substituted for e, and the original
value is subtracted,

= −m
2

αα′

r2
· ae · ae′ [uu′ sinϑ sinϑ′ cosω − u′v sin ϑ′ sin η cos(ω +̟)

− 1

2
uu′ cosϑ cosϑ′ + u′v cos ϑ′ cos η − 1

4
r cosϑ′

du

dt

]

;

257[Note by LH and AKTA:] [Web46, pages 170 and 202 of Weber’s Werke].
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2. the portion of the force arising from the decrease in velocity +u, when (1 − m)u is
substituted for u, and the original value is subtracted,

= +
m

2

αα′

r2
· ae · ae′

[

uu′ sinϑ sin ϑ′ cosω − 1

2
uu′ cosϑ cos ϑ′

]

;

3. the portion of the force arising from the increase in the mass +α′e′, when (1 + n)e′ is
substituted for e′, and the original value is subtracted,

= −n
2

αα′

r2
· ae · ae′ [uu′ sinϑ sin ϑ′ cosω − u′v sinϑ′ sin η cos(ω +̟)

− 1

2
uu′ cosϑ cosϑ′ +

1

2
u′v cosϑ′ cos η − 1

4
r cos ϑ′

du′

dt

]

;

4. the portion of the force arising from the decrease in the velocity +u′, when (1 − n)u′

is substituted for u′, and the original value is subtracted,

= +
n

2

αα′

r2
· ae · ae′ [uu′ sinϑ sinϑ′ cosω − u′v sin ϑ′ sin η′ cos(ω +̟)

− 1

2
uu′ cos ϑ cosϑ′ +

1

2
u′v cosϑ′ cos η

]

.

If all these portions which arise are conjoined, one obtains the influence which the charging
of elements α and α′ with free positive electricity (ifm and n have positive values) or negative
electricity (if m and n have negative values) has on the electrodynamic repulsive force which
α and α′ exert; to be precise, it is the resulting increase in this repulsive force, when one
makes aev = χ, ae′u′ = i′ and ae′du′ = di′,

= +
m

2

αα′

r2
χi′
(

sinϑ′ sin η cos(ω +̟)− 1

2
cosϑ′ cos η

)

+
m+ n

8

αα′

r
ae cosϑ′ · di

′

dt
.

This influence, therefore, wholly vanishes, when the action on a constant current element
at rest is considered, for which v = 0 and di′ = 0. Further, this influence also vanishes in a
constant current element in motion α′, when the element α acting upon it possesses no free
electricity, because in that case m = 0 and di′ = 0. Finally, if free electricity is present in
element α, there exists that influence in a force which is equal to that force which would be
exerted on current element α′ by another current element in the place of α, when the masses
contained in it, +1

2
mαe and −1

2
mαe were to flow with velocities −v and +v in the direction

in which current element α′ is moved with velocity +v. The necessity of this influence can
also be examined from Fechner’s viewpoint in Section 5.16, page258 171. For the case where
a change occurs in current intensity i′ in current element α′, which is acted upon, there is

258[Note by LH and AKTA:] [Web46, p. 179 of Weber’s Werke].
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added to the above, finally, an influence proportional to this change di′, and with the sum
of the free electricity present in both elements α and α′, which determines the last term in
the formula.

5.31 About the Influence of Changing Speed and Di-

rection of the Electricity Moving in the Current

In the method for determining galvanic current given in Section 5.19, on which the law
describing two electrical masses acting on one another at a distance is based, instead of
the actual current, in which the velocity of the flowing electricity probably fluctuates in its
passage from one ponderable particle to the other in a steady alternation, an ideal current
of uniform velocity is assumed. This substitution was necessary to simplify the treatment,
and it seems permissible because it is simply a question of an action at a distance. It now
remains to prove this initial assumption about the electrical law.

Let there be two electrical masses, e and e′, which at the end of time t are found at a
distance r from one another. Let their relative velocity up to this instant be a constant = γ.
The repulsive force of the two masses in the last moment of the given time period t, would
thus be, according to the fundamental electrical law:

ee′

r2

(

1− a2

16
γ2
)

.

In the following element of time, ε, an acceleration

d2r

dt2
= α

occurs, whereby the repulsive force for the duration of the time period will be

=
ee′

r2

(

1− a2

16
γ2
)

+
a2

8
· ee

′

r
α .

We now multiply the increase in force, which has occurred from the previous moment to
the present one, by the time element ε itself. We thus obtain, as the amount by which the
repulsive action has grown by this acceleration over the path dr, in which the masses e and
e′ have distanced themselves in the time ε,

=
a2

8
· ee

′

r
· αε .

The relative velocity of the two masses, which before the time element ε was = γ is then,
after this time element,

= γ + αε .

Let this now remain unchanged, then the repulsive force of the two masses, when they have
arrived at the distance ρ,

=
ee′

ρ2

(

1 +
a2

16
(γ + αε)2

)

,

whereby, when αε is very small in comparison to γ, it becomes
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=
ee′

ρ2

(

1− a2

16
γ2 − a2

8
αγε

)

.

Multiplying this expression by the time

dρ

γ + αε
,

in which both masses have distanced themselves from one another by the line element dρ,
and integrating between the limits ρ = r to ρ = r1, we get the repulsive action of the two
masses over the distance r1 − r, as

=
ee′

γ + αε

(

1− a2

16
γ2 − a2

8
αγε

)(

1

r
− 1

r1

)

.

Finally at the instant when the two masses are at the distance r1, a deceleration

d2r

dt2
= −α

occurs, which just as the earlier acceleration lasted only during the time element ε, so now
the relative velocity of the two masses again returns to its original value

= γ ,

and in the path traveled in the time element ε there takes place a decrease in the repulsive
action

= −a
2

8
· ee

′

r1
· αε .

One then gets as the sum of the repulsive action over the entire path r1 − r, including the
time elements ε, in which both the acceleration and deceleration took place,

= +
a2

8

ee′

r
αε+

ee′

γ + αε

(

1− a2

16
γ2 − a2

8
αγε

)(

1

r
− 1

r1

)

− a2

8
· ee

′

r1
αε ,

or, when αε is very small in comparison to γ,

=
ee′

γ + αε

(

1− a2

16
γ2
)(

1

r
− 1

r1

)

.

The time for which this sum applies is, however

=
r1 − r

γ + αε
.

If one divides the sum by this time, the average repulsive force during this time is obtained:

=
ee′

rr1

(

1− a2

16
γ2
)

,

that is, the same value as would occur if the path r1 − r had been traversed at the original
velocity γ. It thus follows that if the relative velocity of two electrical masses, arriving
successively at two different distances of separation is the same, their average repulsive force
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over the time interval is the same as the average repulsive force which they would have
achieved, if they had traveled with the initial relative velocity from the first distance to the
latter.

This theorem may now be applied to the proof of the above assumption. For, when a
particle of electricity moves in a galvanic current from one ponderable molecule to another,
it will arrive in places both before and behind the molecule, where its velocity is the same
as that of another electrical particle moving in another current. The average repulsive force
of both particles for the duration of the passage of the first particle out of the first position
into the next, is then the same, as it would have been if both particles had moved through
the space with their initial relative velocities, that is, as if no change had taken place in
the velocity of the electricity flowing from one molecule of the ponderable conductor to the
other.

Besides the change in velocity of the electrical particles as they move from one molecule
of the ponderable conductor to the next, we must also consider the changes of direction by
which approaching particles avoid each other. One easily sees that within the measurable
distances of the current element under consideration, no significant variation in the distances
would occur, and accordingly only periodic variations in the relative velocity produced by
these changes of direction would remain, which variations have already been included in the
foregoing.

It stands to reason, that in place of a current in which the velocity and direction of the
flowing electricity are subjected to a periodic change, a uniform current can rightfully be
substituted, as is done in Section 5.19.

It is also permitted, that, in place of a straight current element, a bent one be substituted,
so long as the beginning and end points remain unaltered, and no perceptible difference from
the straight line joining them is allowed. Finally, as happens in Section 5.29, in place of one
element, three elements may be considered, which behave in respect to the one like the edges
of a parallelepiped to its diagonal.

5.32 Different Formulations of the General Fundamen-

tal Law of Electrical Action

The discovered fundamental electrical law can be expressed in different ways, which will be
illustrated by a few examples.

1) Because distance r is always a positive magnitude, it can be written as ρ2. This
yields259

dr = 2ρdρ , d2r = 2ρd2ρ+ 2dρ2

hence260

259[Note by LH and AKTA:] The next equations should be understood as:

dr = 2ρdρ , d2r = 2ρd2ρ+ 2(dρ)2 .

260[Note by LH and AKTA:] These equations should be understood as

r = ρ2 ,

(

dr

dt

)2

= 4ρ2
(

dρ

dt

)2

,
d2r

dt2
= 2ρ

d2ρ

dt2
+ 2

(

dρ

dt

)2

.
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r = ρ2 ,
dr2

dt2
= 4ρ2

dρ2

dt2
,

d2r

dt2
= 2ρ

d2ρ

dt2
+ 2

dρ2

dt2
.

If these values are substituted in the formula ee′

r2

(

1− a2

16
dr2

dt2
+ a2

8
r d

2r
dt2

)

, the following shorter

formula is obtained:

ee′

ρ4

(

1 +
a2

4
ρ3
d2ρ

dt2

)

.

2) By reduced relative velocity of the masses e and e′ should be understood that relative
velocity, which those masses, reaching at the end of time t the distance r, the relative velocity
dr/dt, and the relative acceleration d2r/dt2 would possess, if the last-named were constant,
at the moment (t − ϑ), at which both, according to this premise, would meet at one point.
If v denotes this reduced relative velocity, then according to the well-known law of uniform
acceleration:

dr

dt
− v =

d2r

dt2
· ϑ

r = vϑ+
1

2

d2r

dt2
· ϑ2 .

By elimination of ϑ, these two equations yield:

1

2
v2 =

1

2

dr2

dt2
− r

d2r

dt2
.

If these values are substituted in the formula ee′

r2

(

1− a2

16
dr2

dt2
+ a2

8
r d

2r
dt2

)

, the following shorter

formula is obtained:

ee′

r2

(

1− a2

16
v2
)

,

which can be verbally expressed in the following way:

The decrease, caused by the motion, in the force with which two electrical masses
would act upon each other, if they were not in motion, is proportional to the
square of their reduced relative velocity.

3) If ee′

r2

(

1− a2

16
dr2

dt2
+ a2

8
r d

2r
dt2

)

is the absolute force with which the mass e acts on and

repels the mass e′, and conversely, e′ acts on and repels e, then there follows from this the
accelerative force for mass e261

261[Note by LH and AKTA:] What Weber calls here the accelerative force for mass e (beschleunigende Kraft
für die Masse e) is the acceleration of the particle with charge e relative to an inertial system of reference
when we suppose a system of units for which the inertial mass of this particle is equal to e. In his Sixth
major Memoir published in 1871, which has already been translated to English (W. Weber, Philosophical
Magazine, Vol. 42, pp. 1-20 and 119-149 (1872), Electrodynamic measurements — Sixth Memoir, relating

specially to the principle of the conservation of energy), [Web72], Weber generalized this result considering
the inertial masses of the particles with charges e and e′ as given by, respectively, ε and ε′. In this case he
was considering a system of units for which the unit of mass is one milligram; see especially pages 2 and 3
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=
e′

r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

,

for mass e′,

=
e

r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

.

The following relative acceleration results for both masses:

=
e+ e′

r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

.

If to this is added that relative acceleration which results for the same masses, partly from
the persistence of their motion in their present trajectories, partly from the influence of other
bodies, which would be conjointly denoted as f , then the following equation is obtained for
the total relative acceleration, i.e., for d2r/dt2:

d2r

dt2
=
e+ e′

r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

+ f .

With the help of this equation, the differential coefficient d2r/dt2 can be determined and

its value put into the formula ee′

r2

(

1− a2

16
dr2

dt2
+ a2

8
r d

2r
dt2

)

, which then becomes the following

expression, representing the force with which two electrical masses act upon each other,
independent of their relative acceleration:262

ee′

r2 − a2

8
(e+ e′)r

·
(

1− a2

16

dr2

dt2
+
a2

8
rf

)

.

of this English translation of 1872. In this case the acceleration of the particle with charge e would be given
by, according to Newton’s second law of motion:

a =
ee′

εr2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

.

By the same reasoning the acceleration a′ of the particle with charge e′ would be given by

a′ =
ee′

ε′r2

(

1− a2

16

dr2

dt2
+
a2

8
r
d2r

dt2

)

.

262[Note by LH and AKTA:] In the paper of 1871 quoted in footnote 261, this expression takes the following
more generalized form (see pages 3, 4 and 147 of W. Weber, Philosophical Magazine, Vol. 43, pp. 1-20 and
119-149 (1872), Electrodynamic measurements — Sixth Memoir, relating specially to the principle of the

conservation of energy), [Web72, pp. 3, 4 and 147]:

ee′

rr − 2r
cc ·

ε+ε′

εε′ ee
′
·
(

1− 1

cc

dr2

dt2
+

2rf

cc

)

.

In this equation e and e′ are the charges of the particles with inertial masses ε and ε′, and Weber replaced
4/a by c. This constant c had already been measured by Weber and Kohlrausch in 1854-5, who found it as
439450×106mm/s. That is, it is essentially

√
2 times light velocity in vacuum. It should not be confused with

the present day constant c, which is equal to the light velocity in vacuum. Weber and Kohlrausch published
three main works related to this measurement: [Web55] with English translation in [Web21b]; [WK56] with
English translation in [WK03] and Portuguese translation in [WK08]; and [KW57] with English translation
in [KW21].
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Accordingly, this force depends on the magnitude of the masses, on their distance, on their
relative velocity, and, finally, on that relative acceleration f , which belongs to them partly
as a result of the persistence of their already existing motion, partly as a result of the forces
acting on them from other bodies.

It seems to follow from this, that the direct interaction of two electrical masses would
not exclusively depend on these masses themselves and their relations to one another, but
would also depend on the presence of third bodies. Now, it is well known that Berzelius263

has already supposed the possibility of the dependency of the direct interaction of two bodies
on the presence of a third, and has given the name catalytic to the forces resulting from this.
If we avail ourselves of this name, then it can be said hereafter that the electrical phenomena
also originate in part from catalytic forces.

This demonstration of catalytic forces for electricity is, however, no strict inference from
the discovered fundamental electrical law. That would be the case only if one necessarily
had to associate this fundamental law with the idea that only such forces would thereby be
determined which electrical masses directly exerted upon one another at a distance. It is,
however, possible to conceive that the forces included under the discovered fundamental law
are also the kind of forces which two electrical masses indirectly exert upon one another, and
which hence must depend, first of all upon the transmitting medium, and further upon all
bodies, which act on this medium. It can easily occur, that such indirectly exerted forces,
when the transmitting medium evades our observation, appear as catalytic forces, although
they are not. In order to speak of catalytic forces in such cases, the concept of catalytic force
would have to be fundamentally modified. That is, by catalytic force one would have to
understand the kind of indirectly exerted force, which can be determined by a general rule,
by means of a positive knowledge of the bodies to whose influence the transmitting medium
is subjected, without knowledge, however, of this medium itself. The discovered fundamental
electrical law yields a general rule for determination of catalytic forces in this sense.

Another still undecided question is, however, whether the knowledge of the transmitting
medium, even if it is not necessary for the determination of forces, would nevertheless be
useful. That is, the general rule for determination of forces could perhaps be expressed
still more simply, when the transmitting medium were taken into consideration, than was
otherwise possible in the fundamental electrical law presented here. However, investigation
of the transmitting medium, which perhaps would elucidate many other things as well, is
itself necessary in order to decide this question.

The idea of the existence of such a transmitting medium is already found in the idea of the
all-pervasive neutral electrical fluid, and even if this neutral fluid, apart from conductors, has
up to now almost entirely evaded the physicists’ observations, nevertheless there is now hope
that we can succeed in gaining more direct elucidation of this all-pervasive fluid in several
new ways. Perhaps in other bodies, apart from conductors, no currents appear, but only
vibrations, which can be observed more precisely for the first time with the methods discussed
in Section 5.16. Further, I need only recall Faraday’s latest discovery of the influence of
electrical currents on light vibrations,264 which make it not improbable, that the all-pervasive
neutral electrical medium is itself that all-pervasive ether, which creates and propagates light
vibrations, or that at least the two are so intimately interconnected, that observations of
light vibrations may be able to explain the behavior of the neutral electrical medium.

Ampère has already called attention to the possibility of an indirect action of electrical

263[Note by AKTA:] Jöns Jacob Berzelius (1779-1848). See [Ber36c], [Ber36a] and [Ber36b].
264[Note by AKTA:] [Far46a].
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masses on each other, as cited in the introduction on page265,266 36,

namely, according to which, the electrodynamic phenomena

would be ascribed

to the motions communicated to the ether by electrical currents.

Ampère himself, however, pronounced the examination of this possibility an extraordi-
narily difficult investigation, which he would have no time to undertake.

If, in addition, new empirical data, such as, for example, those which will perhaps emerge
from further pursuit of the experiments to be carried out in accordance with Section 5.16 on
electrical vibrations, and from Faraday’s discovery, should appear to be particularly appropri-
ate for gradually eliminating the difficulties not overcome by Ampère, then the fundamental
electrical law in the form given here, independent of the transmitting medium, may afford a
not insignificant basis for expressing this law in other forms, dependent upon the transmitting
medium.

265[Note by LH and AKTA:] [Web46, p. 30 of Weber’s Werke].
266[Note by AKTA:] See [Amp23, p. 301], [Amp26, p. 129] and [AC15, p. 425].
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Chapter 6

Introduction to the Excerpt of
Weber’s First Memoir on
Electrodynamic Measurements

A. K. T. Assis267

Here I present the English translation of the excerpt of Weber’s First major Memoir on
Electrodynamic Measurements. This excerpt was published originally in 1848.268 Its English
translation has been published in 1852, 1866 and 2007.269 I am maintaining the original title
of this English translation as published during Weber’s lifetime.

The First major Memoir had been published in 1846,270 see Chapter 5.
The great importance of this excerpt is that Weber presented here for the first time a

velocity-dependent potential energy from which he could deduce his force law which he had
introduced in 1846.

267Homepage: www.ifi.unicamp.br/~assis
268[Web48a].
269[Web52c], [Web66d] and [Web19].
270[Web46] with a partial French translation in [Web87] and a complete English translation in [Web07].
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Chapter 7

[Weber, 1848a] On the Measurement
of Electro-dynamic Forces

Wilhelm Weber271,272

A quarter of a century has elapsed since Ampère laid the foundation of electro-dynamics,273

a science which was to bring the laws of magnetism and electro-magnetism into their true
connexion and refer them to a fundamental principle, as has been effected with Kepler’s
laws by Newton’s theory of gravitation.274 But if we compare the further development which
electrodynamics have received with that of Newton’s theory of gravitation, we find a great
difference in the fertility of these two fundamental principles. Newton’s theory of gravita-
tion has become the source of innumerable new researches in astronomy, by the splendid
results of which all doubt and obscurity regarding the final principle of this science have
been removed. Ampère’s electro-dynamics have not led to any such result; it may rather
be considered, that all the advances which have since been really made have been obtained
independently of Ampère’s theory, — as for instance the discovery of induction and its laws
by Faraday. If the fundamental principle of electro-dynamics, like the law of gravitation, be
a true law of nature, we might suppose that it would have proved serviceable as a guide to
the discovery and investigation of the different classes of natural phenomena which are de-
pendent upon or are connected with it; but if this principle is not a law of nature, we should
expect that, considering its great interest and the manifold activity which during the space
of the last twenty-five years that peculiar branch of natural philosophy has experienced, it
would have long since been disproved. The reason why neither the one nor the other has
been effected, depends upon the fact, that in the development of electro-dynamics no such
combination of observation with theory has occurred as in that of the general theory of grav-
itation. Ampère, who was rather a theorist than an experimenter, very ingeniously applied
the most trivial experimental results to his system, and refined this to such an extent, that
the crude observations immediately concerned no longer appeared to have any direct relation

271[Web48a] with English translation in [Web52c], [Web66d] and [Web19].
272Wilhelm Weber’s Notes are represented by [Note by WW:]; the Notes by H. Weber, the editor of the

third volume of Weber’s Werke, are represented by [Note by HW:], while the Notes by A. K. T. Assis are
represented by [Note by AKTA:].
273[Note by AKTA:] See footnote 10 on page 13.
274[Note by AKTA:] Johannes Kepler (1571-1630) and Isaac Newton (1642-1727). See footnote 57 on

page 29.
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to it. Electro-dynamics, whether for their more secure foundation and extension, or for their
refutation, require a more perfect method of observing; and in the comparison of theory with
experiment, demand that we should be able accurately to examine the more special points
in question, so as to provide a proper organ for what might be termed the spirit of theory in
the observations, without the development of which no unfolding of its powers is possible.

The following experiments will show that a more elaborate method of making electro-
dynamic observations is not only of importance and consideration in proving the fundamental
principle of electro-dynamics, but also because it becomes the source of new observations,
which could not otherwise have been made.

7.1 Description of the Instrument

The instrument about to be described is adapted for delicate observation on, and measure-
ments of, electro-dynamic forces; and its superiority over those formerly proposed by Ampère
depends essentially upon the following arrangement.

The two galvanic conductors, the reciprocal action of which is to be observed, consist
of two thin copper wires coated with silk, which, like multipliers, are coiled on the external
part of the cavities of two cylindrical frames. One of these two coils incloses a space which is
of sufficient size to allow the other coil to be placed within it and to have freedom of motion.

When a galvanic current passes through the wires of both coils, one of them exerts a
rotatory action upon the other, which is of the greatest intensity when the centres of both
coils correspond, and when the two planes to which the convolutions of the two coils are
parallel form a right angle with each other. The common diameter of both coils is the axis
of rotation. This respective position of the two coils constitutes the normal position, which
they obtain in the instrument. Hence also the common diameter of the two coils, or their
axis of rotation, has a vertical position, in order that the rotation may be performed in a
horizontal plane.

That coil which is to be rotated, to allow of the onward transmission and return of the
current, must be brought into connexion with two immoveable conductors; and the main
object of the instrument is to effect these combinations in such a manner that the rotation
of the coil is not in the least interfered with even when the impulse is the least possible, as
occurs when these connexions are effected by means of two points dipping into two metallic
cups filled with mercury in which the two immoveable conductors terminate, as in Ampère’s
arrangement. Instead of these combinations, which on account of the unavoidable friction
do not allow of the free rotation of the coil, in the present arrangement two long and thin
connecting wires are used, which are fastened at their upper extremities to two fixed metallic
hooks, in which the two immoveable conductors terminate, and at their lower extremities to
the frame of the coil, and are there firmly united to the ends of the wires of the coil. The
coil hangs freely suspended by these two connecting wires, and each wire supports half the
weight of the coil, whereby both wires are rendered equally tense.

These two connecting wires thus effect the transmission of the galvanic current from one
of the immoveable conductors to the coil, and back to the other immoveable conductor; and
they effect this without the least friction interfering with the rotation of the coil.

These connecting wires are also of service, because each rotation of the coil through a
certain angle corresponds to a definite rotatory momentum, which tends to diminish the
angle, and is proportional to the sine of the angle of rotation; whence a standard is formed
for all rotatory momenta, by the aid of which any other rotatory momentum acting upon
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the coil may be measured. This is effected according to those simple laws which Gauss has
developed in the case of the bifilar magnetometer.275 Lastly, this measure may be made
more or less delicate at pleasure, or as occasion require, by the approximation or separation
of the two connecting wires. This method of suspension not being accompanied with any
friction, allows of increase in the weight of the suspended coil, which may be any amount
provided it is not more than the connecting wires are capable of supporting. Hence a very
long wire may be wound many times around the coil, and thus a very strong multiplication
of the galvanic force be obtained. Moreover, this rotating coil may without injury be loaded
with a speculum, which also rotates, and here, as in Gauss’s magnetometer, may be used
for the delicate measurement of angles; for provided friction be excluded, the application of
delicate optical instruments in this case also does not conform any impediment. Regarding
the construction of the instrument in detail, as this has been described very perfectly by M.
Leyser,276 the instrument-maker in Leipzig, I shall insert the explanation which he has given,
and which refers to the figures sketched by him, Figures 1-10. The instrument is called an
Electro-dynamometer.

7.2 Description of the Electro-dynamometer

Figure 1 represents the little frame for supporting the reel which vibrates in the multiplier,
seen diagonally.

This frame consists of two round ivory discs, aa and aa, which are riveted to two ivory
plates, bb′ and bb′; their distance apart is regulated by a small ivory roller, c. The latter
is hollow, so that a metallic rod can be passed through it, and by means of a screw each

275[Note by AKTA:] [Gau38b] with English translation in [Gau41c].
276[Note by AKTA:] See footnote 105 on page 58.

209



of the discs with its plate can be fixed to the ends of the roller; and thus a reel is formed
for the reception of the wire. One end of the wire to be coiled passes through the small
role d, and projects from it. When the wire is placed upon the reel and the end fixed by
means of silk, the metallic supports, eee and eee′, of the reel are fixed to the ends of the
plates above mentioned; thus, one support, eee′, to which the speculum ff is screwed at g,
is riveted at b′b′; whilst the other support, eee, to which the counterpoise hh is fixed by the
screw i, is fastened by screws at bb; so that this support, near the screws bb, may be thrown
back in the direction bb′, in order that the entire reel may be conveniently placed in the
multiplier. The commencement of the reel, which was left projecting through the hole at d,
is now placed lengthwise along a portion of the plate bb′ towards b′, until the circumference
of the reel admits at k of its being again placed within the frame and then ascending to the
support of the speculum, where by means of a small screw m′ above the point at which the
speculum is fixed, it comes into metallic contact with the support. The end of the reel is
also brought into metallic contact with the other support by means of the screw m; this end
must however be long enough not to stand in the way of the support when it is thrown back.
When the speculum ff is now placed at g, and its counterpoise hh at i, the reel is prepared
for suspension in the multiplier by the metallic threads. For this purpose both the supports
of the reel terminate at e and e′ in hooks or pieces in the form of Υ, and the bifilar metallic
threads are furnished below with a small ivory beam, ll, which towards each end terminates
in a metallic plate, and this again in a small metallic cylinder; the latter fit into the above
hooks or upsila of the support, and thus receive the reel. The bifilar metallic threads no and
n′o′ are united to the cross-beam ll in the following manner. The commencement n of the
thread no is fastened by means of a screw to the metallic plate r, proceeds a short distance
towards l, and then returns through a small hole at the end of the plate beneath the beam
ll to its centre p, where it runs through a small hole again above the beam, and can then be
continued to o and further. The thread n′o′ is arranged in the same manner, its direction
however being reversed; in the centre p of the beam ll each has a separate aperture, through
which it passes; these lie very near each other, but are separated and kept isolated by the
ivory. The index qq is placed upon the centre of the beam before the metallic threads no
and n′o′ are inserted.

Figure 2 exhibits the lateral view of the vibrating reel, with the coil as placed upon the
beam, and the mirror and counterpoise adapted and vibrating on the bifilar metallic threads.
Only the very narrow anterior portion of the index is perceptible.
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Figure 3 represents the reel seen at right angles to the surface of the speculum; the hooks
or upsila, as also the index vibrating above the scale-plate cc, are very distinctly seen.

Figure 4 presents the view from above, in which the beam and the index form a right-
angled cross.
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Figure 5 serves to illustrate the further course of the bifilar metallic thread to its termi-
nation; for the sake of distinctness it is represented of twice the size of the other figures, and
as seen in a vertical section.

The bifilar metallic threads continue to ascend from o and o′, inclosed in a brass tube;
they are wound round the moveable rollers a and a′, and are finally fixed to the ivory roller
B at b and b′ round rotating pegs. The threads can be wound up or unwound on these pegs
or small rollers by means of a small key, according as the weight of the vibrating reel may
render this requisite; the small rollers a and a′ are also necessarily turned round at either of
these operations. The ivory cylinder itself, B, with the prong and the screw ee, can also be
screwed up or down by means of the nut, ff ; and thus the vibrating reel may be arranged
in the proper position as regards the multiplier, in the centre of which it should oscillate. At
the same time the roller B, which is moveable in the prong ee around the peg m, assumes a
state of equilibrium as soon as the vibrating reel is suspended freely from the bifilar metallic
wires, since these wires act at band b′ as it were at the ends of a lever, the centre of motion
of which is at m. Thus the load of the vibrating cylinder is equally divided between the two
threads.
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To allow of the approximation or separation of the two bifilar wires, the rollers a and
a′ are set in broad prongs, which, as seen in the figure, terminate in screws, by means of
which they can be approximated or separated between two metallic plates (indicated by the
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lines engraved perpendicularly) with the nuts cc and c′c′. The latter are fitted into a kind of
case, indicated in the figure by lines drawn obliquely, in which they are fixed by a peg, but
are not impeded as regards their rotation. The roller a, with its prong and screw, plate and
nut cc, is isolated from the roller a′, with its prong and screw, plate and nut c′c′, because
the circular discs dd and d′d′, which are perforated in the centre, and which connect them
above and below, are made of ivory. To allow of the bifilar metallic wires being brought out
conveniently, the nuts cc and c′c′ terminate in trumpet-shaped projections, as shown in the
figure, from which hangs a wire gg and g′g′ thrice wound round. Hence a galvanic current
takes the following course: — If it enters at g, it ascends to g, is communicated to the nut
cc, and the roller a (it also ascends to b, but as b is isolated it returns), and runs down
the threads to o; from o it proceeds (Figure 2) further down through the centre p of the
transverse beam, then to its extremity r, where by the metallic contact with the support it
runs down it, and at m enters the extremity of the reel itself, through the coils of which it
continues, again making its exit at d, but again passing to the other support at m′ through
k, from r′ along the transverse beam to its centre, and from this up to o′; from o′ the current
(Figure 5) again runs over the other roller a′ into the nut c′c′, and finally arrives at the other
conducting wire, g′g′. Thus the current, to arrive at one conducting wire g′g′ from the other
gg, must necessarily run through the vibrating reel, inasmuch as the wire from g to g′ is
perfectly isolated. To do away with the torsion of the bifilar metallic wires, the whole of the
upper portion of the instrument as far as hh and h′h′ rotates horizontally, and is furnished
with a torsion circle and an index, as is distinctly seen in Figures 6 and 7 at hh′.
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Figures 6 and 7 are not sectional, and Figure 6 belongs to Figure 2. Figure 7 exhibits the
roller B with the prong and the screw ee′ of Figure 5 more distinctly; ii here represent two
screws, to fix the roller B on moving the instrument, without which precaution the bifilar
threads would be easily injured.

We now pass to Figure 8, which exhibits in a vertical section the lower part of the
instrument, with the multiplier and the pedestal, which is constructed of serpentine.
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In it we first recognise Figure 2, suspended by the bifilar metallic wires o and o′, also as
seen on a vertical section. The letters mm exhibit a section of the multiplier, would round
a brass drum furnished with wooden sides, in the interior of which the vibrating cylinder R
is placed. These wooden sides support the tubes, within which the bifilar threads descend;
the two scales for the index are also fixed to them.

Figure 10, a view of the instrument as seen from above, exhibits more accurately the
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scale and the metallic plates, to which the tube is fastened.

The sides of this multiplier are in connexion with a strip of copper, which by means of two
cap-screws can be connected with the upper part nn of the foot of serpentine. This portion,
nn, with its cone ii, is capable of rotation in the lower part of the serpentine foot, and by
means of the metallic bolt r is kept in connexion with it by the screw x. Since, as shown
in Figure 8, both the speculum and the counterpoise project towards the wooden sides of
the multiplier, the whole is protected from the influence of a current of air by a cylindrical
wooden cover, which is fixed to the upper corners of the wooden sides of the multiplier. In
the direction of the speculum to the counterpoise, however, this cylindrical cover is flattened,
so as to allow of a free view through the cavity of the multiplier. The flat side of the cover
next the speculum can be opened or closed at pleasure by a wooden plate, which however, to
enable us to use the mirror, is furnished with a flat parallel glass, S. The whole of the other
flat side of the cover, which is turned towards the counterpoise, may be closed or opened by a
glass plate. Thus the vibrating reel, when the sides of the cover are closed, can still be seen,
and its free oscillation in the cavity of the multiplier be observed and regulated by means
of the three screws in the serpentine pedestal. Moreover, from above downwards, above the
graduation, the cover is closed by two glass plates, which are moveable towards each other
in metallic grooves, and excavated in a semicircular form in the centre, to allow the tube in
which the bifilar wire are suspended to pass through them. In Figure 8, vv exhibits the glass
plate at the side; v′w is the wooden plate, with the flat parallel glass S at the other side;
vv′ is one of the upper glass plates. The letters kk are loops, through which the conducting
wires gg and g′g′ in Figure 6 descend; these wires are fixed in these loops to avoid their lying
loosely throughout their entire length; they terminate in pegs, or small cylinders.

Figure 9 also exhibits a vertical section, but at right angles to that of Figure 8; m is the
multiplier, and R a section of the reel vibrating within it.
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At the side of the case we perceive four metallic knobs, marked uu′zz′. These are perfo-
rated crucially, and the perforation most distant from the case is furnished with a screw; on
the inner side of the case it is fixed to it by another screw. Two of these knobs, u and u′,
are in metallic contact with the commencement and termination of the multiplier, so that
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a current from the knob u can run through the multiplier into the knob u′, and vice versa.
The other two knobs, z and z′, are perfectly isolated; but all four of the knobs are very useful
for reversing the current, and for effecting various combinations. In this figure also we see
the index vibrating above the scale-plate, as also in Figure 3, where the case is supposed to
be removed.

Let us now trace the course of a galvanic current, which enters the instrument at the
knob u; it passes from u through the multiplier m and towards u′; if the conducting wire g′g′

with its metallic cylindrical extremity be now inserted into this knob, the current ascends in
g′g′, and (Figure 5) towards the nut c′c′ above the roller a′, then down within the tube to o′;
whence (Figure 2) from o′ through the centre p of the transverse beam to r′m′kd, through
the vibrating reel to mrpo, and (Figure 5) to o, ascending above the roller a in the nut cc,
to the second conducting wire gg and (Figure 9) through gg down into the knob z, whence
it runs into the other of the two exciting surfaces.

By means of the upper rotating part of the serpentine pedestal, the instrument may be
arranged in any part of a hall or room as required. All the figures are drawn one-fourth of
the linear magnitude of the electro-dynamometer, excepting Figure 5, which is one-half the
real magnitude.

The wire on the vibrating reel is 200 metres in length, that of the multiplier 300; the
first forms about 1200 coils, the latter about 900. The length of the bifilar wires, (which are
very fine; composed of silver, and were heated to redness,) from the transverse beam to the
small rollers aa′, was half a metre.

The price of the instrument is 10 guineas.

7.3 Observations Demonstrating the Fundamental Prin-

ciple of Electro-dynamics

The following observations were not made with the instrument which has just been described.
However, it is unnecessary to describe separately the instrument made use of on this occa-
sion, because it merely differs from the former in minor points of arrangement, which were
less convenient than those in the latter. One important modification only requires to be
mentioned, viz. that the multiplier, which in the above description assumes an invariable
position, in which its centre coincides with the centre of the bifilarly-suspended reel, was left
moveable, so that it could be placed in any position as regards the vibrating reel, for the
purpose of extending the observations to all relative positions of the two galvanic conduc-
tors, which act upon each other. Now as these two conductors form two coils, one of which
can enclose the other, and in the instrument described above the inner and smaller coil was
suspended by two threads, to serve as it were as a galvanometer-needle, whilst the outer and
larger coil, was fixed and formed the multiplier; it was requisite for the object in question
to reverse the arrangement, and to suspend the outer and larger coil by two threads so as
to use the inner and smaller coil as a multiplier, because it was only by this means that the
position of the multiplier could be altered at pleasure without interfering with the bifilar
suspension. It is at once seen that the external reel, on account of its size, has a greater
momentum from inertia, which produces a longer duration of its vibration; this influence
however may be easily compensated for when necessary by altering the arrangement of the
bifilar suspension.

As regards the observations themselves, it remains to be remarked, that to render the
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results comparable, the intensity of the current transmitted by the two conductors of the
dynamometer was, simultaneously with the observation of the dynamometer, accurately
measured by a second observer with a galvanometer. This was requisite, because no reliance
can be placed upon the constancy of the intensity of the current during a continued series
of experiments, even when the so-called constant battery of Grove or Bunsen is used.277

The first experiment was made by passing three currents of different intensity, i.e. from
3, 2 and 1 of Grove’s elements, through the two conductors of the dynamometer, and ob-
serving the simultaneous deflections of the dynamometer and galvanometer. After making
the necessary reductions, the following means were obtained as the deflections:

Number of Grove’s Deflections
elements Of the Dynamometer Of the Galvanometer

3 440.038 108.426
2 198.255 72.398
1 50.915 36.332

If we denote the dynamometric observations by δ, and the galvanometric observations by
γ, we obtain

γ = 5.155 34
√
δ

for if we calculate the values of γ from the values found by observation for δ according to
this formula, we obtain in the order of the series,

108.144
72.589
36.786,

which exhibit less differences from the values of γ found by observation than could be antic-
ipated, thus:

−0.282
+0.191
+0.454.

The electro-dynamic force of the reciprocal action of two conducting wires, through which
currents of equal intensity are transmitted, is therefore in proportion to the square of this
intensity, which is exactly what is required by the fundamental principle of electro-dynamics.

A more extended series of experiments was then made for the purpose of ascertaining
the dependence of the electro-dynamic force, with which the two conducting wires of the
dynamometer react upon each other, upon the relative position and distance of these wires.

For this purpose the arrangement was effected in such a manner, that one conducting
wire, i.e. the multiplier, could be placed in any position as regards the other, i.e. as regards
the bifilarly-suspended coil, the latter forming the larger coil, which inclosed the former
smaller one.

Both coils were always placed in such a position that their axes were in the same horizontal
plane, and formed a right angle with each other.

277[Note by AKTA:] See footnotes 98 and 108 on pages 53 and 61.
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The distance of the two coils was determined by the distance of their centres from each
other, and was thus assumed as = 0 when the centres of the two coils coincided.

When the latter was not the case, in addition to the magnitude of the distance of the
two centres, it was also requisite to measure the angle which the line uniting the two central
points formed with the axis of the bifilarly-suspended coil, whereby the direction in which
the centre of the multiplier was removed from the centre of the bifilarly-suspended coil was
defined. For this purpose the four cardinal directions were selected at which the former
angle had the value 0o, 90o, 180o and 270o, i.e. when the axis of the bifilarly-suspended
coil, like the axis of the needle of a magnet, was arranged in the magnetic meridian, the
centre of the multiplier was removed from the centre of the above coil, sometimes in the
direction of the meridian, north or south, and sometimes in the direction at right angles to
the magnetic meridian, east or west. In each of these different directions the multiplier was
placed successively at different distances from the suspended coil.

This arrangement of different positions and distances of the two conducting wires of the
dynamometer accurately corresponds, as is seen at a glance, to the arrangement of different
positions and distances of the two magnets, upon which Gauss based his measurements, in
demonstrating the fundamental principle of magnetism. The bifilarly-suspended coil here oc-
cupied the place of Gauss’s magnetic needle and the multiplier the place of Gauss’s deflection-
rod. The only important difference is, that the mutual action of the magnets could only be
observed from a distance; consequently in the magnetic observations that case was excluded
in which the centres of the two magnets coincided; whilst in the electro-dynamic measure-
ments of which we are now speaking, the system could moreover be rendered complete by
the case, in which the centre of the two coils coincided.

Simultaneously with the observations made on the dynamometer, the intensity of the
current which was transmitted through the two coils of the dynamometer was measured
by another observer with a galvanometer. By the auxiliary observations I was enabled to
reduce all the observations made on the dynamometer in accordance with the law shown
above, (that the electro-dynamic force is in proportion to the square of the intensity of
the current,) to an equal intensity of the current, and thus to render the results obtained
comparable.

The following Table gives the reduced mean values which were obtained in the different
instances. The first vertical column shows the distance of the two coils of the dynamometer;
above the other columns, the direction formed by the line uniting the two centres with the
axis of the bifilarly-suspended coil directed towards the magnetic meridian is given:

Distance in North, East, South, West,
mm 0o 90o 180o 270o

0 22 960 22 960 22 960 22 960
300 77.16 189.24 77.06 190.62
400 34.78 77.61 34.77 77.28
500 18.17 39.37 18.30 39.16
600 — 22.53 — 22.38

It is at once seen that when the centres of the two coils of the dynamometer coincide,
or their distance apart is = 0, the difference dependent upon the change of the direction
in which the multiplier is removed from the bifilarly-suspended coil, vanishes. The result
obtained in this case therefore could only be repeated in the above Table in the various
columns.
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Moreover, the above Table shows that the results obtained for an equal distance in
opposite directions varying 180o, agree together as far as the observations could be depended
upon.

These values, when reduced by taking their means, after converting the divisions of the
scale into degrees, minutes and seconds, yield the following Table:

R v v′

0.3 0o49′22′′ 0o20′3′′

0.4 0o20′8′′ 0o9′2′′

0.5 0o10′12′′ 0o4′44′′

0.6 0o5′50′′ —

in which the same notation is adopted as used by Gauss in his Intensitas vis magneticae, etc.
(Ann. 1833, Vol. XXVIII, p. 604)278,279 in the comparison of the magnetic observations.

According to the fundamental principle of electro-dynamics, we should be able to develop
the tangents of the angle of deflection v and v′ according to the diminishing odd powers of
the distance R, and we should have

tan v = aR−3 + bR−5

tan v′ =
1

2
aR−3 + cR−5 ,

where a, b and c are constants to be determined from the observations. If now in the present
instance we make

tan v = 0.000 3572R−3 + 0.000 002 755R−5

tan v′ = 0.000 1786R−3 − 0.000 001 886R−5 ,

we obtain the following Table of calculated deflections, and their difference from those found
by observation:

R v Difference v′ Difference
0.3 0o49′22′′ 0′′ 0o20′4′′ −1′′

0.4 0o20′7′′ +1′′ 0o8′58′′ +4′′

0.5 0o10′8′′ +4′′ 0o4′42′′ +2′′

0.6 0o5′49′′ +1′′ — —

Thus in this agreement of the calculated values with those obtained by observation, we
have a confirmation of one of the most universal and most important consequences of the
fundamental principle of electro-dynamics, viz. that the same laws apply to electro-dynamic
forces exerted at a distance as to magnetic forces.

In this application of the laws of magnetism to electro-dynamic observations, that case of
the latter where the centres of the two coils of the dynamometer coincide must be excluded.
Moreover, in this extension of the laws of magnetism to electro-dynamic observations, the

278[Note by HW:] Gauss’ Werke, Vol. V, p. 109.
279[Note by AKTA:] See footnote 97 on page 51.
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values of three constants must be deduced from the observations themselves, which is unnec-
essary when we have recourse to the fundamental principle of electro-dynamics itself, and
calculate directly from it the results which the observations should have yielded in accordance
with it. Hence from the fundamental principle of electro-dynamics —

• 1. In that case in which the straight line uniting the centre of the two coils coincides
with the axis of the bifilarly suspended coil,

when m designates the radius of the multiplying coil, n the radius of the bifilarly-suspended
coil, and a the distance of the centres of the two coils, and for brevity we make

m2

a2 + n2
= v2 ,

n2

a2 + n2
= w2 ,

4a2 + n2

16(a2 + n2)
= f ,

8a4 + 4a2n2 + n4

64(a2 + n2)2
= g ,

the electro-dynamic momentum of rotation which the multiplying coil exerts upon the bifilarly-
suspended coil, when a current of the intensity i passes through both coils, is determined with
sufficient accuracy to be

= −π
2

2
v3n2i2S ,

S designating the following series:

S = +

[

1

3
− w2

]

− 3

2

[

3

5
− w2 −

(

3− 7w2
)

f

]

v2

+
15

8

[

5

7
− w2 − 2

(

5− 9w2
)

f + 3
(

5− 11w2
)

g

]

v4

− 35

16

[

7

9
− w2 − 3

(

7− 11w2
)

f + 11
(

7− 13w2
)

g

]

v6

+
315

128

[

9

11
− w2 − 4

(

9− 13w2
)

f + 26
(

9− 15w2
)

g

]

v8

− etc.

If in this equation we substitute the values known from direct measurement, in millime-
tres,

m = 44.4 ,
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n = 55.8 ,

and successively

a = 300, 400, 500,

we obtain as the rotating momentum sought, the following three values to be multiplied by
π2i2:

− 1.454 4

− 0.654 7

− 0.345 2,

Moreover,

• 2. In that case where the right line uniting the centres of both coils is at right angles
to the axis of the bifilarly suspended coil,

m, n and a having the same signification, and

m2

a2 + n2
= v2 ,

a2

a2 + n2
= f ,

n2

a2 + n2
= 4gv2 ,

the rotatory momentum required is

= +πv3n2i2S ′

S ′ expressing the following series:

S ′ = +
1

3

− 3

2

[

1

5
− 10

3
fg

]

v2

+
15

8

[

1

7
+

2

5
(1− 14f)g + 42f 2g2

]

v4

− 35

16

[

1

9
+

3

7
(2− 18f)g − 54

5
(1− 11f)fg2 − 572f 3g3

]

v6

+
315

128

[

1

11
+

4

9
(3− 22f)g +

12

7

(

1− 22f + 143f 2
)

g2
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+
1144

5
(1− 10f)f 2g3 +

24310

3
f 4g4

]

v8

− etc.

If in this series we substitute for m and n the given values, and successively a =
300, 400, 500 and 600, we obtain as the rotating momentum required, the following values
to be multiplied by π2i2:

+ 3.562 5

+ 1.466 1

+ 0.742 0

+ 0.426 7 .

Lastly,

• 3. In that case where the centres of both coils coincide, when m designates the radius
of the multiplier, and n′ and n′′ the least and greatest radius of the bifilarly-suspended
coil, the rotatory momentum sought is

=
π2m3

n′′ − n′ i
2

[

1

3
log nat

n′′

n′ +
9

160

(

1

n′′2 − n′2

)

m2 − 225

14336

(

1

n′′4 − 1

n′4

)

m4

+
6125

884736

(

1

n′′6 − 1

n′6

)

m6 +
694575

184549376

(

1

n′′8 − 1

n′8

)

m8 + ...

]

.

If in this formula we substitute the values known from direct measurement in millimetres,

m = 44.4

n′ = 50.25

n′′ = 61.35,

we obtain as the rotatory momentum the following value to be multiplied by π2i2:

+ 442.714 .

This value suffers a reduction of about 1/29th when we take into consideration that all
the turns of the two coils do not lie in one plane, which in this case exerts greater influence
on account of their proximity than in the other cases. The above value thus becomes reduced
to

+ 427.45π2i2 .
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The numerical coefficients thus calculated should now be proportional to the observed
values; and when multiplied by π2i2, the intensity of the current i being expressed according
to the dimensions upon which the above measurements were based, should be equal.

In fact, when all the calculated numerical coefficients are multiplied by 53.06, and then
arranged according to the analogy of the observed values, we obtain the following Table of
the calculated values, and their difference from those found by observation:280

Distance North or south, Difference East or west, Difference
in mm 0o or 180o 90o or 270o

0 + 22 680.00 + 280.00 + 22 680.00 + 280.00
300 189.03 + 0.90 77.17 −0.06
400 77.79 −0.34 34.74 + 0.03
500 39.37 −0.10 18.31 −0.07
600 22.64 −0.18 — —

In this comparison of theory and experiment, the single factor 53.06 was deduced from
observations; and this was merely done because this factor could not be determined with
sufficient accuracy by direct measurements. The direct determination of this factor is based
upon the ascertainment of the proportion of that measure of the intensity of the current, upon
which the scale of the galvanometer used is based, to that absolute measure to which the
theoretical expression refers. The measurements necessary for ascertaining this proportion
could not all be effected with the requisite accuracy, because separate measures were not
taken for this purpose. In fact, however, the above factor was provisionally, as well as
circumstances permitted, determined by direct measurement, and found = 49.5. This result
also exhibits an agreement with that previously deduced from the observations, which under
the circumstances could not have been expected to be greater.

7.4 Observations Tending to Enlarge the Domain of

Electro-dynamic Investigations

7.4.1 A. Observation of Voltaic Induction

If the bifilarly-suspended coil of the dynamometer be made to oscillate whilst a current is
transmitted through it, or through the coil of the multiplier, or through both simultaneously,
this motion is inductive, and excites a current in the conductor, through which no current
was passing, or alters the current passing through this conductor. This mode of excitation
of the current is called voltaic induction.281 The inducing motion, i.e. the velocity of the
oscillating coil, is on each occasion diminished or checked by the antagonism of the currents
excited by the voltaic induction and those conducted through the coil. This check to the
vibrating coil effected by the voltaic induction may be accurately observed; and at the same
time the motion of the oscillating coil itself, which produces the voltaic induction, may be
accurately determined; and this twofold use of the dynamometer affords the data necessary
for the more accurate investigation of the laws of voltaic induction.

280[Note by AKTA:] The fourth column of the first line appears in the original German text as: Südl. od.

westl., namely, South or west. Probably the word Südl. should be a misprint. The correct expression should
be like in the English translation, namely, East or west. I also applied this correction here.
281[Note by AKTA:] See footnote 139 on page 96.
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The bifilarly-suspended coil closed in itself was made to oscillate to the greatest extent at
which the scale permitted observations to be made, and its oscillations from 0 were counted
until they became too minute for accurate observation. During the counting, the magnitude
of the arc of oscillation was measured from time to time. These experiments were first
made under the influence of voltaic induction, a current from three Grove’s elements being
conducted through the multiplying coil; the same experiments were next repeated, after the
removal of the elements, without voltaic induction:

With voltaic induction. Without voltaic induction.
Enumeration of Arcs of Enumeration of Arcs of
the oscillations oscillation the oscillations oscillation

0 764.10 0 650.80
9 679.14 14 601.43
18 604.05 25 564.90
35 484.15 52 485.28
47 414.60 82 409.62
57 365.50 109 353.08
74 292.27 134 306.70
85 253.30 163 261.08
103 200.80 189 226.33
118 165.56 212 198.68
130 141.37 232 178.26
143 119.33 254 157.98
157 100.49 284 134.17
179 75.59 309 116.30
196 60.58 328 105.25
210 50.08 369 83.68
— — 387 75.45

It is evident on comparison, that the diminution of the magnitude of the arc, which
without the influence of induction from one oscillation to another amounted on an average
to 1/180th, with the cooperation of the induction rose to 1/77th part.

When for the multiplying coil with the current transmitted through it, a magnet equiva-
lent in an electro-magnetic point of view is substituted, the diminution of the arc is found to
be equally great, i.e. the magnetic induction of this magnet is equal to the voltaic induction
of the current in the multiplier.

The velocity which the inducing motion must possess for the intensity of the induced
current to be equal to that of the inducing current, may also be deduced from these experi-
ments.

7.4.2 B. Determination of the Duration of the Momentary Cur-
rents, as also Its Application to Physiological Experiments

When the intensity of a continued constant current is to be determined, both the galvanome-
ter (the sine- or tangent-galvanometer)282 and the dynamometer may be used; but if the

282[Note by AKTA:] In German: Sinus- oder Tangenten-Bussole. This expression was translated as “sine-
or tangent-compass”, [Web52c, p. 506]. I replaced it by the more common expression, namely, sine- or
tangent-galvanometer”, see footnote 92 on page 48.
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current, the intensity of which is to be determined, is merely of momentary duration, obser-
vation made with either of these instruments is not sufficient, because the deflection observed
does not depend merely upon the intensity of the current, but also upon the duration itself.
It is therefore requisite, in experimentally investigating the intensity of the current, also to
determine its duration.

The two instruments, i.e. the galvanometer and the dynamometer, are complementary to
each other, so that when the same momentary current is transmitted through both, and the
deflection of both instruments thus produced is observed, both the duration and the intensity
of the momentary current can be determined from these two observations. This reciprocity
is based upon the circumstance that the observed deflection of both instruments depends in
the same manner upon the duration of the momentary current, i.e. it is proportional to it,
whilst it is not dependent in the same manner upon the intensity of the current, because the
deflection of the galvanometer is in proportion to the intensity of the current.

Let s and ς indicate the duration of the oscillations of the galvanometer and dynamome-
ter;

e′ and ε′ the deflection at which both instruments remain when the same constant current
of the intensity i′ is transmitted through them;

Whilst e and ε indicate the extent of the deflection which both instruments attain in
consequence of a momentary current of the duration Θ and of the intensity i; the following
equation then gives the duration Θ:

Θ =
1

π
· s

2

ς
· ε

′

e′2
· e

2

ε

and the following that of the intensity of the current i:

i =
ς

s
· e

′

ε′
· i′ · ε

e
.

s, ς, e′, ε′, i′, e and ε in these formulae are magnitudes which can be determined by obser-
vation.

This combination of the dynamometer with the galvanometer is of special importance in
physiology, to investigate accurately the excitation of the nerves by galvanic currents. For it
is found that nerves of sensation especially are quickly deadened by continued currents, and
hence that for such experiments momentary currents are frequently required to be used. But
the observed impressions of sense depend less upon the duration of the current than upon
its intensity; and it is essential to be acquainted with both.

7.4.3 C. Repetition of Ampère’s Fundamental Experiment with

Common Electricity and Measurement of the Duration of
the Electric Spark on the Discharge of a Leyden Jar

It is evident from the preceding remarks, that the action of a current upon the dynamometer
depends more upon the intensity of the current, to the square of which it is proportionate,
than upon the duration of the current, to which it is simply proportional. Hence it follows
that even a small quantity of electricity, when passed through the dynamometer within a
very short period, so that it forms a current of very short duration but very great intensity,
will produce a sensible effect. This is, in fact, the case when the small quantity of electricity
which can be collected in a Leyden jar or battery is transmitted during its discharge through
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the dynamometer. By this means it was found that Ampère’s fundamental experiment,
which had previously been made only with powerful galvanic batteries, could also be made
with common electricity.

When the same electricity, collected in Leyden jars, after having been transmitted through
the dynamometer, was also conducted through a galvanometer and the deflection thus pro-
duced in both instruments was measured, in accordance with the above rules, the duration
of the current, i.e. the duration of the electric spark on the discharge of the Leyden jar,
and at the same time the intensity of the current could be determined, admitting that the
current might be considered as uniform during its brief duration.

It is well known that in experiments of this kind the discharge of the Leyden jar is effected
by means of a wet string, to prevent its taking place through the air instead of through the
fine wires of the two instruments. In this manner a series of experiments was made: a battery
of eight jars being discharged through a wet hempen string, 7 millimetres in thickness and
of different lengths, the following results were obtained:

Length of the string. Duration of the spark.
Millimetres Seconds

2 000 0.085 1
1 000 0.034 5
500 0.018 7
250 0.009 5

Hence the duration of the spark was nearly in proportion to the length of the string; for
the observed duration of the spark is:

Seconds
0.081 6 + 0.003 5
0.040 8− 0.006 3
0.020 4− 0.001 7
0.010 2− 0.000 7

The first part of the duration of the spark is thus exactly in proportion to the length of
the string; but the second part is so small that it may be considered as arising from error of
observation, which was unavoidable.

It is thus evident that the result obtained by Prof. Wheatstone,283 according to which
the duration of the spark on discharge by simple metallic conductors is infinitely short in
comparison with that ascertained in the present case, is in direct accordance with this result.

7.4.4 D. Application of the Dynamometer to the Measurement of
Sonorous Vibrations

When a rapid alternation of positive and negative currents ensues in a conducting wire, the
continued motion of the electricity becomes converted into an oscillation. An oscillation of
this kind cannot however be observed by means of a galvanometer (for instance, a sine- or
tangent-galvanometer), because in this case the effects of the successive opposite oscillations
destroy each other.

283[Note by AKTA:] See footnote 169 on page 119.
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But the case is different with the dynamometer, in the two coils of which the direction
of the vibration always changes simultaneously, and in which the deflection observed is
in proportion to the square of the intensity of the current; for it is self-evident that the
simultaneous change of the direction in both coils can exert no influence upon the action,
because in the dynamometer a negative current transmitted through both coils produces a
deflection towards the same side as a positive current transmitted through both coils. The
occurrence of the deflection of the dynamometer to one side of the other does not, as in the
galvanometer, depend upon the direction of the transmitted current, but merely upon the
mode of connexion of the extremities of the wires of both coils.

But an electric vibration may be readily produced in a conducting wire by a magnetized
steel bar vibrating so as to produce a musical sound, when one portion of the conducting
wire, forming as it were the inducing coil, surrounds the free vibrating end of the bar, so
that the direction of the vibration is at right angles to the plane of the coils of the wire.
All vibrations of the bar on one side then produce positive currents in the wire, and all the
vibrations on the other side produce negative currents, which follow each other as rapidly as
the sonorous vibrations themselves.

When the ends of the wire of the inducing coil are united to the ends of that of the
dynamometer, a deflection of the latter during the vibration of the bar is observed, which
can be accurately measured. This deflection remains unaltered so long as the intensity of
the sonorous vibrations remains unaltered, but speedily diminishes when the intensity of
the sonorous vibrations diminishes; and when the amplitude of the sonorous vibrations has
fallen to a half, it then amounts to the fourth part only.

The dynamometer thus presents a means of estimating the intensity of sonorous vibra-
tions, which is of importance, because methods adapted to these measurements are still much
required.

In addition to the investigations which we have hitherto considered, and which are based
on the use of the dynamometer, there are others which will be subsequently treated of, when
some modifications in the construction of the instrument for special objects will also be more
accurately detailed.

7.5 On the Connexion of the Fundamental Principle of

Electro-dynamics with that of Electro-statics

The fundamental principle of electro-statics is, that when two electric (positive or negative)
masses, denoted by e and e′, are at a distance r from each other, the amount of the force
with which the two masses act reciprocally upon each other is expressed by

ee′

r2
,

and that repulsion or attraction occurs accordingly as this expression has a positive or
negative value.

On the other hand, the fundamental principle of electro-dynamics is as follows: When
two elements of a current, the lengths of which are α and α′ and the intensities i and i′,
and which are at the distance r from each other, so that the directions in which the positive
electricity in both elements moves, form with each other the angle ε, and with the connecting
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right line the angles Θ and Θ′, the magnitude of the force with which the elements of the
current reciprocally act upon each other is determined by the expression

−αα
′ii′

r2

(

cos ε− 3

2
cosΘ cosΘ′

)

and repulsion or attraction occurs according as this expression has a positive or negative
value. The expressions of the rotatory momentum exerted by one coil of the dynamometer
upon the other, developed at pages284 223 and 224, are all deduced from this fundamental
principle.

The former of the two fundamental principles mentioned refers to two electric masses
and their interaction, the latter to two elements of a current and their interaction. A more
intimate connexion between the two can only be attained by recurring, likewise in the case
of the elements of the current, to the consideration of the electric magnitudes existing in the
elements of the current, and their interaction.

Thus the next question is, what electric magnitudes are contained in the two elements
of a current, and upon what mutual relations of these masses their reciprocal actions may
depend.

If the mass of positive electricity in a portion of the conducting wire equal to a unit of
length be represented by e, and consequently the mass of the positive electricity contained in
the elements of the current, the length of which is = α, by αe, and if u indicates the velocity
with which the mass moves, the product eu expresses that mass of positive electricity which
in a unit of time passes through each section of the conducting wire, to which the intensity
of the current i must be considered as proportional;285 hence, when a expresses a constant
factor,

aeu = i .

If now αe represent the mass of positive electricity in the element of the current α, and
u its velocity, −αe represents the mass of negative electricity in the same element of the
current, and −u its velocity.

We have also, when

ae′u′ = i′ ,

α′e′ as the mass of positive electricity in the second element of the current α′, and u′ its
velocity, and lastly, −α′e′ as the mass of negative electricity, and −u′ its velocity. If now for
i and i′, in the expression of the force which one element of a current exerts upon another,
their values i = aeu, and i′ = ae′u′ are substituted, we then obtain for them

−αeα
′e′

r2
a2uu′

(

cos ε− 3

2
cosΘ cosΘ′

)

.

If now we first consider in this expression αeα′e′ as the product of the positive electric
masses αe and α′e′ in the two elements of the current, and uu′ as the product of their
velocities u and u′, and if we denote by r the variable distance of these two masses in
motion; and lastly, by s| and s

′
|, the length of a portion of each of the two conducting wires,

284[Note by AKTA:] Pages 229 and 230 of Weber’s Werke.
285[Note by AKTA:] According to the context of the discussion presented in this work, this velocity u

represents the motion of the electric mass e relative to the matter of the conducting wire.
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to which the elements of the current α and α′ just considered belong, estimated from a
definite point of origin and proceeding in the direction of the positive electricity, as far as
the element of the current under consideration, we then know that the cosines of the two
angles Θ and Θ′, which the two conducting wires in the situation of the elements of the
current mentioned form with the connecting right line r|, may be represented by the partial
differential coefficients of r| with respect to s| and s

′
|; thus

cosΘ =
dr|
ds|

, cosΘ′ = −
dr|
ds′|

,

we then have

cos ε = − r|
d2r|
ds|ds

′
|
−
dr|
ds|

dr|
ds′|

as the cosine of the angle ε which the directions of the two conducting wires form with
each other. Moreover, if the differential coefficients above mentioned be substituted for the
cosines of the three angles ε, Θ and Θ′, we have

−αeα
′e′

r|2
a2uu′

(

1

2

dr|
ds|

dr|
ds′|

− r|
d2r|
ds|ds

′
|

)

as the expression of the force with which one element of the current acts upon the other.
Secondly, if in the above expression, −αeα′e′ be considered as the product of the positive

electric mass αe of one element of the current α into the negative electric mass −α′e′ of
the other element of the current α′, and −uu′ as the product of their velocities u and −u′;
moreover, if the variable distance of these two moving masses be denoted by r|| and by s| and
s′|| the length of a portion of each of the two conducting wires, to which the elements of the
current under consideration belong, taken from a definite point of origin, and proceeding in
that direction in which, in the first the positive; in the second the negative electricity runs,
as far as the element of the current mentioned, we obtain in the same manner

cosΘ =
dr||
ds|

, cosΘ′ =
dr||
ds′||

, cos ε = r||
d2r||
ds|ds

′
||
+
dr||
ds|

dr||
ds′||

.

On substituting these values, we have the following expression for the force with which
one element of the current acts upon the other:

+
αeα′e′

r||2
a2uu′

(

1

2

dr||
ds|

dr||
ds′||

− r||
d2r||
ds|ds

′
||

)

.

If, thirdly, we consider in the original expression αeα′e′ as the product of the negative
electrical masses −αe and −α′e′ into the two elements of the current, and uu′ as the product
of their velocities −u and −u′ and r||| denote the variable distance of these two moving
masses, and lastly, s|| and s

′
|| denote the length of a portion of each of the two conducting

wires to which the elements of the current under consideration belong, calculated from a
definite point of origin, and proceeding in that direction in which the negative electricity
runs, as far as the element of the current under consideration; we have

cosΘ = −
dr|||
dr||

, cosΘ′ =
dr|||
ds′||

,
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cos ε = − r|||
d2r|||
ds||ds

′
||
−
dr|||
ds||

dr|||
ds′||

.

On substituting these values, we have a third expression for the force with which one
element of the current acts upon the other, namely,

−αeα
′e′

r|||2
a2uu′

(

1

2

dr|||
ds||

dr|||
ds′||

− r|||
d2r|||
ds||ds

′
||

)

.

In fine, if, fourthly, in the original expression we consider −αeα′e′ as the product of the
negative electric mass −αe of the element of the current α into the positive electric mass
α′e′ of the element of the current α′, and −uu′ as the product of their velocities −u and
u′; if, moreover, r|||| designate the variable distance of these two moving masses, and s|| and
s′|, the length of a portion of each of the two conducting wires to which the elements of the
current under consideration belong, calculated from a defined point of origin, proceeding in
that direction in which in the first the negative, in the second the positive electricity runs,
we have

cosΘ = −
dr||||
ds||

, cosΘ′ = −
dr||||
ds′|

,

cos ε = r||||
d2r||||
ds||ds

′
|
+
dr||||
ds||

dr||||
ds′|

.

If now these values be substituted, we have the fourth expression of the force with which
one element of the current acts upon the other, viz.

+
αeα′e′

r||||2
α2uu′

(

1

2

dr||||
ds||

dr||||
ds′|

− r||||
d2r||||
ds||ds

′
|

)

.

Now at that moment in which the electric masses alluded to occur in the two elements α
and α′, the distances r|, r||, r|||, r||||, have all the same value, which is expressed by r. Hence
the four expressions of the electro-dynamic force of the two elements of the current α and
α′ become converted into the following:

−αeα
′e′

r2
a2uu′

(

1

2

dr|
ds|

dr|
ds′|

− r
d2r|
ds|ds

′
|

)

, (1)

+
αeα′e′

r2
a2uu′

(

1

2

dr||
ds|

dr||
ds′|

− r
d2r||
ds|ds

′
|

)

, (2)

−αeα
′e′

r2
a2uu′

(

1

2

dr|||
ds||

dr|||
ds′||

− r
d2r|||
ds||ds

′
||

)

, (3)

+
αeα′e′

r2
a2uu′

(

1

2

dr||||
ds||

dr||||
ds′|

− r
d2r||||
ds||ds

′
|

)

, (4)

from which we can construct the fifth expression, viz. (5):
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−αeα
′e′

r2
a2

4
uu′

[

1

2

(

dr|
ds|

dr|
ds′|

−
dr||
ds|

dr||
ds′||

+
dr|||
ds||

dr|||
ds′||

−
dr||||
ds||

dr||||
ds′|

)

− r

(

d2r|
ds|ds

′
|
−

d2r||
ds|ds

′
||
+

d2r|||
ds||ds

′
||
−

d2r||||
ds||ds

′
|

)]

.

The four variable distances r|, r||, r|||, r||||, are now respectively dependent upon the
variable magnitudes of the paths s| and s′|, s| and s

′
||, s|| and s

′
||, s|| and s

′
|, through which

the moveable masses to which they refer have passed in the two given conducting wires,
and which consequently are again functions of the time t. On developing their complete
differentials, we have

dr| =
dr|
ds|

ds| +
dr|
ds′|

ds′| ,

dr|| =
dr||
ds|

ds| +
dr||
ds′||

ds′|| ,

dr||| =
dr|||
ds||

ds|| +
dr|||
ds′||

ds′|| ,

dr|||| =
dr||||
ds||

ds|| +
dr||||
ds′|

ds′| ;

moreover,

d2r| =
d2r|

ds|
2ds|

2 + 2
d2r|
ds|ds′|

ds|ds
′
| +

d2r|

ds′|
2ds

′
|
2
,

d2r|| =
d2r||

ds|
2 ds|

2 + 2
d2r||
ds|ds

′
||
ds|ds

′
|| +

d2r||

ds′||
2ds

′
||
2
,

d2r||| =
d2r|||

ds||
2 ds||

2 + 2
d2r|||
ds||ds′||

ds||ds
′
|| +

d2r|||

ds′||
2 ds

′
||
2
,

d2r|||| =
d2r||||

ds||
2 ds||

2 + 2
d2r||||
ds||ds

′
|
ds||ds

′
| +

d2r||||

ds′|
2 ds

′
|
2
.

If these differentials are respectively divided by the elements of the time dt, and their
squares dt2, and admitting that

ds|
dt

=
ds||
dt

= u ,
ds′|
dt

=
ds′||
dt

= u′ ,

we have

dr|
dt

= u
dr|
ds|

+ u′
dr|
ds′|

,

dr||
dt

= u
dr||
ds|

+ u′
dr||
ds′||

,
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dr|||
dt

= u
dr|||
ds||

+ u′
dr|||
ds′||

,

dr||||
dt

= u
dr||||
ds||

+ u′
dr||||
ds′|

;

moreover,

d2r|
dt2

= u2
d2r|

ds|
2 + 2uu′

d2r|
ds|ds

′
|
+ u′

2d
2r|

ds′|
2 ,

d2r||
dt2

= u2
d2r||

ds|
2 + 2uu′

d2r||
ds|ds

′
||
+ u′

2d
2r||

ds′||
2 ,

d2r|||
dt2

= u2
d2r|||

ds||
2 + 2uu′

d2r|||
ds||ds′||

+ u′
2d

2r|||

ds′||
2 ,

d2r||||
dt2

= u2
d2r||||

ds||
2 + 2uu′

d2r||||
ds||ds

′
|
+ u′

2d
2r||||

ds′|
2 .

From the four last equations we get immediately:

2uu′
d2r|
ds|ds

′
|
= +

d2r|
dt2

− u2
d2r|

ds|
2 − u′

2 d
2r|

ds′|
2 ,

−2uu′
d2r||
ds|ds

′
||
= −

d2r||
dt2

+ u2
d2r||

ds|
2 + u′

2d
2r||

ds′||
2 ,

2uu′
d2r|||
ds|ds

′
||
= +

d2r|||
dt2

− u2
d2r|||

ds||
2 − u′

2d
2r|||

ds′||
2 ,

−2uu′
d2r||||
ds||ds

′
|
= −

d2r||||
dt2

+ u2
d2r||||

ds||
2 + u′

2d
2r||||

ds′|
2 .

Now the differential coefficients

d2r|

ds|
2 ,

d2r||

ds|
2 ,

d2r|||

ds||
2 ,

d2r||||

ds||
2

have the same value, which is dependent merely upon the position and form of the first
conducting wire, and which we shall denote by d2r/ds2. This applies also to the differential
coefficients

d2r|

ds′|
2 ,

d2r||

ds′||
2 ,

d2r|||

ds′||
2 ,

d2r||||

ds′|
2 ,

all of which denote the same magnitudes, which are dependent merely upon the position and
form of the second conducting wire, and which for brevity we shall denote by d2r/ds′2. On
summation, bearing this in mind, we have
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2uu′

(

d2r|
ds|ds

′
|
−

d2r||
ds|ds

′
||
+

d2r|||
ds||ds

′
||
−

d2r||||
ds||ds

′
|

)

=
d2r|
dt2

−
d2r||
dt2

+
d2r|||
dt2

−
d2r||||
dt2

.

But from the first four equations, after they have been squared, we have286

2uu′
dr|
ds|

dr|
ds′|

= +
dr|

2

dt2
− u2

dr|
2

ds|
2 − u′

2 dr|
2

ds′|
2 ,

−2uu′
dr||
ds|

dr||
ds′||

= −
dr||

2

dt2
+ u2

dr||
2

ds|
2 + u′

2dr||
2

ds′||
2 ,

2uu′
dr|||
ds||

dr|||
ds′||

= +
dr|||

2

dt2
− u2

dr|||
2

ds||
2 − u′

2dr|||
2

ds′||
2 ,

−2uu′
dr||||
ds||

dr||||
ds′|

= −
dr||||

2

dt2
+ u2

dr||||
2

ds||
2 + u′

2dr||||
2

ds′|
2 .

Now the differential coefficients

dr|
2

ds|
2 ,

dr||
2

ds|
2 ,

dr|||
2

ds||
2 ,

dr||||
2

ds||
2

have also the same value, which shall be denoted by dr2/ds2, as have likewise

dr|
2

ds′|
2 ,

dr||
2

ds′||
2 ,

dr|||
2

ds′||
2 ,

dr||||
2

ds′|
2 ,

which we shall denote by dr2/ds′2.
On summation, keeping this in view, we have

2uu′

(

dr|
ds|

dr|
ds′|

−
dr||
ds|

dr||
ds′||

+
dr|||
ds||

dr|||
ds′||

−
dr||||
ds||

dr||||
dr′|

)

286[Note by AKTA:] The following four equations should be understood as:

2uu′
dr|
ds|

dr|
ds′|

= +

(

dr|
dt

)2

− u2
(

dr|
ds|

)2

− (u′)
2

(

dr|
ds′|

)2

,

−2uu′
dr||

ds|

dr||

ds′||
= −

(

dr||

dt

)2

+ u2
(

dr||

ds|

)2

+ (u′)
2

(

dr||

ds′||

)2

,

2uu′
dr|||

ds||

dr|||

ds′||
= +

(

dr|||

dt

)2

− u2
(

dr|||

ds||

)2

− (u′)
2

(

dr|||

ds′||

)2

,

−2uu′
dr||||

ds||

dr||||

ds′|
= −

(

dr||||

dt

)2

+ u2
(

dr||||

ds||

)2

+ (u′)
2

(

dr||||

ds′|

)2

.
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=
dr|

2

dt2
−
dr||

2

dt2
+
dr|||

2

dt2
−
dr||||

2

dt2
.

On substituting these values in the fifth expression found for the electro-dynamic force,
it becomes

−αeα
′e′

r2
a2

16

[(

dr|
2

dt2
−
dr||

2

dt2
+
dr|||

2

dt2
−
dr||||

2

dt2

)

− 2r

(

d2r|
dt2

−
d2r||
dt2

+
d2r|||
dt2

−
d2r||||
dt2

)]

,

an expression which may be resolved into the four following members:

−αeα
′e′

r|2
a2

16

(

dr|
2

dt2
− 2r|

d2r|
dt2

)

,

+
αeα′e′

r||2
a2

16

(

dr||
2

dt2
− 2r||

d2r||
dt2

)

,

−αeα
′e′

r|||2
a2

16

(

dr|||
2

dt2
− 2r|||

d2r|||
dt2

)

,

+
αeα′e′

r||||2
a2

16

(

dr||||
2

dt2
− 2r||||

d2r||||
dt2

)

.

Each of these four members refers exclusively to two of the four electric masses distin-
guished in the two elements of the current, viz. the first member to the two positive masses
αe and α′e′, the relative distance of which is r|, velocity dr|/dt, and acceleration d2r|/dt

2;
the second to the positive mass αe in the first, and to the negative mass −α′e′, in the second
element the relative distance of which is r||, velocity dr||/dt, and acceleration d2r||/dt

2, and so
on; and in fact all four are members of the masses to which they refer, the distance, velocity
and acceleration of which are composed in exactly the same manner.

Hence it is evident that if the entire expression of the electrodynamic force of two elements
of a current be considered as the sum of the forces, which each two of the four electric
masses they contain exert upon each other, this sum would be decomposed into its original
constituents, the four above members representing individually the four forces which the four
electric masses in the two elements exert in pairs upon each other.

Hence also the force with which any positive or negative mass E acts upon any other
positive or negative mass E ′, at the distance R, with a relative velocity of dR/dt, and
acceleration d2R/dt2, may be expressed by287

−a
2

16
· EE

′

R2

(

dR2

dt2
− 2R

d2R

dt2

)

;

287[Note by AKTA:] The following equation should be understood as

−a
2

16
· EE

′

R2

[

(

dR

dt

)2

− 2R
d2R

dt2

]

.
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for this fundamental principle is necessary and at the same time sufficient to allow of the de-
duction of Ampère’s electro-dynamic laws, which are confirmed by the above measurements.

However, this new fundamental principle of electro-dynamics is in its nature more general
than that formerly laid down by Ampère; for the latter refers merely to the special case, in
which four electric magnitudes are given at the same time, subject to the conditions premised
for invariable and undisturbed elements of the current, whilst such a limitation to the above
conditions does not occur in the former. This fundamental principle, consequently, admits
of application in those cases where the former is inapplicable; hence its greater utility.

If, lastly, the newly-discovered fundamental principle of electrodynamics be compared
with the fundamental principle of electro-statics mentioned at the commencement, we see
that each estimates a force which two electric masses exert upon each other; but that in the
cases hitherto considered, one of the two forces disappears each time, whence the other only
requires consideration. This occurs first in all cases which belong to electrostatics, because
here the force determined by the new principle of electro-dynamics always disappears; but
it also occurs, secondly, in all cases belonging to electro-dynamics which have yet come
under consideration, where relations are constantly pre-supposed to exist, in which all forces
estimated by the principle of electro-statics are mutually checked.

Thus the two principles are complementary to each other, and hence they may be com-
bined to form a general fundamental principle for the whole theory of electricity, which
comprises both electro-statics and electro-dynamics.

By the fundamental principle of electro-statics, a force

=
EE ′

R2

was found for two electric masses E and E ′ at the distance R; if this force be then added to
that yielded by the new principle of electrodynamics,

= −a
2

16
· EE

′

R2

(

dR2

dt2
− 2R

d2R

dt2

)

,

we obtain, as the general expression for the complete determination of the force which any
electric mass E exerts upon another E ′, whether at rest or in motion,288

EE ′

R2

(

1− a2

16
· dR

2

dt2
+
a2

8
· Rd

2R

dt2

)

.

For a definite magnitude assumed for the purpose of measuring the time, in which a = 4,
this expression becomes

EE ′

R2

(

1− dR2

dt2
+ 2R

d2R

dt2

)

.

Moreover, supposing that both R and dR/dt, are functions of t, consequently that dR/dt,
is to be regarded as a funcion of R, which we shall denote by [R], we may also say that the
potential of the mass E, in regard to the situation of the mass E ′, is

288[Note by AKTA:] The following equation should be understood as

EE′

R2

[

1− a2

16
·
(

dR

dt

)2

+
a2

8
· Rd

2R

dt2

]

.
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=
E

R

(

1− [R]2
)

;

for the partial differential coefficients of this expression, with respect to the three coordinate
x, y, z, yield the components of the decomposed accelerating force in the direction of the
three coordinate axes.

Lastly, if by the reduced relative velocity of the masses E and E ′, we understand that
relative velocity which these magnitudes, — the distance of which apart at the moment
supposed was R, the relative velocity dR/dt, and the acceleration d2R/dt2, if the latter were
constant, — would possess at that instant in which both, in accordance with this supposition,
met at one point, and if V denoted this reduced relative velocity, the above expression,

EE ′

R2

(

1− dR2

dt2
+ 2R

d2R

dt2

)

,

becomes converted into the following,

EE ′

R2

(

1− V 2
)

,

which may be verbally expressed as follows: This diminution arising from motion of the
force with which two electric masses would act upon each other when they are at rest, is in
proportion to the square of their reduced relative velocity.

Thus the expression given for the determination of the force which two electric masses
exert upon one another are now confirmed

1. As regards the entire domain of electro-statics;

2. As regards that domain of electro-dynamics the object of which is the consideration of
the forces of the elements of the current when invariable and undisturbed; hence

3. Its confirmation, as regards all that domain of electro-dynamics which is not limited to
the invariable and undisturbed state of the elements of the current, is all that remains
to be desired.

7.6 Theory of Voltaic Induction

It has already been mentioned that the principle of electrodynamics laid down by Ampère
refers merely to the special case, where four electric masses occur under the conditions
premised to exist where two invariable and undisturbed elements of a current are concerned.
Under conditions where these principles do not exist, the new fundamental principle only
can be applied for the à priori determination of the forces and phenomena; and it is exactly
in this way that the greater advantage of the new principle, arising from its more general
application, will be exhibited.

The case in which the principle of electro-dynamics laid down by Ampère is inapplicable,
thus occurs even when one element of a current is disturbed or its intensity varies; in addition
to which it may also happen, that instead of the other element of the current, one element
only of the conductor of a current may be present, without however any current being present
in it. In fact, we know from experience that currents are then excited or induced, and the
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phenomena of these induced currents are comprised under the name of voltaic induction;289

but none of these phenomena could be predicted or estimated à priori either from the
principle of eletro-statics or the principle of electro-dynamics laid down by Ampère. It will
now however be shown, that by means of the new fundamental principle as laid down here,
the laws for the à priori determination of all the phaenomena of voltaic induction may be
deduced. It is evident that the laws of voltaic induction deduced in this manner are correct,
so far only as we are in possession of definite observations.

For the purpose of this deduction the magnitudes concerned may be denoted as follows:
α and α′ denote the length of two elements, the former of which, α, is supposed to be at rest.
This supposition does not limit the generality of the consideration, because every movement
of the element α may be transferred to α′, by attributing the opposite direction to it in α′.
The four following electric masses are distinguished in these two elements, viz.

+αe , −αe , +α′e′ , −α′e′ .

The first of these masses +αe would move with velocity +u in the direction of the
quiescent element α, which forms the angle Θ with the right line drawn from α to α′. This
velocity during the element of time dt would alter by +du.

The second mass −αe would move, in accordance with the determinations relating to a
galvanic current, in the same direction as the velocity −u, i.e. backwards, and this velocity
during the element of time dt would alter by −du.

The third mass +α′e′ would move with the velocity +u′ in the direction of the element
α′, which with the right lines drawn from α to α′, and produced, forms the angle Θ′. This
velocity in the element of time dt would alter by +du′. Moreover, this electric mass would
itself share the motion of the element α′, which takes place with the velocity v in a direction
which forms the angle η with the prolonged right line drawn from α to α′, and is contained
in a plane lying in this right line, which with the plane running parallel with the element
α through the same right line, encloses the angle γ. The velocity v would alter during the
element of time dt by dv.

The fourth mass −α′e′ would move, in accordance with the determinations for a galvanic
current, in the direction of the element α′, with the velocity −u′ which during the element
of time dt alters by −du′; but, moreover, like the previous mass, would itself acquire the
velocity v of the element α′ in the direction already indicated.

The distances of the two former masses from the two latter, at the moment under con-
sideration, are equal to the distance r of the two elements themselves; but since they do not
remain the same, they may be denoted by r1, r2, r3, r4.

Lastly, if two planes pass through the right line drawn from α to α′, the one parallel to
α, the other to α′, ω would denote the angle enclosed by these two planes.

Then, on applying the new principle, we obtain as the sum of the forces which act upon
the positive and negative electricity in the element α′, i.e. as the force which moves the
element α′ itself, the following expression:

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)}

.

289[Note by AKTA:] See footnote 139 on page 96.
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But for the difference of these forces, upon which the induction depends, we have the following
expression:

−a
2

16
· αe · α

′e′

r2

{(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

− 2r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)}

.

Moreover, when, in addition to the motions of the electric masses in their conductors, the
motion common to them and their conductors is taken into account, we have the following
expression for the first differential coefficients:

dr1
dt

= −u cosΘ + u′ cosΘ′ + v cos η ,

dr2
dt

= +u cosΘ− u′ cosΘ′ + v cos η ,

dr3
dt

= −u cosΘ− u′ cosΘ′ + v cos η ,

dr4
dt

= +u cosΘ + u′ cosΘ′ + v cos η .

Hence

(

dr21
dt2

+
dr22
dt2

− dr23
dt2

− dr24
dt2

)

= −8uu′ cosΘ cosΘ′ ,

(

dr21
dt2

− dr22
dt2

+
dr23
dt2

− dr24
dt2

)

= −8uv cosΘ cos η .

We obtain the second differential coefficients when the variability of the velocity u, u′, and
v is also taken into account:

d2r1
dt2

= +u sinΘ
dΘ1

dt
− u′ sinΘ′dΘ

′
1

dt
− v sin η

dη1
dt

− cosΘ
du

dt
+ cosΘ′du

′

dt
+ cos η

dv

dt
,

d2r2
dt2

= −u sinΘdΘ2

dt
+ u′ sinΘ′dΘ

′
2

dt
− v sin η

dη2
dt

+ cosΘ
du

dt
− cosΘ′du

′

dt
+ cos η

dv

dt
,

d2r3
dt2

= +u sinΘ
dΘ3

dt
+ u′ sinΘ′dΘ

′
3

dt
− v sin η

dη3
dt

− cosΘ
du

dt
− cosΘ′du

′

dt
+ cos η

dv

dt
,
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d2r4
dt2

= −u sinΘdΘ4

dt
− u′ sin Θ′dΘ

′
4

dt
− v sin η

dη4
dt

+ cosΘ
du

dt
+ cosΘ′du

′

dt
+ cos η

dv

dt
.

Consequently it becomes

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= +u sinΘ

(

dΘ1

dt
− dΘ2

dt
− dΘ3

dt
− dΘ4

dt

)

− u′ sin Θ′
(

dΘ′
1

dt
− dΘ′

2

dt
+
dΘ′

3

dt
− dΘ′

4

dt

)

− v sin η

(

dη1
dt

+
dη2
dt

− dη3
dt

− dη4
dt

)

and

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= +u sinΘ

(

dΘ1

dt
+
dΘ2

dt
+
dΘ3

dt
+
dΘ4

dt

)

− u′ sin Θ′
(

dΘ′
1

dt
+
dΘ′

2

dt
− dΘ′

3

dt
− dΘ′

4

dt

)

− v sin η

(

dη1
dt

− dη2
dt

+
dη3
dt

− dη4
dt

)

− 4 cosΘ
du

dt
.

The differential coefficients dΘ1/dt, dΘ
′
1/dt, dη1/dt, etc. are easily developed according to

the well-known laws of trigonometry; and we thus obtain the following expressions, viz.

r1
dΘ1

dt
= +u sinΘ− u′ sinΘ′ cosω − v sin η cos γ ,

r1
dΘ′

1

dt
= −u′ sin Θ′ + u sinΘ cosω − v sin η cos(ω + γ) ,

r1
dη1
dt

= −v sin η + u sinΘ cos γ − u′ sin Θ′ cos(ω + γ) ,

r2
dΘ2

dt
= −u sinΘ + u′ sinΘ′ cosω − v sin η cos γ ,

r2
dΘ′

2

dt
= +u′ sinΘ′ − u sinΘ cosω − v sin η cos(ω + γ) ,

r2
dη2
dt

= −v sin η − u sinΘ cos γ + u′ sin Θ′ cos(ω + γ) ,

r3
dΘ3

dt
= +u sinΘ + u′ sinΘ′ cosω − v sin η cos γ ,

r3
dΘ′

3

dt
= +u′ sinΘ′ + u sinΘ cosω − v sin η cos(ω + γ) ,
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r3
dη3
dt

= −v sin η + u sinΘ cos γ + u′ sin Θ′ cos(ω + γ) ,

r4
dΘ4

dt
= −u sinΘ− u′ sinΘ′ cosω − v sin η cos γ ,

r4
dΘ′

4

dt
= −u′ sinΘ′ − u sinΘ cosω − v sin η cos(ω + γ) ,

r4
dη4
dt

= −v sin η − u sinΘ cos γ − u′ sinΘ′ cos(ω + γ) .

Now since for the moment under consideration r1 = r2 = r3 = r4 = r, we thus get

r

(

dΘ1

dt
− dΘ2

dt
− dΘ3

dt
+
dΘ4

dt

)

= −4u′ sin Θ′ cosω ,

r

(

dΘ1

dt
+
dΘ2

dt
+
dΘ3

dt
+
dΘ4

dt

)

= −4v sin η cos γ ;

again:

r

(

dΘ′
1

dt
− dΘ′

2

dt
+
dΘ′

3

dt
− dΘ′

4

dt

)

= +4u sinΘ cosω ,

r

(

dΘ′
1

dt
+
dΘ′

2

dt
− dΘ′

3

dt
− dΘ′

4

dt

)

= 0 ;

lastly:

r

(

dη1
dt

+
dη2
dt

− dη3
dt

− dη4
dt

)

= 0 ,

r

(

dη1
dt

− dη2
dt

+
dη3
dt

− dη4
dt

)

= +4u sinΘ cos γ .

These values by substitution become

r

(

d2r1
dt2

+
d2r2
dt2

− d2r3
dt2

− d2r4
dt2

)

= −8uu′ sinΘ sinΘ′ cosω ,

r

(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= −8uv sin Θ sin η cos γ − 4r cosΘ
du

dt
.

With these values, the sum of the forces which act upon the positive and negative electricity
in the element α′ is290

= −αα
′

r2
· aeu · ae′u′

(

sin Θ sinΘ′ cosω − 1

2
cosΘ cosΘ′

)

.

290[Note by AKTA:] Due to a misprint, the next equation appeared in the original text as:

= −αα
′

r2
· aeu · a′e′u′

(

sinΘ sinΘ′ cosω − 1

2
cosΘ cosΘ′η

)

.
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If in this equation the angle which the directions of the two elements α and α′ form with
each other be denoted by ε, and, as in page291 231, i and i′ be substituted for aeu and292

ae′u′, the above sum, with slight transposition, becomes

= −αα
′ii′

r2

(

cos ε− 3

2
cosΘ cosΘ′

)

,

the same expression at which Ampère arrived where the elements of the current are invari-
able and undisturbed, i.e. the electro-dynamic force acting upon the entire element α′ is
determined in the same manner when the conductors are in motion and the intensities of the
current variable, as when the intensities of the current remain invariable and the conduc-
tors undisturbed. Hence Ampère’s law is of general application in the determination of the
forces which act upon the entire element of the current when the position of the elements of
the current and the intensities of the current are given. The application of this law merely
requires that the intensities of the current when variable, as also the position when variable,
be given for each individual moment, and further, the intensities of the currents, including
that part added at each moment in consequence of induction.

But as regards the difference of the forces which act upon the positive and negative
electricity in the element α′, by which these two electricities are separated from each other,
and move in the conductor in opposite directions, this now becomes

= −αα
′

r2
· aeu · ae′v

(

sinΘ sin η cos γ − 1

2
cosΘ cos η

)

− 1

2

αα′

r
a2ee′ cosΘ

du

dt
,

or, because aeu = i and aedu = di,

= −αα
′

r2
i

(

sin Θ sin η cos γ − 1

2
cosΘ cos η

)

· ae′v − 1

2

αα′

r
ae′ cosΘ

di

dt
.

The force thus determined then tends to separate the positive and negative electricity in
the induced element α′ in the direction of the right line r. When the conductor is linear,
however, separation cannot occur in this direction, but only in the direction of the induced
linear element α′ itself, which forms the angle Θ′ with the right line r. By thus decomposing
the whole of the above separating force293 in this direction, i.e. by multiplying the above
value by cosΘ′, we find the force, which effects the true separation,

= −αα
′

r2
i

(

sinΘ sin η cos γ − 1

2
cosΘ cos η

)

· ae′v cosΘ′

− 1

2

αα′

r
ae′ cosΘ cosΘ′di

dt
.

This expression, divided by e′, gives the electromotive force exerted by the inducing
element α, upon the induced element α′, in the ordinary direction,

291[Note by AKTA:] Page 238 of Weber’s Werke.
292[Note by AKTA:] Due to a misprint, the next expression appeared as a′e′u′, while the correct expression

should be ae′u′.
293[Note by AKTA:] In German: Scheidungskraft. This expression can also be translated as “force of

separation” or “segregating force”, see footnote 235 on page 173.
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= −αα
′

r2
i

(

sinΘ sin η cos γ − 1

2
cosΘ cos η

)

· av cosΘ′

− 1

2

αα′

r
a cosΘ cosΘ′di

dt
.

This is therefore the general law of voltaic induction, as found by deduction from the
newly laid down fundamental principle of the theory of electricity.

If we now, first, take the case in which no alteration occurs, in the intensity of the current,
thus

di

dt
= 0 ,

we have the law of the induction exerted by a constant element of a current upon the element
of a conductor moved against it, i.e. the electromotive force becomes

= −αα
′

r2
i

(

sin Θ sin η cos γ − 1

2
cosΘ cos η

)

· av cosΘ′ ,

or, when ε denotes the angle which the direction of the inducing element of the current forms
with the direction in which the induced element itself is moved, by a transformation which
is readily made it becomes

= −αα
′

r2
i

(

cos ε− 3

2
cosΘ cos η

)

· av cosΘ′ .

The induced current is positive or negative according as this expression has a positive or
negative value; by a positive current being understood one, the positive electricity of which
moves in that direction of the element α′, which with the produced right line r forms the
angle Θ′.

Now if e.g. the elements α and α′ are parallel to each other, and if the direction in which
the latter is moved with the velocity v is contained within the plane of these two parallels,
and at right angles to their direction, we have, when α′ by its motion recedes from α,

Θ = Θ′ , cos η = sinΘ , cos ε = 0 ;

consequently the electromotive force is

= +
3

2

αα′

r2
i sinΘ cos2Θ · av .

This value is always positive, because we must consider Θ < 180o; and this positive value
here denotes an induced current of the same direction as the inducing current, in conformity
with that which has been found by experiment for this case.

Under the same conditions, with the difference merely that the element α′ by its motion
becomes approximated to the element α, we have

Θ = Θ′ , cos η = − sinΘ , cos ε = 0 ;

consequently the electromotive force becomes

= −3

2

αα′

r2
i sinΘ cos2Θ · av .
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The negative value of this force denotes an induced current, in the opposite direction to
that of the inducing current, also in conformity with that found by experiment for this case.

As is well known, voltaic induction may be produced in two essentially different ways; for
currents may be induced by constant and by variable currents. It is produced by constant
currents either when the conductor through which the current passes is moved towards that
conductor in which a current is about to be induced, or vice versa. It may be induced by
variable currents even when the conductor through which the variable current passes remains
undisturbed as regards that conductor in which a current is about to be induced.

Just as the particular law of the first kind of voltaic induction was at once found from
the general laws of voltaic induction deduced above by the conditional equation

di

dt
= 0 ,

so we also find the peculiar law of the latter kind of voltaic induction by the conditional
equation

v = 0 .

Thus if we take, secondly, the case in which no motion of the conductors as regards each
other takes place, or where v = 0, the law of the induction of a variable current upon that
element of a current which is not moved as regards it, or the value of the electromotive force
becomes

= −1

2

αα′

r
a cosΘ cosΘ′ · di

dt
.

Hence the induction, during the element of time dt, i.e. the product of this element of
time into the acting electromotive force, becomes

= −a
2
· αα

′

r
cosΘ cosΘ′ · di ,

consequently the induction for any period of time in which the intensity of the induced
current increases by i, whilst r, Θ and Θ′ remain unchanged, is

= −a
2
· αα

′

r
i cosΘ cosΘ′ .

The positive value of this expression denotes a current induced in the element α′ in the
direction of α′, which with the produced right line r forms the angle Θ′; the negative value
denotes an induced current in the opposite direction.

When the two elements α and α′ are parallel, and Θ = Θ′, the above expression, when the
intensity of the current is increasing, or where the value of i is positive, has a negative value,
i.e. when the intensity of the current is on the increase in α, a current is excited in α′ in an
opposite direction to that of the inducing current. The reverse applies when the intensity
of the current diminishes. Both results agree with well-known facts. The proportionality of
the induction to the variation of the intensity i of the inducing current is also in accordance
with experiment.

Lastly, if we return from the consideration of these two distinct kinds of voltaic induction
to the general case, where at the same time the intensity of the inducing current is variable
and the two conductors are in motion as regards each other, the electromotive force exerted
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by the variable element of a current upon the moved element of a conductor is found to be
simply as the sum of the electromotive forces which would occur:

1. If the element of the conductor were not in motion at the moment under consideration;

2. If the element of the conductor were in motion, but the intensity of the current of the
induced element did not alter at the moment under consideration.
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Chapter 8

[Weber, 1848b] On the Excitation and
Action of Diamagnetism according to
the Laws of Induced Currents

Wilhelm Weber294,295,296297

The repulsion of bismuth by a magnet, first observed by Brugmanns in 1778,298 had re-
mained almost unknown until Faraday discovered it anew and examined it more carefully,299

and thus laid the foundation for the new doctrine of diamagnetism, the further development
of which has become an important physical problem. To solve this question little can be
expected from the more delicate processes of measurement, owing to the feebleness of the
diamagnetic forces of bodies, even when very powerful electro-magnets act upon them, and
it is therefore the more to be expected that we shall become acquainted with the nature of
diamagnetism from the various modifications of its effects, the discovery of which is possi-
ble even in the case of the most feeble forces. The object of the following experiments is
to establish with greater certainty and precision, from some peculiar modifications of the
diamagnetic effects, a hypothesis already advanced by Faraday to explain the diamagnetic
phenomena, and then to deduce this hypothesis required for the explanation of diamagnetic
phenomena from known laws.

———————————————————-

Diamagnetic bismuth repels both the north and south pole of a magnet, and is repelled

294[Web48b] and [Web48c], with English translation in [Web52b] and [Web66c].
295Wilhelm Weber’s Notes are represented by [Note by WW:]; the Notes by H. Weber, the editor of the

third volume of Weber’s Werke, are represented by [Note by HW:]; the Notes by Richard Taylor, the editor
of the Scientific Memoirs where the English translation of this paper was published, are represented by [Note
by RT:]; while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
296[Note by HW:] According to the wording, these two treatises agree except for a final consideration, which

is printed in a supplement on page 266.
297[Note by AKTA:] H. Weber is referring here to [Web48b] and [Web48c]. The final consideration appears

only in the paper published in the Annalen der Physik und Chemie.
298[Note by AKTA:] Sebald Justinus Brugmans (1763-1819). He observed that bismuth was repelled by a

magnetic pole.
299[Note by AKTA:] [Far46b] and [Far46c].
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by them. This indifferent repulsion of opposite poles might appear of little importance if
the origin of the magnetic force were to be sought for in the unvarying metallic particles of
the bismuth itself; for we are accustomed to assume generally of the ponderable bodies that
they oppose without distinction equal resistance to the movements both of the two opposite
magnetic as well as of the two electric fluids. But the action at a distance might appear more
surprising than this indifferent effect, were we to admit that the diamagnetic force has its
origin in the unvarying metallic particles of the bismuth itself, because it would be the first
case in which the action of a ponderable upon an imponderable body at a distance had been
observed. It appears therefore above all things important to decide the question, whether
the source of the diamagnetic force acting at a distance is to be found in the unvarying
ponderable constituents of bodies, or whether it arises from an imponderable constituent,
and is connected with a certain distribution thereof.

To decide this question the experiment made by M. Reich300,301 is of the highest impor-
tance, according to which both north and south poles, when they act at the same time on
the same side of a piece of bismuth, by no means repel it with the sum of the forces which
they would individually exert, but only with the difference of these forces.

From this single experiment it might be concluded with the greatest probability, that the
origin of the diamagnetic force is not to be sought for in the never-changing metallic particles
of the bismuth, but in an imponderable constituent moving between them, which, on the
approach of the pole of a magnet, is displaced and distributed differently according to the
difference of this pole. The origin of the diamagnetic force is thus placed in the reciprocal
action of two imponderable bodies, instead of in the reciprocal action between ponderable
and imponderable bodies at a distance; and the similar effect upon opposite poles is then
explained by the different distribution of the imponderable constituent in the bismuth which
is produced by the antithesis of the poles. The simultaneous approach of two opposite
poles on the same side must however have for result, that the imponderable constituent in
the bismuth can neither assume the one or the other distribution upon which depends the
appearance of the diamagnetic force, when the disappearance of the diamagnetic force in
this case is self-evident.

But if it be now further asked, what is the nature of the imponderable constituent which
is distributed in such a different manner in the bismuth on the approach of a north or
south pole, and then with this distribution constantly re-acts with a repulsive force upon the
approached pole, there present themselves only the two magnetic fluids, or the two electric
fluids in the form of molecular currents. At all events, before any other assumption can
appear admissible, the impossibility of explaining the phenomena in question by the known
relations of the above imponderables must be shown.

From this it will be seen that Reich’s experiment may be employed to establish more
firmly a view already advanced by Faraday (Poggendorff’s Annalen, Vol. 70, p. 48, Articles
2429, 2430).302 Faraday there states that303

“2429. Theoretically, an explanation of the movements of the diamagnetic bodies,
and all the dynamic phenomena consequent upon the actions of magnets on them,
might be offered in the supposition that magnetic induction caused in them a contrary

300[Note by RT:] Philosophical Magazine for February 1849, p. 127.
301[Note by AKTA:] [Rei48] and [Rei49].
302[Note by RT:] Experimental Researches, Articles 2429, 2430.
303[Note by AKTA:] [Far46c, Articles 2429, 2430].
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state to that which it produced in magnetic matter; i.e., that if a particle of each
kind of matter were placed in the magnetic field both would become magnetic, and
each would have its axis parallel to the resultant of magnetic force passing through it;
but the particle of magnetic matter would have its north and south poles opposite, or
facing towards the contrary poles of the inducing magnet, whereas with the diamag-
netic particles the reverse would be the case; and hence would result approximation
in the one substance, recession in the other.

2430. Upon Ampère’s theory,304 this view would be equivalent to the supposition,
that as currents are induced in iron and magnetics parallel to those existing in the
inducing magnet or battery wire; so in bismuth, heavy glass and diamagnetic bodies,
the currents induced are in the contrary direction. This would make the currents in
diamagnetics the same in direction as those which are induced in diamagnetic con-
ductors at the commencement of the inducing current; and those in magnetic bodies
the same as those produced at the cessation of the same inducing current. No diffi-
culty would occur as respects non-conducting magnetic and diamagnetic substances,
because the hypothetical currents are supposed to exist not in the mass, but round
the particles of the matter.”

I shall now submit this ingenious view, first proposed by Faraday, and which has obtained
greater probability from Reich’s experiment, to a still more direct criticism by the following
experiments, which, in my opinion, scarcely leave a doubt of its correctness.

All the diamagnetic forces hitherto observed have exhibited a repulsive, never an attrac-
tive action; but from Faraday’s assumption, it follows that diamagnetic forces must likewise
occur which act attractively upon the pole of a magnet, and such cases may easily be deter-
mined more accurately and tested by experiment.

But for this purpose we must not observe the force which the diamagnetic bismuth
exerts upon that pole by which it has been rendered diamagnetic, but those forces which
this bismuth exerts upon other magnet-poles at a distance, and which have no influence
upon its diamagnetic condition.

Now if a piece of bismuth is placed in the plane which is bisected at right angles by a
small magnet-needle suspended by a silk thread and symmetrically magnetized, it is evident
that the poles of the small needle can have no influence, or at least no perceptible influence,
upon the diamagnetic state of the distant piece of bismuth, according to Reich’s experiment.
In fact it is easily seen that the needle experiences not the slightest deflection by the bismuth.

But if we arrange a powerful horse-shoe magnet of iron, so that the locality previously
occupied by the bismuth is situated in the free space between its two poles, and the magnet
is at the same time brought into such a position that its magnetic axis prolonged bisects
the needle, this powerful magnet will exert a very great momentum of rotation upon the
needle. But if this rotatory action exerted by the horse-shoe magnet is compensated by
another equally powerful but opposite rotatory action of a bar-magnet brought to bear upon
the needle from the opposite side, we can cause the needle to re-assume its original position
and its original vibratory power (sensitiveness), so that with respect to the needle it is just
the same as if no magnet acted upon it.

Now if, after these preliminary arrangements, the same piece of bismuth which previously
had no action upon the needle is brought to the same position as before, i.e. between the

304[Note by AKTA:] See footnote 10 on page 13.
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two poles of the horse-shoe magnet, a very perceptible and measurable effect is exhibited,
viz. a deflection of the needle, owing to one pole being repelled and the other attracted.

If the poles of the magnets, the effects of which upon the needle are compensated, be
reversed, and the experiment repeated, it is found that the same piece of bismuth brought to
the same spot and in the very same position, now produces exactly the opposite deflection.

If, lastly, a piece of iron is substituted for the bismuth, it is found that the deflection
produced by the latter is the opposite of that produced by the former.

These experiments may be variously modified, but in every case the force of the bismuth
must be observed upon the other magnet-poles than that which determines the diamagnetic
condition of the bismuth; they all confirm the assertion that bismuth constantly acts upon
such poles in an opposite manner to iron in its place, that it consequently repels where
iron attracts, and attracts where iron repels; in short, that at other magnet-poles than that
which diamagnetizes the bismuth, we as frequently observe attractive as repulsive forces of
the bismuth.305 ,306 For instance, if the one extremity of the bar of bismuth was brought near
the north end of a powerful magnet, while its other extremity was approached to the north
end of the magnet-needle, the latter was attracted; but if the same extremity of the bar of
bismuth was brought near to the south end of the powerful magnet, the north end of the
magnet-needle was repelled by the other extremity of the bar of bismuth approached to it.

We may hence regard Faraday’s supposition as proved, at least in so far as it places the
origin of the diamagnetic force, not in the unvarying metallic particles of the bismuth itself,
but in a variable distribution which occurs in the bismuth, and acts upon other magnets in
the same manner as a definite distribution of magnetic fluids.

In order, lastly, to remove every doubt as to its being really nothing else than the magnetic
fluids, or their equivalent, Ampère’s currents, which are subject to this variable distribution
in the bismuth, it may be required to be shown by experiment, not merely that the effects
connected with the presence of the diamagnetic and of a certain magnetic state are equal,
but likewise that the effects connected with the origin of the two states are so.

It is well known that, according to the laws of induction discovered by Faraday, the
motion of the magnetic fluids in a body, or the rotation of the molecular currents of Ampère,
is connected with an electrical action at a distance upon neighbouring conductors, owing to
which an electric current is excited or induced in the latter.

Consequently, if the two magnetic fluids, or their equivalents, Ampère’s currents, are
really present in the diamagnetic bodies, which are set in motion or rotated under the
influence of a powerful magnet, they must induce an electric current in a neighbouring
conductor at the moment this change takes place.

Now to observe this induced current itself, it is requisite that no other current be induced
in the same conductor, for instance by the powerful magnet to which the bar of bismuth is
approached. For this purpose therefore the force of this magnet must be retained unaltered
during the experiment, which presupposes in an electro-magnet a constant galvanic current.
But on the other hand, the conductor upon which the bismuth is to act must have a fixed
immutable position to that magnet, so that it encloses the space in an annular form, in which
the bar of bismuth has to be brought in order to produce in it the diamagnetic distribution by
the influence of the magnet. That, lastly, the current induced by the bismuth can be observed

305[Note by HW:] In the article published in the Annalen der Physik und Chemie, edited by J. C. Poggen-
dorff, Vol. 73, Leipzig, pp. 241-256, you will find the following addition: ...].
306[Note by AKTA:] This addition appears in the continuation of this paragraph, as the English translation

made by Francis was taken from the Annalen der Physik und Chemie, [Web48b], [Web52b] and [Web66c].
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by continuing the two extremities of the above annular conductor, and connecting them with
the ends of the multiplier of a sensitive galvanometer, requires no further explanation.

But with respect to the power of this current induced by the bar of bismuth, it may
readily be estimated à priori how small it will be if we consider how feeble the diamagnetic
forces are in comparison to the magnetic forces of the iron substituted for the bismuth. On
further examination, it results that the induced current must be so feeble that it can no
longer be observed if all the conditions do not act together most favourably for the object.

The following arrangements were made to attain this end, viz. to induce galvanic currents
in a neighbouring conductor by the diamagnetization of the bismuth, and thus actually to
observe the induced currents.

An iron nucleus 600 millimetres in length, coated several times with thick copper wire, was
used as electromagnet. To the circular terminal surface, 50 millimetres in diameter, of this
iron nucleus was fixed the annular conductor, which consisted of copper wire 300 metres long
and 2/3 millimetres thick, well spun with silk, and coiled upon wooden cylinders. The space
included in this annular conductor, in which the bar of bismuth was to be placed, was 140
millimetres in length and 15 millimetres in breadth; the bar of pure precipitated bismuth
was somewhat thinner. The extremities of the annular conductor were connected with a
commutator, as were also the extremities of the multiplier of a very sensitive galvanometer,
the magnet-needle of which was provided with a mirror in which the image of the distant
scale was observed by a telescope directed towards it. The galvanometer was moreover
provided with so effective a damper that it was scarcely possible to observe any vibration of
the needle.

Now whilst a very powerful and constant galvanic current passed through the thick wire
of the electro-magnet, the bar of bismuth was withdrawn from the annular conductor in
which it was situated, the commutator changed, and the bar of bismuth again inserted, the
commutator again changed, and the bar of bismuth withdrawn, etc. During this experiment,
continued for about 1 minute, the state of the galvanometer was read off at intervals of about
10 seconds.

A second series of experiments was now made, but with this difference, that the commu-
tator assumed that position on withdrawing the bar of bismuth which it had occupied in the
first series on inserting the bismuth, and vice versa.

The third series was an accurate repetition of the first, and so forth.

Previous to commencing each series the state of the galvanometer was observed, without
however waiting until the needle had attained a perfect state of rest. Each series was begun
by withdrawing the bismuth.

In the following Table the whole of the readings made on the galvanometer are arranged
together. The different series are distinguished by Roman numbers; the two states of the
commutator which occurred in the different series on the withdrawal of the bar of bismuth are
distinguished in the heading by A and B. The state of the galvanometer before commencing
each series is also noticed in the heading.
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I. A. II. B. III. A. IV. B. V. A. VI. B. VII. A.
512.3 517.4 515.9 517.2 517.0 523.0 524.7
513.3 513.0 519.5 517.1 518.2 522.0 526.0
514.1 512.9 520.7 517.5 518.7 519.0 528.0
514.5 512.8 519.1 516.2 525.0 518.5 530.0
515.3 514.2 519.2 516.7 525.1 519.0 530.7
515.6 515.2 518.3 517.7 523.0 521.0 530.0
516.7 516.0 515.5 — — — 528.5
514.92 514.02 518.72 517.04 522.00 519.90 528.87

Now if we compare the states of the galvanometer in the odd alternate series, where
the commutator occupied the position A on withdrawing the bismuth from the annular
conductor, with the mean value in the bottom-line, it is seen that the latter is always
somewhat greater. For instance, the mean values are:

1. Series 514.92 = 512.3 + 2.62 ,
3. Series 518.72 = 515.9 + 2.82 ,
5. Series 522.00 = 517.0 + 5.00 ,
7. Series 528.87 = 524.7 + 4.17 .

The same comparison yields for the even series, where the commutator occupied the
position B on removing the bismuth from the annular conductor, always a somewhat smaller
mean value.

2. Series 514.02 = 517.4− 3.38 ,
4. Series 517.04 = 517.2− 0.16 ,
6. Series 519.90 = 523.0− 3.10 .

It should be borne in mind that the state of the galvanometer observed before the com-
mencement of each series was not exactly that of rest. To avoid the uncertainty arising from
this, the reading made previous to each series may be wholly excluded from the calculation,
and the comparison restricted to the mean values of the several series. The comparison of
the mean value of the 2nd to the 6th series, with the mean from the immediately preceding
and succeeding series, then gives the following results:

2. Series 514.02 = 516.82− 2.80 ,
3. Series 518.72 = 515.53 + 3.19 ,
4. Series 517.04 = 520.36− 3.32 ,
5. Series 522.00 = 518.47 + 3.53 ,
6. Series 519.90 = 525.43− 5.53 .

We see then also from this, that in the uneven series, in which the commutator occupied
the position A while the bismuth was withdrawn from the annular conductor, the state of
the galvanometer was constantly somewhat higher, and that the reverse occurred in the even
series in which the commutator had the position B on the removal of the bar of bismuth.
The differences are somewhat greater for the last than for the first series, which is easily
explained from the change of induction being gradually accelerated.

Corresponding experiments were now made for the purpose of direct comparison, the
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bar of bismuth being exchanged for a slender bar of iron. The induced current was then so
powerful that no repetition could be made as in the case of the bismuth, and that only the
extreme end of the iron bar could be inserted in the annular conductor. And even then the
induced current was so powerful that the deviation of the needle could not be observed on
the galvanometer, but merely the direction, whether the position of the galvanometer rose,
i.e. went from lower to higher divisions of the scale, or the reverse.

First Experiment.

Position of the commutator A:

Increasing numbers on inserting the iron bar in the annular conductor.

Decreasing numbers on withdrawing the iron bar from the annular conductor.

Second Experiment.

Position of the commutator B:

Decreasing numbers on inserting the iron bar in the annular conductor.

Increasing numbers on removing the iron bar from the annular conductor.

The position of the commutator A, and the case in which the iron bar was removed from
the annular conductor, for which consequently a decrease in the deflection of the galvanometer
was observed, will serve to compare this experiment made with iron with the former relative
to bismuth. In the above experiments with the bismuth, this case corresponds to the uneven
series, for which a higher state of the galvanometer resulted with the induction continued
in the same direction. It results consequently that the bismuth induced a positive current
under the same conditions that iron induced a negative one, and vice versa.

Hence the induction of electric currents by the diamagnetization of the bismuth is proved;
and it is at the same time evident that the direction of these currents is constantly the reverse
of those induced by iron under the same circumstances, precisely as it should be if bismuth
contained magnetic fluids or their equivalent, Ampère’s currents, which are set in motion or
rotated under the influence of powerful magnets in exactly an opposite direction to that in
iron. The view advanced by Faraday appears therefore to be placed beyond all doubt.

Now although a rule has been found according to which the variable diamagnetic condi-
tions of bodies are determined for all cases in such a manner that the collective effects appear
as a necessary consequence according to magnetic and electro-dynamic laws, the cause of
this rule remains still unknown and unexplained according to magnetic and electro-dynamics
laws. For if magnetic fluids are really contained in the diamagnetic bodies, on the approach
of a magnet-pole, the one fluid must be attracted, the other repelled; and the direction of the
separation of the two fluids is, according to this, necessarily determined by magnetic laws.
But this direction is exactly the reverse of that stated in the above rule. Exactly the same,
however, obtains upon the other assumption, which presupposes the existence of Ampère’s
molecular currents in diamagnetic bodies, instead of the magnetic fluids, which on the ap-
proach of a pole of a magnet should be rotated in a direction determined by electro-magnetic
laws. But this rotation is exactly the reverse of that indicated by the above rule.

There exists consequently a contradiction between the above rule of excitation and the
laws of the activity of the diamagnetic condition. Until this contradiction is removed, all
the diamagnetic conditions of bodies continue to form a group of isolated facts without any
connection with other phenomena, just as those of rotation-magnetism formed a similar
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group until Faraday gave the key to their solution by his discovery of induction.

In the preceding observations which referred to the effects, it was indifferent whether
separate magnetic fluids or Ampère’s molecular currents of the same direction constitute
the excited diamagnetic state of bodies.307,308 This is no longer the case in the following
considerations which relate to the causes, i.e. to the forces exciting the diamagnetic state
of bodies. For if it were a certain distribution of the magnetic fluids which constituted
the diamagnetic condition of bodies, no account, as above shown, could be given of the
forces producing them, at least this distribution could not be explained from the known
magnetic forces which act upon these fluids. But the case is different if the diamagnetic
condition of bodies is constituted by molecular currents of like direction; for a system of
molecular currents of like direction can obtain in a two-fold manner. In the first place, it
is possible that the molecular currents existed previously in the bodies, and that only one
force acted upon these already existing currents which communicated the same direction to
them; but, secondly, it is also possible that the currents of like direction, which form the
diamagnetic condition of bodies, did not previously exist, but first originated or were induced
on diamagnetizing the body. Now if one of these two possible cases falls to the ground for
the same reasons as that of the above considered distribution of magnetic fluids, the other
possible case for the molecular currents still remains, according to which they have been
produced by induction.

Hitherto it has never been a question of induced molecular currents, but solely of fixed
invariable molecular currents, according to Ampère’s definition, to whom indeed the origin of
currents by induction was unknown. But it is evident if the existence of molecular currents
be admitted, we must further allow that their intensity may be increased or diminished,
and that even new currents of this kind may be produced by the very forces which produce
currents in larger circuits.

If we go back to induction in order to explain diamagnetism, it might at first sight be
doubted whether it is really necessary to admit induced molecular currents for this purpose,
or whether the currents induced in large circuits are not of themselves sufficient. These cur-
rents would, it is true, be able to produce all diamagnetic phenomena if they were permanent;
but as these currents, which are subject to Ohm’s laws,309 are not permanent, but instantly
disappear with the inducing force, and can only be maintained by continued induction, they
can for this reason alone not serve to explain diamagnetism.

But if the rapid disappearance of these currents is the sole reason of its being impossible
to deduce thence the diamagnetic condition of bodies, there appears to be no reason why the
persistent diamagnetic state of bodies should not be ascribed to induced molecular currents,
as these must behave in all other respects like those currents, and differ only in possessing
that permanency which is wanting in the others. For the difference between those currents
which move through conductors in large circuits and these molecular currents, consists solely
in the circumstance that the circulating electricity of the former is so quickly deprived of its
active force in passing to the molecules of the conductor, that it would come to rest in an
immeasurably small time if the loss it sustained were not constantly replaced by continuous

307[Note by HW:] The following is replaced in the article published in the Annalen der Phykik und Chemie,
edited by J. C. Poggendorff, Vol. 73, pp. 241-256, with the addendum printed at the end of this paper.
308[Note by AKTA:] The sequence of this work in English follows the final version published by Weber,

as the English translation made by Francis was taken from the Annalen der Physik und Chemie, [Web48b],
[Web52b] and [Web66c].
309[Note by AKTA:] See footnote 99 on page 53.
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electro-motive forces, whence it results that currents of this kind are, according to the laws
of Ohm, constantly proportional to the existing electro-motive force, and instantly disappear
with the electro-motive force. The reverse applies to the molecular currents which do not
pass through a conductor from molecule to molecule, but circulate around a single molecule,
to which consequently the above reason, deprivation of their active force, does not apply.
These currents therefore persist of equal intensity without any electro-motive force.

Now admitting an inducing force which acts upon the electricity of a conductor, the latter
is set in motion, and this motion distributes itself according to laws in proportion to the
capacity for conduction between all the paths which the conductor presents; consequently
a portion of the motion must be likewise take its course around the individual molecules of
the conductor, and form induced molecular currents, which because they find no resistance
in their course around the molecules, by which they might be retarded, must continue in
their full strength until, in consequence of a new opposite induction, other induced molecular
currents are added which neutralize the previous ones.

If therefore, with Ampère, we admit molecular currents in the doctrine of electro-mag-
netism, we must at present, as a necessary consequence, after the discovery of induction,
adopt induced molecular currents in the doctrine of magneto-electricity, and must ascribe
permanence to all, whether they have always existed or been first produced by induction.
Assuming this, it results that all bodies in which diamagnetic effects have been observed,
must have been acted upon by forces which must have induced molecular currents, and
indeed such as produce the effects designated by the name of diamagnetic.

The latter follows from the fact, that a magnetic force tends to give such a direction to an
existing current that its course is exactly opposed to that of a current induced by the increase
of that magnetic force. Consequently, if this induced current is a molecular current which is
persistent, it will likewise have permanently the opposite effects of another molecular current
which existed (for instance in iron) independently of the increase of that magnetic force, but
has acquired its present direction by means of that force. The opposite behaviour of the
diamagnetized bismuth and of the magnetized iron follows according to this from known
laws. The essential difference between bismuth and iron would then be this, that molecular
currents, whose direction however is not alterable, exist in iron independently of any external
excitation, but subject to the influence of external forces, which is not the case in bismuth.
However, bismuth and iron may in so far be rendered equivalent as a decreasing or increasing
magnetic force induces in both fresh persistent molecular currents, which however must be
much weaker in the iron than those existing in it already, independently of such induction.
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Chapter 9

Editor’s Introduction to Kirchhoff’s
1849 Paper on a Deduction of Ohm’s
Laws

A. K. T. Assis310

Here I present the English translation of Gustav Kirchhoff’s 1849 paper on a deduction
of Ohm’s laws in connexion with the theory of electrostatics.311 Ohm had identified elec-
troscopic force with volume-density of electric charge. Moreover, he had assumed that free
electricity in a conductor was distributed uniformly throughout the volume of the conductor
not only when the charges were at rest, but also when moving with constant velocity in the
case of steady currents. The present paper has two main relevant aspects. (I) Kirchhoff was
able to deduce Ohm’s laws from principles which were in agreement with the theory of elec-
trostatics. Kirchhoff showed, in particular, that free electricity can only exist at the surface
of the conductor not only when electricity is at rest, but also when flowing steadily in closed
circuits. (II) Moreover, Kirchhoff identified Ohm’s electroscopic force with the electrostatic
potential.312

310Homepage: www.ifi.unicamp.br/~assis
311[Kir49b] with English translation in [Kir50] and French translation in [Kir54].
312[Whi73, pp. 90-93 and 224-226].
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Chapter 10

[Kirchhoff, 1849] On a Deduction of
Ohm’s Laws, in Connexion with the
Theory of Electrostatics

Gustav Kirchhoff313,314

In a deduction of his laws of galvanic currents, Ohm set out with certain assumptions
regarding electricity which are not in conformity with those it has been necessary to make
in order to explain electrostatic phenomena;315 he assumes that the electricity in a conduc-
tor is at rest when it is distributed throughout the latter in a state of uniform [volume]
density. Now although it must always appear desirable to determine the laws to which elec-
trical currents are subject, by considerations connected with the theory of electrostatics, this
becomes absolutely requisite to enable us to produce a satisfactory theory of experiments,
in which both electricity in motion and electricity at rest are concerned, — experiments
similar to those made by M. Kohlrausch upon the closed circuit with the condenser and
electrometer.316 ,317 My present object is to show how Ohm’s formulas may be deduced from
the electrostatic laws of the mutual repulsion of electrical atoms, when certain assumptions
referring to questions in the theory of electrostatics, which have remained perfectly open,
are brought to bear.

When electricity is communicated to a conductor, it will assume a state of equilibrium,
when the forces exerted by the free electricity upon an electric atom existing in any part of
the interior of a conductor mutually neutralize each other. This occurs when the potential
of the total amount of free electricity in relation to a point within the conductor remains
constant. Theory shows us that this can only be the case when the free electricity has become
arranged in a particular manner upon the surface of the conductor.

When two conductors of different kinds, as a piece of copper and a piece of zinc, which
separately contained no free electricity, are brought into contact with each other, one con-
ductor becomes positively, while the other becomes negatively electrical. The electricity

313[Kir49b] with English translation in [Kir50] and French translation in [Kir54].
314Gustav Kirchhoff’s Notes are represented by [Note by GK:], while the Notes by A. K. T. Assis are

represented by [Note by AKTA:].
315[Note by AKTA:] See footnote 99 on page 53.
316[Note by GK:] Poggendorff’s Annalen, vol. lxxviii, p. 1.
317[Note by AKTA:] Rudolf Hermann Arndt Kohlrausch (1809-1858). See [Koh49].
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excited at the point of contact soon assumes a state of equilibrium; in it the potential of the
total amount of free electricity must necessarily remain constant with regard to all points
of each of the two conductors: hence it follows that free electricity cannot exist within the
conductor, and that it must be situated solely upon its surface; one portion of the electricity
will remain at the surface of contact of the two conductors, whilst another covers its free
surface.

The potential of all the free electricity is constant with regard to all parts of each of
the conductors: its value, however, will be different in the case of the first conductor from
that of the second; for theory teaches us, that if its value were the same in both conductors,
there should be no free electricity present, inasmuch as the sum of all the free electricity
is = 0. Now as regards the difference between the two values of the potential in the two
conductors, this might depend upon the nature of the material of which the two conductors
were composed, and their form. I shall assume that it is independent of the latter, and
is that magnitude which is known as the tension of the two bodies.318 Let u1 denote the
potential of the entire amount of free electricity in regard to a point in the first conductor,
and u2 the same in regard to a point of the second conductor; both u1 and u2 must then be
constant; if the U1,2 denote the tension of the two bodies, we must have

u1 − u2 = U1,2 .

If we imagine several conductors, say three, so placed in contact that the first conductor
touches the second, and this the third conductor, the electricity in them may always assume
a state of equilibrium. If we again denote the potential of the total amount of free electricity
in any point of the first conductor by u1, for one in the second by u2, and for one in the
third by u3, and further the tension between one and two by U1,2, that between two and
three by U2,3, it is essential to the existence of a state of equilibrium that each of the three
magnitudes, u1, u2, and u3 be constant, and that the equations

u1 − u2 = U1,2

u2 − u3 = U2,3

be satisfied. But if we assume that the conductors 1, 2 and 3 have been so placed in contact
that each of them comes into contact with the two others, electric equilibrium cannot possibly
always exist in them. Should equilibrium exist, each of the magnitudes u1, u2, and u3 must
be constant, and the equations

u1 − u2 = U1,2

u2 − u3 = U2,3

u3 − u1 = U3,1

must be satisfied. These equations, on addition, produce

0 = U1,2 + U2,3 + U3,1 ;

318[Note by AKTA:] Kirchhoff is here identifying the difference of the two values of the electrostatic potential
in the two conductors as the tension between them.
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thence the tensions of the three conductors must satisfy this condition to allow of the possi-
bility of electric equilibrium; the condition is satisfied when the three conductors belong to
the so-called tension series.

We have next to examine what will occur when this condition is not satisfied. At a
particular moment the distribution of free electricity in the system will be a certain one; I
leave it undetermined whether this free electricity exists only at the surface of the conductor,
or whether it has penetrated into its interior. Let its potential in regard to any point of one
of the conductors be u; this u is not constant, but a function of the coordinates of the point
to which it relates; hence the forces which are exerted by the free electricity upon a particle
of electricity existing at any spot within the conductor will not retain a state of equilibrium,
but produce a definite resultant. Let us imagine the existence of an element of space, v,
within the conductor, and let us denote the above resultant for any point in v by R. If v
contains no free electricity, the neutral electric fluid contained in it becomes decomposed;
the positive electricity will be moved in the direction of R, the negative in the opposite
direction; the quantities of positive and negative electricity excited in the element v, and
also their velocities, must therefore be the same.319 I shall assume that the quantity of either
fluid, which is moved in a unit of time through a section of v, perpendicular to the direction
of R, and the magnitude of which may be denoted by dw, is = dwkR, in which k denotes
the conducting power of the substance. To determine what takes place when v contains
free electricity, I shall assume that no motion of the electric fluids can occur in a conductor,
except when equal quantities of the two electricities pass in opposite directions through each
surface-element of it simultaneously. Hence it follows, even when v contains free electricity,
that as much positive electricity passes in a unit of time through dw in the direction of R,
as negative electricity in the opposite direction. As regards the quantity of the electricities
flowing through dw, I assume that it is again = dwkR.

If to these assumptions, most of which have been already put forth by Weber in his
electrodynamic measurements,320 we further assume that the difference in the values of the
potential of the total amount of free electricity in the case of two points lying in immediate
proximity to each other on the proximal and distal sides of the surface of contact of two
conductors remains the same, whether a current flows through the conductor, or the elec-
tricity is at rest in them; we arrive, on the supposition that the electric condition of the
system has become stationary, at the same equations for the potential of the free electricity
as those given by Ohm’s expression of the electroscopic force,321 i.e. the [volume] density of
the electricity.

In fact, if we denote the normal of the element dw, which has the direction of R, by N ,
then322

319[Note by AKTA:] Kirchhoff is here assuming implicitly that the positive and negative particles have the
same mass. If they had different masses, the acquired velocities after a certain amount of time t would have
different magnitudes due to an application of forces of the same magnitude and opposite directions acting
in both of them.
320[Note by AKTA:] In German: elektrodynamischen Maassbestimmungen. Kirchhoff is referring to W. E.

Weber (1804-1891) and his First major Memoir on Electrodynamic Measurements, see Chapter 5.
321[Note by AKTA:] In German: die aus der Ohm’schen Vorstellung für die elektroskopisch Kraft. This

text was translated as, [Kir50, p. 466]: as those given by Ohm’s expression of the electric force. I preferred
to translate “elektroskopisch Kraft” as “electroscopic force” instead of “electric force”.
322[Note by AKTA:] In German: In der That, nennen wir die Normale des Elementes dw, die die Richtung

von R hat, N , so ist. This text was translated as, [Kir50, p. 466]: In fact, if we denote the normal of the

element by dw, that having the direction of R by N , then. Instead of this translation, I preferred the one
presented in this work.
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R =
du

dN
,

hence the quantity of positive or negative electricity flowing through dw in a unit of time, is

= −kdw du

dN
.

The same expression is obtained for this quantity by Ohm’s method, if u be used to denote
the electroscopic force.323,324 But we may conclude from this expression, without entering
into the signification of u, that when the condition of the system has become stationary, u
must satisfy the differential equation

d2u

dx2
+
d2u

dy2
+
d2u

dz2
= 0 ;

and for each point of the free surfaces of the conductor, the boundary condition325

du

dN
= 0 ;

and further, that the equation

k
du

dN
+ k1

du1
dN

= 0 ;

applies in the case of every point of the surfaces of contact of two bodies.
To these conditions, both as regards Ohm’s proposition and those we have enumerated,

must be added, that in the case of every point of the same surface of contact, u− u1 = the
tension of the two bodies. Thus the same equations are obtained for the magnitude u by
both propositions. As regards the currents which are determined by the differential quotients
of these magnitudes, we consequently obtain the same results from whichever we start. But
different results are obtained in regard to the distribution of free electricity in the circuit.
According to Ohm, the value of u at every part of the system directly gives the [volume]
density of the electricity, which is not the case in the view we have developed, from which,
on the contrary, it follows that even in the closed circuit free electricity can only exist at the
surface of the conductor. Thus as u within one of the conductors satisfies the equation

d2u

dx2
+
d2u

dy2
+
d2u

dz2
= 0 ,

u must be a potential of masses which are situated externally to this conductor. But u is
a potential of all the free electricity; hence no part can be situated in the interior of any
conductor.

The considerations we have laid down hold good whatever the number, the form, and
the arrangement of the conductors may be which are placed in contact; they also hold good

323[Note by GK:] Poggendorff’s Annalen, vol. lxxv, p. 191. We have used the word tension here to denote
Ohm’s electroscopic force.
324[Note by AKTA:] See [Kir48, p. 191]. Kirchhoff is here identifying Ohm’s electroscopic force with the

electrostatic potential u.
325[Note by AKTA:] In German: der Gränzbedingung. This text was translated as, [Kir50, p. 466]: the

limitary condition. I preferred to translate “Gränzbedingung” as “boundary condition” instead of “limitary
condition”.
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in that case in which one plate of a condenser is placed in contact with a point of a closed
circuit, and hence afford the theory of experiments similar to those of M. Kohlrausch. The
results which they yield agree perfectly with those of this experiment.

The considerations we have laid down are based upon the electrostatic law of the action
of electric particles. Neither Ampère’s electrodynamic phenomena,326 nor the phenomena
of induction, can be explained by this law. Weber has discovered a more general law, by
which he has succeeded in explaining these phenomena;327 a law, in the expression of which
the relative velocity of the particles, whose action upon each other is under consideration,
is introduced, and which passes into that of electrostatics, when this velocity disappears. In
bringing the various fields of the theory of electricity under a single point of view, we must
therefore aim at deducing the laws of the currents in the closed circuit fromWeber’s law. This
deduction appears to be difficult; still it is easy to prove, à posteriori, that the idea regarding
the currents, to which the admission of the electrostatic law has led, is also in conformity
with Weber’s law, when a certain hypothesis is called in aid, viz. that hypothesis, according
to which, on calculating the force which a separation of the two electricities produces in the
element of space v of one of the conductors, the electricities in v must be regarded as at
rest. There is nothing opposed to this view, when we bear in mind, that the motion of the
electricity in one conductor only passes from molecule to molecule; so that every particle of
electricity finds a point of rest in a molecule which it reaches. Adopting this view, it may
readily be granted that the quantity of electricity which is transferred from one molecule
to a neighbouring one is only occasioned by the forces which are exerted upon the particles
of electricity, whilst they are still in a state of rest in the former particle, but not by the
forces, which act upon it, whilst they are passing to the following molecule. As regards
Weber’s theory of induction, it is unimportant whether this assumption is made or not. If
it be made, and the currents in the circuit be regarded generally as in accordance with the
view of the electrostatic law, it is a matter of indifference in regard to the magnitude and
the direction of the force which tends to separate the electricities in the element v, and
therefore in regard to the electromotive force,328 as Weber calls it, whether we start from the
eletrostatic or Weber’s law. The difference which might possibly occur must therefore arise
from the forces exerted by the electricities flowing in the other parts of the system; and these
forces, according to what Weber has pointed out, do not contribute to this electromotive
force, inasmuch as the currents are constant, and convey equal quantities of both electricities
with the same velocity in opposite directions.

326[Note by AKTA:] See footnote 10 on page 13.
327[Note by AKTA:] See Chapter 5.
328[Note by AKTA:] In German: elektromotorische Kraft. This text was translated as, [Kir50, p. 468]:

electro-motor force. I preferred to translate “elektromotorische Kraft” as “electromotive force”.

265



266



Chapter 11

[Weber, 1851] On the Measurement of
Electric Resistance according to an
Absolute Standard

Wilhelm Weber329 ,330,331

11.1 Explanation of the Absolute Unit of Measure for

Electric Resistances

If there are measures for time and space, a special fundamental measure for velocity is not
necessary;332 and in like manner no special fundamental measure for electric resistance is
needed if there are measures for electromotive force and for intensity of the current; for then
that resistance can be taken as unit of measure, which a closed conductor possesses in which
the unit of measure of electromotive force produces the unit of measure of current intensity.
Upon this depends the reduction of the measurements of electric resistance to an absolute
standard.

It might be thought that this reduction would be more simply effected by reverting to the
spatial dimensions, length and cross-sectional area of the galvanic conductor, and adhering to
that metal (copper) which is best fitted and is most frequently used for such conductors.333

329[Web51] with English translation in [Web61].
330Wilhelm Weber’s Notes are represented by [Note by WW:]; the Notes by H. Weber, the editor of the third

volume of Weber’s Werke, are represented by [Note by HW:]; the Notes by the Editors of the Philosophical

Magazine (namely, Sir David Brewster, Sir Robert Kane, William Francis and John Tyndall) which published
originally this English translation are represented by [Note by EPM:]; while the Notes by A. K. T. Assis are
represented by [Note by AKTA:].
331[Note by EPM:] Translated from Poggendorff’s Annalen, vol. lxxxii, p. 337, by Dr. E. Atkinson.

[From the great scientific and practical importance which the determination of electric resistance has of late
acquired, it has been thought advisable to give a translation of Weber’s original paper published in 1851,
containing the method of referring these resistances to an absolute standard. — Eds.]
332[Note by AKTA:] In German: “Wie für die Geschwindigkeit kein eigenes Grundmaass aufgestellt zu

werden braucht, wenn Raum- und Zeitmaass gegeben sind, ...” This text can also be translated as: “If there
are fundamental units for time and space, a special fundamental unit for velocity is not necessary, ...”
333[Note by AKTA:] In German: “Man könnte glauben, dass sich diese Zurückführung noch einfacher

ausführen liesse, wenn man auf die räumlichen Dimensionen (Länge und Querschnitt) der galvanischen
Leiter zurückginge und sich dabei an dasjenige Metall hielte, welches zu solchen Leitern am geeignetsten ist
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In that case the absolute unit of measure of resistance would be that resistance which a
copper conductor possesses whose length is equal to the measure of length, and whose cross-
section is equal to the measure of surface, in which, therefore, besides measure of length and
surface, the specific resistance of copper must be given as unit for the specific resistance of
conducting substances. Thus a special fundamental measure for specific resistances would
be necessary, the introduction of which would be open to question. First, because there
would be no saving in the number of the fundamental measures if, in order to do without
a fundamental measure for the absolute resistance, another fundamental measure must be
introduced which is otherwise superfluous. And secondly, neither copper nor any other metal
is fitted for use in establishing a fundamental measure for resistances. Jacobi334 says that
there are differences in the resistances of even the chemically purest metals, which cannot be
explained by a difference in the dimensions; and that, accordingly, if one physicist referred
his rheostat and multiplier335 to copper wire a metre in length and 1 millimetre thick, other
physicists could not be sure that his copper wire and theirs had the same coefficient of
resistance, that is, whether the specific resistance of all these wires was the same. The
reduction of measurements of galvanic resistances to an absolute measure can therefore only
have an essential importance, and find a practical application, if it takes place in the first
mentioned way, in which no other measures are presupposed than those for electromotive
force and for current intensity.

The question then arises, as to what are the measures336 of electromotive forces and
intensities? In measuring these magnitudes, no specific fundamental measures are requisite,
but they can be referred to absolute measure if the magnetic measures for bar magnetism
and terrestrial magnetism, as well as measure of space and time, are given.

As an absolute unit of measure of electromotive force, may be understood that electromo-
tive force which the unit of measure of the earth’s magnetism exerts upon a closed conductor,
if the latter is so turned that the area of its projection on a plane normal to the direction
of the earth’s magnetism increases or decreases during the unit of time by the unit of sur-
face. As an absolute unit of current intensity, can be understood the intensity of that current
which, when it circulates around a plane of the magnitude of the unit of measure, exercises,
according to electro-magnetic laws, the same action at a distance as a bar-magnet which
contains the unit of measure of bar magnetism.337 The absolute measures of bar magnetism
and of terrestrial magnetism are known from the treatise of Gauss, Intensitas vis magneticae
terrestris ad mensuram absolutam revocata, Göttingae, 1833 (Poggendorff’s Annalen, vol.
xxviii, pp. 241 and 591).338,339

From this statement it is clear that the measures of electric resistances can be referred to
an absolute standard, provided measures of space, time, and mass are given as fundamental

und am häufigsten dazu gebraucht wird, an das Kupfer.” This text was translated as, [Web61, p. 226]: “It
might be thought that this reduction would be more simply effected by reverting to the special dimensions,
length and section, and adhering to that metal (copper) which is best fitted and is most frequently used for
such conductors.” I replaced this translation by the text included here.
334[Note by AKTA:] Moritz Hermann von Jacobi (1801-1874). See [Jac51].
335[Note by AKTA:] In German: Multiplicatoren or Multiplikatoren. This word was translated as “multi-

plicator”, [Web61, p. 227]. I replaced this translation by “multiplier”.
336[Note by AKTA:] In German: Maasse. I preferred to translate this word here as “measures” instead of

“measurements”.
337[Note by AKTA:] A magnetized bar with a unit measure of bar magnetism has a magnetic moment = 1.
338[Note by HW:] Gauss’ Werke, Vol. V, p. 79.
339[Note by AKTA:] See footnote 97 on page 51.
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measures; for the absolute measures of bar magnetism and of terrestrial magnetism depend
simply on these three fundamental measures. A closer consideration shows that even of
these three fundamental measures, the measure of mass does not come into consideration,
as follows from the following summary of the simple relations which are established by the
determination of the absolute measures of these various kinds of magnitude.

As fundamental measures, there are to be considered the measure of length R, and the
measure of time S; as absolute measures, the surface measure F , and the units of measure of
bar magnetism M , of terrestrial magnetism T , of electromotive force E, of current intensity
J , and of resistance W .

Hence, first, if wW is the resistance of any closed circuit, eE the electromotive force acting
upon this conductor, and iJ the intensity of the current produced by this electromotive force,
we have the relation between the three numbers

w =
e

i
,

from which it is clear that if the numbers e and i are determined, the number w is also
indirectly obtained without needing a special determination.

Secondly, let eE stand for the electromotive force which acts upon any closed (plane)
conductor, fF the area of the plane enclosed by this conductor, tT the earth’s magnetism
on which the electromotive force depends; and let sS express the space of time in which
the plane of that conductor is moved by rotation from a position parallel to the direction of
the earth’s magnetism to a position at right angles to it, in such a manner that the limited
surface produced by its projection on a plane at right angles to this direction of the earth’s
magnetism increases, proportional to the time, by the unit of surface measure during the
unit of time. We shall then have between these four numbers e, f , t, s, the following relation:

e =
ft

s
,

and hence it is clear that if the three numbers f , t, s are determined, the number e is also
thereby directly given without necessitating a special measurement.

If, thirdly, iJ is the intensity of the current in any closed conductor, fF the area of the
plane enclosed by this conductor, andmM the magnetism of a bar340 which, when substituted
for that conductor (its magnetic axis at right angles to the plane of the conductor), exercises
the same actions at a distance, according to electro-magnetic laws, as that conductor, the
following relation obtains between the three numbers i, f , and m,

i =
m

f
,

from which it follows that if the numbers f and m are determined by measurement, i can
be directly obtained without a special measurement.

From these three relations we get, finally,

w =
e

i
=
fft

sm
,

hence if the four numbers f , s, m, t are determined, the number w is also directly obtained.
The number f is obtained by measuring the area of the plane embraced by the conductor;
s is found by measuring the time; and there only remain the numbers m and t, which are

340[Note by AKTA:] That is, mM is the magnetic moment of this magnetized bar.
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obtained by measuring the bar magnetism by the method described by Gauss in the above
paper.341 The unchangeability of the unit of measure for electric resistance can accordingly
be guaranteed so long as the four given measures (space, time, and the units of measure for
the earth’s magnetism and for bar magnetism) are obtained unchanged. But it by no means
follows that the maintenance of these four given measures is a necessary condition for the
unchangeability of the unit of measure of electric resistances; the simple maintenance of that
unit of measure for velocities is sufficient for the purpose.

For if tT is the earth’s magnetism, on which the electromotive force depends, which
acts upon the closed conductor whose resistance has been measured; if, further, m′M is
the magnetism of a bar (whose magnetic axis is parallel to the direction of the earth’s
magnetism, while the straight line drawn from its centre to the centre of the plane enclosed
by the conductor is normal thereto) which, according to magnetic laws, would, from a great
distance, exert the same action as tT the earth’s magnetism; and, finally, if Rr is the length
of the straight line drawn from the middle of this bar to the middle of the plane enclosed by
the conductor, we have, according to the “Intensitas”, the simple relation

t =
m′

r3
.

Substituting this value of t in the equation for w, we have

w =
ff

r3
· m

′

m
· 1
s
.

If, finally, r′R is the side of a square whose area is equal to the area of the plane enclosed
by the conductor, from which is obtained the relation

f = r′2 ,

and substituting this value of f in the above equation, we have

w =
r′3

r3
· m

′

m
· r

′

s
.

It is self-evident that a change of the given measures has no influence on the value of the
factor

(

r′3

r3
· m

′

m

)

,

but a change of the given measures of time and space does influence the value of the factor
f ′/s, and accordingly the value of the number w, if both measures are not simultaneously
increased or diminished in proportion. The value of the number w is hence quite independent
of all alterations of the given measures, so long as there is no change in the measure of
velocity. But if, by an alteration of the given measures, the standard of velocity is increased
or diminished n times, an n times larger or smaller value is obtained for the factor r′/s, and
therefore also for the number w, which is as much as to say that the resistance in this case
is expressed according to an n times smaller or larger standard. The unchangeability of the
unit of measure for resistance merely depends therefore on the unchangeability of the given
measure of velocity. But if the measure of velocity is taken n times larger or smaller, the
unit of measure for resistance becomes simultaneously n times larger or smaller.

341[Note by AKTA:] That is, by measuring the magnetic moment of the magnetized bar.
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11.2 Method of Measuring Electric Resistance accord-

ing to an Absolute Standard

The measurements of length and of time, which, according to the preceding paragraph,
are adequate for the determination of electric resistance, presuppose circumstances on the
convenient arrangement of which the practical execution and accuracy of such a determi-
nation depend. The following arrangement may serve as a simple summary of the essential
circumstances.

Out of the galvanic conductor whose resistance is to be determined, two circular rings,
A and B, are formed, which are connected in the manner represented in the figure.

The whole conductor, consisting of the two circles A, B, and the junctions form a con-
tinuous line, of which it may be assumed, for the sake of simplicity, that it is situated in one
plane, and that the straight line connecting the centres of both circles coincides with the di-
rection of the earth’s magnetism. Let T be the force of the earth’s magnetism as determined
according to an absolute standard by magnetometric measurements; let r be the diameter
of the circles, which, for simplicity sake, are assumed to be equal. If now the circle A is
projected in the direction of the earth’s magnetism AB on a plane normal to AB, the area
of the projected plane is = 0. From the flexibility of the wires connecting the two circles, let
it be supposed that the circle A is so twisted as to be at right angles to AB, in which case
the area of the plane of the projection is πr2. Let this rotation take place in a short time s,
in such a manner that the area of the plane of the projection of the circle increases uniformly
in this time from 0 to πr2. From the magneto-electrical laws, an electromotive force results
which the terrestrial magnetism T exerts upon the rotated circular conductor A during the
time s, and which, according to the unit of measure explained in the preceding paragraph,
is expressed by Ee, in which the number e is determined by the equation

e =
πr2

s
· T .

By this electromotive force a current is produced in the time s passing through the
whole closed conductor, whose intensity, according to the unit explained in the preceding
paragraph, is expressed by iJ . This current passes also through the circle B, and acts from
here on a distant magnetic needle in C, whose axis of rotation lies in the plane of the circle
at right angles to the direction of the earth’s magnetism. Let C lie in the produced AB.342

It follows now from electro-magnetic laws, that the momentum of rotation exerted on the
needle at C by a current passing through the circle B, is equal to the moment of rotation
exerted by a bar-magnet placed in the centre of the circle in such a manner that its magnetic
axis is at right angles to the plane of the circle, if its magnetism M ,343 expressed according
to absolute measure, is

342[Note by WW:] That is, the line joining the centres of the circles A and B.
343[Note by AKTA:] That is, its magnetic moment M .
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M = πr2i .

If, further, the magnetism of the needle in C expressed in the same measure = m, and
Bc = R, and ϕ the angle which the magnetic axis of the needle in C makes with the direction
of the earth’s magnetism AB, the momentum of rotation exerted by the bar magnetism M
on the bar magnetism m is expressed, according to known magnetic laws, by

Mm

R3
· cosϕ =

πr2

R3
· im cosϕ .

From which it follows that if K is the moment of inertia344 of the needle, the acceleration
of the rotation is

d2ϕ

ds2
=
πr2

R3
· im
K

· cosϕ ,

and therefore that if the needle were previously at rest, and ϕ = 0, the velocity of rotation
at the end of the short time s is

dϕ

ds
=
πr2

R3
· im
K

· s .

The greatest deflection α of the needle set in oscillation is known by direct observation;
and the following expression is obtained for it from the above velocity, from known laws of
oscillation, by multiplying by the period of oscillation345 t and dividing by the number π:

α =
r2

R3
· im
K

· st .

For the period of oscillation we have the known equation346

mT =
π2K

t2
,

from which

mt

K
=
π2

tT
,

and thus

α =
π2r2

R3
· is
tT

.

Now α is obtained by direct observation; and hence for determining i we have

i =
R3

π2r2
· t
s
· Tα .

344[Note by AKTA:] In German: Trägheitsmoment. Instead of being translated as “moment of inertia”,
this expression was translated simply as “inertia” in [Web61, p. 231].
345[Note by AKTA:] In German: Schwingungsdauer. This expression was translated several times in [Web61]

either as “length of oscillation” or “time of oscillation”. I replaced all these translations by “period of
oscillation”. See also footnote 96 on page 51.
346[Note by AKTA:] Weber is here utilizing the equation of motion of the needle as τ = −mTϕ = Kϕ̈,

where K is the moment of inertia of the needle, τ = −mTϕ is the torque or rotational moment acting on it
when it suffers a small deflection ϕ, m is the magnetic moment of the needle and T is the earth’s magnetism.
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Remembering that the current passing through the circle B also traverses the circle A,
we might also calculate the action of the circular current A upon the needle in C; but, for
the sake of simplicity, it may be assumed that the distance AC is so great that this action
vanishes in comparison with the action of the circular current B; in that case the actually
observed deflection of the needle in C gives directly the value of α.

Consequently, by the electromotive force eE, expressed in an absolute measure, for which
has been found the expression

e =
πr2

s
· T ,

a current is produced, in the whole closed conductor whose space is to be measured, the
intensity of which is expressed in an absolute measure by iJ , in which

i =
R3

π2r2
· t
s
· Tα

has been found. But, according to the unit explained in the preceding paragraph, the desired
resistance of the whole closed conductor is expressed by wW , in which w is determined by
the relation of the numbers e and i, namely:

w =
e

i
=

π3r4

R3tα
.

Hence the execution of the measurement of an electric resistance depends on the mea-
surement of the magnitudes

r, R, t, α ,

in other words, the resistance of the whole closed conductor can be expressed in an absolute
measure, if by observations, first, the number α has been found which gives the deflection of
the needle in parts of the diameter; secondly, the number r/R, which gives the diameter of
both circles in parts of the distance BC; thirdly, the velocity r/t, with which the diameter
of those circles is traversed during one oscillation347 of the needle. Hence it appears that the
measure of velocity is the only measure which must be given if the resistance of a conductor
is to be determined according to an absolute standard.

11.3 Observations

Of the four magnitudes which, according to the preceding paragraph, are to be found by
observation for the purpose of determining electric resistances according to an absolute stan-
dard, three can readily be measured, namely, the diameter r of the two circles, the distance
BC = R of the circle B from the needle at C, and the period of oscillation of the needle t.
There only remains the fourth magnitude, that is the deflection of the needle α expressed
in parts of the diameter, and this is usually so small that it cannot be observed. This is the
reason why, in actually making the observations, a slight deviation must be made from the
arrangement described in the previous paragraph. For in order to obtain a value of α large
enough for accurate observation, it is first necessary that the magnetic needle, upon which
the circular current B is to act, instead of being at a great distance BC = R, be suspended

347[Note by AKTA:] In German: Schwingung. It was translated as “rotation” in [Web61, p. 233].
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in the centre of the circular current itself, in which case the action is the greater the smaller
is the diameter r in comparison with R. Care must also be taken that the length of the
needle is much smaller than the diameter of the circle, in order that the peculiar distribution
of the magnetism in the needle need not be taken into account, because the investigation of
this distribution is attended with difficulties. It is further necessary that both circles, instead
of one, shall consist of several windings of the conductor, by which they become changed
into rings of large diameter. In that case, however, the influence of all the windings must
be individually taken into account, because they have different diameters, and are not all on
the same plane as the needle.

For the conductor whose resistance was to be measured, a very long thick copper wire
was chosen which weighed 169 kilogrammes. Of this 16 kilogrammes were used for the
ring A, which consisted of 145 windings; enclosing altogether a surface of nearly 105 square
metres. This ring was placed vertically, and by means of a winch could be rapidly rotated in
a semicircle, so that the perpendicular upon the plane of the ring at the commencement and
at the end of the rotation coincided with the magnetic meridian. The other 153 kilogrammes
were used for the ring B, which consisted of 1854 windings, giving together a cross-section
202 millimetres in breadth, and 70.9 millimetres in height: the internal diameter of this ring
was 303.51, and the external 374.41 millimetres. This second ring was firmly fixed, and its
plane coincided with that of the magnetic meridian. In the centre of this second ring B,
a small magnetic needle 60 millimetres long, provided with a mirror, was suspended by a
filament of silk, as in a small magnetometer; and the oscillations and deflections of the needle
were observed with a telescope, directed to the mirror, on a scale about 4 metres from the
mirror.

The observations were made in the following manner. The ring A was first so placed that
its plane coincided with the magnetic meridian, and the needle in the middle of the ring was
thereby brought to rest; thereupon the ring A was suddenly turned 90◦. By this means the
needle in the middle of the ring was set in oscillation,348 and by means of the telescope the
position of the needle was observed on the scale at its greatest (positive) deflection after half
a period of oscillation. One period of oscillation later, that is 11

2
period of oscillation after the

beginning, the needle attained its greatest deflection on the opposite side,349 which was also
observed on the scale. In the moment at which the needle passed its original position of rest,
and therefore two oscillations after the beginning of the experiments, the ring A was rotated
180◦. The oscillating needle was thereby arrested in the middle of its motion, and thrown
backwards, upon which its greatest negative and greatest positive deflections were observed
on the scale. After the expiration of four oscillations from the commencement, that is, at the
moment at which the needle returning from its last deflection passed its original position of
rest, the ring was again turned forwards by 180◦, and then the same oscillation observed as
in the first case, and in this manner the experiments were continued until a sufficient series
of observations was obtained. For each series, in the first column of the following Table
are given the deflections observed on the scale and arranged in order under one another;
in the second column the mean between two successive positive or negative deflections are
added. In the third column are the differences of the means referring to positive and negative
deflections that is, the magnitude of the whole arc.

348[Note by AKTA:] In German: Schwingung. It was translated as “rotation” in [Web61, p. 234].
349[Note by AKTA:] See footnote 96 on page 51.
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First series Second series Third series Fourth series
467.1 467.1 463.0 462.0
540.7 540.5 536.7 534.7

543.70 543.65 539.65 538.20
546.7 546.8 542.6 541.7

80.10 79.65 80.40 80.00
461.4 461.3 456.6 455.3

463.60 464.00 459.25 458.20
465.8 466.7 461.9 461.1

79.75 79.55 80.35 79.75
540.6 540.8 537.6 535.1

543.35 543.55 539.60 537.95
546.1 546.3 541.6 540.8

79.25 79.90 79.55 79.50
462.3 461.8 458.3 456.0

464.10 463.65 460.05 458.45
465.9 465.5 461.8 460.9

79.45 80.00 79.70 79.50
541.4 542.1 537.7 535.3

543.55 543.65 539.75 537.95
545.7 545.2 541.8 540.6

79.75 79.70 79.95 80.05
462.3 462.8 457.9 456.0

463.80 463.95 459.80 457.90
465.3 465.1 461.7 459.8

79.70 79.85 79.85 79.85
542.0 542.3 537.6 536.1

543.50 543.80 539.65 537.75
545.0 545.3 541.7 539.4

79.45 80.10 79.70 79.55
462.8 462.7 458.2 456.8

464.05 463.70 459.95 458.20
465.3 464.7 461.7 459.6

79.45 79.80 80.10 79.65
542.0 542.3 537.6 536.0

543.50 543.50 540.05 537.85
545.0 544.7 542.5 539.7

79.65 79.75 80.05 79.70
462.9 462.8 457.3 456.5

463.85 463.75 460.00 458.15
464.8 464.7 462.7 459.8

79.85 79.60 79.50 79.60
542.7 541.9 536.6 535.8

543.70 543.35 539.50 537.75
544.7 544.8 542.4 539.7

79.45 79.75 79.75 79.55
463.4 462.3 457.2 456.4

464.25 463.60 459.75 458.20
465.1 464.9 462.3 460.0

79.70 79.85 79.55
542.6 541.3 535.7

543.95 543.45 537.75
545.3 545.6 539.8

79.75
462.8

464.20
465.6

Mean 79.64 Mean 79.79 Mean 79.90 Mean 79.69

The mean value of these four series is 79.755 parts of the scale = 79.4 millimetres, which
must be increased by 1/2 a millimetre if we are to take into account the influence of the fact
that the rotation of the ring A cannot be effected in a time so small that it can be neglected
in comparison with the period of oscillation of the needle. From this we obtain for α the
value

α =
79.9

8175
,
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inasmuch as double the horizontal distance of the mirror from the scale is exactly 8175
millimetres.

The period of oscillation of the needle was found from 300 oscillations to be

t = 10.281 8′′ ,

in which the part of the directive force, arising from the elasticity of the thread was the
1770th part of the magnetic directive force, and hence

1

1 + ϕ
=

177 0

177 1
.

Finally, on account of the great distance of the two rings in a room not free from iron,
the period of oscillation of the same needle was compared for the position of both rings, and
their ratio found to be as 2.9126 : 2.9095; from which it follows that if T ′ is the terrestrial
magnetism for A, T ′′ for B, we have

T ′ : T ′′ = 470 : 471 .

These observations are sufficient for determining the resistance of the whole closed con-
ductor; and by accurate calculation we get the value

ω = 2166 · 108 .

11.4 Application of the Principle of Deadening

Instead of using terrestrial magnetism to obtain an electromotive force which can be referred
to an absolute measure, bar magnetism may be employed; in that case it is obvious that
the most convenient position for the bar-magnet whose magnetism is to be used, will be
in the centre of the ring formed by the closed conductor. The magnet may then either be
fixed, and the ring turnable about its diameter at right angles to the magnetic axis of the
bar; or inversely, the ring may be fixed and the magnet turned350 back and forth about that
diameter. In the latter case a strong oscillating magnetic needle may be used, suspended in
the centre of the ring.

The current produced in the closed conductor by the electromotive force arising from
the bar magnetism of a magnetic needle oscillating in the centre of the ring, itself reacts
according to the principle of deadening on the oscillating needle, and produces a diminution
in the amplitude of its oscillations which can be observed with great accuracy; and the
intensity of this current may also, from these observations, be determined according to an
absolute standard with great accuracy. It is then evident that the current does not need to
be passed through a second ring serving as galvanometer, in order to measure the intensity
of the current. Hence the whole conductor, whose resistance is to be measured, can be used
to form a single ring which serves at once for indicator and multiplier.

According to this simplification, the observation of the arcs of oscillation of a magnetic
needle oscillating in the centre of the ring is sufficient: by their magnitude the strength of
the electromotive force, and by their decrease the intensity of the current produced in the
closed conductor by that electromotive force, can be determined.

350[Note by AKTA:] In German: Gedreht.
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In executing the observations according to this principle of deadening, it is of prime
importance that the magnetism of the needle oscillating in the centre of the ring be very
powerful; and also that the length of the needle be very small as compared with the diameter
of the ring, in order that, in calculating the resistance, there shall be no necessity for an
accurate knowledge of the distribution of the magnetism in the needle, the determination of
which would be difficult. In the ring now solely used, which is that previously called B, and
which has 303.51 millimetres internal, and 374.4l millimetres external diameter, and is 202
millimetres in height, a magnetic needle 90 millimetres long, and as strong as possible, was
suspended. The experiment was commenced by detaching from each other the ends of the
wire forming the ring. The needle was then set in oscillation, and its period of oscillation and
the decrease of its amplitude, or the logarithmic decrement of this decrease, was determined
according to the method given by Gauss in the “Results of the Observations of the Magnetic
Association in the year 1837.”351,352,353,354 Thereupon the annular conductor was closed and
the same observations repeated. The results of these observations are given in the following
Table, in which the logarithmic decrement of the diminution of the arc of oscillation with
a closed conductor, stands in the first column under A, the same with an open conductor
stands under B, while in the third column under t is given the observed period of oscillation.
The mean values are indicated underneath:

A B t
0.028 645 0.000 460 9.112 8
0.027 955 0.000 360 9.114 8
0.028 565 0.000 380 9.110 7
0.028 388 0.000 400 9.112 8

From this we obtain, according to Brigg’s system,355 for that part of the logarithmic
decrement arising from the deadening,

= 0.028 388− 0.000 400 = 0.027 988 ,

or according to the natural system,

λ = 0.064 445 .

The bar magnetism of the oscillating needle M , determined from magnetometric measure-
ments, was found, according to absolute standard as compared with the horizontal part of
the earth’s magnetism T ,

M

T
= 20 733 000 .

That part of the directive force of the needle arising from the elasticity of the thread was
found to be 68 times less than that arising from the magnetism, or

351[Note by HW:] Gauss’ Werke, Vol. V, p. 374.
352[Note by AKTA:] See [Gau38a].
353[Note by EPM:] See Taylor’s Scientific Memoirs, Part VI. Vol. II.
354[Note by AKTA:] The Editors of the Philosophical Magazine may be referring to one of these two works

of Gauss translated into English: [Gau41a] or [Gau41c].
355[Note by AKTA:] Henry Briggs (1561-1630) introduced common (base 10) logarithms.

277



1

1 + ϑ
=

68

69
.

For the calculation of the resistance from these observations, executed on the principle of
deadening, we have the following rules.

According to the law of magnetic induction, the electromotive force of a small magnet
oscillating in the centre of a circular conductor, whose magnetic axis makes the angle ϕ with
the plane of the circle, is directly proportional to its magnetismM , to the cosine of the angle
ϕ, and to the velocity of rotation dϕ/dt, and inversely proportional to the diameter of the
circle r; and if M is expressed according to an absolute measure, is determined by

e =
2πM

r
· cosϕdϕ

dt
.

On the contrary, according to electro-magnetic laws the momentum of rotation which
the induced current in the circular conductor exerts upon the small magnet oscillating in
the centre is directly proportional to the magnetism M , to the cosine of the angle ϕ, and to
the current intensity, and is inversely proportional to the diameter r; and if i is expressed in
absolute measure, is determined by

D
dϕ

dt
=

2πM

r
· i cosϕ .

For small oscillations in which ϕ differs little from 0, we have

e =
2πM

r
· dϕ
dt

,

D
dϕ

dt
=

2πM

r
· i .

If K is the moment of inertia356 of the oscillating magnet, upon which the directive force
MT , arising from the horizontal part of the terrestrial magnetism, acts, the equation of its
motion becomes

0 =
d2ϕ

dt2
+
MT

K
ϕ+

D

K

dϕ

dt
,

and hence by integration,

ϕ = p+ Ae−Dt/2K sin(t− B)

√

MT

K
− 1

4

D2

K2
.

Here D/2K is the logarithmic decrement on the natural system of the diminution of the
amplitude of oscillation reduced to the unit of time: hence if τ is the period of oscillation
under the influence of deadening,

λ =
Dτ

2K
=
πM

rK
· dt
dϕ

· τi ,

and the intensity of the current is

356[Note by AKTA:] In German: Trägheitsmoment.
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i =
rKλ

πMτ
· dϕ
dt

.

From this we obtain for calculating the resistance,

ω′ =
e

i
=

2π2M2

r2Kλ
· τ .

From the above equation for ϕ we get for the determination of the period of oscillation under
the influence of the deadening,

τ

√

MT

K
− 1

4

D2

K2
= π = τ

√

MT

K
− λ2

τ 2
,

from which

Mτ

K
=
π2 + λ2

τT
,

hence

ω′ =
2π2

r2
· π

2 + λ2

λτ
· M
T

.

From this, taking into account the correction arising from the deadener as being made
up of several windings, and the correction for the elasticity of the thread, we find from the
above observations

ω′ = 189 8 · 108 .

11.5 Comparison of the Resistance Determined accord-

ing to Absolute Measure with Jacobi’s Standard

of Resistance

To compare the resistance of two conductors, there are different methods which need no
explanation. The resistances considered in the preceding paragraphs have been compared
according to the method examined in this memoir, and it has been found that

ω : ω′ = 113 8 : 1 000 .

If the first resistance be reduced to the second according to this proportion, we obtain

ω′ =
1 000

1 138
ω = 1903 · 108 ,

while the direct determination in the preceding paragraph gave

ω′ = 189 8 · 108 .

From both these closely agreeing values, determined according to entirely different methods,
the number
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19 · 1010

will in future be assumed as the mean value of this resistance.
Jacobi has dwelt on the importance of introducing a definite measure for resistance to be

accepted by all physicists, especially at the present time, when so many voltaic investigations
are being made with the most varied instruments, the comparison of which is often of great
importance. For this purpose he has proposed as a standard measure a copper wire, which he
has sent to several physicists who are engaged with voltaic measurements, and has requested
them to compare this standard with theirs, and for the future to give their measurements in
this measure.357

This standard is a copper wire 71693
4
millimetres in length, and 2/3 millimetres in thick-

ness, which weighs 22449 3
10

milligrammes.
The standard introduced by Jacobi, which, it is to be hoped, will find general acceptance

is by no means supplanted by the absolute measure here discussed; for it is not possible to
compare every resistance directly according to this measure, while every resistance can be
directly compared with Jacobi’s standard. But considering the importance which absolute
determinations of measure have in many investigations, it is desirable to be able to reduce
all the values, made according to Jacobi’s standard, to an absolute measure, which can be
easily effected by comparing the resistance determined as above according to an absolute
measure with the resistance of Jacobi’s standard.

Such a comparison has been made; and it has been found that the two resistances are
nearly as 32 : 10, or, more accurately, as 19 000 : 5 980. But as the first resistance has been
found in absolute measure to represent 19 000 million units, Jacobi’s standard represents
5 980 million units; or the resistance determined according to Jacobi’s measure can be reduced
to absolute measure by multiplication by 6 milliards. By this determination it would be
possible to reproduce approximately Jacobi’s standard, even if it were lost.

11.6 On the Value of the Constants Found by Kirch-

hoff, on which the Intensity of Induced Electric

Currents Depends

The induction-constant which Neumann,358 in his development of the mathematical laws
of induced electric currents, calls ε, has the following meaning. If W be the absolute unit
of measure proposed as above for electric resistances, and W ′ that measure of resistance
which is actually used; if, further, C be the measure of velocity which forms the basis in
establishing the above absolute measure (1 millimetre in a second); if, on the contrary, C ′

be the measure of velocity actually used in measuring the induced motions and actions
of the induced currents (1 Prussian inch = 26.154 millimetres in a second, according to
Kirchhoff),359 we have

ε = 2
C ′W

CW ′ .

357[Note by AKTA:] [Jac51].
358[Note by AKTA:] See [Neu46], [Neu47], [Neu48] and [Neu49].
359[Note by AKTA:] The Prussian inch is to the English as 1.03 to 1.
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It follows from this, that if the value of this induction-constant is once determined, any
resistance given according to the measure chosen can be referred to an absolute measure.

In the determination of the induction-constant ε given by Kirchhoff in the seventy-sixth
volume of Poggendorff’s Annalen,360 the resistance of a copper wire has been chosen as a
standard, the length of which was 1 Prussian inch = 26.154 millimetres, and the cross-
section 1 Prussian square inch = 684 square millimetres. Here unfortunately there is no
determinate measure of resistance; for different pieces of copper of the same dimensions have
different resistance; and it follows, therefore, that the value of the induction-constant ε is
left undetermined within the limits of that variability of the resistance of copper. Kirchhoff
himself says,

“Since the conductivity361 of copper varies within certain limits, in giving the value
of ε, only a limited accuracy is of interest.”

Kirchhoff wished to give only an approximate value of ε, which would be sufficient for
his purpose; and he was the more content therewith because the methods and instruments
which he used would scarcely have permitted a better determination of ε if he proposed a
perfectly definite measure of resistance.

The interest which an accurate determination of the value ε has, is lost in consequence
of that uncertainty in the choice of the measure of resistance; and it is important to restore
it by the removal of that uncertainty. This may be accomplished by keeping, not to copper
in general, but to the piece of copper actually used by Kirchhoff in his investigations, and
by choosing the resistance of a wire of this copper 26.154 millimetres in length, and with a
cross-section of 684 square millimetres as a measure of resistance. It is thus only necessary
to reduce the result found by Kirchhoff, as well as the measures made therewith or referred
thereto, to the measure thus accurately determined in this manner. Kirchhoff took one
Prussian inch in a second as a measure of velocity, and found in this way

ε =
1

192
,

from which it follows (since C ′ = 26.154C) that that resistance which amounts to 52.308
units of the above absolute measure is the 1/192 of the resistance of a wire of Kirchhoff’s
copper the length of which is 26.154 millimetres and the cross-section 584 square millimetres;
in other words, that the measure of resistance chosen by Kirchhoff is 10043 times that of the
above absolute measure.

Although this value of ε can only be considered as approximative, it is interesting to
compare it with other values which have been found by entirely different methods and with
different instruments, because an examination of the various natural laws brought thereby
into operation is obtained. Kirchhoff’s measurements refer to currents produced by voltaic
induction, and hence in his case it is the laws of voltaic induction which have been used in
determining the value of ε. My measurements, on the contrary, refer to currents produced
by magnetic induction, and hence in this case it is the laws of magnetic induction which lead
to the value of ε.

First of all, the value of ε shall be given which is obtained from my measurements. It is
clear that the value of ε can be determined from these measurements, if only the resistance

360[Note by AKTA:] [Kir49a].
361[Note by AKTA:] In German: Leitungsfähigkeit.
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of Kirchhoff’s copper wire is compared with the resistance of Jacobi’s standard. I have made
that comparison by means of the wire which Kirchhoff kindly sent to me, and can here give
the result of the comparison: it is as follows.

A piece of Kirchhoff’s wire which was 13.573 Prussian inches in length and 0.406 1 square
line in cross-section, had a resistance which was to the resistance of Jacobi’s standard as

1 : 106 .

From this we get the relation of the resistance of the measure chosen by Kirchhoff to that
of Jacobi’s standard as

1 : 106× 13.573× 144

0.406 1
.

If J be the resistance of Jacobi’s standard, and W ′ that of Kirchhoff’s we have

J

W ′ = 510 180 .

Now the resistance of Jacobi’s standard is equal to 5980 million units of the absolute
measure found above; hence, if W be the absolute resistance,

J

W
= 5 980 000 000 ,

hence

W ′

W
= 11 720 .

But now

C ′

C
= 26.154 ,

hence

ε = 2
C ′W

CW ′ =
1

224
,

that is, one-seventh less than Kirchhoff had found. A closer agreement was not to be ex-
pected, inasmuch as only an approximate value was claimed for Kirchhoff’s statement.

I may give here a determination of the specific resistance of the different kinds of copper
which have been used for Jacobi’s standard, for Kirchhoff’s wire, and for the damper which
I used.

The specific resistance of a body is usually given according to an absolute unit by taking
for this unit the specific resistance of a body whose absolute resistance with a length = 1
and a cross-section = 1 is equal to the fixed measure of resistance. But the determination
of specific resistance according to this unit meets with a practical difficulty in the accurate
measurement of the cross-section, especially in fine wires, and hence, to obviate this difficulty,
Kirchhoff has indirectly ascertained the cross-section of the wire by determining its absolute
and specific gravity.

Now the determination of specific resistance according to this unit, presupposes that the
resistance of a wire whose length remains unchanged, but the thickness of which is increased
or diminished, varies inversely as the cross-section. This has not, however, been proved, and,
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with the small alterations of cross-section which are produced by pressure, can scarcely be
proved. There is just as much reason for assuming that, if the mass and the length of the
wire remain unchanged, the resistance does not alter even with a changing cross-section. On
this assumption the absolute unit would have to be fixed in another way than as being the
specific resistance of a body whose absolute resistance for the length = 1 and for a mass = 1
is equal to the fixed measure of resistance. According to this, the specific resistance of a
body would be determined by multiplying the resistance of a wire formed of that substance
expressed according to the fixed measure of resistance by its mass, and dividing by the square
of its length.

The specific resistances of the wires used by Jacobi, Kirchhoff, and myself will be de-
termined according to the unit thus fixed; for apart from the above considerations, this
determination is in any case the most applicable and capable of execution.

The following Table exhibits the results of these determinations:

Quality of Length in Mass in Resistance Specific resistance ε
copper in millimetres milligrammes in absolute

measure

Jacobi’s wire 7 620 22 435 5 980 000 000 2 310 000 1/270

Kirchhoff’s wire 355 4 278 58 500 000 1 916 000 1/224

Weber’s wire 3 946 000 152 890 000 190 000 000 000 1 865 600 1/218

It will be seen that there is only a small difference between my copper and Kirchhoff’s;
while the difference in the case of Jacobi’s is far more considerable, as the latter possesses a
far smaller conductivity. In the supposition that Jacobi may have used galvanoplastic copper
for his standard, I examined a wire of that material which I procured through the kindness
of Professor Schellbach in Berlin,362 and found the following result, which proves, contrary
to the above supposition, that galvanoplastic copper is a somewhat better conductor.

Wire of Length in Mass in Resistance Specific ε
galvanoplastic millimetres milligrammes in absolute resistance

copper measure
12 780 221 295 1 243 000 000 1 684 000 1/196

In the last column here and in the upper Table are given the different values of ε which
were obtained for the Neumann’s induction-constant by adhering to the measure chosen by
Kirchhoff, but using the different kinds of copper which have been mentioned. Adhering,
however, to the absolute measure fixed as above, so is C ′ = C, W ′ = W , and ε has always
the value 2.

11.7 On the Constants of the Electric Laws which De-

pend on the Choice of Measures

The law of induced currents propounded by Neumann represents the intensity of these cur-
rents as dependent on a constant the value of which must be determined from the measures
according to which the magnitudes taken into consideration are to be determined. This
constant Neumann has called the induction-constant. Such a constant occurs in the general

362[Note by AKTA:] Weber may be referring to Karl Heinrich Schellbach (1805-1892).
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expression of any natural law which states how one magnitude is determined by another. I
may here give a summary of these constants for all the fundamental laws which refer to elec-
tromotive force, current intensity, and electric resistance. Each of these laws represents the
desired magnitude as an expression of other measurable magnitudes, which has a constant
as a factor the value of which is to be determined from the measures chosen.

1. The fundamental law of the voltaic circuit represents the intensity of the current i as
an expression of the electromotive force e, and of the resistance w; for, if the constant whose
value is to be determined is called α,

i = α · e
w
.

This constant α has the following meaning. If J , E, W are the absolute measures fixed
as above for current intensities, electromotive forces, and resistance; and if J ′, E ′, W ′ are
the measures actually used, we have

α =
JE ′W

J ′EW ′ .

Hence using the absolute measure itself,

α = 1 .

2. The fundamental law of electro-magnetism represents the electromotive force F as an
expression of the quantity of magnetic fluid µ, of the length ds, and of the intensity i of the
current element, of their distance from one another r, and of a number which is given by
the angle ϕ which r makes with ds; that is, if the constant whose value is to be determined
from the measures chosen is β,

F = β · µids
r2

sinϕ .

The constant β has the following signification: — If P is the absolute unit of measure of
the momentum of rotation (the product of a millimetre into that force which in one second
imparts to the mass of one milligramme, the absolute unit of measure of velocity), if M is
the absolute unit of measure of the magnetic fluid, and J is the absolute measure for current
intensities; if, further, P ′ M ′, and J ′ are the measures actually used,

β =
PM ′J ′

P ′MJ
,

consequently, using the absolute measure,

β = 1 .

3. Ampère’s fundamental law of electrodynamics363 represents the electrodynamic force
of attraction F as an expression of the current intensities of two elements i and i′, and of a
number which is fixed by the relations of the lengths of the two elements to their distance
ds/r and ds′/r; and by the three angles ε, ϕ and ϕ′, which ds and ds′ form with one another
and with r; that is, if the constant whose value is to be determined from the given measures
is designated by γ,

363[Note by AKTA:] See footnote 10 on page 13.
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F = γ · ii′ · dsds
′

r2

(

cos ε− 3

2
cosϑ cosϑ′

)

.

The constant γ has the following signification: — If F is the absolute measure of force
(that force which in a second imparts to the mass of a milligramme a velocity of a millimetre
in a second), if J is the absolute measure for current intensities, and F ′, J ′ the measures
actually used, we get

γ =
FJ ′J ′

F ′JJ
,

hence using the absolute measure,

γ = 2 .

4. The fundamental law of magneto-induction represents the electromotive force e as an
expression of the mass of magnetic fluid µ, of the velocity of induced motion c, of the length
of the induced element ds, and of its distance r from µ, and of a number given by the two
angles ϕ and ψ which ds makes with r and c with the normal to the plane rds; that is, if
the constant whose value is to be determined from the measures chosen is called δ,

e = δ · µcds
r2

sinϕ cosψ .

The constant δ has the following signification: — If E is the absolute unit of measure
of electromotive force, M the absolute unit of measure of magnetic fluid, S the seconds of
time, and E ′, M ′, S ′ the measures actually used, we get

δ =
EM ′S

E ′MS ′ ,

hence using the absolute measure,

δ = 1 .

5. The fundamental law of voltaic induction represents the electromotive force e as an
expression of the current intensity i and of its change di/dt, of the velocity of the inducing
motion c, and of the distance r of the induced from the inducing element, and of several
numbers which are given by the relations of the lengths of the two elements to their distance
ds/r and ds′/r, and by the four angles ε, ϑ, ϑ′ and ϕ which ds and c form with each other
and with r, and which ds′ forms with r; that is to say, if the constant whose value is to be
determined from the measures chosen is called ζ ,

e = ζ ·
[

ci · dsds
′

r2

(

cos ε− 3

2
cosϑ cos ϑ′

)

cosϕ+
1

2

di

dt

dsds′

r
cos ϑ cosϑ′

]

.

The constant ζ has the following significance: — If E and J are the absolute units for
electromotive forces and for current intensities, and C the absolute measure of velocity (a
millimetre in a second), and E ′, J ′ and C ′ the measures actually used, we have

ζ = 2 · EJ
′C ′

E ′JC
,

hence using the absolute measure itself,
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ζ = 2 .

6. The general fundamental law of electric action represents the electric force F as an
expression of the electric masses v and v′, of their distance r, their relative velocity dr/dt,
and their change ddr/dt2, that is, if the constant whose value is to be determined from the
given measures is called η, we have

F = η · vv
′

r2

[

1− 1

aa

(

dr2

dt2
− 2r

d2r

dt2

)]

.

(a stands for the number indicating the relation of that velocity with which two electric
masses must be moved against each other in order that they exert no force on each other,
to the velocity of a millimetre in a second.)

The constant η has the following signification: — If F is the absolute measure of force,
N the absolute unit of electric fluid (that mass of electric fluid which at a distance of a
millimetre exerts upon a similar mass the absolute unit of force), if R is a millimetre, and
F ′, N ′ and R′ the measures actually used, we have

η =
FN ′2R2

F ′N2R′2 ,

hence using the absolute measure itself,

η = 1 .

Every electric force can act, however, as electromotive force; and this latter e is rep-
resented, according to the general fundamental law of electric action, as an expression of
the electric mass v, of the length of the element ds in which is contained the quantity of
electricity acted upon; further, of the distance r of both from each other, of their relative
velocity dr/dt, and their change ddr/dt2, and of the angle ϕ which ds forms with r; that
is, if the constant whose value is to be determined from the measures chosen is called k, we
have

e = k · vds
r2

[

a− 1

a

(

dr2

dt2
− 2r

d2r

dt2

)]

cosϕ .

The constant k has the following meaning: — If E is the absolute unit of measure of
electromotive forces, N the absolute unit of measure of the electric fluid, C the absolute unit
of velocity (a millimetre in a second), R a millimetre, and E ′, N ′, C ′ and R′ the measures
actually used, we have

k =
1

2
√
2

EN ′C ′R

E ′NCR′ ,

hence using the absolute measure,

k =
1

2
√
2
.
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Chapter 12

Editor’s Introduction to Weber’s
Second Memoir on Electrodynamic
Measurements

A. K. T. Assis364

I present here some important points related to Weber’s Second major Memoir on Elec-
trodynamic Measurements.365 It has been translated by David Delphenich.366

One of the simplest and most basic phenomena of electromagnetism is the situation of
a resistive circuit connected to a battery and carrying a steady current. Most scientists
and textbook authors dealing with this configuration in the last 150 years have assumed
implicitly or explicitly the following:

• The resistive wire is neutral not only along its interior, but also along its surface.

• Therefore, an external test charge located at rest relative to the wire experiences no
force exerted by the stationary resistive circuit.

• In the language of field theory, these scientists assume that the wire carrying a constant
current generates only a magnetic field, but no electric field.

These are wrong assumptions. Wilhelm Eduard Weber (1804-1891) studied this configu-
ration in the present work. He first analyzed a long and thin straight conductor of circular
cross-section, Figure 12.1 (a). It might be considered as the region close to the center of the
upper portion BC of the rectangular closed circuit of Figure 12.1 (b).

Weber showed in the present work that in order to have a steady current flowing along
this resistive wire, it was necessary to have a distribution of charges spread along the surface
of the conductor. This distribution of surface charges would generate a constant electric
force acting on any charge of the conductor, like a stationary ion at rest in the lattice or a
mobile charge of the wire (as the modern conduction electron). This distribution of surface
charges was maintained by the battery. It was constant in time for steady currents, but

364Homepage: www.ifi.unicamp.br/~assis
365[Web52a] with English translation in [Web21c].
366feedback@neo-classical-physics.info and http://www.neo-classical-physics.info/index.html.
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Figure 12.1: (a) Cylindrical resistive wire carrying a steady current I. (b) Rectangular
circuit of circular cross-section. A battery generating a voltage V and producing a steady
current I in the closed circuit of resistance R.

its magnitude varied along the length of the wire. In this case of a straight wire, Weber
showed that the surface charge density σ increased linearly as a function of the longitudinal
coordinate z, Figure 12.2 (a) and (b). That is, it became increasingly positive towards the
positive terminal of the battery and increasingly negative towards the negative terminal of
the battery.
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Figure 12.2: (a) Distribution of charges along the surface of a cylindrical wire. (b) Surface
charge density σ as a function of the longitudinal coordinate z.

Weber calculated the force per unit charge acting on a test charge showing that it was
constant anywhere inside the wire. For a steady current this force acting on the conduction
electrons would be balanced by the resistive force exerted by the lattice, yielding Ohm’s law.
By extending his calculation to a stationary test charge located outside the wire, we obtain
the lines of electric field shown in Figure 12.3.

Figure 12.3 shows that a test charge outside the wire, at rest relative to the conductor,
should experience a force exerted by the resistive wire carrying a steady current.

Weber then considered a toroidal conductor in the form of a resistive ring connected to
a battery and carrying a constant current I along the azimuthal direction, Figure 12.4 (a).

In this case he performed a brilliant approximate calculation of the density of surface
charges. Once more he showed that in order to have a constant electromotive force any-
where inside the ring pointing along the azimuthal θ direction, it was necessary to have a
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Figure 12.3: Force per unit charge, ~F/q = ~E, acting on an internal or external test charge
at rest relative to the resistive cylindrical conductor carrying a steady current. This force is
exerted by the charges spread on the surface of the wire.
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Figure 12.4: (a) Resistive ring carrying a steady current I. (b) Charges distributed along
the surface of the ring. (c) Surface charge density σ as a function of the azimuthal angle θ.

distribution of charges along the surface of the wire. For a steady current this distribution
was constant in time, but its magnitude varied along the azimuthal direction. It became
increasingly positive towards the positive terminal of the battery and increasingly negative
towards the negative terminal of the battery, Figure 12.4 (b).

However, in this case he was able to show that the surface charge density σ varied linearly
with the azimuthal angle θ only far away from the battery, that is, close to θ = 0 rad, as in
Figure 12.4 (c). He also showed that when we are closer to both terminals of the battery,
that is, close to θ = ±π rad, the increase in the magnitude of σ as a function of θ was faster
than linearly, as shown qualitatively in Figure 12.4 (c).

Weber calculated the force per unit charge acting on a test charge showing that it had
a constant magnitude anywhere inside the ring, pointing along the azimuthal direction. By
extending his calculation to a stationary test charge located outside the ring, we obtain the
lines of electric field shown in Figure 12.5.

In 2007 we published the book “The Electric Force of a Current: Weber and the Sur-
face Charges of Resistive Conductors Carrying Steady Currents”. It is available in English,
Portuguese and German.367 In this book we discussed Weber’s 1852 work and presented the
analytical expressions for the distributions of surface charges, equipotential lines and also
the lines of electric field. These calculations were made not only for the configurations of
Figures 12.1 up to 12.5, but also in many other geometries (coaxial cable, solenoid, twin-lead
etc.) We calculated the force per unit charge acting on internal and external test charges

367[AH07], [AH09] and [AH13].
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Figure 12.5: Force per unit charge, ~F/q = ~E, acting on an internal or external test charge
at rest relative to the resistive ring carrying a steady current. This force is exerted by the
charges spread on the surface of the ring.

at rest relative to different resistive circuits carrying steady currents. We also cited many
references and quotations of different scientists and textbook authors presenting the wrong
assumptions discussed in the beginning of this Introduction, including James Clerk Maxwell
(1831-1879), Rudolf Clausius (1822-1888), Edward Mills Purcell (1912-1997), Richard Feyn-
man (1918-1988) etc.

Moreover, we presented many experiments performed by several scientists related to this
subject:

• Charge collectors have been utilized to study the sign and magnitude of the charge
density spread along the surface of resistive conductors carrying steady currents.

• Grass seeds, semolina or flour have been spread around these conductors in order to
map the electric field lines outside them. These seeds or particles are not affected by
a magnetic field. However, in the presence of an electric field, they get electrically po-
larized and align themselves along these lines. These experiments utilizing grass seeds
or semolina to map the lines of electric field are analogous to the usual experiments
utilizing iron fillings in order to map the lines of magnetic field.

• Electronic electrometers connected to a radioactive alpha source have been utilized to
measure the potential in different points inside and outside hollow conductors carrying
steady currents. The measured equipotential lines are shown to be orthogonal to the
electric field lines mapped with grass seeds or semolina.

• A torsion balance has been utilized in order to measure directly the force between a
stationary test charge and a stationary resistive closed conductor carrying a steady
current.

These experiments give strong support to Weber’s pioneering calculations. Weber’s fun-
damental work has been essentially forgotten during the XXth century. I hope this English
translation will help to bring his brilliant measurements, calculations and ideas to the at-
tention of a larger audience.
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Chapter 13

[Weber, 1852a, EM2] Electrodynamic
Measurements, Second Memoir,
relating specially to Measures of
Resistance

Wilhelm Weber368,369,370

I - Resistance Measurements with a Given Basic Unit

13.1 Tools

Measuring resistance, like any other measurement, assumes three things: First of all, a
definition of the type of quantity that is to be measured, secondly, a certain unit,371 and
thirdly, a method for comparing quantities of that type with each other.

First of all, the definition of resistance that will be treated here can be expressed in
the following way: From the laws that Ohm exhibited,372 the quotient of the measured
electromotive force and the measured current intensity always has the same value for a
galvanic circuit with unchanging closed conductors, and that value depends upon only the
size and nature of the conductor. Having assumed that, the property that lies in the size and
nature of the conductor and upon which the value of that quotient depends will be referred to
by the name of the resistance of the conductor, and it will be considered to be a quantity that
is proportional to that quotient. In that way, there is the possibility of measuring resistance
by determining that quotient.

As far as the second issue — viz., the unit of resistance — is concerned, the basic unit

368[Web52a] with English translation in [Web21c].
369Translated by D. H. Delphenich, feedback@neo-classical-physics.info and http://www.neo-classical-

physics.info/index.html. Edited by A. K. T. Assis.
370The Notes by Wilhelm Weber are represented by [Note by WW:]; the Notes by H. Weber, the Editor

of Volume 3 of Weber’s Werke, are represented by [Note by HW:]; while the Notes by A. K. T. Assis are
represented by [Note by AKTA:].
371[Note by AKTA:] In German: Maass.
372Note by AKTA:] See footnote 99 on page 53.
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that Jacobi presented in St. Petersburg and sent to Professor Poggendorff in Berlin on 30
August 1846 with the following remarks shall be assumed. Mr. Jacobi wrote:373

“On a previous occasion, I have commented on how interesting and important it
would be if the physicists were to give their current measurements in electrolytic,
hence absolute, units in their galvanic investigations. In order to do that, it would
be necessary to refer the galvanometers that they work with to electrolytic actions
in order to give the publication of the experiment performed the degree of precision
that is true of the chosen instrument or the chosen method. Meanwhile, I have
reserved a discussion of that for another occasion. It is no less important than
the absoluteness of the current measurements that the physicists should express the
conductive resistance that they measure in a common unit. However, no absolute
determination can exist here, since it seems that differences exist between resistances
that cannot be explained by a difference in dimension alone, even for the chemically-
purest metals. If one assumes that one’s resistance meter and multiplier are referred
to copper wire of one meter in length and one millimeter in thickness, then one will
still not be convinced that your copper wire and ours possess the same coefficient
of resistivity. Now, all of those complications will be eliminated when one lets an
arbitrarily-chosen copper (or other type of) wire circulate amongst the physicists,
and that will beseech one to henceforth refer one’s resistance-measuring instrument
to it and give one’s measurement in terms of that unit. Professor Magnus374 then
proposed a small black box provided with two screws, in which a copper wire that
was wound around a board is cemented in a mastic that consists of wax and resin
so it is protected from moisture and humidity. I would ask you to compare your
resistance meters to that resistance standard, but also to what Professor Weber and
other physicists addressed with galvanometric measurements ... The copper wire
that is found in the box is precisely 25′ (Russian-English) between the screws, weighs
22.5495 g, and its thickness, which was measured by a good Munich microscope
that was provided with a micrometer, amounted to 0.0265′′ (English) at one end and
0.0260′′ at the other, and therefore a mean of 0.02625′′ (English). The measurements
themselves are the means of three very-closely-corresponding observations. I would
like to further point out that the length of the weighed wire amounted to 251

8

′′
(so

251
8

′′
= 22.5495 g) and that 3

4

′′
of it at either end was soldered onto the screws.

Expressed in French units, the length of the wire was 25′ = 7.619 75 m, and its
thickness was 0.02625′′ = 0.000 667 m.”

Finally, as far as the third issue is concerned, namely, comparing the resistances of two
conductors or determining their resistance properties (for example, comparing a copy with
the given basic unit), two instruments are required for that, along with several conductors:

1. An electromotor375 with which galvanic currents can be produced.
2. A galvanometer with which the intensity of the produced currents can be measured.
In the first instrument, the conductors in which the currents are produced define essential

components, while in the second instrument, it is the conductors through which the current

373[Note by AKTA:] M. H. v. Jacobi (1801-1874) and J. C. Poggendorff (1796-1877). This letter in French
can be found at [Jac51].
374[Note by AKTA:] Heinrich Gustav Magnus (1802-1870).
375[Note by AKTA:] In German: Elektromotor.

292



must flow in order to be measured that define essential components. If one adds the con-
ductors whose resistance properties are to be determined to those two conductors that are
included already in the two instruments, then one will have a complete overview of all tools
that are necessary for making a resistance comparison. With that overview:

1. The electromotor,

2. The galvanometer, and

3. The conductor and its combinations

that were used in the following experiment will be considered in particular.

13.2 The Electromotor

The choice of electromotor mainly came down to the decision as to whether one would be
working with continuous or instantaneous currents. In the first case, one sees the advantages
of the so-called constant cells, as Daniell, Grove, and Bunsen had employed for the purpose of
such measurements.376 By contrast, in the second case, there is greater advantage in working
with induction permanent magnets, because when one utilizes instantaneous currents, it is
neither the intensity of those currents nor their duration that one deals with, but the value
of the product of the two, which one can call the integral value of the current intensity.
However, only by the method of induction by permanent magnets that integral value can be
represented by quantities that are always equal.

In the following experiments, preference is given to the instantaneous currents, and as a
result, magnetic induction, on the following two grounds: First of all, for fine measurements,
the utilization of metallic conductors (e.g., the use of nothing but copper wire, without
needing to include a wet conductor, such as water, acids, or a salt solution, in the circuit)
allows one greater certainty. It is known that polarization phenomena can perturb the
measurements at the surface of a metal that is submerged in a wet conductor. One can
avoid such perturbations by utilizing closed wire circuits in which one induces currents
by moving them with respect to permanent magnets. Each repetition of such a motion
produces a current with the same integral value no matter how short its duration might be.
Secondly, with the utilization of continuous currents, which might be obtained with constant
cells, the temperature of the conductor whose resistance properties are to be determined
will increase, and that increase will be different in the various conductors. However, the
resistance of the conductor will grow with temperature, and that variability of the resistance
would make the determination of the resistance properties uncertain, which could be avoided
by utilizing instantaneous currents that are of such short duration that no noticeable change
of temperature can occur.

The appropriate equipment and the use of magnetic inductors for measurement, in gen-
eral, was discussed already on another occasion. For that, see “Resultate aus den Beobachtun-
gen des magnetischen Vereins im Jahre 1838,” p. 86.377,378 One finds the special equipment
that was employed with the inductor that was used in the following experiments described
more precisely at the end of this treatise in Supplement 13.39 and illustrated in Figure 1.379

376[Note by AKTA:] See footnotes 98, 108 and 179 on pages 53, 61 and 124.
377[Note by HW:] Wilhelm Weber’s Werke, Vol. II, p. 105.
378[Note by AKTA:] [Web39b].
379[Note by AKTA:] Weber is referring here to the first Figure of Supplement 13.39, see page 399. When

Weber’s paper was reprinted in his collected works, this Figure was renumbered as Figure 10.
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13.3 The Galvanometer

To measure the intensity of a continuous current, one can work with the so-called sine
galvanometer, as well as the tangent galvanometer.380 However, in order to measure the
intensity of an induced instantaneous current (i.e., the strength of a so-called induction
pulse), one can use only the tangent galvanometer, because the use of the sine galvanometer
assumes the persistence of the needle in its deflected position, which is not the case for an
induction pulse because the needle will be merely set into oscillation by an induction pulse
that it experiences in its rest position and will not take on a residual deflection in that way.
It is most precise and convenient to observe the elongations of the needle oscillations that
are caused by the induction pulse with a magnetometer that is provided with a multiplier,
as Gauss instructed one to do in his “Resultaten aus den Beobachtungen des magnetischen
Vereins im Jahre 1837.”381 One should only observe that a large multiplier with a large
conduction resistance, which is what larger magnetometers are ordinarily provided with,
would be disadvantageous for the present measurements. Therefore, a magnetometer of
very small dimensions was used for the following experiments, whose needle was only 100
millimeters long, and which was provided with a small multiplier of moderate resistance.

Performing the observations, especially since they should be repeated frequently and
in rapid succession, was eased considerably by equipping the magnetometer with a strong
damper in addition to the multiplier, and that damper returned the needle to rest after a
small number of oscillations after it had been excited. Since the effectiveness of the damper
was based mainly upon the magnetic force on the oscillating needle, one would need a
magnetometer that is equipped with a very strongly-magnetized needle in order to do that.
However, at the same time, it is necessary that the period of oscillation of the needle does not
amount to less than 10 to 12 seconds if one is to perform the observations with any precision.
That goal can also be achieved with a strong magnetization of the needle in such a way that
one gives the needle a large thickness relative to its short length, e.g., 15 millimeters for a
length of 100 millimeters. One finds a more precise description of the galvanometer that was
used here at the end of the treatise in Supplement 13.39, and an illustration is also given in
Figures 2, 3, 4.382

13.4 Combinations of Four Conductors

The four conductors are the inductor wire, the multiplier wire, the wire of the original
resistance unit,383 and the wire of the copy. Of those four conductors, the first two are
necessary for all experiments and define the circuit, either alone or together with one or two
of the other wires, which can be found in the following combinations:

1. The ends of the inductor and multiplier wires are connected to each other directly,
and those two wires alone define the circuit.

2. The previous circuit is broken at one place and the wire of the original resistance unit
is inserted there.

380[Note by AKTA:] See footnote 92 on page 48.
381[Note by AKTA:] C. F. Gauss (1777-1855). See [Gau38b] with English translation in [Gau41c]. See also

[Web38a] and [Web39a] with English translations in [Web41c], [Web66a], [Web41d] and [Web66b].
382[Note by AKTA:] Weber is referring here to Figures 2, 3 and 4 of Supplement 13.39. When Weber’s paper

was reprinted in his collected works, these Figures were renumbered as Figures 11, 13 and 12, respectively.
383[Note by AKTA:] In German: des Original-Widerstandsmaasses.
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3. The wire of the copy is inserted instead of the wire of the original resistance unit.

4. The wires of the original resistance unit and the copy are put together and inserted in
the circuit one after the other.384

5. The wire of the original resistance unit and the copy are set next to each other and
inserted into the circuit while connected to each other at their beginnings and ends.385

6. The ends of the inductor and multiplier wires are connected to each other directly, but
they do not define the circuit by themselves, as in 1., but the wire of the original resistance
unit is inserted between their connection points, such that the current that is provided by
the inductor wire is split between the latter and the multiplier wire.

7. The wire of the copy is inserted between the two connection points of the inductor
and the multiplier, instead of the wire of the original resistance unit.

8. The wires of the original resistance unit and the copy are connected in succession and
inserted between the two connection points of the inductor and multiplier.

9. The wires of the original resistance unit and the copy are put next to each other, con-
nected to each other at their beginnings and ends, and inserted between the two connection
points of the inductor and multiplier.

Only the last four of those nine different combinations were employed in the following
experiments, because with the first five, the effect was too strong for one to measure the
elongation of the needle with the same scale. However, the calculations with the observations
will later show that three of those combinations already suffice to determine the resistance
properties of the original and the copy, and the fourth one merely serves as a control on the
accuracy of the measurement.

13.5 Methods of Observation

The instruments described can be applied to the task of observation by various methods that
differ from each other by their precision in some cases, their convenience in others, and by the
rules by which the observations are calculated. Instead of simply observing the elongation of
the needle once it has been put into motion from a state of rest by an induction pulse, there is
greater advantage to performing a system of elongation observations while the needle is given
repeated induction pulses at prescribed moments. For those repetitions, one can generally
propose the rule that all induction pulses shall take place at only those moments when the
oscillating needle passes the position in which it would remain at rest. That is, in fact, the
necessary condition for the calculation of the observations to be performed by simple rules.

For the purpose of all finer measurements, in the context of continuous, as well as in-
stantaneous currents, it is important to gain a clear picture of the different methods for
arranging the observations and experiments, as well as their calculation, and in particular,
when the galvanometer is provided with a damper, as in our case, to understand the rules
by which the observations must be calculated when one considers the influence of damping.
However, in order to not linger here on a summary of the various methods of observation
and their corresponding types of calculation, that will be given at the end of the treatise
in Supplement 13.39, where the difference between the multiplication method and the throw-
back method386 will be discussed in more detail, since both of them are permissible when

384[Note by AKTA:] That is, they are connected in series.
385[Note by AKTA:] That is, they are connected in parallel.
386[Note by AKTA:] In German: Zurückwerfungsmethode.
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instantaneous currents are applied. The first series of observations that are cited here were
performed using the multiplication method.

13.6 Observations

The position of the galvanometer needle when initially at rest was observed on the scale.
The first positive induction pulse imparted a positive velocity to the needle, and the greatest
elongation or the highest position on the scale that the needle attained was observed. The
second negative induction pulse was produced at the moment when the needle passed its
rest position during its return swing, and the lowest position that the needle attained on
the scale was observed. The third, once more positive, induction pulse was produced at the
moment when the needle, which once more swung forward, passed its rest position, and the
highest position on the scale was observed again. The observations were continued in that
way up to twelve induction pulses, as a rule, and finally when the needle once more came to
rest, its position on the scale was noted one more time. Similar series of observations were
made several times in succession with different combination of the wires. The various series
shall be denoted by A, B, C, D, such that A refers to 6., B, to 7., C, to 9., and D, to 8. in
the combinations of wires that were cited above. The following Table gives an overview of
the observations that were associated with those series.

D C B A B A B C D
Position 494.8 492.9 493.2 493.7 493.7 493.0 494.3 494.1 494.3

1. 821.8 587.8 672.7 676.3 673.2 675.3 673.1 588.8 821.2
2. 88.3 376.1 271.8 268.8 272.2 268.1 273.1 377.8 88.1
3. 918.0 614.6 723.3 726.7 724.1 726.6 724.4 614.7 916.2
4. 64.5 370.5 260.4 257.0 260.9 257.5 261.9 372.7 64.5
5. 922.9 616.3 725.7 731.1 726.7 729.5 726.7 616.9 923.2
6. 64.0 369.8 259.5 256.1 259.9 257.5 261.7 371.9 62.9
7. 923.3 616.4 726.0 730.7 726.3 730.2 727.2 617.2 922.7
8. 63.4 369.8 259.6 256.2 259.9 257.3 261.6 371.6 62.6
9. 922.5 616.6 726.2 730.8 726.5 730.5 727.2 617.8 923.7
10. 62.9 370.2 259.2 255.7 260.0 257.5 261.9 371.5 61.7
11. 922.9 616.5 724.2 731.1 725.9 730.9 726.9 617.7 923.3
12. 61.9 370.2 262.7 255.7 260.3 257.2 261.7 371.6 62.9

Position 492.7 493.2 493.6 493.7 492.9 494.2 494.1 494.3 493.7

The observations are arranged in that Table in the sequence that they were made in imme-
diate succession during a time interval that did not amount to a whole hour. The repetitions
of those series of observations are spaced symmetrically so that the small, time-dependent
influences (e.g., the influence of the variation in the directive force387 of geomagnetism) can
be eliminated almost completely by combinations of them.

A direct inspection of the Table above yields the following Table when one:

1. Subtracts the mean value of the observed rest position at the beginning and the end
of the series from each number that is read on the scale,

387[Note by AKTA:] See footnote 109 on page 70. Weber is referring here to the variation in the magnetic
torque exerted by the Earth on the galvanometer needle.
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2. Finds the mean value of all corresponding observations in the series that is denoted
by A, B, C, or D, and

3. Reduces the deflections that were observed on the scale, which are proportional to the
tangent of twice the deflection angle, from the theory of the magnetometer, by that mean
value, in such a way that they will be proportional to the deflection angles themselves.

It should be noted that the horizontal distance from the mirror to the scale amounted
to 2150 scale divisions, so if x denotes the observed value, then the reduced value will be
obtained when one reduces the observed one by x3/(13 867 500).

No. D C B A
1. +325.05 +94.64 +178.96 +181.72
2. −400.87 −116.53 −220.49 −224.38
3. +417.74 +120.92 +229.42 +232.09
4. −423.70 −121.87 −231.67 −235.45
5. +423.45 +122.87 +231.82 +235.69
6. −424.22 −122.62 −232.36 −235.89
7. +423.40 +123.07 +231.96 +235.84
8. −425.13 −122.77 −232.36 −235.94
9. +423.50 +122.47 +232.09 +236.04
10. −425.81 −122.62 −232.36 −236.09
11. +423.50 +123.37 +231.13 +236.39
12. −425.72 −122.57 −231.17 −236.24

One sees from this Table that the observed elongations of the magnetic needle in the
galvanometer were indeed rapidly-increasing to begin with, but soon approached a limiting
value as a result of the influence of the damping that the galvanometer was equipped with,
which increased with the magnitude of the needle’s oscillation. In order to reduce all indi-
vidual measurements to that limiting value, the logarithmic decrement of the decrease in the
oscillation arc was determined, for which special experiments were performed immediately
before and after the series of observations above. The logarithmic decrement yields a mean
of

0.633 95

in those experiments, or the ratio of two successive elongations of the needle was:

1 : 0.2323 .

Since the deviations between those mean values was not large for the individual series, it
sufficed to use those mean values in the calculations, instead of the true values. Thus, the
first observation was reduced to the limiting value by increasing it by the ratio:

0.7677 : 1 ,

and the nth observation was increased by the ratio:

(1− 0.2323n) : 1 .

The following Table gives an overview of those reduced values and the means that were
obtained for A, B, C, D.
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D C B A
1. +423.41 +123.28 +233.11 +236.71
2. −423.73 −123.18 −233.07 −237.18
3. +423.05 +122.46 +232.33 +235.04
4. −424.93 −122.22 −232.34 −236.13
5. +423.73 +122.95 +231.98 +235.85
6. −424.29 −122.64 −232.40 −235.93
7. +423.42 +123.07 +231.97 +235.85
8. −425.13 −122.77 −232.36 −235.94
9. +423.50 +122.47 +232.09 +236.04
10. −425.81 −122.62 −232.36 −236.09
11. +424.50 +123.37 +231.13 +236.39
12. −425.72 −122.57 −231.17 −236.24

Mean ±424.19 ±122.80 ±232.19 ±236.13

The same series of experiments was performed in the same way three times on three
successive days, and the following Table gives an overview of the values of A, B, C, D from
all three series of experiments.

D C B A
I. 424.19 122.80 232.19 236.13
II. 424.80 123.27 232.25 235.93
III. 423.00 122.59 231.38 235.53
Mean 424.00 122.89 321.94 235.86

13.7 Calculating the Observations

The four values that were denoted by A, B, C, D were determined precisely by the obser-
vations that were described above, and that further raised the question of how the desired
resistance ratio of the original resistance unit a to the copy b could be derived from those
four values. For the sake of simplicity, it will be first assumed that the part of the damping
that originates in the circuit itself is so small in comparison to the part that is independent
of the circuit that it can be neglected, and as a result, the damping can be assumed to be
equal for all observations A, B, C, D. In that case, one easily convinces oneself that the
reduced elongation observation is proportional to the velocity that the galvanometer needle
possesses at the moment when it passes the rest position as a result of a current from an
induction pulse that flows through the multiplier in the galvanometer, and that the velocity
itself is proportional to the integral value of that current. Thus, the observed elongations
can be used as a unit of that current.

However, the current that flows through the multiplier of the galvanometer and is mea-
sured by it was not the total current that was produced by an induction pulse in the inductor
in the experiments above, but only a fraction of it, and from the law of current distribution,
it will be expressed by the ratio of the resistance of the inserted wire to the sum of the
resistances of the inserted wire and the multiplier wire. If m denotes the resistance of the
multiplier wire, a, the resistance of the basic unit, and b, the resistance of the copy, then the
resistance of the inserted wires will be equal to:

a for the observation A,
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b for the observation B,
ab/(a + b) for the observation C,
a + b for the observation D,

and as a result, the corresponding ratios were:

a

a+m
for A ,

b

b+m
for B ,

ab

ab+ am+ bm
for C ,

a+ b

a+ b+m
for D .

However, from Ohm’s law, the total current will be represented by a fraction whose
numerator K is the same for all experiments and depends upon the electromotive force that
corresponds to an induction pulse, while the denominator is given by the resistance of the
circuit through which the current goes. If one denotes the resistance of the inductor wire by
r then that will yield the resistance of the entire circuit as equal to:

r +
am

a+m
for the observation A ,

r +
bm

b+m
for the observation B ,

r +
abm

ab+ am+ bm
for the observation C ,

r +
(a + b)m

a + b+m
for the observation D .

One then gets the following equations for the current intensities that are observed with
the galvanometers, which shall be denoted by A, B, C, D:

A =
a

a+m
· K

r + am
a+m

=
aK

am+ ar +mr
,

B =
b

b+m
· K

r + bm
b+m

=
bK

bm+ br +mr
,

C =
ab

ab+ am+ bm
· K

r + abm
ab+am+bm

=
abK

ab(m+ r) + (a+ b)mr
,

D =
a+ b

a+ b+m
· K

r + (a+b)m
a+b+m

=
(a+ b)K

(a+ b)(m+ r) +mr
.

If one sets:
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1

mr
·K = α ,

1

m
+

1

r
= β ,

in them, for the sake of brevity, then that will yield:

A

(

β +
1

a

)

= B

(

β +
1

b

)

= C

(

β +
1

a
+

1

b

)

= D

(

β +
1

a+ b

)

= α ,

and therefore:

1
b
B − 1

a
A

A− B
=

(

1
a
+ 1

b

)

C − 1
a
A

A− C
=

1
a+b

D − 1
a
A

A−D
= β ,

from which one will get the following two equations for determining the desired resistance
ratio of the copy to the basic unit b : a:

(a− b)AB − aAC + bBC = 0 ,

(a2 − b2)AB + b2AD − a2BD = 0 ,

or:

b

a
=

AB − AC

AB − BC
,

b2

a2
=

AB − BD

AB − AD
.

According to Ohm’s law, the following relation will exist between the four observations
A, B, C, D:

A3

B3
=

(

A− C

B − C

)2

· A−D

B −D
,

which is obtained by eliminating a and b from the foregoing equations.
With the given development, the formulas that were presented here are initially valid

for only the cases in which the observations A, B, C, D give the induced currents and the
currents that flow through the multiplier in terms of the same unit, i.e., where the damping
of the galvanometer needle is not noticeably different for the various observations. However,
those formulas require a special test in order to be also be able to apply them to the remaining
cases in which the damping varies, because, as one easily sees, the observed elongations A,
B, C, D are then, in fact, likewise proportional to the current strengths, but the strength of
the damping is inversely proportional to them, in addition.

Now, the damping consists of a part that is constant for all observations that originates
in the unvarying annular damper that the galvanometer is equipped with, and might be set
equal to 1, and a variable part that depends upon the way that the multiplier is closed,
which is inversely proportional to the resistance of the circuit that starts from the multiplier
and returns to it. However, the resistance of that circuit is equal to:

300



m+
ar

a + r
for A ,

m+
br

b+ r
for B ,

m+
abr

ab+ ar + br
for C ,

m+
(a+ b)r

a+ b+ r
for D .

As a result, if one sets 1/m+1/r = β and γ denotes a constant factor, then the variable
part of the damping can be represented by

γ ·
1
r
+ 1

a

β + 1
a

for A ,

γ ·
1
r
+ 1

b

β + 1
b

for B ,

γ ·
1
r
+ 1

a
+ 1

b

β + 1
a
+ 1

b

for C ,

γ ·
1
r
+ 1

a+b

β + 1
a+b

for D .

Now, for the cases in which that variable part of the damping can not be neglected in
comparison to the constant equals to 1, then A, B, C, D must be replaced with their products
with the associated value of the damping in the formulas that were developed above, i.e.:

A is replaced with A

(

1 + γ ·
1
r
+ 1

a

β + 1
a

)

,

B is replaced with B

(

1 + γ ·
1
r
+ 1

b

β + 1
b

)

,

C is replaced with C

(

1 + γ ·
1
r
+ 1

a
+ 1

b

β + 1
a
+ 1

b

)

,

D is replaced with D

(

1 + γ ·
1
r
+ 1

a+b

β + 1
a+b

)

.

However, with those substitutions, one gets:

A

[

β +
1

a
+ γ

(

1

r
+

1

a

)]

= B

[

β +
1

b
+ γ

(

1

r
+

1

b

)]

= C

[

β +
1

a
+

1

b
+ γ

(

1

r
+

1

a
+

1

b

)]

= D

[

β +
1

a + b
+ γ

(

1

r
+

1

a+ b

)]

= α ,
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and from this:

A
(

β + 1
a

)

− B
(

β + 1
b

)

B
(

1
r
+ 1

b

)

− A
(

1
r
+ 1

a

) =
A
(

β + 1
a

)

− C
(

β + 1
a
+ 1

b

)

C
(

1
r
+ 1

a
+ 1

b

)

− A
(

1
r
+ 1

a

)

=
A
(

β + 1
a

)

−D
(

β + 1
a+b

)

D
(

1
r
+ 1

a+b

)

−A
(

1
r
+ 1

a

) = γ ,

from which it follows that:

AB

(

β − 1

r

)(

1

a
− 1

b

)

+ AC

(

β − 1

r

)

1

b
−BC

(

β − 1

r

)

1

a
= 0 ,

AB

(

β − 1

r

)(

1

a
− 1

b

)

+ AD

(

β − 1

r

)(

1

a+ b
− 1

a

)

− BD

(

β − 1

r

)(

1

a+ b
− 1

b

)

= 0 ,

or when one drops the common factor of (β−1/r), one will get the same equations as before,
namely:

b

a
=

AB − AC

AB − BC
,

b2

a2
=

AB − BD

AB − AD
.

Finally, when one applies the rules that were found to the values of A, B, C, D that were
given by the experiments that were described above, namely:

A = 235.86 ,

B = 231.94 ,

C = 122.89 ,

D = 424.00 ,

that will give, first of all:

A3

B3
= 1.051 56 ,

(

A− C

B − C

)2

· A−D

B −D
= 1.051 28 .

The close agreement between those two values, which should be equal according to the rules
above, can serve as a confirmation of Ohm’s law, from which those rules were derived.
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Furthermore, that gives the ratio of the resistance of the copy b to the basic unit a, and
indeed, from the observed values of A, B, C:

b

a
=
AB −AC

AB −BC
= 0.981 616 ,

and from the observed values of A, B, D:

b

a
=

√

AB − BD

AB − AD
= 0.981 485 ;

so the mean of those numbers is the resistance of the copy, expressed in units of the resistance
of the given basic unit, which equals:

0.981 55 .

One can also find the ratio of the resistance of other conductors to the basic unit in the
same way that the ratio of the resistance of the copy to that of the basic unit was determined,
and in that way the resistances of all of those conductors can be measured in terms of the
given basic unit.

The arrangement of the observations in the example that was given here was consistent
with the multiplication method. However, it was mentioned before that this arrangement
could also be consistent in yet another way, namely, the throwback method, and the latter
way of organizing things even possesses an advantage over the former. Therefore, the second
method deserves to be discussed in more detail, which shall be done in Supplement 13.39 at
the end of this treatise, where an example of measuring by that method will be added.
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II - Converting the Resistance Measurements to Abso-

lute Units

13.8 On the Meaning of an Absolute Resistance Unit

From what was shown in the first Section, namely, how the resistance of a conductor can be
determined with the required sharpness with a given basic unit, in this second Section, those
measurements will be converted to an absolute unit.

One can believe that such a conversion can be implemented in the simplest way by revert-
ing to the spatial dimensions (length and cross-section) of the conductor, and in that way
employ the metal that is most suitable to conductors and most frequently used, namely, cop-
per. In fact, in that way, one would succeed in determining the resistance of the conductors
that can be referred to with the name of absolute, but that would not, in fact, correspond
to the true objective, namely, reducing the number of arbitrarily-assumed basic units. In
that way, a basic unit for a specific resistance (namely, that of copper) would replace a basic
unit of absolute resistance. However, for the stated objective, it is irrelevant whether one
uses a unit of absolute resistance as a basis and derives the unit of specific resistance from
it or conversely uses a unit of specific resistance as a basis and derives the unit of absolute
resistance from it. Absolute resistance measurements have an intrinsic meaning only when
they are performed in such a way that absolutely no new units, such as space and time, are
used as a basis other than the ones that are present and have already been used and are
indispensable for other purposes.

Thus, one can easily judge what Jacobi said on p. 199 and the following388 in the reference
that was cited above on the occasion of his proposal in regard to a fixed unit of resistance: In
order to express the conductive resistance that the physicists measure in a common unit, no
absolute method of determination can exist, because it seems that differences in resistance
can exist between even the most chemically pure metals that cannot be explained by a
difference in dimension alone, and therefore when one physicist refers his resistance meter
and multipliers to copper wire of 1 meter in length and 1 millimeter in thickness, another
physicist still cannot convince himself that his copper wire and the other one possess the
same coefficient of resistance (i.e., whether the copper has the same specific resistance for
the two wires). One sees that here Jacobi had in mind only a determination for which the
unit of absolute resistance can be derived from a basic unit that is assumed for the specific
resistance, which he had every right to reject. However, Jacobi did not even touch upon the
question of whether a new basic unit was even necessary or whether resistance determinations
might be possible without assuming anything about the two basic units. Nonetheless, that
question is precisely the one whose resolution we would prefer to address. Moreover, while
that answer implies that no new basic unit is, in fact, even necessary for the purpose of
resistance measurements, it does not by any means follow that establishing such a basic
unit of the kind that Jacobi proposed, and as it was used in the first part of this treatise,
is entirely superfluous. Rather, it will be shown that assuming Jacobi’s proposal will also
remain the most desirable on practical grounds, because a direct absolute determination of
resistance can be performed precisely only in isolated cases and under especially favorable
conditions by assuming Jacobi’s proposal, but that will build a bridge by which one will

388[Note by AKTA:] Page 199 of the original article, which corresponds to page 303 of Volume 3 of Weber’s
Werke and page 292 of this translation.
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succeed in converting all other resistance measurement to an absolute unit with the help of
a single absolute resistance determination that one can actually perform. Now, the fact that
an absolute resistance determination is possible in a way that is completely different from
the one that Jacobi spoke of and which is completely independent of the specific resistance
or the resistance coefficient of any body, such as copper, namely, by a particular combination
of magneto-electric and electromagnetic observations, was already expressed by Gauss soon
after Faraday’s discovery of magneto-electricity was made known.389

The essence of that method can be expressed briefly in words in the following way: If one
considers the intensity of any galvanic current, then that will explain the fact that it can be
determined in two essentially-different ways, in general: First of all, from the causes upon
which it depends. Secondly, from the effects that it produces. However, as one can easily
show, the current intensity that is defined by its effects can now be converted into absolute
units, and since that explains the fact that the value of current intensity in absolute units
must be the same, it might be defined by either its effects or its causes, so the result that
must be obtained in the latter way will already be known in advance by way of the one that
was known by the former way. Nevertheless, one knows that the current intensity depends
upon only two causes, namely, the electromotive force and the resistance of the circuit, and
that of the two, the electromotive force can be converted to an absolute unit. Now, just as
the absolute value of the current intensity will be given immediately when the resistance is
given in absolute units, along with the electromotive force, the converse is also true, since
when the electromotive force, as well as the current intensity is given in absolute units, the
value of the resistance in absolute units will be given, and one then sees that the resistance
measurement can be performed without one having to use any new arbitrary basic unit for
it, which was to be proved.

In general, that also explains the possibility that there can be an absolute unit of resis-
tance in the given, narrower, sense of the word, but it will still be necessary to give a precise
definition of that unit if an actual measurement is to be performed with that unit. However,
one finds a complication in such a definition in the fact that it assumes that other absolute
units are known, namely, the absolute unit for electromotive force and the absolute unit
for current intensity (as determined from its effects). One would then be dealing with the
foundation of an absolute unit of resistance on the basis of establishing a complete system
of absolute units for all electrodynamics. If one goes even further back, then one will find
that the latter units also assume yet other ones that lie beyond the scope of electrodynamics,
and that the intended foundation of the resistance unit would necessitate a more detailed
discussion of the absolute units of several different types of quantities that must precede the
performance of our measurement.

13.9 On the Absolute Unit of Several Different Types

of Quantities

It is known that physical research can be greatly simplified when one introduces no more
independent specialized basic units for the different types of quantities than are unavoidably
necessary and derives all other units from that minimal set of basic units. On those grounds,
merely distances, time intervals, and masses are presented as basic units in mechanics, and
the units of all other types of quantities that are considered in mechanics are derived from

389[Note by AKTA:] See footnote 24 on page 20.
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the minimal set of basic units, which are then called absolute units. For example, no basic
unit of velocity and density are defined, but the absolute units that are utilized for them
can be reduced to those three basic units. Similarly, the units for moving and absolute
forces, moment of rotation, moment of inertia, efficiency, etc., can be reduced to those three
basic units using known laws. On the same basis, no further independent specialized basic
unit is introduced for magnetism either, but one refers it to the absolute unit that Gauss
had derived for magnetism in terms of the three basic units of mechanics in his treatise:
Intensitas vis magneticae terresris ad mensuram absolutam revocata. Gottingae 1833.390,391

The unit for bar magnetism392 is then, in fact, the magnetism of a bar that exerts a
moment of rotation that has a ratio of 1 : R3 with the absolute unit of moment of rotation
(when it acts at great distance R upon another equally-strong magnetic bar whose magnetic
axis is parallel to the line that connects the midpoints of the two magnets, while its own
magnetic axis is, by contrast, perpendicular to it).

The unit for the strength of geomagnetism (viz., the strength of the geomagnetic force)
at any location is, accordingly, just the moment of rotation, expressed in absolute units,
that geomagnetism exerts upon a bar magnet that is found at that location when the latter
contains one absolute unit of magnetism and its magnetic axis makes a right angle with the
direction of geomagnetism at that location.

13.10 Definition of the Absolute Units in Electrody-

namics

The absolute units for the types of quantities that are considered in electrodynamics can now
be defined completely and concisely in the following way by reducing them to the magnetic
unit.

13.10.1 The Unit of Current Intensity

The unit of current intensity is the intensity of the current that exerts the same action at
a distance as a bar magnet that contains the previously-defined unit of magnetism when it
flows around a plane of unit area.

That definition of the unit of current intensity is the same as the one that was given in
“Resultaten aus den Beobachtungen des magnetischen Vereins im Jahre 1840,” p. 86.393,394

13.10.2 The Unit of Electromotive Force

The unit of electromotive force is the electromotive force that the previously-defined unit of
geomagnetism would exert upon a closed circuit when the latter is rotated in such a way
that the area that is bounded by its projection onto the plane that is perpendicular to the
direction of geomagnetism would increase or decrease by a unit area during a unit time.

390[Note by HW:] Carl Friedrich Gauss’s Werke, Vol. V, p. 79.
391[Note by AKTA:] See footnote 97 on page 51.
392[Note by AKTA:] That is, a magnetized bar with a magnetic moment = 1.
393[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 9.
394[Note by AKTA:] [Web41b, p. 86 of the Resultaten and p. 9 of Weber’s Werke] with English translation

in [Web20b].
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13.10.3 The Unit of Resistance

The unit of resistance is the resistance of a closed circuit in which the previously-defined
unit of electromotive force would produce the previously-defined unit of current intensity.

If one denotes the unit of current intensity that was defined above by I and denotes
any current intensity that is measured with it by iI, in which i denotes a real number, and
one further denotes the unit of electromotive force that was defined above by E, and any
electromotive force that is measured with it by eE, in which e denotes a real number, then
wW will be the resistance of a circuit upon which the electromotive force eE acts and in
which a current of intensity iI is produced when W denotes the unit of resistance that was
defined above and w = e/i is a pure number. The resistance of that circuit will then be equal
to the unit of resistance when one finds that e = i. One sees from this that a conductor that
possesses the unit of resistance that was defined above can actually be realized.

13.11 Schema for Determining the Absolute Resis-

tance of a Conductor

The following example will serve to explain how the electrodynamic unit that was defined
before can be applied to the determination of the absolute resistance of a conductor:

The line NS [in Figure 1] denotes the direction of geomagnetism, whose strength at the
two locations A and B shall be equal to T with the unit defined above. The value of T is
known to be found from magnetometric observations according to the guidance that Gauss
gave in Intensitas vis magneticae terrestris ad mensuram absolutam revocata.395 Now, a
closed circuit consists of two circles whose centers are A and B. The line NS lies in the
plane of those circles. However, two more wires belong to that circuit that lie close to each
other and exhibit a double connection between the two circles. Finally, let each circle be cut
between the two points where the two wires connect with it such that all parts together will
define a curve that closes back on itself, as the Figure shows. r denotes the radius of both
circles, which shall be assumed to be equal for the sake of simplicity. If one projects the
circle A in the direction NS onto a plane that is perpendicular to NS, then the area that
is bounded by the projection will be equal to zero. However, the flexibility of the wires that
connect the two circles might allow the circle A to rotate and be located perpendicular to
NS, at which point, the area of the surface that is bounded by the same projection will be
equal to πr2. That rotation takes place in a short time interval τ in such a way that the area
that is bounded by the projection of the circle will grow uniformly from 0 to πr2 during that
time. From laws of magneto-electrics, that will then yield the electromotive force eE that

395[Note by AKTA:] See footnote 97 on page 51.

307



geomagnetism T exerts upon the circular conductor A during the time interval τ , which is
determined in terms of the previously-defined unit E by the number:

e =
πr2

τ
· T .

A current that flows through the entire closed circuit will be produced by that electromotive
force during the time interval τ whose intensity shall be denoted by iI. That current also
goes through the circle B and acts from that circle on a distant magnetic needle at C whose
rotational axis is perpendicular to NS and lies in the plane of the circle B. Now, if I is the
previously-defined unit of current intensity then, from the laws of electromagnetism, that will
imply that the moment of rotation that the current that flows through the circle B exerts
upon the needle is equal to the moment of rotation exerted by a bar magnet that is placed
at the center of the circle B in such a way that its magnetic axis would be perpendicular to
the plane of the circle, when the magnetism M of that bar is:

M = πr2i ,

as measured in the unit defined above.396 Now, when the magnetism of the needle C, as
measured in the same unit, is further equal to m, and BC = R, and ϕ denotes the angle
that the magnetic axis of the needle C makes with the direction NS of geomagnetism, then
from the known laws of magnetism, the moment of rotation that the bar magnet M exerts
upon the needle m will be expressed by:

Mm

R3
cosϕ =

πr2

R3
· im · cosϕ .

That implies that if K denotes the moment of inertia of the needle, then the acceleration of
the rotation will be equal to:

πr2

R3
· im
K

· cosϕ ,

and as a result, if the needle were previously at rest when ϕ = 0, then the angular velocity
dϕ/dt at the end of the short time interval τ would be:

dϕ

dt
=
πr2

R3
· im
K

· τ .

Finally, one finds the greatest elongation α of the needle that is set into oscillation in that
way from that velocity using the known laws of oscillation by multiplying is by the period
of oscillation t397 and dividing by the number π, namely:

α =
r2

R3
· im
K

· τt .

As is known, one has the following equation for the period of oscillation t:

mT =
π2K

t2
,

from which:

396[Note by AKTA:] The magnetism M of the bar is then its magnetic moment.
397[Note by AKTA:] In German: Schwingungsdauer. See footnote 96 on page 51.
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mt

K
=
π2

tT
,

and as a result:

α =
π2r2

R3
· iτ
tT

,

or

i =
αR3

π2r2
· t
τ
· T .

Now, one can further calculate the action of the circular current A on the needle when one
observes that the same current that flows through the circle B also flows through the circle A.
Meanwhile, for the sake of simplicity, it might be assumed here that the distance AC is large
enough that this action will vanish in comparison to the action of the circular current B.
The observation of the actual width of the elongation will then give the value of α directly.

That will then imply that the electromotive force eE that was given above and determined
in the previously-defined unit, for which it was found that:

e =
πr2

τ
· T ,

will produce a current in the total circuit whose intensity in the previously-defined unit will
be determined by iI, when:

i =
αR3

π2r2
· t
τ
· T .

Finally, the resistance of the total circuit in the previously-defined unit will be determined
from wW , when:

w =
e

i
=

π3r4

αR3t
.

Measuring the absolute resistance of the total circuit is then reduced to measuring the
quantities:

r, R, α, t ,

or in other words, the resistance of the total circuit can then be expressed in the previously-
defined unit when one has found from the observations first of all the number α, which gives
the width of elongation of the needle in parts of the radius, then secondly the number r/R,
which gives the radius of the two circles in parts of the distance BC, then thirdly the velocity
r/t with which the radius of that circle would move during an oscillation of the needle. It
will then follow from this that a unit of velocity is the only dimensional unit upon which the
absolute measurement of resistance rests.

With that overview of all of the observations that are required for determining the abso-
lute resistance, we shall now go on to discuss how one performs those observations.
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13.12 On Performing the Observations

Most of the observations that must be made for determining the absolute resistance of the
total circuit according to the foregoing presentation can now be actually performed with no
difficulty and with great precision, because the observations that are required to determine
the period of oscillation of the needle admit a sharpness that is known to leave nothing to
be desired. The same thing is true of measuring the radius of the circle and the distance
BC = R. All that remains then is to observe the width of the elongation α of the oscillating
needle. As is known, that can also be determined precisely up to an arc-second with the
equipment that pertains to the magnetometer and will then likewise leave nothing to be
desired when, e.g., the value of α is not less than 1◦. However, when this schema is followed
exactly, that value will generally be much smaller and would not be realized, even with
the best means of observations. The main problem for the practical measurement of the
resistance of a circuit in absolute units then consists of modifying the equipment that was
described in such a way that the observed elongation α will become as big as possible.

Such a modification consists, first of all, of relocating the magnetic needle C from a large
distance to the center of the circle B, where the elongation will be increased by a well-defined
ratio according to the laws of electromagnetism. In so doing, one must only be careful that
the length of the needle is much smaller than the radius of the circle in order to not need to
include the particular distribution of magnetism in the needle in the calculation, because a
more detailed study of that distribution would bring some complications with it.

A second modification by which an increase in the elongation α can be achieved, consists
of multiplying the winding number of both circles, which will convert them into rings that
possess a significant cross-section. However, the influence of each individual winding must
then be included in the calculation because they have different radii, and not all of them lie
in the plane of the needle.

With those two essential modifications, one will arrive at an enlargement of the elongation
that will also make it possible to perform that observation with the sharpness that was
exhibited in the experiment to be described.

Before we move on to describe the experiment itself, a remark might be made in regard
to another modification of the equipment to which one will arrive when one applies the
exchange of an action at a distance with an action at the center that was already given for
the circle B to the circle A, as well. In that way, the electromotive force that geomagnetism
exerts upon the circle A at a distance would be replaced by the electromotive force of a
magnet that is placed at the center of the circle A. From the laws of magneto-electricity,
that will then make the effect when the magnet is at rest and the circle rotates forwards the
same as when the circle is at rest and the magnet rotates backwards. One can then suspend
a magnetic needle at the center of the circle at rest and let it oscillate, and that oscillating
needle will then exert an electromotive force on the circle, and in that way, the circle and the
magnetic needle can keep the same location for A that the circle and the magnetic needle
do for B.

Finally, when both circles and their needles take the same form and arrangement, nothing
at all stands in the way of completely combining them, because, in fact, from the damping
principle, the magneto-electric action of the needle on the circle and the electromagnetic
action of the circle on the needle can coexist without mutual perturbations of those needles
and circles. One then needs a single needle that is set into oscillation, and in that way
it will exert an electromotive force on a closed circle in whose center the needle is found
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according to the laws of magneto-electricity, and that electromotive force will produce a
galvanic current in that circle that acts back upon the needle that excited the electromotive
force according to electromagnetic laws and which will then produce a damping or decrease in
the oscillation arc of the oscillating needle. With that simplification, it is enough to observe
the arc of oscillation, from whose magnitude the magnitude of the electromotive force can be
determined and from whose decrease the strength of the induced current can be determined.
The second and third series of experiments will give examples of how the resistance of a
circuit can also be measured in absolute units with this method.

We shall now move on to describe the experiments that were performed according the
methods that were explained, and we will first summarize the experiment that was carried
out using the first method.

13.13 First Method

The following instruments were devised for performing the experiments using the firstmethod:

1. The Earth inductor,398 or a wire loop in which a galvanic current was generated by
rotating it in the magnetism of the Earth.

2. A multiplier, whose wire-ends were connected to those of the Earth inductor.

3. A small magnetometer, whose needle was suspended at the center of the multiplier.

The following remarks should be made about those instruments:

13.13.1 The Earth Inductor

The copper wire that was employed in the Earth inductor, including the wool that was
wound around it, had a weight of:

16 533 grams,

500 grams of which came from the wool. That wire was wound around a wooden frame that
had the approximate form of a regular hexagon. All of the wire windings collectively defined
a loop with a rectangular cross-section whose one side, which was perpendicular to the plane
of the loop, was 64 millimeters long, while the other was about 16 millimeters long. The
length of a tape that was laid around the wooden frame before the wire was wound gave
a circumference of 3067 millimeters. The length of a tape that was laid around the wire
windings gave a circumference of 3170 millimeters. The wire consisted of seven layers, each
of which had 22 to 23 windings, although the seventh, or outer, layer was not complete and
had only 10 windings, which gave:

145 windings,

in total. The lengths of the two protruding wire-ends, taken together, amounted to 550
millimeters. When one considers the slight deviation in form from a regular hexagon, that
made the sum of the areas of the surface that bounded the projections of those 145 windings
onto the plane of the loop equal to:

104 924 000 square millimeters.

398[Note by AKTA:] In German: Erdinduktor.
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After the wire was wound, two strong wooden clamps were fixed at two opposite corners
of the hexagon that enclosed the copper loop, each of which was equipped with a strong,
round, outward-facing peg399 around which the loop could be turned when it was inserted
along with that peg in the bed of a large wooden frame that was joined to a very solid beam.
The rotational axis that was defined by that peg was parallel to the plane of the loop and
was vertical. One of the two pegs was hollow, and the two wire-ends were led through it
and fixed at the end. Those two wire-ends that were fastened to the rotatable peg were
connected by two brass coil springs that terminated on the fixed wooden frame where the
connecting wires that connected the inductor to the multiplier were clamped. In that way,
any loose connection was avoided that could result in an indeterminacy of the resistance in
the circuit, and it likewise allowed for a rotation of the inductor in a semi-circle forwards
or backwards while the remaining parts of the circuit remained immobile. A long crank for
rotation was attached to the other peg, which was arrested at the end of each rotation by
a fixed tooth that was attached to the wooden frame. The placement of that ratchet tooth
was regulated in such a way that the rotation of the inductor amounted to exactly two right
angles and the vertical plane of the loop was perpendicular to the magnetic meridian at the
beginning and end of each rotation.

13.13.2 The Multiplier

The copper wire that was employed for the multiplier, including the wool that was wound
around it, had a weight of:

157 430 grams,

of which, 4540 grams came from the wool. That wire was wound around a wooden spool
that was bounded externally by a cylindrical surface whose radius amounted to:

303.51 millimeters.

The wire that was wound lay between two parallel wooden protecting walls that were sepa-
rated by a distance of 202.05 millimeters. The mean radius of the surface that bounded the
outermost layer of wire windings was 374.41 millimeters, so the rectangular cross-section of
the loop that was defined by all windings was 202.05 millimeters long and 70.9 millimeters
wide. The wire defined 28 successive layers, each of which consisted of 66 to 68 windings.
The 28th, or outermost, layer was not complete and had only 44 windings, which gave:

1854 windings,

in total. The last winding was missing 155 millimeters. The length of the two protruding
ends amounted to:

1340 millimeters,

in total. The multiplier was placed so that its plane coincided with the magnetic meridian.

399[Note by AKTA:] In German: Zapfen.
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13.13.3 The Small Magnetometer

The needle of the small magnetometer was a tempered and magnetized steel cylinder that
was 60 millimeters long and 6.2 millimeters thick, and at its center it was equipped with a
brass clip from which it was suspended and which carried a round plane mirror of diameter
30 millimeters whose normal defined a right angle with the magnetic axis. With the given
length of the needle, which still did not amount to ten parts of the diameter of the multiplier,
the influence of the particular distribution of magnetism no longer came under consideration
and therefore did not need to be included in the calculation. The needle was lengthened at
both ends by two 31-millimeter-long brass pins that carried two brass balls of diameter 11.7
millimeters. The weight served to increase the moment of inertia of the needle, which gave
the period of oscillation a magnitude that was convenient for observation. That needle was
suspended by four cocoon threads that were combined into one thread that was fastened to
the inner wall of the multiplier in such a way that the center of the needle could lie at the
midpoint of the multiplier. Finally, the space that was enclosed by the multiplier, in whose
center the magnetic needle floated, was converted into a closed case by two wooden lids that
were attached to both sides. In one of those lids, there was a small opening for the mirror
on the needle that was sealed with a plane-parallel piece of glass. The reading telescope for
the magnetometer was placed in the vertical plane of the normal to the mirror at a distance
of about 4 meters, and a scale was fastened to it perpendicular to the normal to the mirror.
Its horizontal distance from the mirror amounted to:

4087.5 millimeters,

and the image of the scale could be observed by the telescope that was pointed towards the
mirror.

13.14 Observations

Now, the following observations should be made about those instruments: The inductor was
placed so that its plane coincided with the magnetic meridian, and the magnetic needle was
brought to rest. The inductor was then turned suddenly through 90◦. In that way, the needle
would be set into oscillation, and the state of the needle in its greatest positive elongation on
the scale, which it attained after one-half an oscillation period,400 would be observed by the
telescope. The needle attained its greatest negative elongation after 11

2
oscillation periods,

which was likewise observed on the scale. The inductor was then turned 180◦ backwards at
the moment when the forward-oscillating needle once more passed through its original rest
position, i.e., two oscillation periods after the beginning of the experiment. The oscillating
needle was then arrested in the middle of its motion and pushed backwards, at which point
its greatest negative, and then its greatest positive, elongation on the scale was observed.
After the course of four oscillation periods, at the moment when the needle returned from its
last elongation to pass through its original rest position, the inductor was again moved 180◦

backwards, at which point the same elongation observations were made as the first time,
and the experiment was continued in that way until a satisfactory series of observations was
obtained. The following Table encompasses four such series of observations. For each series,
the elongations that were observed on the scale are recorded successively in the first column.

400[Note by AKTA:] See footnote 96 on page 51.
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In the second column, the mean value of each two successive positive or negative elongations
was added. Finally, in the third column, the difference between the greatest positive and
negative elongations or the magnitude of the total oscillation arc is given, and under each
series, the mean value is recorded.
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First Series Second Series Third Series Fourth Series
467.1 467.1 463.0 462.0
540.7 540.5 536.7 534.7

543.70 543.65 539.65 538.20
546.7 546.8 542.6 541.7

80.10 79.65 80.40 80.00
461.4 461.3 456.6 455.3

463.60 464.00 459.25 458.20
465.8 466.7 461.9 461.1

79.75 79.55 80.35 79.75
540.6 540.8 537.6 535.1

543.35 543.55 539.60 537.95
546.1 546.3 541.6 540.8

79.25 79.90 79.55 79.50
462.3 461.8 458.3 456.0

464.10 463.65 460.05 458.45
465.9 465.5 461.8 460.9

79.45 80.00 79.70 79.50
541.4 542.1 537.7 535.3

543.55 543.65 539.75 537.95
545.7 545.2 541.8 540.6

79.75 79.70 79.95 80.05
462.3 462.8 457.9 456.0

463.80 463.95 459.80 457.90
465.3 465.1 461.7 459.8

79.70 79.85 79.85 79.85
542.0 542.3 537.6 536.1

543.50 543.80 539.65 537.75
545.0 545.3 541.7 539.4

79.45 80.10 79.70 79.55
462.8 462.7 458.2 456.8

464.05 463.70 459.95 458.20
465.3 464.7 461.7 459.6

79.45 79.80 80.10 79.65
542.0 542.3 537.6 536.0

543.50 543.50 540.05 537.85
545.0 544.7 542.5 539.7

79.65 79.75 80.05 79.70
462.9 462.8 457.3 456.5

463.85 463.75 460.00 458.15
464.8 464.7 462.7 459.8

79.85 79.60 79.50 79.60
542.7 541.9 536.6 535.8

543.70 543.35 539.50 537.75
544.7 544.8 542.4 539.7

79.45 79.75 79.75 79.55
463.4 462.3 457.2 456.4

464.25 463.60 459.75 458.20
465.1 464.9 462.3 460.0

79.70 79.85 79.55
542.6 541.3 535.7

543.95 543.45 537.75
545.3 545.6 539.8

79.75
462.8

464.20
465.6

Mean 79.64 Mean 79.79 Mean 79.90 Mean 79.69
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As a result, the mean value of the total oscillation arc over all observations was 79.755
scale divisions, which gave the measurement:

79.4 millimeters.
However, that result must be made 1/2 millimeter larger if it is to be independent of the

influence of the duration of the rotation of the inductor on it. One then gets:
79.9 millimeters.401

To complete the measurement, the oscillation period of the needle was observed, and a
period of oscillation equal to:

10.2818 seconds
was found from 300 periods of oscillation.

Furthermore, the ratio of the magnetic directive force402 to that of the thread was found
to be:

1770 : 1 .

Finally, since other magnets that could not be removed were found in the hall in which
the instruments were located, as well as in the adjacent rooms, one could not assume that the
strength of the horizontal part of geomagnetism that generated the current in the inductor
would be precisely equal to the strength of the horizontal part of geomagnetism that acted
upon the needle at the midpoint of the multiplier. Therefore, both of them were compared
to each other in such a way that the period of oscillation of one and the same needle at both
locations would be observed directly in succession, and that gave these periods of oscillation
at the midpoint:

2.9095 seconds for the damper,
2.9126 seconds for the inductor.

The squares of those periods of oscillation are inversely proportional to the strength of
geomagnetism at both locations, i.e.:

100 000 : 99 787 .

Those were all of the experiments that were necessary for determining the resistance of the
total circuit that consisted of the wire of the inductor, the damper, and the two connecting

401[Note by WW:] The rotation of the inductor should not be accomplished so rapidly that its duration
cannot be neglected in comparison to the period of oscillation of the needle. It must then be performed in two
seconds with the greatest possible uniformity. The intensity of the inducted current can then be determined
for each moment of the rotation, and will be represented by i sinπϑ/2, if i denotes the intensity in the middle
of the rotation and the time ϑ is measured from the beginning of the rotation. That varying, two-second-long
induction can be replaced with a uniform induction that generates a current of intensity i over 4/π seconds
with almost the same effect. That current begins to act upon the needle 2/π seconds before the needle arrives
at the magnetic meridian and then reverses, and after that, it again flows for 2/π seconds before the current
ceases. If α denotes the greatest elongation of the needle and t its period of oscillation, then the deflection of
the needle at the moment when the current begins or stops will be expressed approximately by α/t, and the
mean deflection over the entire duration of the induction, by α/3t. The acceleration of the needle due to its
directive force that corresponds to such a deflection is equal to α/3t · π2/t2, and the velocity that it creates
during the induction is equal to 4π · π2α/3t2. One-half of that must be added to the velocity πα/t that the
needle acquires due to its elongation α when it goes through the meridian in order to get the velocity that
the needle would possess at the moment after its reversal when the induction happened instantaneously.
Now, just as the velocities have the ratio πα/t : (1+2/3t2)πα/t, so do the observed elongation of the needle
α and the elongation that would have been found to exist for instantaneous induction. The latter then yields
(+2/3t2)α. Now, since the total oscillation arc 2α = 79.4 millimeters, and one had t = 10.2818, the value of
79.9 millimeters that was cited above would follow from that.
402[Note by AKTA:] See footnote 109 on page 70.
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wires in absolute units using the first method. Before we move on to calculate the magnitude
of the resistance of the circuit from those experiments, the experiments that were made using
the second method shall be summarized and stated in advance.

13.15 Second Method

13.15.1 A

The second method includes the simplification that, of the instruments that were used in
the first, the Earth inductor is made completely superfluous. Therefore, in the following
experiments, the wire of the multiplier that was described above will define the entire circuit
when its ends are connected to each other directly. The placement of the multiplier, which
was converted into a damper in that way, remained unchanged. By contrast, the needle
in the magnetometer was replaced with a larger and stronger one whose oscillations could
exert a greater electromotive force on the closed circuit. That needle consisted of nine bar
magnets that took the form of parallelepipeds, each of which was 90 millimeters long and
9 millimeters wide and thick, had parallel axes, and were spaced 5 millimeters apart from
each other. They were coupled into a rigid system, while being equipped with a mirror for
observing the oscillations.

The following experiment was then made with that simplified instrument: When it com-
menced, the wire-ends of the damper were separate from each other. The needle was then set
into oscillation, and the period of oscillation of the needle and the decrease in its oscillation
arc, or its logarithmic decrement, were determined according to the instructions that Gauss
gave in “Resultaten aus den Beobachtungen des magnetischen Vereins im Jahre 1837.”403,404

The wire-ends of the circuit were then connected, or the damper was closed, and the same
observations were repeated. The damper would then be opened again, and one would al-
ternate in that way several more times. The results of those experiments are summarized
in the following Table, in which the first column under A gives the logarithmic decrement
of the decrease in the oscillation arc for a closed damper. In the second column, the same
thing is given for an open damper, and in the third column under t, one finds the associated
period of oscillation. At the bottoms of the columns, the mean values over the repeated
determinations are added.

A B t
0.028 645 0.000 460 9.1128
0.027 955 0.000 360 9.1148
0.028 565 0.000 380 9.1107
0.028 388 0.000 400 9.1128

Finally, to complete the measurement, the following experiment was performed in order
to determine the magnetism of the needle405 and to also gain some knowledge about its
distribution to the extent that it seemed necessary. Namely, a small galvanometer was
placed as close as possible to the location where the oscillating needle was found, and its
deflection v1 was observed when that needle approached it. Similarly, the deflection v2 was

403[Note by HW:] Carl Friedrich Gauss’s Werke, Vol. V, p. 374.
404[Note by AKTA:] [Gau38a].
405[Note by AKTA:] That is, to determine its magnetic moment.
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observed once the needle was turned around its midpoint by 180◦. Finally, the corresponding
deflections v3 and v4 were observed when the needle was displaced parallel to itself to a great
distance from the galvanometer on its opposite side, and the value of:

v =
1

4
(v1 − v2 + v3 − v4)

was calculated from that. That experiment was then performed for different distances from
the galvanometer and for different directions of the line that went through the middle of the
needle and the galvanometer, namely, at distances of 400, 500, and 600 millimeters when the
line was perpendicular to the magnetic meridian and a distance of 400 millimeters when it
was parallel to the magnetic meridian. The magnetic axis of the deflecting needle was always
perpendicular to the magnetic meridian. The results of those experiments are summarized
in the following Table. Numbers 1, 2, 3 refer to the cases in which the line was perpendicular
to the magnetic meridian, while number 4 refers to the case in which that line was parallel
to the magnetic meridian. The distance between the midpoints of both needles is given in
the second column under R, while the values that were found for v are given in the third
column.

No. R v
1. 400 mm 32◦ 37′ 52.5′′

2. 500 mm 18◦ 1′ 52.5′′

3. 600 mm 19◦ 37′ 7.5′′

4. 400 mm 17◦ 24′ 45.0′′

It should be pointed out that this series of experiments was performed some time later
than the observations above of the oscillating needle in the damper, and that it therefore
cannot be assumed that the ratio of the needle magnetism to geomagnetism remained com-
pletely unchanged during that time. For that reason, one of those deflection experiments was
performed in the time interval between the individual sets of oscillation observations above,
which could then be used to reduce the ratio of the needle magnetism to geomagnetism that
was obtained from the last complete series of deflection observations to the time when the
oscillation observations above were performed. Namely, a comparison of the corresponding
deflections gave the ratio:

10 293 : 10 000 ,

from which it emerged that the needle magnetism had decreased noticeably in the meantime.
The ratio of the magnetic directive force to that of the thread for the oscillation observations
was:

68 : 1 .

Those are all of the experiments that were necessary using the second method to deter-
mine the resistance of the circuit or the wire that defined the damper in absolute units.

13.15.2 B

It emerges from the experiments that were summarized in (A) that a needle whose length
amounts to almost only the 7th part of the diameter of the damper and makes very small
oscillations will still exert an electromotive force on the damper that is sufficient to generate
a current whose reaction on the needle is not only perceptible, but can be measured precisely.
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Now, should that experiment be based upon a calculation of the resistance of the circuit in
absolute units, then some complications would arise in such a way that the distribution of
magnetism in the needle cannot be ignored completely, due to the moderate dimensions of
the needle in comparison to the diameter of the damper. That complication can be avoided
completely when a smaller needle is suspended in the damper and the smaller needle possesses
just as much magnetism as the larger one.

In the Physics Institute in Leipzig, one finds a natural magnet that has small size and
great strength in comparison to its size, which weighs 40 grams, along with its frame, and is
24 millimeters long. Due to its smallness and strength, it was very suitable as a magnetometer
needle for this experiment, and the diameter of the damper could be reduced considerably
without it being necessary to make a more precise study of the distribution of the magnetism
in it. However, the limited time during which the large wire mass of the damper was available
for these experiments that was allotted did not permit any modification of the damper, and
the natural magnet was then suspended in the unchanged damper and a second series of
experiments performed with it that will be likewise summarized here, because it gives an
interesting proof of the fineness that the observations of the decrease in the oscillation arc
with the damper afforded one in order to recognize the effects of very weak electromotive
forces and measure them with tolerable precision. To that end, the natural magnet was
equipped with a frame for attaching the mirror and suspending it by a thread from the
center of the damper. The instrument remained otherwise unchanged, and the experiment
was then performed in exactly the same way as the foregoing one. The following Table
gives an overview of the results that were obtained from it, namely, under A, one finds the
logarithmic decrement of the decrease in the oscillation arc for a closed damper, under B,
one finds the logarithmic decrement of the decrease in the oscillation arc for an open damper,
and under t, one finds the associated period of oscillation.

A B t
0.006 01 0.002 54 3.955
0.006 13 0.002 67 3.954
0.006 15 0.002 67 3.953
0.006 05 0.002 66 3.949
0.006 085 0.002 635 3.9527

To complete this experiment, the magnetism of the small needle was determined by a
special experiment in a way that was similar to the one in the foregoing series. However, since
it was merely necessary to determine the moment of that small magnet, that experiment was
limited to two different distances from the midpoint of the small auxiliary galvanometer in
the direction perpendicular to the magnetic meridian east and west of the galvanometer. The
following Table gives an overview of the results that were obtained in that way. Under R, one
finds the distance from the center of the natural magnet to the center of the galvanometer,
and under v, one finds the deflection of the galvanometer, which was calculated in the same
way that it was in the previous series.

R v
180.08 mm 20◦ 42′ 0′′

240.18 mm 9◦ 4′ 52′′

The results of those observations are valid for a temperature of 20◦R for the copper wire,
which was the mean temperature over the observations in this and the previous Section.
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The data for determining the resistance of the circuit in absolute units are given com-
pletely by those experiments.

13.16 Rules for Calculating the Resistance from the

Foregoing Observations

When the conditions under which the foregoing observations were performed correspond
precisely with the conditions that were assumed in the schema for determining the absolute
resistance of a conductor that was given in Section 13.11, the rules for calculating the re-
sistance from the observational results that were announced will be included in the formula
that is found at the conclusion of that schema:

w =
π3r4

αR3t
;

because the value of the number α, which gives the elongation width from rest for the needle
that is set into oscillation in parts of the radius, as well as the value of the number r/R,
which gives the ratio of the radii of the circular conductors A and B to the distance BC, and
finally, the velocity r/t with which the radius of the circular conductor will move during an
oscillation of the needle, will be given directly from the results of observation. However, since
the foregoing observations, with the given description, were not performed under precisely
the conditions that were assumed in the aforementioned schema, those simple rules will
require some alterations in order to make them applicable to the present observations.

Some of those alterations are easily obtained when one assumes that the radii of the
two circular conductors are unequal in the derivation that was given for the equation w =
π3r4/αR3t and distinguishes them by r′ and r′′, and one includes the number of their windings
m and n in the calculation, and in addition, one considers the elasticity of the thread
that suspends the needle, which will yield a directive force for the needle that has a ratio
with its magnetic directive force of ϑ : 1, and finally one observes the unequal strength of
geomagnetism at the two locations A and B, whose ratio will be represented by T ′/T ′′. One
then finds that in the formula above, the square r2 must be replaced with the product r′r′′,
and the total value for w must be multiplied by mn/(1 + ϑ) · T ′/T ′′, and as a result:

w =
mn

(1 + ϑ)
· T

′

T ′′ ·
π3r′2r′′2

αR3t
.

In addition, the following essential modifications of the observations that were carried out
using the first method now come under consideration, namely, that first of all, the needle is
moved to a distance of BC = R from the midpoint of the circle B, which will increase the
observed elongation width by a ratio of:

r′′
3
: 2R3 .

In that way, one must consider the fact that the circle A will be rotated through two quad-
rants each time, instead of one quadrant, which will likewise increase the elongation width
by a ratio of:

1 : 2 .
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If one then currently denotes that increased elongation width by α, then one must set:

w =
mn

1 + ϑ

T ′

T ′′ ·
4π3r′2

αr′′t

accordingly. Secondly, the multiplicity of windings in both circles, which will convert them
into loops with significant cross-sections, will come under consideration. For the loop A, if
one recalls that it is not precisely circular in form, it suffices to replace mπr′2 with the sum
of the areas that are bounded by the projections of all of its windings onto the plane of the
loop, and as a result, if that sum is denoted by S then:

w =
n

1 + ϑ
· T

′

T ′′ ·
4π2S

αr′′t
.

By contrast, the outer radius of the ring B is a′′, the inner radius is a′, the height of the loop
is 2b′, and in addition, in regard to the distribution of magnetism M in the needle, when
one sets:

M = 2e′µ ,

in which ±µ denotes the amount of north or south magnetic fluid, which can be thought
of as spread across the surface of the needle, according to Gauss’s known theorem on the
ideal distribution of magnetism,406 the length e′ can be calculated by replacing 1/r′′ with
the following expression:

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2
+

1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e′2

b′2

}

.

The changes to the formula that was found in Section 13.11 that were cited here, which
are necessary if the resistance of the circuit is to be calculated from the experiments that were
described in Section 13.14, are so numerous that, rather than go into a detailed discussion
of them and how to establish them, I would prefer to derive the two equations that will be
used in the following Section 13.17 to calculate the resistance from the experiments that
were described in Section 13.14, namely:

w =
n

1 + ϑ
· T

′

T ′′ ·
4π2S

αr′′t
,

1

r′′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· e
′2

b′2

}

,

directly from the basic laws of electromagnetism and magneto-electricity. One finds that
derivation in Supplement 13.39 at the end of the treatise.

Furthermore, the following equations will be used in Section 13.18 to calculate the resis-
tance from the experiments that were described in Section 13.15:

406[Note by AKTA:] [Gau39] with English translations in [Gau41a] and [GT14].
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w =
n2π2

1 + ϑ
· π

2 + λ2

λ
· tan vo ·

r′′

t
,

1

r′′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· e
′2

b′2

}

,

in which λ denotes the natural logarithm of the observed ratio of two successive oscillation
arcs of the magnetometer needle as a result of damping for a closed circuit, and tan v0 was
written instead of 2M/T ′′r′′3. Those last two equations are also derived in Supplement 13.39
directly from the basic laws of electromagnetism and magneto-electricity.

We can now move on to calculate the resistance itself from the experiments that were
described in Sections 13.14 and 13.15.

13.17 Calculating the Resistance from the First Series

of Experiments

In the series of experiments in Section 13.14, which were performed using the first method,
the circuit consisted of the wires of the inductor and multiplier and the two connecting wires,
and the resistance to be calculated was the sum of the resistances of those four wires.

The immediate result of the experiment that was described in Section 13.14 was first of
all the magnitude of the oscillation arc that was measured with the magnetometer, namely:

79.9 millimeters,

for a radius of 8175 millimeters long (= twice the horizontal distance from the mirror to the
scale). That gave:

α =
79.9

8175
.

(See Supplement 13.39 on that subject, where the throwback method that was used here is
discussed in more detail.)

Secondly, the magnitude of the period of oscillation of the magnetometer needle is:

t = 10.2818 seconds.

Thirdly, the part of the directive force on the needle that originates in the elasticity of
the suspension thread is:

ϑ =
1

1770
.

when expressed in units of its magnetic directive force.
Fourthly, the ratio of the strength of the horizontal part of geomagnetism at the location

of the inductor T ′ to its strength at the location of the multiplier T ′′ is:
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T ′

T ′′ = 0.997 87 .

The results of the measurements of the inductor and multiplier must be added to these
immediate results of observation. For the inductor, it suffices to know the result that the
sum of the areas that are bounded by the projections of its 145 windings onto the plane of
the loop amounts to:

S = 104 924 000 square millimeters.

For the multiplier, the following results of measurement must be added:

Inner radius a′ = 303.51 millimeters,

Outer radius a′′ = 374.41 millimeters,

Width 2b′ = 202.05 millimeters,

Number of windings n = 1854.

With those values of a′, a′′, b′, one gets:

1

r′′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e′2

b′2

}

,

1

r′′
= 0.002 835 2 + 0.000 000 015 875 · e′2 ,

in which an approximate value for e′ (say, 20 millimeters) would suffice, due to the smallness
of the needle, so 1/r′′ = 0.002 841 55. That will then yield:

w =
n

1 + ϑ
· T

′

T ′′ ·
4π2S

αr′′t

=
1770

1771
· 1854 · 0.997 87 · 4π

2 · 104 924 000
79.9 · 10.2818 8175 · 0.002 841 55 ,

or

w = 2166 · 108 .
The resistance of the circuit that consists of the inductor and the multiplier wires, along
with the two connecting wires, is then determined completely by the resistance unit W that
was defined and the number w, in which it must only be pointed out that this absolute unit
determination is based upon the millimeter as the linear unit and the second as the time
unit, which can be expressed by the following notation:
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2166 · 108 millimeters

second
.

If another linear unit has a ratio of 1 : r with the millimeter and another time unit has a
ratio of 1 : t with the second, then the same resistance will be:

2166 · 108 · r
t
,

when the new units are used as a basis; e.g., when the basic linear unit is the mile, which
has a ratio of 1 : 0.000 000 135 with the millimeter, one will have:

29 241
miles

second
.

13.18 Calculating the Resistance from the Second Se-

ries of Experiments

In the second series of experiments, which were performed using the second method, the
circuit consisted of merely the wire of the damper, i.e., the wire that defined the multiplier
in the foregoing series of experiments.

The direct results of the experiments were:
First of all, the magnitude of the logarithmic decrement of the decrease in the oscillation

arc, which was found to be equal to:

0.027 988

in common logarithms, after subtracting the part that was independent of any electromag-
netic influence. As a result:

λ = 0.064 445 .

in common logarithms.
Secondly, the magnitude of the period of oscillation of the magnetometer needle was:

t′ = 9.1128 ,

in which it should be pointed out that the magnetic directive force was increased by roughly
68 parts by the elasticity of the thread, so:

ϑ =
1

68
.

Thirdly, the magnitude of the ratio of the needle magnetism to geomagnetism can be
inferred from the results of the deflection experiments that are included in the following
Table:

No. R v
1. 400 mm 32◦ 37′ 52.5′′

2. 500 mm 18◦ 1′ 52.5′′

3. 600 mm 10◦ 37′ 7.5′′

4. 400 mm 17◦ 24′ 45′′
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The first three numbers refer to the experiments for which the midpoint of the magne-
tometer and its magnetic axis coincided with the perpendicular to the magnetic meridian,
which was laid through the center of the auxiliary galvanometer. The fourth number refers
to an experiment in which the magnetometer needle was likewise positioned with its axis
perpendicular to the magnetic meridian, but its midpoint was found on the line that was
laid through the center of the auxiliary galvanometer parallel to the magnetic meridian. It
was also ascertained that the ratio of the needle magnetism to geomagnetism that emerged
would have to be increased by the ratio:

10 000 : 10 293 ,

if it were to be valid at the time when the decrease in the oscillation arc and the period of
oscillation of the magnetometer needle were observed.

The derivation of the values of e′ and v0 in the formulas that are presented for calculating
the resistance:

w =
n2π2

1 + ϑ
tan v0 ·

π2 + λ2

λ
· r

′′

t
,

1

r′′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e′2

b′2

}

,

from the data that was cited above is the following one: One imagines that the aforemen-
tioned (page 321) ideal distribution of a magnetic fluid that is spread over the surface of the
needle is concentrated into its midpoints (i.e., centers of mass), i.e., two points that lie at a
distance e′ from the center of the needle on a line that is parallel to the direction of the mag-
netic axis and whose separation distance is equal to 2e′. The position of the midpoint on the
needle and its magnetic axis relative to the midpoint of the deflecting galvanometer and the
magnetic meridian is determined precisely for each experiment in the Table above. Now, if
f ′ has the same meaning for the galvanometer that e′ has for the magnetometer needle, then
that will explain the fact that for any given deflection of the galvanometer v, the position of
the four points at which the magnetic fluids of both needles are thought to be concentrated
are determined completely with respect to each other and the magnetic meridian by e′ and
f ′, and the fact that the ratio of the rotational moment that the magnetometer needle exerts
on the galvanometer to the one that geomagnetism exerts can then be determined from the
ratio of the magnetism M of the magnetometer needle to geomagnetism T using the law by
which two elements of the magnetic fluid act upon each other. The deflection v for which
those two rotational moments prove to be equal and opposite is the one that is observed
independently of e′, f ′, and M/T . The equation that expresses the dependency of those
quantities then gives:407

T

M
tan v =

2

R3
+

4e′2 − 6(1− 5 sin v2)f ′2

R5
+ ...

407[Note by AKTA:] The expression sin v2 should be understood as sin2 v.
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for the case in which the line R that connects the midpoints of the two needles is perpen-
dicular to the magnetic meridian and:

T

M
tan v =

1

R3
− 3

2

e′2 − (4− 15 sin v2)f ′2

R5
+ ...

for the case in which R is parallel to the magnetic meridian. The assumption that the
magnetic fluid is concentrated is admissible only when the terms that are divided by R7

or higher powers can be neglected. Now, since the values of R and v are given for each
experiment in the Table above, each experiment will give an equation between e′, f ′, M/T ,
and as result, the four experiments that are included in the Table above will give four
equations between those three quantities, three of which serve to determine those quantities
and the fourth of which serves as a control to insure that the value of R is actually so large
that the terms of higher order can be neglected. The values of the three quantities above
that harmonize best with the observations are:

e′ = 33.715 ,

f ′ = 14.856 ,
M

T
= 20 143 000 .

The last value ofM/T is true for the time when the deflection experiment was made and, as
on page 325, it must be multiplied by 1.0293 if it is to be valid at the time when the period
of oscillation and the decrease in the oscillation arc were observed. For the latter time, one
then gets:

2M

T
= 41 466 000 .

If one further substitutes the value that was found for e′ in the equation:

1

r′′
= 0.002 835 2 + 0.000 000 015 875e′

2
,

which is also true for the second series of experiments, because the measurements of the
damper here are the same as the measurements of the multiplier in the first series of exper-
iments, then one will get:

1

r′′
= 0.002 853 2 ,

or

r′′ = 350.48 ,

and with that value:

2M

Tr′′3
= tan v0 = 0.963 14 .

In addition, as in the first series of experiments, one has:

n = 1854.
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That will then give:

w =
n2π2

1 + ϑ
tan v0 ·

π2 + λ2

λ
· r

′′

t

=
68

69
· 18542π2 · 0.963 14 · π

2 + 0.0644452

0.064 445
· 350.48
9.1128

,

or

w = 1898 · 108 .

The resistance of the circuit that consists of merely the damper wire is then determined
completely by the defined unit of resistance W and the number w.

13.19 Calculating the Resistance from the Third Se-

ries of Experiments

In the third series of experiments, as well, the circuit whose resistance was to be determined
consisted of merely the damper wire, and the experiment was performed using the second
method. The essential difference in the second method then consisted of merely the fact that
the natural magnet that was used for the magnetometer needle had much smaller dimensions,
which meant that on the one hand, the calculations were indeed simplified, since with such
small dimensions in comparison to the diameter of the damper, the type of distribution of
free magnetism did not come under consideration. On the other hand, the measurement lost
precision in that way, because the magnetism, despite being strong in comparison to the
size of the magnet, amounted to almost the 19th part of the magnetism of the larger needle,
which made the damping so weak that the observations did not allow a fine determination
of the logarithmic decrement of the decrease in the oscillation arc.

The direct results of the experiments were: First of all, the magnitude of the logarithmic
decrement for the decrease in the oscillation arc, which was found to be equal to:

0.003 45

in common logarithms, after subtracting the part that was independent of electromagnetic
influences, and as a result:

λ = 0.007 944

in natural logarithms.
Secondly, the period of oscillation of the needle:

t′ = 3.9527 .

The elasticity of the suspension thread cannot be neglected since it further increased the
directive force by 1/2000.

Thirdly, the magnitude of the needle magnetism in comparison to geomagnetism was
inferred from the deflection experiments that are summarized in the following Table:
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R v
180.08 mm 20◦ 42.0′

240.18 mm 9◦ 4.52′

The line R, which connects the midpoints of the two deflecting and deflected needles,
was there perpendicular to the magnetic meridian.

From the rule that Gauss gave in Intensitas vis magneticae terrestris etc.,408 it then
follows that:

tan 20◦ 42′ =
2M

T
· 180.08−3 + a · 180.08−5 ,

tan 9◦ 4′ 52′′ =
2M

T
· 240.18−3 + a · 240.18−5 ,

so

2M

T
= 2 224 660 .

However, it should be pointed out that with the low degree of precision that the deflection
experiments possess when they are performed with such a small needle, the elimination of
the second term, which depends upon the fifth power of the distance, is very uncertain,
such that a similarly precise, or even more precise, result would be obtained if one did not
consider that second term at all. One then finds that:

tan 20◦ 42′ =
2M

T
· 180.08−3 ,

tan 9◦ 4′ 52′′ =
2M

T
· 240.18−3 ,

and that gives the two values for 2M/T :

2 206 600 ,

2 214 500 ,

or the mean value:

2 210 550 .

From the doubt that exists about whether to prefer the first or second calculation in the
present case, and since the results that were obtained in both ways differ only slightly anyway,
the mean shall be taken from the results of both calculations, namely:

2M

T
= 2 217 600 .

408[Note by AKTA:] See footnote 97 on page 51.
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Now, since the same measurements are true for the damper that were true in the foregoing
series of experiments, in addition, but the term in the value of 1/r′′ that depends upon e′ is
negligible, due to the smallness of the needle, that will give:

1

r′′
= 0.002 835 2 ,

r′′ = 352.71 ,

and as a result:

2M

Tr′′3
= tan v0 = 0.050 54 .

In addition, as in the foregoing series, one has:

n = 1854.

When ϑ is neglected, due to its smallness, that will then yield:

w = n2π2 · tan v0 ·
π2 + λ2

λ
· r

′′

t

= 18542 · π2 · 0.05054 · π
2 + 0, 0079442

0, 007 944
· 352.71
3.9527

,

or

w = 1900 · 108 .

The difference between those values that were derived from the second series of experiments
is smaller than the difference that can be attributed to the unavoidable observation error in
the last series.

13.20 Comparing the Resistance in the Circuit in the

First Series of Experiments with the Resistance

in the Circuit for the Second and Third Series

The resistances in two circuits were measured in absolute units in the series of experiments
above, the first of which was composed of:

1. A wire A, that served as the multiplier,

2. A wire B that served as an Earth inductor, and

3. Two short, thick connecting wires C.
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By contrast, the last circuit consists of merely the wire A that was used as a damper. A
comparison of the resistances in both circuits was based mainly upon a comparison of the
resistance A with the resistance B, since the resistance C was so minor that its influence in
proportion to its length and its cross-section could be easily included as a correction to the
calculation.

Since the direct comparison of the resistances A and B led to a less certain result, due
to the large difference between them, three auxiliary wires a, b, c were called upon in order
to make it possible to base the ratio A : B upon only those measurements in which only
resistances that were very close to each other could be compared.

Those resistance comparisons were all performed using the method that is described in
Supplement 13.39 and explained in an example, and it therefore suffices to summarize the
results in the following Table without going into details about the observations. In the first
column, the resistance comparisons that were made using the given method are distinguished
by numbers. The second column under X gives the relationship to the desired resistance
ratio, and the third column under q gives the numerical value that was found. Finally, the
logarithms of q and q + 1 are appended in the last two columns.

No. X q log q log(q + 1)
1. B/c 1.043 54 0.018 51 0.310 38
2. b/(B + c) 1.034 98 0.308 56
3. a/(B + b+ c) 1.007 52 0.302 66
4. A/(B + a+ b+ c) 0.915 29 9.961 56

A/B 7.322 4 9.943 05 0.921 60

Now, one has:

log

(

A

B

)

= log

(

A

B + a+ b+ c

)

− log
B

c

+ log

(

B

c
+ 1

)(

b

B + c
+ 1

)(

a

B + b+ c
+ 1

)

,

that is, the difference between the two logarithms in the fourth column (which is given
beneath it) is added to the sum of the three logarithms in the last column (which is likewise
given beneath it) in order to obtain the logarithm of the desired ratio A/B, which is then
recorded in the third column.

For C, it suffices to remark that the cross-section was three times larger than that of B,
while the length was thirty times smaller. As a result, since both wires were copper, the
resistance ratio was:

B

C
= 90 ,

from which it would ultimately follow that a comparison of the resistance A+B +C of the
circuit that was used in the first series of experiments with the resistance of the circuit A in
the other two series of experiments would yield:

A +B + C

A
= 1 +

1 + 90

7.3224 · 90 = 1.138 .
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Now, A+B+C was determined in absolute units from the first series of experiments to be:

A+B + C = 2166 · 108 millimeters

second
.

If one divides that value by the quotient above, then one will get the value of A that is
derived from the first series of experiments:

A = 1903 · 108 millimeters

second
.

13.21 Overview of the Various Measurements of the

Resistance of the Multiplier or Damper Wire A

I. From the first series of experiments:

A = 1903 · 108 millimeters

second
.

II. From the second series of experiments:

A = 1898 · 108 millimeters

second
.

III. From the third series of experiments:

A = 1900 · 108 millimeters

second
.

Of those three measurements of the same resistance, less weight should be given to the
third one than the first two, as was remarked already. However, since it agrees with the other
two very closely, there is no reason to exclude it, and that will yield the following mean value
of all of them:

A = 19 003 · 107 millimeters

second
.

The agreement that then exists between the two measurements of the resistance of the wire
A, which were obtained by totally-different methods, namely, between the first and last
two series of experiments, then presents a special interest, because it proved that the 1854
windings that the wire defined in the multiplier or damper were sufficiently insulated by
the wool that was wound around them. That is because if conduction had taken place
from one winding to the other through the wool, then the effect of the multiplier on the
magnetometer would have been weakened by it in the first series of experiments, and the
calculation would have given a resistance that was too large, as if the current that flowed
through the entire circuit had been weakened by a larger resistance. By contrast, from the
result that was calculated from the second series of experiments, the conduction through the
wool from one winding to another had no influence whatsoever, because it is known that the
damping force of a damper will not be changed by it in such a way that its wire windings
will be conductively connected to each other. At the very least, the damping force cannot
be reduced in that way. However, an increase in it (if it were perceptible at all) would have
the effect that the calculation of the resistance would prove to be too small.
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13.22 Standards for Resistance Measurements in Ab-

solute Units

If the wire A whose resistance was known in absolute units from the measurements above were
reserved for use as a standard resistance, then it would itself have to be able to serve to reduce
all resistance measurements to absolute units without it being necessary to repeat the original
measurement, as long as one could build upon the invariability of the standard. However,
that wire was not determined for that purpose, and its use in the present investigation was
permitted for only a short time. Therefore, if the utility that the results obtained might
have had for the duration of the future measurements of resistance were not to be lost, then
copies of the wire A would have to be made that were guaranteed to have equal resistance,
or standards whose resistance was precisely comparable to the resistance of A. The three
copper wires a, b, c that were cited above can initially serve as such standards that are
compared to the resistances A and B as auxiliary wires, and their resistance ratios to A can
be derived from the observations above. That is because from the observations above, one
has:

log
B

c
= 0.018 51 ,

log
b

B + c
= 0.014 93 ,

log
a

B + b+ c
= 0.003 25 .

If one adds:

log
A

B
= 0.864 65 ,

logA = 11.278 82 ,

from the above, then that will yield the resistances of the three copper wires a, b, c in
absolute units, namely:

a = 10 420 · 107 millimeters

second
,

b = 5260 · 107 millimeters

second
,

c = 2487 · 107 millimeters

second
.

Those three standard resistances that were thus determined, with the given notation and
the attached resistance values, were recorded in the instrument collection of the Physics
Institute at the University of Leipzig.

However, since many resistance measurements have been performed already with the
standard resistance that Jacobi created and copies of it were distributed, it would seem most
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convenient for practical applications to determine the value of that standard in absolute
units, which can be easily achieved by comparing the resistance of that standard with the
resistance of the copper wire that was denoted by c above. That comparison cannot be
performed directly either, but only by means of a fourth copper wire d.

On page 303, the resistance of a copy of Jacobi’s standard J was compared with the re-
sistance of the original. One finds a comparison of that copy with another one in Supplement
13.39. That yielded the resistance:

of the first one = 0.9815 · J ,
of the second one = 0.9839 · J ,

in total = 1.9654 · J .

A comparison of that resistance with that of the wire d, using the method that is described
in Supplement 13.39, yields the following value for d:

d = 1.1295 · 1.9654 · J = 2.220 · J .
However, a comparison of the latter resistance, along with those of the two copies, with the
wire c gave the following value for c:

c = 0.993 · (2.220 + 1.9654) · J = 4.156 · J ,

and as a result, since c is 2487 · 107 (millimeters/second) in absolute units:

J = 598 · 107 millimeters

second
= 807

miles

second
.

Inspector Leyser409 in Leipzig has produced a number of copies of Jacobi’s standard whose
resistance was given even more precisely by the test that Dr. Quintus Icilius410 carried out,
in Jacobi units, as well as in absolute units.

13.23 On Neumann’s Induction Constant and Kirch-

hoff’s Determination of It

A treatise by Dr. G. Kirchhoff appeared recently in Poggendorff’s Annalen, Vol. 76, pp.
412 et seq. (1849), with the title “Bestimmung der Konstanten, von welcher die Intensität
inducierter elektrischer Ströme abhängt.”411

Kirchhoff said:

“The mathematical law of induced currents was exhibited by Neumann412 and Weber.
In the expression that the two have found for the intensity of an induced current, in
addition to quantities that must be measured in each given case, a constant appears
that must be ascertained once and for all by experiment and which Neumann denoted
by ε. I have attempted to determine it.”

409[Note by AKTA:] See footnote 105 on page 58.
410[Note by AKTA:] Ernst Wilhelm Gustav von Quintus Icilius (1824-1885).
411[Note by AKTA:] G. R. Kirchhoff (1824-1887), see [Kir49a].
412[Note by AKTA:] F. E. Neumann (1798-1895).
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Now, the constant ε that Kirchhoff determined has a simple relationship to the one that
he used for a resistance unit and the absolute unit of resistance that was defined above that
can be expressed in the following way:

With the units that were established above for current intensity, electromotive force, and
resistance, one has the following equation for the current intensity i that is produced in a
closed conductor, whose resistance is w, by the electromotive force e:

i =
e

w
.

If one now introduces some other units that relate to the absolute one like:

a : 1 ,

b : 1 ,

c : 1 ,

and one denotes the three quantities above when they are expressed in the new units by i′,
e′, w′, then one will get:

ai′ = i , be′ = e , cw′ = w ,

and as a result:

ai′ =
be′

cw′ .

A more precise test and comparison of those units, which are based upon Neumann’s ex-
pression for the intensity of an induced current and Kirchhoff’s calculation, with the units
above will yield:

a =

√

1

2
and b =

√
2 ,

when the space and time units in the velocity measurement are based upon millimeters and
seconds, respectively, and one will then have:

i′ =
2e′

cw′ ,

for which one can also write:

i′ =
2
c
e′

w′ .

Now, the constant coefficient 2/c with which the electromotive force e′ is multiplied in that
expression for the induced current is the constant that Neumann and Kirchhoff denoted by
ε. At the same time, one sees from the given presentation that c = 2/ε is the number that
gives how many times bigger the chosen basic unit of resistance is than the absolute unit of
resistance that was defined in Section 13.10. If one chooses, e.g., a basic unit for which the
induction constant ε = 1, then the ratio of that basic unit to the one defined in Section 13.10
will be 2 : 1. Now, Kirchhoff found from his own observations that:
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“The constant ε = 1 when one assumes that the unit of velocity is a velocity of 1000
feet per second and the unit of resistance is the resistance of a copper wire with a
cross-section of one square line413 and a length of 0.434 inches.”

That data was based upon the Prussian unit of length. In metric units, it translates
into: The constant ε = 1 when one assumes that the unit of velocity is a velocity of 313 853
millimeters per second and the unit of resistance is the resistance of a copper wire with a
cross-section of 4.75 square millimeters and a length of 11.35 millimeters.

Now, it can be easily shown that ε = 1 will still be true as long as the ratio of the two
units — viz., the velocity unit and the resistance unit — remains unchanged. Therefore, the
constant ε will also be equal to 1 when one chooses the unit of velocity to be the velocity
of 1 millimeter per second and the unit of resistance to be the resistance of a copper wire of
cross-section 4.75 · 313 853 square millimeters and a length of 11.35 millimeters.

Now since c = 2 for ε = 1, that will imply that this unit of resistance is twice as big as
the unit of resistance that was defined in Section 13.10.

Kirchhoff’s observations, after the given reduction to the unit that was defined in Sec-
tion 13.10, will then imply that the absolute unit of resistance is equal to the resistance of
a copper wire of cross-section 4.75 · 313 853 square millimeters and length 11.35 millimeters
or of cross-section 262 752 square millimeters and length 1 millimeter.

By contrast, from the observations that were communicated in this treatise, what was said
in Section 13.22 implies that Jacobi’s copper wire with a cross-section of 0.33352 · π square
millimeters and a length of 7619.75 millimeters possessed a resistance that was 598 ·107 times
greater than the absolute resistance unit that was defined in Section 13.10, and as a result,
with that type of copper, the resistance of a copper wire of cross-section 0.33352 · 598 · 107 ·π
square millimeters and length 7619.75 millimeters or the resistance of a copper wire of cross-
section 274 250 square millimeters and length 1 millimeters should be equal resistance units.

The agreement between those two pieces of data, which were obtained in entirely different
ways, will become all the more unexpected when one observes that Jacobi’s and Kirchhoff’s
wires were made of different types of copper, and that even greater differences often occur in
the conductivity or resistance coefficients of copper. If one were to attribute the difference
in the two pieces of data to merely the inclusion of the difference between the types of
copper, then that would imply that the copper that Jacobi used possessed a somewhat lower
conductivity, or a somewhat higher resistance coefficient, than the copper that Kirchhoff
used. I have also found the resistance coefficient for the copper that I used to be smaller
than it was for what Jacobi used, and the difference was even considerably larger than it was
for the copper that Kirchhoff used. A direct comparison of the resistance of Kirchhoff’s wire
with Jacobi’s basic unit would then be especially interesting for the sake of a more precise
comparison of the results of both measurements.

413[Note by AKTA:] In German: Quadratlinie.
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III - Examples of Applications of the Absolute Resis-

tance Unit

13.24 Applying the Resistance Unit to the Measure-

ment of Galvanic Currents in Their Engineering

Uses

For the engineering applications of galvanism, e.g., for chemical purposes and galvano-optics,
a simple and generally-understandable rule is often lacking. Every engineer is then required
to test the relationships that give favorable results with their own experiments. The ex-
penditure of time and cost that is created in that way complicates those applications of
galvanism appreciably with massive undertakings. However, such rules are not lacking as
much because satisfactory experiments have not been carried out yet as because the results
of the experiments that were made cannot be expressed simply and unambiguously, because
mere descriptions of the processes would not suffice. It is only by galvanic measurements
that it is possible to present the results of the experiments that were performed with fewer
words and numbers in a generally-understandable way and to give well-defined and precise
rules for future uses, and galvanic measurements are likewise necessary in the applications if
one is to guarantee that the prescribed rules have been fulfilled.

One then deals with the effectiveness of galvanic currents, which are however measured
in very different way, due to the variety of the situations. Frequently, it is merely the
current intensity that one deals with, e.g., for galvano-plastic precipitation. However, the
current intensity is often only one factor that affects the effectiveness in question, while the
other factor is the length of the conductor through which that current flows, e.g., when the
conductor goes around an iron rod that is to be converted into an electromagnet. Finally,
there is also the case in which each part of the length of the conductor through which the
current flows is associated with a special value for the effectiveness in question, e.g., for a
multiplier whose various windings each have a different ideal position with respect to the
magnetic needle.

The simplest case for engineering applications, which is also the most important one,
is the first one, in which the effectiveness in question depends upon merely the current
intensity. The construction of galvanic workshops and the many types of projects that are
carried out in them can be facilitated and promoted considerably when the current intensity
that is ideal for each purpose is ascertained precisely and one has a convenient means at
one’s disposal for testing whether that current intensity is present when one performs that
test.

As far as the study and precise determination of ideal current intensities is concerned,
the voltameter that Faraday414 specified for that purpose, in which the volume of gas that is
produced by the decomposition of water in a certain time interval indicates that intensity,
offers a simple means for achieving that goal, and therefore its use cannot be emphasized
enough. It is only with weak currents, for which the decomposition of the water takes place
very slowly, that it is not applicable. In addition, the voltameter is not always convenient in
ordinary practice when it is to be used continually to test the prescribed current intensity
because the time interval must be measured as an essential element. Finally, the voltameter

414[Note by AKTA:] See footnote 163 on page 111.
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must continually remain in the circuit because when one removes it, the current intensity
will no longer be the measured one, but something much stronger. However, the weakening
of the current that is coupled with its insertion can be very unfavorable in many cases. In all
cases where the use of the voltameter is not practical for the cited reasons, it can be replaced
with a tangent galvanometer, which was described in “Resultaten aus den Beobachtungen
des magnetischen Vereins im Jahre 1840,” pp. 85 et seq.415,416 and whose use for intensity
measurements was explained there by examples. Every unit of current intensity that was
measured with the tangent galvanometer by that rule decomposed in 1 second 0.009 376 or
in 1 minute 462

3
seconds 1 milligram of water in the voltameter (about 1 grain every one-half

hour). No clock is necessary for the use of the tangent galvanometer, and the insertion in
or removal of the instrument from the circuit has no appreciable influence on the current
intensity.

Finally, the resistance measurement offers a third practical tool for determining the cur-
rent intensity. The current intensity depends upon two things: the electromotive force and
the resistance of the circuit, of which only the variability of the latter comes under consider-
ation in engineering use, as a rule. That is because, as a rule, in engineering establishments,
one always uses the same type of cell, whose electromotive force can be determined once and
for all with a precision that is sufficient for practical purposes. The current that is produced
by those cells will sometimes flow through more vessels and sometimes less of them and
through various fluids, which will vary the resistance considerably.

If one assumes that the electromotive force E is known and is therefore reduced to
measuring only the resistance, then any arbitrary galvanometer can be used to determine
the current intensity when one appeals to a standard resistance w as an absolute unit. That
is because if a denotes the reading on the galvanometer when that standard is excluded from
the circuit and b denotes the reading when it is included, then the resistance of the circuit
in absolute units W will be determined by that, namely:

W =
bw

a− b
,

and the current intensity will then prove to be simply:

E

W
=
a− b

bw
· E .

13.25 Applying the Resistance Measurement to the

Measurement of Electromotive Forces in Abso-

lute Units

The final remark in the previous Section leads to a further application that one can make of
a known standard resistance in absolute units. That is because it follows from the statement
that when one appeals to a tangent galvanometer or voltameter, or any other instrument
with which the current intensity can be measured in absolute units, instead of an arbitrary
galvanometer, the electromotive force E can itself be found in absolute units in the given
way when it is still unknown. That is because if one denotes the current intensity, measured

415[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 8.
416[Note by AKTA:] [Web41b] with English translation in [Web20b].
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in absolute units, by α when the standard resistance is excluded from the circuit and by β
when it is included, then just as before, that will yield the resistance W of the circuit in
absolute units:

W =
βw

α− β
,

and one gets the electromotive force E in absolute units from that:

E = αW =
αβw

α− β
.

One sees from this, for example, how the electromotive forces in galvanic cells can be deter-
mined in that way in the same absolute units as the electromotive forces that geomagnetism
will exert upon closed circuits while they are moving. However, it is important to measure
electromotive forces that are created by different sources, such as hydroelectric and magneto-
electric forces, in the same units, because the road to a comparative study of those sources
will be paved in that way. That will be easy and simple when it is applied to a conductor
of known absolute resistance, without such a conductor being linked with great difficulties,
such as, for example, when one wishes to make the comparison in the following way:

Let the galvanic cell whose electromotive force is to be compared with a magneto-electric
force, without being applied to a conductor of known absolute resistance, be connected
by a conductor of arbitrary length and form, and then let everything be rotatable. A
second current will then arise in the circuit due to the rotation, namely, in addition to the
current that arises from the electromotive force of the cell itself, there is another current
that originates in the electromotive force of geomagnetism. It is in one’s power to arrange
that the direction of both currents in the circuit are opposite by choosing the direction of
rotation. On the other hand, one can make the intensities of both currents equal, at least
for a small time interval during which both currents will cancel, by choosing the velocity of
rotation. However, if the intensities of both currents are equal, then it will follow that the
electromotive forces are equal in that case, i.e., the equality of the electromotive force in
the cell with the electromotive force of geomagnetism. That latter is given immediately in
absolute units by the known value of geomagnetism and the form and rotation of the closed
circuit. As a result, the electromotive force of the cell will also be found in the same units
in that way. However, that in itself explains the fact that the comparison of those forces
will be achieved much simpler and more easily in that aforementioned way with the help of
absolute resistance units.
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IV - On the Principles of Various Absolute Systems of

Units in Electrodynamics

13.26 Self-sufficient Basis for Absolute Units in Elec-

trodynamics, Without Reference to Magnetic U-

nits

Just as no intrinsic basic unit needs to be defined for the magnitudes of velocities when such
units for space and time are given already, as we have seen, no intrinsic basic unit needs
to be defined for the magnitudes of galvanic resistances when units for the magnitudes of
electromotive forces and current intensities are given already. However, no intrinsic basic
units need to be assumed for the last two types of quantities either, since one can also give
absolute units for them, which was done with the definitions that were given in Section 13.10
by reducing the magnetic unit to three basic mechanical units.

For most electrodynamic measurements, it is indeed sufficient and convenient to reduce
the units of the electrodynamic quantities to the established magnetic unit, as was done
in Section 13.10. However, it is in the nature of things that the dependency by which the
electrodynamic units were converted to the magnetic units is by no means well-established,
which is explained by the fact that the basic electrodynamic laws are independent of the
magnetic ones. Rather, the electrodynamic unit can be established in yet another way that
makes it completely independent of how the magnetic unit was defined. In order to do that,
it is merely necessary to revert to the basic laws of electrodynamics and voltaic induction,417

instead of starting from the basic laws of electromagnetism and magneto-electricity, as was
done in Section 13.10.

The fundamental law of electrodynamics gives the following formula for the magnitude
of the force of repulsion between two current elements α, α′ with current intensities i, i′ at
a distance of r apart, and which makes angles ϑ, ϑ′ with the two current directions, while
the angle between the two current directions is equal to ε, namely:

−αα
′

r2
ii′
(

cos ε− 3

2
cos ϑ cosϑ′

)

.

The fundamental law of voltaic induction, as it was given in Section 30 of the first
treatise on “Elektrodynamische Maassbestimmungen,”418 gives the following formula for the
electromotive force that a current element α with current intensity i exerts upon another
element α′ at a distance of r, when r makes the angles ϑ and ϑ′ with the current direction
and the direction in which α′ is displaced with a velocity of v, respectively, and the last two
directions subtend an angle of ε:

−αα
′

r2
vi

(

cos ε− 3

2
cosϑ cosϑ′

)

− 1

2

αα′

r
cosϑ · di

dt
.

That force, which acts in the direction r, must be decomposed along the direction of α′,
because the component that is perpendicular to α′ will be cancelled. If η denotes the angle
that α′ makes with r, then the formula above must be multiplied by cos η.

417[Note by AKTA:] See footnote 139 on page 96.
418[Note by AKTA:] See Section 5.30.
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Now, first of all, an absolute unit of current intensity can be defined by that fundamental
law independently of the magnetic unit in the following way:

When a current circulates around a unit area and acts upon a current that circulates
around a similar area at a great distance of R, and both areas are perpendicular
in such a way that the extension of the first area bisects the second, the unit of
current intensity will be the current intensity that the former current will possess
when it exerts a rotational moment on the latter current that has a ratio to the unit
of rotational moment of 1 : 2R3.

That new absolute unit of current intensity can be defined even more simply when one is
permitted to reduce the interaction of closed current to the interaction of individual current
elements that cannot be observed directly, because such current elements are present only
as components of closed currents, namely:

The unit of current intensity is the current intensity that a current element will possess
when it exerts a force of attraction on an equal and parallel current element that is
perpendicular to the connecting line at a distance that is equal to one unit of length,
and the ratio of that force to the unit of force will be that of the square of the length
of that current element to the unit of area.

This second absolute unit of current intensity is not equal to the first one, which depends
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upon magnetic units, but has a ratio with it of 1 :
√
2.419,420

419[Note by WW:] The derivation of the definitions that were exhibited above from the fundamental laws
of electrodynamics is as follows:
First definition. — In Section 9 of the earlier treatise “Elektrodynamische Maassbestimmungen,” Leipzig

1846 [Wilhelm Weber’s Werke, Vol. III, p. 86], the following expression for the rotational moment that
a planar current exerts upon another one at a distance was derived already from the fundamental laws of
electrodynamics, namely, [note by AKTA: the expression cosψ2 should be understood as cos2 ψ]:

1

2

ii′λλ′

r3
sin δ ·

√

1 + 3 cosψ2 ,

in which i, i′ denote the current intensities, λ, λ′ are the areas that are circulated around, r is the distance
between their midpoints, ψ is the angle between the normal to the first planar current and r, and δ is
the angle that the second planar current subtends with the directive force. However, the directive force is
included in the plane that is laid through the normal to the first planar current A and the midpoint of the
second planar current C, and in the triangle ACB, rectangular at C, whose hypotenuse AB is the normal
to the planar current A, it is parallel to the line CD that cuts the side AB of the triangle at D in such a
way that AD : DB = 1 : 2. — Now, under the circumstances that were indicated in the first definition, one
will have i = i′, λ = λ′ = 1, δ = ψ = π/2, r = R, which will make the rotational moment take the value:

i2

2R3
,

which will have a ratio with the unit of rotational moment of 1 : 2R3 when i = 1.
Second definition. — In the expression for the force of attraction between two current elements that is

given directly by the fundamental law of electrodynamics:

αα′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

under the circumstances that were indicated in the definition, one will have i = i′, α = α′, ϑ = ϑ′ = π/2,
ε = 0, r = 1, which will make the force of attraction take the value:

α2i2 ,

which will have a ratio to the force unit of α2 : 1 when i = 1.
It still remains to be proved that the second absolute unit of current intensity that was presented here has

a ratio to the first one, which depends upon magnetic units, of 1 :
√
2.

The expression for the rotational moment that a magnet m exerts upon another one m′ at a distance r
was given before in Section 9, loc. cit., according to known laws, namely:

mm′

r3
sin δ ·

√

1 + 3 cosψ2 ,

where ψ and δ have the cited meanings when one exchanges the normals to the two planar currents with the
axes of the two magnets in it. Now, if one denotes the first unit of current intensity by K, which depends
upon magnetic units, and the second one by J , in order to distinguish the two units of current intensity,
then kK and k′K will be two well-defined current intensities that can be expressed in terms of the first unit,
and iJ and i′J will be the same current intensities, which can be expressed in terms of the second unit as
follows:

iJ = kK and i′J = k′K .
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Secondly, the unit of electromotive force will be defined in the following way using the
cited fundamental law of voltaic induction, independently of the magnetic unit:

The unit of electromotive force is the electromotive force that a current that circulates
around a unit area exerts upon a conductor that is bounded by a surface that has the
same area as the first one, is perpendicular to it, and is bisected by it at a distance
of R when its intensity has a ratio with the absolute unit that was presented of
2R3 : 1, while the conductor is rotated with a unit angular velocity around the line
of intersection of the two areas.

If it were permissible to revert to the electromotive force on an isolated current element,
then that definition could be made simpler in the following way:

The unit of electromotive force is the electromotive force that a current element
exerts upon an equally-long conductor element that is perpendicular to it, parallel to
the connecting line, and at a distance of one unit of length, when its intensity has
the same ratio to the absolute unit that was presented, as the ratio of the unit area
to the square of the length of that element, while the conductor element is displaced
with unit velocity in the direction that is parallel, but opposite to the direction of
current.421

According to the fundamental law of electromagnetism, the rotational moment will remain unchanged when
one sets the magnet m equal to the current kK that circulates around an area λ = m/k. If one sets, in the
same way, the magnet m′ equal to the current k′K that circulates around an area of λ′ = m′/k′, then one
will get the rotational moment that the first planar current exerts upon the second one:

kk′λλ′

r3
sin δ ·

√

1 + 3 cosψ2 .

However, the following value for that rotational moment was found above:

1

2

ii′λλ′

r3
sin δ ·

√

1 + 3 cosψ2 ,

from which it would follow that ii′/2 = kk′, i.e., when k = k′, i = i′:

i = k
√
2 .

Thus, the equation iJ = kK will give:

J : K = 1 :
√
2 .

420[Note by AKTA:] See Section 5.9. The expression cosψ2 should be understood as cos2 ψ.
421[Note by WW:] In order to derive the first of those two new definitions of an absolute unit for electromotive

force from the general law of voltaic induction, one first observes that the inducing current i in the definition
is taken to be constant, so di/dt = 0, which means that the general expression for the electromotive force
that is exerted in the direction r will be reduced to:

−αα
′

r2
vi

(

cos ε− 3

2
cosϑ cosϑ′

)

.

However, the similar expression for the force of attraction between two current elements:

−αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

yields the direction and magnitude of the force that a current i that circulates around an area λ will exert

342



The second absolute unit for electromotive force is not equal to the first, which depends
upon magnetic units, but has a ratio to it of

√
2 : 1.

Thirdly, it is self-explanatory that the definition of the third electrodynamic unit, namely,
resistance, can also be made independent of the magnetic unit when the absolute units of
current intensity and electromotive force in the definitions that were given in Section 13.10,
which depend upon the magnetic unit, are switched with the new units that are independent
of the magnetic unit, so the definition will remain completely unchanged. The ratio of this
new unit to the old one that was given will then imply that the new absolute unit of resistance

upon the current element α′, namely, that first of all, the direction is perpendicular to the plane that is laid
through the current direction i′ and the directive force. (The directive force is contained in the plane that is
laid through the normal to the inducing planar current A and the midpoint of the induced element C, and
is parallel to the line CD in the triangle ACB, rectangular at C, whose hypotenuse AB is the normal to the
planar current A that cuts the side AB of the triangle at D in such a way that AD : DB = 1 : 2.). Secondly,
the magnitude of the force is equal to:

1

2

λα′

r3
ii′ sin δ ·

√

1 + 3 cosψ2 ,

where ψ denotes the angle between the normal to the planar current and r, and δ denotes the angle that
the current direction in α′ makes with the directive force. — Similarly, from the foregoing expression of
the electromotive force that a current element exerts upon a conductor element in the direction of the line
that connects them, results the direction and magnitude of the electromotive force that the entire current i
that circulates around the area λ exerts upon the conductor element α′, namely, first of all, the direction is
perpendicular to the plane that is defined by the path along which α′ is displaced and the direction of the
directive force, and secondly, the magnitude is equal to:

1

2

λα′

r3
vi sin δ ·

√

1 + 3 cosψ2 ,

where ψ denotes the angle that the normal to the planar current makes with r, and δ is the angle that the
direction in which α′ is displaced makes with the directive force. (See Section 9, loc. cit., Note on page 264
[Wilhelm Weber’s Werke, Vol. III, p. 86], about which it should be remarked that ε has the same meaning
there that δ has here, but the factor sin ε was mistakenly omitted from the formula for the force that a planar
current exerts upon the moving element, which depends upon the direction of motion of that element.)
Now, if the conductor element α′ also belongs to the boundary of an area λ′ whose normal is parallel to

the direction in which the conductor element was displaced (as a result of a rotation of the conductor around
its plane bisector), and therefore makes an angle of δ with the directive force, then one must decompose each
element α′ of the boundary line into two elements ds and dσ such that one of them is parallel to the line
in which a plane that is normal to the directive force CD cuts the plane of the conductor, while the other
one is perpendicular to that line of intersection. One can arrange the former elements to have equal length
ds = ds′ pair-wise and be connected by the perpendicular x to that line of intersection. If one lets a, b, c
denote the distances between the elements ds and ds′ and the point of intersection of the perpendicular x
with the rotational axis of that line of intersection, and further lets γ denote the angular velocity, while δ′ is
the angle that the rotational axis that bisects the plane of the conductor makes with that line of intersection,
then if v and v′ denote the velocities with which the elements ds and ds′, respectively, are displaced, one
will have:

a− b = x ,

(a− c)γ cos δ′ = v ,

(b− c)γ cos δ′ = v′ .

If one further observes that the direction of the electromotive force that was given above is directly parallel
to the one element ds and parallel, but opposite, to the other one ds′, then one will get the electromotive
force, when it is decomposed in the directions of both elements:
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has a ratio of 2 : 1 with the one that was defined in Section 13.10.

+
1

2

λi

r3
sin δ ·

√

1 + 3 cosψ2 · γ cos δ′ · (a− c)ds ,

−1

2

λi

r3
sin δ ·

√

1 + 3 cosψ2 · γ cos δ′ · (b − c)ds .

As a result, their sum will be:

+
1

2

λi

r3
· γ cos δ′ sin δ ·

√

1 + 3 cosψ2 · xds .

It ultimately follows from this that the sum of all of the electromotive forces that are exerted by the elements
of the closed conductor that are parallel to the line of intersection above, when decomposed along the direction
of the conductor, will be:

+
1

2

λi

r3
· γ cos δ′ sin δ ·

√

1 + 3 cosψ2 ·
∫

xds ,

that is, since the integral
∫

xds denotes the magnitude λ′ of the area that is bounded:

+
1

2

λλ′

r3
iγ cos δ′ sin δ ·

√

1 + 3 cosψ2 .

If one similarly considers the electromotive forces that act upon all elements dσ that are perpendicular to
the line of intersection above and decomposes them along their directions, then one will find that their sum
is equal to zero. As a result, the formula above will express the total electromotive force that the planar
current exerts upon the closed conductor.
If one applies that expression to the ratio that was indicated in the first definition, in which one has i = i′,

λ = 1, r = R, γ = 1, δ = 0, ε = ψ = π/2, then that will yield the value of the electromotive force:

i

2R3
,

i.e., it will be equal to 1 when i = 2R3.
Second definition. — The general expression for the electromotive force of a current element on a conductor

element that was cited above:

−αα
′

r2
vi

(

cos ε− 3

2
cosϑ cosϑ′

)

cos η − 1

2

αα′

r
cosϑ cos η · di

dt

will reduce to the value:

α2i ,

when one applies it to the situation that was indicated in the second definition of the absolute unit of
electromotive force, where α = α′, ε = η = 0, ϑ = ϑ′ = π/2, r = 1, v = −1, di/dt = 0, i.e., to unity, when
the intensity of the inducing current i has a ratio of 1 : α2 to the established unit of intensity.
Finally, the ratio of this second absolute unit of electromotive force that was presented here to the first one,

which depends upon the magnetic unit, is obtained as follows: In the expression for the rotational moment

of the previous footnote that a magnet m exerts upon another one m′ at a distance of r, namely:

mm′

r3
sin δ ·

√

1 + 3 cosψ2 ,
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13.27 On the Relationship Between the Absolute Units

in Electrodynamics and the Ones in Mechanics

An electromotive force is any force that seeks to move the two electric fluids at a location
in opposite directions. However, such forces are all forces that are determined by the basic
law of electrostatics, because all of those forces are forces of attraction and repulsion, and
indeed the same force that is a force of attraction for the one electric fluid will necessarily
be a force of repulsion for the other one. Now, since all types of electromotive forces are
comparable to each other, and therefore all of them can be expressed in the units by which
any one of them was measured, that will explain the fact that all types of electromotive

if one replaces the magnet m′ by the current k′K that circulates around the area λ′ = m′/k′, then one will
obtain the rotational moment that the magnet m exerts upon that current:

mλ′

r3
k′ sin δ ·

√

1 + 3 cosψ2 ,

and from this, using known relations that exist between the electromagnetic laws and the magneto-electric
ones, and which one will find discussed in detail in Supplement D at the end of this treatise, one will obtain
the electromotive force that the magnet m exerts upon the closed current conductor when the latter is
rotated with unit angular velocity in the direction that is opposite to that rotational moment, when one sets
k′ = 1, namely:

mλ′

r3
sin δ ·

√

1 + 3 cosψ2 .

Finally, if one also sets the magnet m in this equal to a current kK that circulates around the area λ = m/k,
then one will obtain the electromotive force that this current will exert upon that closed current conductor
under the rotation of it that was described as:

λλ′

r3
k sin δ ·

√

1 + 3 cosψ2

when expressed in terms of the first unit, which was expressed in terms of the second unit as:

1

2

λλ′

r3
iγ cos δ′ sin δ ·

√

1 + 3 cosψ2 ,

i.e.:

1

2

λλ′

r3
i sin δ ·

√

1 + 3 cosψ2 ,

when one observes that γ = 1 and cos δ′ = 1.
If one now denotes the first unit by E and the second one by E′, in order to distinguish the two units, and

denotes the same electromotive force in both units by eE and e′E′, respectively, when one observes that one
had i = k

√
2, that will imply that:

e =

√

1

2
· λλ

′

r3
i sin δ ·

√

1 + 3 cosψ2 ,

e′ =
1

2
· λλ

′

r3
i sin δ ·

√

1 + 3 cosψ2 ,

and as a result, since eE = e′E′, one will have:

E′ : E = e : e′ =
√
2 : 1 .
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forces must be capable of being expressed in the unit that is established for electric forces in
electrostatics, and the fact that one will then require no other unit for electromotive forces
than the one that is used for electrostatic forces. However, in electrostatics, the electric forces
are measured, not with a special unit, but with the same unit as all forces in mechanics,
since that force unit will be taken to be the force that imparts one unit of acceleration upon
a unit of ponderable mass when that force acts upon the mass. The electric force that is
exerted upon an electric particle is then equal to 1 when the unit of ponderable mass that
the electric particle is endowed receives a unit of acceleration as a result of it. One sees from
this that establishing a special unit for the electromotive forces is not at all necessary, but
that the unit that is established for all forces in mechanics is sufficient.

A similar argument can be applied to the intensity of electric currents when one takes the
unit in mechanics to be those current strengths or current intensities for which a unit mass
of any fluid will flow through the cross-section of the channel in a unit time interval. Now,
since the mass-unit of electric fluids in electrostatics has been determined already, namely,
the mass422 that will exert a force on an equal mass at a distance R that has a ratio to the
unit of force of 1 : R2, that will explain the fact that one does not require a special unit for
the intensity of electric currents.

Now, if the use of all special units for electromotive forces and current intensities is to
be avoided completely, then a rule must be found for reducing the measurements that were
quoted in terms of special units up to now in order to represent them independently of those
special units.

In order to find that rule, it does not suffice to revert to the basic laws of electrostatics,
electrodynamics, and induction, but it is necessary to revert to the fundamental general law
of the theory of electricity, which likewise subsumes and connects electrostatics, electrody-
namics, and induction, and which was presented in the previous treatise “Elektrodynamische
Maassbestimmungen,” Leipzig, 1846.423,424 According to the latter law, the force that the
electric mass e exerts upon the electric mass e′ at a distance r with a relative velocity dr/dt
and a relative acceleration d2r/dt2 is represented by:425

ee′

r2

(

1− 1

c2
· dr

2

dt2
+

2r

c2
d2r

dt2

)

,

in which 1/c2 is the same constant factor that was denoted by a2/16 in that treatise.
For a constant value of the relative velocity dr/dt, one will have d2r/dt2 = 0, and as a

result, the force will equal:

ee′

r2

(

1− 1

c2
· dr

2

dt2

)

,

which implies that c means the constant value of the relative velocity dr/dt for which two
electric masses have no effect at all on each other.

Now, it was further verified in Section 21 of the cited treatise that the number i, which
is attached to the unit J that was defined in the foregoing Section, will determine a current
intensity:426

422[Note by AKTA:] That is, the electric mass or the electric charge.
423[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 157.
424[Note by AKTA:] See footnote 198 on page 149.
425[Note by AKTA:] The expression dr2/dt2 should be understood as (dr/dt)2.
426[Note by AKTA:] See Section 5.21.
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i = aeu =
4

c
· eu ,

where eu denotes the amount of electricity that goes through the cross-section of the con-
ductor during a unit time interval with that current intensity. Now, if that current intensity
were expressed in the general current unit K that is established in mechanics by:

kK = iJ ,

then one would have:

k = eu =
c

4
i .

That implies the rule by which the measurements that were carried out in the previous
Section and defined in special units can be reduced in order to make them independent of
those special units, namely: One multiplies the values obtained by c/4. In that way, one
will get the value of the electric current strength, as expressed in the general current unit of
mechanics.

It was likewise found in Section 24 of the cited treatise that an electromotive force, that
is determined by a number e and special unit E that was defined in the previous Section,
will be determined in the general unit F for all forces in mechanics by the number f such
that fF = eE when one makes:427

f =
4

c
e ,

because the following expression for the electromotive force that a constant current exerts
upon a moving conductor, in the general unit of force in mechanics, was given in Section 24
of the cited reference by:

f = −αα
′

r2
i

(

cos ε− 3

2
cosϑ cosϑ′

)

· au′ cosϕ .

However, under certain circumstances for which the electromotive force that is determined
in that way is equal to the special unit that was defined in the previous Section, one will
have:

αα′

r2
i = 1, ε = 0, ϑ =

1

2
π, ϕ = π, u′ = 1 ,

and as a result, for e = 1, one will have f = a = 4/c, or more generally:

f =
4

c
e .

That implies the rule by which the measurements of electromotive forces that were performed
in the previous Section in terms of the special units are reduced in order to make them
independent of that special unit, namely: One multiplies the values obtained by 4/c. In that
way, one will get the value of the electromotive force, as expressed in terms of the general
force unit of mechanics.

427[Note by AKTA:] See Section 5.24.
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Finally, should an absolute unit of resistance be derived from those general force and
current units of mechanics when one uses them for electromotive forces and electric current
in the same way as in the previous Section from the special units that were defined there,
namely, such that the resistance that was taken to be a unit was the resistance that a circuit
would have to possess in order for a unit of electromotive force to produce a unit of current,
then if w denotes that resistance with the unit that was defined in the previous Section,
which is v in the new unit, that will yield the following equation:

v =
16

c2
w .

The velocity c with which two electric masses must move with respect to each other if they
are to not act upon each other at all has still not been ascertained up to now,428 and that is
the reason why the special unit, as it was defined in the previous Section, is still indispensable
for practical use in electrodynamics at the moment, because without knowing the velocity
c, the reduction of measured current intensities, electromotive forces, and resistances to the
known units of mechanics cannot be performed.

428[Note by AKTA:] Weber and Rudolf Kohlrausch (1809-1858) determined this constant experimentally a
few years later, in 1855-6, [KW57] with English translation in [KW21].

348



V - On the Connection Between the Theory of Galvanic

Circuits and the Basic Laws of Electricity

13.28 On the Adjustment of the Electromotive Forces

in the Circuit through the Distribution of Free

Electricity

The theory of galvanic circuits, by itself, defines a part of electrodynamics, and the con-
nection between the laws of galvanic circuits and the basic laws of electricity must then be
developed.429 That has not happened up to now. Rather, the theory of galvanic circuits
was considered by itself, and the laws of galvanic circuits are partly inferred directly from
experience and partly derived from assumptions that are made completely independently of
the basic laws of electricity. Namely, that is true of the laws of galvanic circuits, as Ohm
gave them,430 whose validity and practical significance are generally acknowledged, more-
over. The reason why such a development of the theory of galvanic circuits from the basic
laws of electricity has still not been given up to now might lie mainly in the mathematical
complexity that one would find in such a development if it were to be complete and rigorous.
Nonetheless, a special discussion regarding the connection between the theory of galvanic
circuits and the basic laws of electricity that is more closely linked with the topics that are
considered in this treatise might be appropriate here.

In the course of this treatise, it was frequently necessary to refer to Ohm’s law of galvanic
circuits, which was necessary since all resistance measurements are essentially based upon
that law, and even the definition of the resistance unit must be based upon it. That is
because the resistance is basically defined only by the constant that is given by Ohm’s law
for any closed conductor as the ratio of the electromotive force to the current intensity.

Ohm’s law assumes that the intensity of the electric current is the same in all parts of the
closed circuit since that must actually be the case when it is steady. By that assumption,
the domain in which Ohm’s law is valid is restricted and does not subsume all motions of
electricity in the circuit. That is because it excludes, e.g., all motions that the electricity
must make in the circuit before it reaches a steady state. That also explains why that law is
based empirically only to the extent that it concerns the dependency of the current intensities
in all parts of the circuit where it becomes equal upon the sum of all electromotive forces
in the circuit and the sum of all resistances in all of its parts, while an actual basic law
of current intensity must make the current intensity at any location in the circuit depend
upon only the electromotive force that acts at that location and the resistance that exists
at that location. Now, Ohm had indeed directed his attention to the difference between
the electric charges in the various parts of the circuit in order to arrive at an actual basic
law and had sought to base the law upon the assumption that for equal current intensities,
the difference between the charges at two locations between which there is no electromotive
force (e.g., there is no point of contact between different metals) will be proportional to the
resistance of the part of the circuit that lies between the two locations and that, by contrast,

429[Note by AKTA:] Sections 13.28 up to 13.36 have been discussed in detail in Appendix A of the book
The Electric Force of a Current: Weber and the Surface Charges of Resistive Conductors Carrying Steady

Currents. It is available in English, [AH07], Portuguese, [AH09], and German, [AH13].
430[Note by AKTA:] See footnote 99 on page 53.
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at any such location where an electromotive force exists (e.g., where two different metals are
in contact), the charge will make a sudden jump from one side to the other and that the
difference in charge between both sides will be proportional to the electromotive force that
exists at that location; finally, that for different current intensities, the difference between the
electric charges at two well-defined locations of the same conductor will be proportional to
the current intensity. Guided by that, Ohm then exhibited a basic law for the dependency
of the electric current in each part of the circuit upon the distribution of electric charge
that was analogous to the one that Fourier431 had exhibited for the dependency of the heat
current in any part of a heat conductor on the distribution of temperature and had proved
that the consequences that could be inferred from that analogy agreed with experiments to
the extent that those results could be authenticated.

Ohm had really found in the distribution of electric charge the true key for opening the
door to the path from the empirically-based law that subsumed all closed circuits to the true
basic law that would have to be exhibited for each part of the circuit in general. However, as
far as the effect of that electric distribution on the motion of the electricity was concerned,
which he had considered merely by analogy with the effect of the temperature distribution
on the motion of heat, it was based upon assumptions that were neither necessary nor did
they even seem admissible. That is because the effect of free electricity is given already by
the fundamental general law of the theory of electricity, or when one abstracts from relative
motions, by the basic law of electrostatics, and can be calculated from it for any distribution
in the conductor, from which one can easily verify the inadmissibility of arbitrary assumptions
about mere analogies with the effect of the temperature distribution on the motion of heat.
Even as far as the distribution itself is concerned, it seems inadmissible from that to assume
a distribution of free electricity that is not one on the surface of the conductor. Furthermore,
that will also explain an essential difference, namely, that a relation must necessarily exist
between the propagation of heat and the temperature decrease that exists in its direction,
such that the former is not even possible without the latter. Such a dependency of the electric
current on the distribution of free electricity does not exist in galvanic circuits because the
forces that produce the electric current act, not merely upon the immediate neighborhood,
but also at great distances, and can therefore exist completely outside of the conductor,
which is not possible for a heat conductor.

Take, e.g., a circular copper ring whose cross-section is the same everywhere to be the
conductor and move a magnet along the line that is drawn through the center of the ring
perpendicular to its plane. It is known that the magnet exerts the same electromotive force
on all elements of the ring as a result of that motion, and since all elements are also endowed
with the same resistance, an equal electric current will be generated simultaneously in all of
the elements by that motion, from which it will follow that a greater or smaller accumulation
of positive or negative electricity cannot arise at any location on the ring. We will then have
the case here of a current in a closed circuit with no distribution of free electricity in the
circuit. The law for the dependency of the current intensity on the distribution of free
electricity in the conductor will not be applicable then in all of the cases for which the given
electromotive forces extend over the entire closed circuit and act proportionally in all parts
of the resistances. It is only for a nonuniform action of the given electromotive forces in the
various parts of the circuit that a distribution of free electricity will occur, and the fact that a
steady, uniform current exists in all parts of the circuit will then prove that this distribution
of free electricity in the conductor has the effect of balancing out all of the inequalities

431[Note by AKTA:] J.-B. J. Fourier (1768-1830). See [Fou22] with English translation in [Fou52].
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in the way that the electromotive forces acted originally. However, if that balancing were
considered to be proof of the fact that a steady current exists, then it would still remain:
first of all, to prove that such a distribution is possible from the basic law of electricity and
how it must be addressed, and secondly, to show how it could be created and maintained.

13.29 Verifying the Possibility of a Distribution of

Free Electricity in a Conductor for which the

Inequalities in the Effectiveness of Given Elec-

tromotive Forces in Various Parts of the Circuit

can be Compensated in Proportion to Their Re-

sistances

Any particle of free (positive or negative) electricity that is found on the surface of a conduc-
tor exerts electromotive forces on all parts of the conductor that weaken the given electro-
motive forces in the circuit at some locations and strengthen them at others, and one then
asks whether such a distribution of free electricity on the entire surface of the conductor is
possible that would make the electromotive force stronger wherever it is weak and weaker
wherever it is strong, and in that way bring about an equilibration of the electromotive
forces in all parts of the circuit in proportion to their resistances, which is the condition for a
steady, uniform current. When the influence of the relative motions of the electric particles
with respect to each other has been removed beforehand, that question must be decided by
the basic law of electrostatics that says that the forces that are exerted upon all points in
the interior of the conductor is determined by the electricity in any arbitrary distribution on
the surface.

Poisson432 is known to have proved the following theorem from the basic law of electro-
statics:

When arbitrary electric forces act upon a conductor of arbitrary form from the outside,
a distribution of free electricity on the surface of the conductor is always possible
— but only one of them — for which the electric forces that originate from that
distribution of free electricity will likewise be in equilibrium with the electric forces at
all points of the interior of the conductor that act from the outside.

One next imagines a conductor of cylindrical form and a concentrated mass of free (pos-
itive or negative) electric fluid in the direction of its axis at a great distance that exerts
forces on all parts of the cylinder that are equal and parallel to its axis. It will then follow
from the proposition above that it is possible to have a distribution of free electricity on the
surface of the cylinder for which, in the absence of that distant mass, electromotive forces
would result on all parts of the cylinder that are equal and parallel to its axis, namely, the
forces that had maintained the equilibrium of the forces that were exerted by the distant
mass before it was removed.

By contrast, if one images a bent rod and a concentrated mass of free (positive or negative)
fluid in the direction of the tangent to one of its elements and at a great distance, then it

432[Note by AKTA:] S. D. Poisson (1781-1840).
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will likewise follow that it is possible to have a distribution of free electricity on the surface
of that element such that in the absence of that distant mass, electromotive forces will result
in all parts of the element that are equal and parallel to its tangent, and that possibility
will also remain when the electric charges in all other elements of the bent rod act upon the
element in question, no matter how those charges might have been obtained, except that the
way that the free electricity is distributed on the surface of the element considered will then
depend upon the charge in the rest of the rod.

That argument can now be applied to all elements of the bent rod such that electromotive
forces will result in all elements that are equal and parallel to their tangents. The charges
in all individual elements will be made dependent upon the charge in the entire rod in that
way, and the charge in the entire rod, in turn, must ultimately be set equal to the sum of
the charges on all elements.

Now that the charge in the entire bent rod has been determined in that way, the rod
might define only a smaller or larger part of a circle. The charges in the contact surfaces
between any two elements that bound each other must neutralize in such a way that the
distribution of free electricity is still restricted to the surface of the rod, of which essentially
the parts on the initial surface and the final surface will be calculated, which cannot coincide
then.

The necessity of keeping the initial and final surfaces of the rod separate when the free
electricity that is distributed on the surface is supposed to exert equal electromotive forces
on all elements of the rod in tangential directions follows from the fact that the charges on
the initial and final surface of the rod cannot approach a well-defined limiting value when
they approach each other, but must grow to infinity. One can convince oneself of that by
the following argument:

Let AB [in Figure 2] represent the initial surface of the rod and let CD represent its
final surface; call the very small distance between both surfaces δ. It can be assumed that
the distribution of free electricity on the entire surface of the rod, with the exception of
AB and CD, remains almost unchanged when δ gets smaller, from which it will follow that
the electromotive force that results at a point E of the rod can be regarded as unchanged
as long as the electromotive force that results at E from the charges on the two surfaces
AB and CD stays the same. Let G and H be two equal mutually-opposed elements of the
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surfaces AB and CD. The charge on the element G is denoted by −e, while the charge on
the element H is denoted by +e. The distance FH , which is perpendicular to the direction
of the electromotive force that results at E, is called β; the distance FE is called α. From
the basic law of electrostatics, the force that acts from H to F in the tangential direction
EF then proves to be equal to:

+αe

(α2 + β2)3/2
,

while the force that acts from G to F in the same direction is equal to:

−(α + δ)e

[(α + δ)2 + β2]3/2
,

and as a result, the sum of the two forces will be:

=
2α2 − β2

(α2 + β2)5/2
· δe ,

when δ is very small compared to α. It then follows from this that the electromotive force
that results at E will remain unchanged as δ gets smaller when the product δe keeps the
same value. For vanishing values of δ, the charge e must then grow to infinity, which was to
be proved.

That likewise explains the fact that when the electromotive force, which is the same in
the entire rod, is supposed to increase or decrease, the value of the product δe must change
proportionally.

Finally, if K denotes a point that lies between the surfaces AB and CD, then that will
explain the fact that the charges on the surfaces AB and CD exert an electromotive force
on K that has the opposite direction to the one on E. Therefore, should a closed circuit be
defined in which equal electromotive forces act everywhere in the same sense (which would
be necessary for a steady, uniform current to exist), then K would have to be the site of an
electromotive force that is independent of the distribution of free electricity on the surface of
the rod, which would be the case, e.g., when copper and zinc contact each other at the point
K. It can also be proved that, under otherwise-equal conditions, the given electromotive
force at all points K of the line δ that connects the two oppositely-charged surfaces, must
be proportional to the product δe, and that this product can be considered to be a unit for
the given electromotive force.433

433[Note by WW:] AB and CD [in Figure 3] represent the two oppositely-charged surfaces whose separation
distance is equal to δ.

Let G be the element of the surface AB whose charge will be denoted by e. The distance FG, which is
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The following results can be inferred from those general considerations, which can be
compared with the known laws of galvanic circuits:

1. It follows from the argument above that it is not possible to produce current in a
closed ring by merely distributing free electricity on its surface, but electromotive forces
must be given, at least in some cross-section of the ring, e.g., by copper contacting zinc, if a
steady, uniform current is supposed to come about in the entire ring by means of a certain
distribution of free electricity on the surface of the ring.

2. If the current is to be doubled in a certain circuit, then the amount of free electricity
on the entire surface must be doubled. As a result, a doubling of the factor e in the product
δe must also take place, i.e., a doubling of the electromotive force that is proportional to it.
A doubling of the electromotive force then corresponds to a doubling of the current intensity
in that circuit.

3. If all dimensions of a circuit are doubled, while the electromotive forces at all points
remain just as large as before, then the density of the layer of electricity at corresponding
locations on the surface will have to remain unchanged, while the location on the surface
that covers it will have to be four times larger. At the same time, the proportional expansion
of all dimensions implies that the distance δ in the product δe must be thought of as being
doubled, so since e is to remain unchanged, the product δe and the electromotive force that
is proportional to it must be doubled. It follows from this that a doubled electromotive force
will be required in order to produce an electric motion in a circuit of twice the length and
four times the cross-section that is just as strong as it is in a circuit of one-fold length and
one-fold cross-section. However, such an electric motion that is equally-strong at all points
would give four times the current intensity for four times the cross-section. The doubled
electromotive force would then produce four times the current intensity in a circuit with
twice the length and four times the cross-section, which is also actually the case from the
known laws of galvanic circuits.

perpendicular to the direction of the electromotive force that results at K, will be denoted by β, and the
distance FK, by α. The force that acts from G to F in the direction FK is then obtained from the basic
law of electrostatics, and is equal to:

eα

(α2 + β2)3/2
,

and as a result, for all points K from α = 0 to α = δ, it will equal:

e

(

1

β
− 1
√

β2 + δ2

)

.

For all surface elements that lie at an equal distance β from F , one will then get:

2πe

(

1− β
√

β2 + δ2

)

;

upon multiplying by 2πβ. Finally, for all surface elements from β = 0 to β = b, one will get:

2πe
(

δ + b−
√

b2 + δ2
)

,

or, since δ is very small compared to b:

2πeδ .

The same result will be obtained for the force that is exerted upon the surface CD, and as a result, the sum
of both forces will be equal to 4πeδ, i.e., something proportional to the product δe.
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A complete development of the laws of galvanic circuits requires a closer determination
of the distribution of the free electricity on the surface of the circuit.

13.30 On the Law of Distribution of Free Electricity

on the Surface of the Conductor of a Steady,

Uniform Current

For a linear conductor, it is permissible to replace the distribution of free electricity on the
surface with a distribution of it along the line that defines the axis of the conductor. This
is self-evident in relation to all parts of the conductor that lie at a great distance from
the points for which the electromotive force that is exerted by that free electricity is to be
determined, and all that remains then it to prove that the statement is true for those parts
of the conductor that lie next to those points.

Let A [in Figure 4] be the point for which the electromotive force that is exerted by the
free electricity in the element of the conductor BCDE is to be determined.

Let α denote the infinitely-small radius of the conducting wire. The thickness of the
layer of free electricity at the point F , whose small distance from the cross-section of the
conductor that goes through A will be denoted by x, can be represented by:

a+ bx ,

and the electromotive force that the free electricity of the surface element 2παdx at F exerts
upon the point A can be represented by:

2πα(a+ bx)dx

α2 + x2
,

from which the component of that force in the direction of the axis will follow, namely, it is
equal to:

2πα(a+ bx)xdx

(α2 + x2)3/2
.

The value of the integral of that between the limits x = −λ and x = +λ is then:434

2παb

∫ +λ

−λ

x2dx

(α2 + x2)3/2
= 2παb

(

log

√
λ2 + α2 + λ√
λ2 + α2 − λ

− 2λ√
λ2 + α2

)

,

or, since α is very small compared to λ:

434[Note by AKTA:] In the next equation “log” should understood as the natural logarithm to the base
e = 2.718, that is, ln.
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= 4παb · log 2λ

eα
= 4παb

(

log λ− log
e

2
α
)

,

in which e denotes the base of the system of natural logarithms.

Now, if that free electricity were concentrated on the axis of the conductor, instead of its
surface, then an electromotive force would be exerted from the axis element where the free
electricity 2πα(a+ bx)dx435 is concentrated upon A in the direction of the axis, and it would
be represented by:

±2πα(a+ bx)dx

x2
,

according to whether x had a positive or negative value. The value of the integral of that
between the limits x = −λ and x = −eα/2 would then be equal to:

2παb
(

log λ− log
e

2
α
)

+ 2παa

(

1

λ
− 2

eα

)

,

and between the limits x = +eα/2 and x = +λ, it would equal:

2παb
(

log λ− log
e

2
α
)

− 2παa

(

1

λ
− 2

eα

)

;

and as a result, the value of the integral between the limits x = −λ and x = +λ, excluding
the part that falls between the limits x = −eα/2 and x = +eα/2, would equal:

4παb
(

log λ− log
e

2
α
)

,

from which it would emerge that it would be permissible to substitute a distribution of free
electricity on the axis of the conductor for its distribution on the surface when one excludes
the part of the integral of the electromotive force that lies between the limits x = −eα/2
and x = +eα/2.

If the conductor has the form of, e.g., a circle whose radius is equal to r, and if A denotes
the starting point of an arc AB = rϕ that is the location of the given electromotive force in
the circuit, then let:

fϕ · dϕ

be the free electricity in the arc-length element rdϕ at the end of the arc rϕ.436 The value
of the potential of that electric mass at the point C at the end of the arc AC = rψ is then
equal to:

fϕ · dϕ
2r sin 1

2
(ϕ− ψ)

,

435[Note by AKTA:] Due to a misprint in the original, this expression appeared as 2πα(a+ x)dx.
436[Note by AKTA:] fϕ should be understood as an angular density of charge, that is, the amount of charge

per unit angle. It is a function of the angle ϕ along the ring, that is, f(ϕ). Weber will try to determine
approximately the function f(ϕ) that will produce an electromotive force which has the same value no matter
the value of the angle ϕ.
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and as a result, the value of the potential of the electric mass of the entire conductor at the
point C will be:437

1

2r

∫

fϕ · dϕ
sin 1

2
(ϕ− ψ)

= Fψ ,

where the integration extends from ϕ = ψ + eα/2r to ϕ = 2π + ψ − eα/2r. That will imply
that the electromotive force that is exerted upon the point C, as expressed in terms of the
differential quotient of the potential with respect to the arc-length rψ, is equal to:

d · Fψ
rdψ

.

Now, should that electromotive force be equal in all parts of the conductor, i.e., should
d · d(Fψ)/rdψ have a constant value c, then one would get:

Fψ = cψ + constant ,

or for a symmetric distribution of the free positive and negative electricity in the conductor,
where Fπ = cπ + constant = 0,

Fψ = c(ψ − π) .

Now, should one encounter difficulties in discovering the general form of the function fϕ,
then it would nonetheless not be difficult to subject the hypotheses that Ohm proposed in
that regard to a test and decide whether, and to what extent, it is admissible.

Ohm’s hypothesis consists essentially of saying that the value fϕ grows in proportion
to ϕ from ϕ = 0 to ϕ = 2π, so for the case of the symmetric distribution of positive and
negative electricity in the conductor, where f(0) = −f(2π):

fϕ = a(ϕ− π) .

Once that is assumed, one can determine the value of the potential of the free electricity in
the entire conductor at the points for which ϕ = ψ in the following way:

Let A be the starting point of the arc rϕ, so AB = BD = rψ. All elements of the arc
rϕ from A to D can be arranged pair-wise by their distance from B. Namely, if one element
belongs to ϕ = ψ − χ, and its distance from B is equal to 2r sin 1

2
χ, then the element that

belongs to ϕ = ψ + χ will have the same distance from B. The electric masses that belong
to those two elements are:

a(ψ − χ− π)dχ and a(ψ + χ− π)dχ ,

and the values of the potentials of those masses at the point B will be:

a(ψ − χ− π)dχ

2r sin 1
2
χ

and
a(ψ + χ− π)dχ

2r sin 1
2
χ

,

and as a result, their sum will be equal to:

437[Note by AKTA:] In the next equation Fψ should be understood as a function of the angle ψ, that is,
F (ψ).
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a(ψ − π)dχ

r sin 1
2
χ

.

The value of the potential of the free electricity of the entire arc AD at the point B then
proves to be:438

a(ψ − π)

r

∫ ψ

eα/(2r)

dχ

sin 1
2
χ
=

2a(ψ − π)

r
·
(

log tan
1

4
ψ − log tan

eα

8r

)

.

The point C on the circle lies diametrically opposite to the point B, and as a result the
arc-length ABC = r(ψ + π). All elements of the arc rϕ from D over C to A can likewise
be arranged pair-wise according to their distance from C. Namely, if one of the elements
belongs to ϕ = ψ + π − χ, and its distance from C is equal to 2r sin 1

2
χ, then the element

that belongs to ϕ = ψ+ π+χ will have the same distance from C. The electric masses that
belong to those two elements are:

a(ψ − χ)dχ and a(ψ + χ)dχ ,

and the values of the potentials of those masses at the point B will be:

a(ψ − χ)dχ

2r sin 1
2
(π − χ)

and
a(ψ + χ)dχ

2r sin 1
2
(π − χ)

,

and as a result, there sum will be equal to:

aψ

r
· dχ

cos 1
2
χ
.

The value of the potential of the free electricity of the entire arc DCA at the point B then
proves to be:

aψ

r

∫ π−ψ

0

dχ

cos 1
2
χ
= −2aψ

r
log tan

1

4
ψ ,

so the value of the potential of the free electricity of the entire circle will then be equal to:

−2aψ

r
log tan

eα

8r
− 2aπ

r

(

log tan
1

4
ψ − log tan

eα

8r

)

.

That yields the electromotive force that is exerted upon the point B, as expressed in terms
of the differential quotient of the potential with respect to the arc-length rψ, which equals:

−2a

r2
log tan

eα

8r
− aπ

r2 sin 1
2
ψ

or

=
2a

r2
log cot

eα

8r
− aπ

r2 sin 1
2
ψ
.

For values of ψ that differ only slightly from π, the electromotive forces prove to be almost
equal. However, the more the value of ψ approaches the value of 0 or 2π, the lower the

438[Note by AKTA:] The expression log tan 1
4ψ−log tan eα

8r should be understood as ln
(

tan ψ
4

)

−ln
(

tan eα
8r

)

.

358



electromotive force will drop below that limiting value, from which it will follow that Ohm’s
hypothesis about the distribution of free electricity is approximately admissible only for the
middle part of the circuit.

Now, just as the value of the electromotive force is smaller in all parts of the circuit than
the limiting value that is valid for the middle of the circuit, according to that hypothesis, one
can also easily propose a hypothesis by which it would be larger. Namely, Ohm’s hypothesis
necessarily requires an extension if it is to not contradict the law that an electromotive force
that is everywhere equal in the interior of the conductor can result from the distribution
of free electricity on the surface only when two cross-sectional surfaces of the conductor
belong to that surface (see, page 352). That is because that would imply that in our linear
representation, all of the free electricity that is found in those two cross-sectional surfaces
would have to be thought of as concentrated at two points, while only the electricity that is
found on the boundary line of a cross-section would be thought of as concentrated at a point
in the rest of the circuit. That would imply that a concentration of free electricity that Ohm
did not consider would have to exist, at least on those two endpoints that represent the two
cross-sections. If one denotes them by ±ε, where the upper sign is true for the one point,
and the lower sign is true for the other one, and δ denotes the small distance between the two
points, then the electromotive force that must be added for each point of the circuit in that
way can be determined by the same laws that Gauss gave for the action of a magnet at a
distance. See “Resultaten aus den Beobachtungen des magnetischen Vereins im Jahre 1840,”
pages 33, 34.439,440 Namely, if ACA′ is the circular conductor and the contact location is at
A, and if one has to determine the electromotive force that is added by the free electricity
±ε on both sides of A at the point C of the conductor, then one must draw the tangent to
A and extend it until it cuts the extended line A′C at B, where A′ denotes the point of the
circle that lies diametrically opposite to the point A. If one further makes AD = 1

3
AB and

draws CD, then CD will be the direction of the electromotive force that ±ε exerts upon C,
and the magnitude of that force will be represented by:

CD

AD
· δε

AC3
.

Finally, if one draws the tangent to the circle at C and drops the perpendicular DE from
it, then that will yield the component in the direction of the tangent to the circle at C, i.e.,
the desired electromotive force, which equals:

CE

CD
· CD
AD

· δε

AC3
=
CE

AD
· δε

AC3
.

If one denotes the radius of the circle by r and the circular arc AC by ψ, then one will find
the following expression for it:441

1 + cos 1
2
ψ2

sin 1
2
ψ3

· δε
8r3

.

If one now adds that electromotive force to the one that was found under Ohm’s hypothesis,
then one will get:

439[Note by HW:] Gauss’s Werke, Vol. V, pp. 434 and 435.
440[Note by AKTA:] [Gau41d].
441[Note by AKTA:] The expressions cos 1

2ψ
2 and sin 1

2ψ
3 should be understood as cos2(ψ/2) and sin3(ψ/2),

respectively.
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2a

r2
log cot

eα

8r
− aπ

r2 sin 1
2
ψ
+

1 + cos 1
2
ψ2

sin 1
2
ψ3

· δε
8r3

.

That value is also almost constant for values of ψ that differ only slightly from π, as one will
see when one develops the differential quotients, namely:

cos 1
2
ψ

2r2 sin 1
2
ψ2

(

aπ − δε

4r

(

1 +
3

2

1 + cos 1
2
ψ2

sin 1
2
ψ2

))

,

which is equal to zero when ψ = π. However, in addition, the value of δε can be determined
in such a way that the second and third differential quotients are also zero for ψ = π, which
will be the case when:

δε =
8

5
aπr .

If one substitutes that value of δε in the expression for the electromotive force, then one will
get:

2a

r2
log cot

eα

8r
+

2aπ

5r2 sin 1
2
ψ3

(

3 cos
1

2
ψ2 − 2

)

,

whose differential quotient is equal to:442

−3

5

aπ cos 1
2
ψ3

r2 sin 1
2
ψ4

,

and it will be equal to zero for ψ = π, because it has cos 1
2
π = 0 as a factor. One also sees

that the two following differential quotients will be zero for ψ = π, because they likewise
have the factor cos 1

2
π = 0.

One sees from this that according to the present hypothesis, the value of the electromo-
tive force in all parts of the circuit is greater than the limiting value that is true for the
middle of the circuit, whereas according to Ohm’s hypothesis, it would be smaller. The
correct hypothesis about the distribution of free electricity that should yield an everywhere
equal electromotive force is then included between the limits that are given by the two hy-
potheses above, which means the same thing as: The electric charge in the circuit does not
grow uniformly from the indifference point to the contact point, but accelerates gradually.
The everywhere-equal electromotive force that emerges from that will then presumably lie
between the limiting values that are given by the two hypotheses above, namely:

2a

r2

(

log cot
eα

8r
− 1

2
π

)

and

2a

r2

(

log cot
eα

8r
− 2

5
π

)

.

The factor a then refers to the gradient of the electric charge in the middle of the circuit when
one, with Ohm, understands the gradient to mean the differential quotient of the charge fϕ
with respect to the arc-length ϕ.

442[Note by AKTA:] The expressions cos 1
2ψ

3 and sin 1
2ψ

4 should be understood as cos3(ψ/2) and sin4(ψ/2),
respectively.
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13.31

The distribution of free electricity in a linear conductor through which a constant current
flows and the electromotive force that depends upon that magnitude of that distribution
can be determined approximately in each individual case in the following way: For the sake
of simplicity, the conductor shall also be assumed to have form of a circle here, and an
electromotive force equal to a shall be given at each of its individual points.

If one divides the circle into four equal parts by means of the points A, (A1), B, (A1),
and if B is the point at which the electromotive force equal to a is given, then a distribution
of free electricity can be easily given at the two points (A1) and (A1), by means of which the
electromotive forces at the two points A and B can be compared. If +e then denotes the
free electricity at (A1) and −e the free electricity at (A1), and r is the radius of the circle,
then the distances from the points A and B to (A1) or (A1) will be 2r sin 1

4
π = r

√
2. From

the basic law of electrostatics, that will then give the electromotive force in the direction of
the tangent to the circle:

At B:443

= a− 2e

4r2 sin 1
4
π2

· cos 1
4
π = a− e

r2

√

1

2
,

at A:

= +
2e

4r2 sin 1
4
π2

· cos 1
4
π = +

e

r2

√

1

2
,

and as a result the desired comparison will be:

a =
e

r2
·
√
2 ,

or

+e = +ar2 ·
√

1

2
,

respectively.
In the same way, when the circle through the points A, (A1), A1, (A2), etc., is divided

into 4n equal parts and the electromotive force equal to a is given at the point B that is
diametrically opposite to A, one will get a distribution of free electricity at 2n points (A1),
(A2), etc., by means of which the electromotive forces at the 2n points A, A1, etc. can be
compared. That is because if ±e1 denotes the free electricity at (A1), (A1), and ±e2 denotes
the free electricity at (A2), (A2), and r is the radius of the circle, and one sets:

cos (2m−1)π
4n

4r2
[

sin (2m−1)π
4n

]2 = pm ,

then one will find the electromotive force in the direction of the tangent to the circle:
At B

= a− 2pn · e1 − 2pn−1 · e2 − ...− 2p1 · en ,
443[Note by AKTA:] The expression sin 1

4π
2 should be understood as sin2(π/4).
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at A:

= 2p1e1 + 2p2e2 + ...+ 2pnen ,

at Am or Am:

= − pme1 − pm−1e2 − ...− p1em + p1em+1 + ...+ pn−men

+ pm+1e1 + pm+2e2 + ... + pnen−m − pnen−m+1 − ...− pn−m+1en

in which m can be set to all whole numbers from 1 to n− 1. By setting all of those (n+ 1)
values equal to each other, one will get n equations for determining the n unknown quantities
e1, e2, ... , en.

Moreover, that yields the mean value of the first two of the (n + 1) electromotive forces
k that were set equal above:

k =
1

2
a+ (p1 − pn)e1 + (p2 − pn−1)e2 + ... ,

and the sum of all of them will be:

(n+ 1)k = a + (p1 − pn)e1 + (p2 − pn−1)e2 + ... ,

and as a result:

(n+ 1)k − a = k − 1

2
a ,

or

a = 2nk .

For example, for n = 2, that will give:

e1 = 0.015 67 · 4r2a ,
e2 = 0.058 33 · 4r2a ,

k =
1

4
a ;

for n = 4:

e1 = 0.001 537 · 4r2a ,
e2 = 0.004 744 · 4r2a ,
e3 = 0.008 570 · 4r2a ,
e4 = 0.015 922 · 4r2a ,

k =
1

8
a ;
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for n = 8:

e1 = 0.000 158 2 · 4r2a ,
e2 = 0.000 477 1 · 4r2a ,
e3 = 0.000 804 7 · 4r2a ,
e4 = 0.001 149 5 · 4r2a ,
e5 = 0.001 527 1 · 4r2a ,
e6 = 0.001 972 6 · 4r2a ,
e7 = 0.002 595 1 · 4r2a ,
e8 = 0.004 118 7 · 4r2a ,

k =
1

16
a .

The larger the number n is, the closer that the value of e1 will approach the values:

1

3
e2 ,

1

5
e3 ... .

If one distributes the masses e1, e2, ... , em, whose deviations from the masses e1, 3e1, ...
, (2m − 1)e1 can be neglected as imperceptible, along the m circular arcs πr/n at whose
midpoints they lie, and whose distances x from the point A are proportional, then if b denotes
a constant factor, one will have:

b

∫ mπr/n

0

xdx =
1

2
b · m

2π2r2

n2
= e1 + e2 + ...+ em = m2e1 ,

and as a result:

b =
2n2

π2
· e1
r2

.

Now, if the circular arc m/n · πr is small enough that its deviation from a straight line can
be considered to be imperceptible, then the electromotive force at the point A that is due
to the masses e1, e2, ... , em that are concentrated at the midpoints of the m circular arcs
πr/n will be equal to:

Due to e1:

=
4n2

π2r2
· e1 ,

due to e2:

=
4n2

π2r2
· 1
9
e2 =

4n2

π2r2
· 1
3
e1 ,

due to em:

=
4n2

π2r2
· 1

(2m− 1)2
em =

4n2

π2r2
· 1

2m− 1
· e1 ,
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so the total electromotive force that is exerted by those m masses at the point A will be
equal to:

4n2

π2r2

(

1 +
1

3
+ ... +

1

2m− 1

)

e1 = 2

(

1 +
1

3
+ ...+

1

2m− 1

)

b .

By contrast, the electromotive force that is exerted at point A by the same mass that is
distributed continuously along the entire arc mπr/n according to the given law, when that
linear distribution takes the place of the actual distribution on the surface of a thin wire of
radius α, as in Section 13.30, will be found to be:

b

∫ mπr/n

eα/2

dx

x
= blog nat

2mπr

neα
.

The two expressions for the electromotive force that are exerted by the m masses at A will
be equal when α takes a value such that:

2

(

1 +
1

3
+ ...+

1

2m− 1

)

= log nat
2mπr

neα
,

i.e.:

eα =
2m

n
πre−2(1+ 1

3
+...+ 1

2m−1
) ,

in which e denotes the base of the system of natural logarithms. The greater the number n
(and as a result, the number m, as well), the less influence that it will have on the value of α
whether one takes the number m to be larger or smaller by a few units. That is because if m
denotes a larger number and α′ denotes the value that α takes when m is increased by 1, then
α′ can be represented by (2m2+3m+1)α/(2m2+3m), which will differ from α only slightly
for large values of m. For that value of α, the masses of free electricity that are concentrated
at the midpoints of the m circular arcs πr/n can be set equal to an equally-large mass that
is distributed continuously on the surface of the conductor. That is because for the parts of
the circuit that are closest to the points considered, that fact would follow from the equality
of the electromotive forces that was just proved, but for the distant parts of the circuit, it
would be self-explanatory, just as in Section 13.30.

For the case that was considered above, when n = 8, one will easily see that m cannot
be taken to be greater than 2; as a result:

eα =
1

2
πre−8/3 = 0.109 15 · r .

Now, because it is based upon such small values of n and m, that value of α must not be
considered to be precise, and in addition it proves to be too large for the rules that were
developed in Section 13.30 to be applicable with sufficient precision, since they were true for
only small values of α. A more precise application of those rules would require that n could
not be smaller than 32, and one would get:

eα =
1

4
πre−352/105 = 0.027 49 · r ,

when one assumes that m = 4. The foregoing case might then serve to explain only the
distribution of free electricity in the conductor, and the electromotive force that results from
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it can be determined somewhat approximately in the given way, despite the inaccuracy and
magnitude of α. In addition, one can get the value of eα:

eα = 0.109 15r ,

namely, for that case, one will have:

b =
32

π2
· e1 + e2

r2
= 0.008 239 · a ,

and the electromotive force, which is equal in the entire circuit, will be:

k =
1

16
a .

That result can only be compared with the formulas that were given on page 360, from which
that electromotive force can be represented approximately by the following expressions,
namely:444

2a

r2

(

log cot
ea

8r
− 1

2
π

)

or

2a

r2

(

log cot
ea

8r
− 2

5
π

)

,

in which one must observe that the mass-element of free electricity in the arc-length element
rdϕ, which was found at a small distance rϕ from the indifference point A, was expressed
by aϕdϕ there, while the same mass-element was denoted by bxdx here, where x = rϕ and
dx = rdϕ; one must then set a = br2 in those two formulas. One will then get either:

k = 2b

(

log cot
ea

8r
− 1

2
π

)

= 0.004 88 · a

or

k = 2b

(

log cot
ea

8r
− 2

5
π

)

= 0.050 06 · a ,

approximately, instead of k = 1
16
a = 0.0625 · a, which was found above. One then sees

from this that when the value of k that was calculated above does not agree precisely with
the latter two approximate values either (which is impossible, due to the imprecision and
magnitudes of the value of α), that path itself will at least lead to a value of k with the same
order of magnitude under these unfavorable circumstances. A better agreement might be
expected when the calculation is performed, e.g., for n = 32 or even greater numbers. The
distribution of free electricity in the linear conductor could be determined approximately, but
more sharply, along with the electromotive force that depends upon it, when the numbers n
and m are increased appreciably.

Furthermore, it is hardly necessary to point out, in particular, that the circular form
of the conductor in the presentation above was chosen only as an example to simplify the
calculation, but that the method would still be applicable to any other linear form for the

444[Note by AKTA:] In the next four equations the expression log cot ea8r should be replaced with log cot eα8r .
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conductor. The same thing is also true when several electromotive forces at different places
on the conductor are given, instead of one of them, or when the conductor is decomposed
into pieces with different specific resistances, so a non-uniform distribution of electromotive
force that is proportional to those resistances must exist. Above all, the application of this
method is restricted only by the assumption of a linear conductor, besides the complexity of
the calculations.

13.32 Verifying How the Distribution of Free Electric-

ity on the Surface of a Closed Conductor that is

Necessary for a Steady, Uniform Current Is Pro-

duced

That explains the fact that when electromotive forces are given only at the individual points
in a closed circuit, an electric current can begin directly at only those points and not in
the entire circuit. That is because the electric fluid will not be moving in any of the parts
of the circuit upon which no electromotive forces act either. However, if the electric fluids
begin to move at places where electromotive forces are given, and indeed the positive fluid
moves in one direction and the negative one moves in the opposite direction, while the fluid
between them persists in a state of rest, then that displacement of the positive fluid from
one side to the other will produce an accumulation of free positive electricity that exerts
an electromotive force forwards, as well as backwards. The effect of the given electromotive
force behind it is weakened or cancelled out, while in the forward direction, it exerts an
electromotive force with the same sense as the given one, except at a different location in the
circuit. The same thing is also true for the negative fluid that is displaced in the opposite
direction, as long as the electric fluid in the parts of the circuit that lie before it persists in a
state of rest. At the same time, the accumulation of free negative electricity that will also act
forwards and backwards, namely, the effect of the electromotive force will be weaker behind
and it will exert an electromotive force in the forward direction with the same sense as the
given one, except at a different location in the circuit. If one considers that argument, then
one will see that in general this accumulation of free electricity can stop growing and become
stationary only for a uniform current in all parts of the circuit, and that any deviation of the
current from uniformity would lead to a change in that accumulation that would increase
until the nonuniformity in the current had vanished again.

Now, the distribution of free electricity on the surface of the conductor that was discussed
in Sections 13.29, 13.30 is indeed of the type for which no equilibrium can exist in the
distributed free electricity for it. That is because in order for it to exist, it would be necessary
for the resultant of all forces that a particle of free electricity on the surface experiences as
a result of all of the remaining ones to point perpendicularly to the surface and outwards,
which is not the case. That is because the presentation that was given in Section 13.29,
in its own right, explained how a tangential force on each particle of free electricity on the
surface would result, in addition to an outward-pointing force that is perpendicular to the
surface, from which it would follow that this free electricity on the surface could not persist
in a state of rest, but must take part in the current that exists in its interior. However, that
participation of the free electricity on the surface in the interior current can probably exist
with an unchanging distribution of free electricity on the surface of the conductor. That is
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because if one represents the distribution of all positive electricity that flows on the boundary
and in the interior of a conductor that is thought to extend along a straight line AA′ by the
ordinates of another straight line BC and likewise represents the distribution of all negative
electricity that flows on it by the ordinates of a third straight line B′C ′ that cuts the line BC
at O, then an equal amount of both fluids will be present in the cross-section OP , [Figure
5].

However, the excess of positive electricity increases from P to A in proportion to the
distance from P . From P to A′, the excess of negative electricity likewise increases in
proportion to the distance from P . The general flow of current will then be represented
by an equally-fast advance of the lines BC and B′C ′ in opposite directions parallel to AA′,
from which it would follow easily that the ordinate of the point of intersection of the two
lines PO — i.e., the indifference point of the circuit — would remain unshifted and that
the growth of that excess at either of the two sources of electricity at a distance of P would
remain unchanged under that advance, as long as one can assume that the shifted electricity
at the contact points A, A′ is always replaced with the newly-separated electricity in such
a way that the shifted lines BC and B′C ′ are always lengthened until they extend to the
ordinates of the points A, A′. From the illustration, it might seem as though the amount of
electricity that flows between A and A′ will always become larger. That is due to the fact
that in that way the always-newly-separated electricity at A and A′ that moves in opposite
direction is included in the calculation, while no consideration is given to the electricity that
comes between A and A′ upon reuniting to a state of rest. However, that gradual reunion
of the two electric fluids between A and A′ can also be easily illustrated by an advance of
the abscissa line upwards, which can take place with a velocity such that the ordinate PO
would always keep the same length, which expresses the idea that the amount of positive
and negative electricity that is found there will remain unchanged.

Ohm’s law of proportionality is assumed for the charge in the circuit in that representa-
tion. Should one give some consideration to the deviation from that law that was discussed
in the foregoing Sections, then the calculation must also include the difference in the veloc-
ity with which the two types of electricity must flow if equal quantities of the two are to go
through the cross-section for a given excess. From a more precise discussion, one would also
find that the electrostatic principle that was used as a basis here for the sake of simplicity
would no longer be satisfied, so a return to the fundamental general law of electric action
would be deemed necessary.
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13.33 On Kirchhoff’s Deduction of Ohm’s law, in Con-

nexion with the Theory of Electrostatics

During the printing of this treatise, a publication by Dr. Kirchhoff of the Berlin Physical
Society entitled “Ueber eine Ableitung der Ohm’sche Gesetze, welches sich an die Theorie der
Elektrostatik anschliesst” appeared in Poggendorff’s Annalen, Vol. 79, p. 506, in which the
principles upon which the foregoing discussion was based were subjected to a more precise
test.445 In particular, it was shown that Ohm’s law of galvanic circuits did not necessarily
have any connection with the assumption that Ohm made in his derivation, in contradiction
to the basic laws of electrostatics, namely, that the electricity in a conductor can be found
in a state of rest when it fills up its volume with a uniform density. Rather, the derivation
of that law remains unchanged when one replaces the assumption that contradicts the basic
laws of electrostatics with another one that agrees with it and necessarily results from it,
namely, that the neutral electric fluid in a conductor can be found in a state of rest when the
potential of free electricity that is distributed on its surface has the same value everywhere in
the interior of the conductor and when, in the course of the derivation, one sets the value of
the potential in the interior of the conductor that is due to the free electricity that is found on
the surface equal to the density of electricity that should be found in the interior according
to Ohm. The proof that Kirchhoff gave of that is so brief that it admits no summary, and
for that reason, one must refer to the original itself. One might only quote the concluding
remark that Kirchhoff added in regard to it, in which he sought to justify the reduction of
the laws of galvanic circuits to the basic laws of electrostatics, since the laws of galvanic
circuits were concerned with electrodynamic phenomena, so the basic law of electrostatics
would not generally suffice to explain them. He said, loc. cit., p. 512:

“The considerations that were developed were based upon the electrostatic law of ac-
tion for electric particles. Ampère’s electrodynamic phenomena446 and the induction
phenomena cannot be explained by that law. Weber has found a more general law
with which he could succeed in explaining those phenomena, which is a law whose
expression includes the relative velocity of the particles whose mutual action is being
considered and which goes back to the electrostatic law when that velocity vanishes.
In order to unify the various branches of the theory of electricity under a common
viewpoint, one must then pose the problem of deriving the laws of currents in closed
circuits from Weber’s law. That derivation seems difficult, but it is easy to prove
a posteriori that the representation of the currents to which the assumption of the
electrostatic law would lead will also be consistent with Weber’s law when one appeals
to a certain hypothesis, namely, the hypothesis that when one calculates the force
that produces a separation of the two types of electricity in the volume element v of a
conductor, the types of electricity in v must be regarded as being at rest. There will
be nothing objectionable about that assumption when one imagines that the motion
of the electricity in a conductor only goes from molecule to molecule such that each
electric particle finds a point of rest at the molecule to which it arrives. With that
picture, one can easily concede that the amount of electricity that goes from one
molecule to a neighboring one is determined by only the forces that were exerted
upon the electric particle while it was found to be at rest at that molecule, but not

445[Note by AKTA:] See Chapter 10.
446[Note by AKTA:] See footnote 10 on page 13.
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by the forces that acted upon it while it was already on the way to the following
molecule. In the context of the theory of induction that Weber gave, it is irrelevant
whether one does or does not make that assumption. If one makes it and imagines,
moreover, that the currents in the circuit are the ones that assuming the electrostatic
law would yield, then it is also irrelevant whether one starts from the electrostatic
law or Weber’s in order to find the magnitude and direction of the force that tries
to separate the types of electricity in the element v (so the electromotive force, as
Weber called it). The possible difference between them must, in fact, originate in the
forces that the types of electricity that flow in the other parts of the system exert,
and from what Weber has proved, those forces contribute nothing to that electro-
motive force, since the currents are constant, and equal amounts of the two types of
electricity move in opposite directions with equal velocities.”

13.34 Determining the Relative Velocity of Two Elec-

tric Masses at which Neither Attraction Nor Re-

pulsion will Take Place by Comparing Electro-

motive and Galvanometric Observations of the

Galvanic Circuit

If the law of distribution of free electricity on the surface of a conductor for a steady, uniform
current is given, then that can be the basis for an application that is generally important
in the study of electricity. Namely, it explains the fact that the electromotive force can be
determined in two ways, namely, first of all, from its effect, i.e., from the intensity of the
current that it produces for a known resistance in the circuit. In that way, the determination
of the electromotive force will be made to depend upon the measurements of the current
intensity and resistance of the circuit, both of which can be accomplished in absolute units,
as was shown in this treatise. Secondly, it can be determined from its source, i.e., from the
free electricity that is distributed on the surface of the conductor. If the current intensity i
and the resistance of the circuit w are found in the units that were defined in Section 13.26,
then the electromotive force in the entire circuit will be determined in the units that are
given for it by the product:

iw ,

and according to Section 13.27, that value can be reduced to the general force unit in
mechanics by multiplying it by 4/c, where c denotes the relative velocity with which two
electric masses must move relative to each other if they are to neither attract nor repel. The
electromotive force in the entire circuit is then calculated to be equal to:

4

c
iw

in the general force units of mechanics. In order to determine the electromotive force in
that circuit from its cause, one might now base it upon the expression that is found in
Section 13.30:
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2a

r2

(

log cot
eα

8r
− βπ

)

in which β has a value that is smaller than 1/2 and larger than 2/5. From page 357, the a in
that equation denotes the factor that will give the mass of free electricity that is distributed
along the element of length rdϕ in the circuit at the end of the arc rϕ when it is multiplied
by (ϕ−π)dϕ. Now, if the mass of free electricity in two elements of the circuit of length dx,
one of which it at the end of the arc π − χ, while the other is at the end of the arc π + χ, is
actually measured, and the former is found to be equal to Edx, while the latter is equal to
E ′dx, then one must set:

Edx = −aχdχ ,
E ′dx = +aχdχ ,

and rdχ = dx; as a result:

a =
r

2χ
(E ′ − E) .

If one now substitutes that value of a in the expression above, then one will get:

E ′ −E

rχ

(

log cot
eα

8r
− βπ

)

.

However, that expression does not give the electromotive force for the entire length of the
circuit, but only for a piece of the circuit that has unit length, and must be multiplied by the
length of the circuit (= 2πr) if one is to obtain the electromotive force in the entire circuit,
namely:

2π

χ
(E ′ −E)

(

log cot
eα

8r
− βπ

)

.

Thus, upon setting the electromotive forces in the entire circuit that are determined in both
ways equal to each other, that will ultimately yield the following equation:

4

c
iw =

2π

χ
(E ′ −E)

(

log cot
eα

8r
− βπ

)

or

c =
2χ

π

iw

E ′ − E
· 1

log cot eα
8r

− βπ
.

One has then determined the velocity c with which two electric masses must move relative
to each other in order for them to neither repel not attract. The importance of the deter-
mination of that velocity c itself is explained by the fundamental law of interaction for two
electric masses that was expressed in the first treatise on “Elektrodynamische Maassbes-
timmungen,”447 as well as by Section 13.27 of this treatise, where it was shown that when
that velocity c is known, all electromotive forces can be expressed in the force units that are
established in mechanics. However, from that significance of c itself, it is already interesting

447[Note by AKTA:] See Chapter 5 on page 33.

370



to verify the possibility of such a determination even when the actual performance of it
encounters obstacles that cannot be overcome because instruments that would be suitable
for that determination are lacking. In fact, such obstacles would now prevent one from per-
forming the delicate electrometric measurement by which the quantities E ′ and E would be
found. None of our modern electroscopes and electrometers seem suitable for performing
those measurements. It would only be possible then to determine the ratio of the quantities
E and E ′, but not their absolute values; at least no attempt of that kind has been made
up to now. However, the construction of new electroscopes and electrometers that would be
suitable for that purpose defines a problem in its own right, which we shall not address here
because we shall restrict ourselves to only electrodynamic measurements in this treatise.

13.35 On the Relationship between the Drift Velocity

and the Velocity of Propagation of a Current

There is no data whatsoever about the velocity with which the electric fluid itself moves in
conductors. One knows only that the velocity with which many electric phenomena, such
as lightning, propagate must be very large, since their propagation through even the largest
spaces does not require even the smallest measurable time intervals. One likewise knows only
that the propagation of a galvanic current through a long circuit happens with an extraor-
dinary velocity because the time that is required for a current that is generated at a certain
location in the circuit to achieve the same intensity in all parts of the circuit is so small
that there has been no way of measuring it up to now. Wheatstone’s experiments448 regard-
ing the non-simultaneity of sparks that are produced at different places in an interrupted
conducting wire when the accumulated positive and negative electricity in two conductors
combine with each other through the conducting wire likewise give no information about
the velocity with which the electric fluids are moving, but only about the propagation of
the motion through the electrically-neutral medium in the conducting wire. That is because
the appearance of sparks assumes that the electrically-neutral medium that is found at the
location in question has been set into motion. However, it by no means assumes that the
positive or negative electricity that had accumulated in the two conductors beforehand was
itself forced to go to that location. The non-simultaneity of sparks that Wheatstone observed
at various points of interruption in the conducting wire can therefore give information about
only the velocity of the propagation of motion through the electrically-neutral medium in
the parts of the conducting wire that lie between them. In a closed and nowhere-interrupted
circuit in which the equilibrium of the electric fluid is perturbed continually by electromotive
forces, one must also distinguish two types of velocities, namely, the velocity of the motion
that propagates from particle to particle and the velocity of the motion that is peculiar to
each particle: The former is called the velocity of current distribution,449 while the latter is
called the drift velocity.450 The drift velocity is everywhere equal for a steady current in a

448[Note by AKTA:] See footnote 169 on page 119.
449[Note by AKTA:] In German: Geschwindigkeit der Stromverbreitung. This expression can also be trans-

lated as velocity of current propagation. Weber is referring here to the velocity of propagation along the
circuit of a perturbation in the current, or the velocity of propagation along the circuit of the distribution
of free electricity.
450[Note by AKTA:] In German: Stromgeschwindigkeit. This expression can also be translated as current

velocity. Weber is referring here to the velocity of each electrified particle relative to the matter of the
conductor. See also footnotes 41 and 42 on pages 24 and 24.
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homogeneous circuit. Such a current is called uniform, because it has propagated uniformly
throughout the entire circuit, and as long as it persists unchanged, one can no longer speak
of any further current distribution. If one is to once more speak of current distribution, then
one must introduce a change in the current: The current must become stronger or weaker.
That raises the question then of whether any change in the current strength, i.e., any change
in the drift velocity, takes place simultaneously in all parts of the circuit or gradually from
one part to the others. In the former case, one would say that the current propagates with
infinite speed through the circuit or that the speed of current distribution is immeasurable.
In the other case, one would say that the current propagates with finite velocity through
the circuit or that the speed of current distribution is measurable. It emerges from this that
the measurement of the speed of current distribution assumes a change or modification in
the current strength in the circuit, since without such a thing one could not speak of such a
measurement at all.

Now, it was already explained in an example on page 350 that changes in the current
strength or drift velocity that take place in all parts of the circuit simultaneously are, in fact,
possible, namely, when the given electromotive forces that cause the change act upon all parts
of the circuit directly in proportion to its resistance. However, such a special case still does
not prove the immeasurability of the speed of current distribution in general. If the speed
of current distribution is to be called immeasurable in general, then that simultaneity of the
change in current must take place in all parts of the circuit in all cases, and in particular,
even when the given electromotive force that causes the change acts directly upon only part
of the circuit. However, in that case, the connection between the laws of galvanic circuits
and the basic laws of electricity that was discussed in the foregoing Section implies that the
changed drift velocity must persist for some time in all of the parts of the circuit where it was
produced directly by the given electromotive force before it can enter into the other parts of
the circuit, namely, because in order for that current change to enter into other parts of the
circuit, it must have necessarily been preceded by a new accumulation of the free electricity
that would be necessary for producing the current change in those parts. However, that new
accumulation of free electricity can be produced only by a current change in a part of the
circuit during the time in which that current changes still did not happen in the remaining
parts of the circuit. That therefore implies that it is impossible for the change in current
that is produced directly at one location in the circuit by a given electromotive force to take
place in all other parts of the circuit exactly simultaneously, since it can only arise gradually
in one part after the other, after the accumulation of free electricity that is necessary to
produce it in each part has been formed previously.

If, for the sake of simplicity, one focusses on, e.g., the approximately-allowable Ohm
hypothesis about the distribution of free electricity in the conductor, by which the free
electricity in the element of length rdϕ of the circuit at the end of the arc ϕ is represented
by a(ϕ− π)dϕ, then that will give the integral value:

= a

∫ π

0

(ϕ− π)dϕ = −π
2

2
a ,

for the free negative electricity in the one half of the circular conductor and the integral
value:

= a

∫ 2π

π

(ϕ− π)dϕ = +
π2

2
a ,
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for the free negative electricity in the other half, in which, from page 370:

a =
r

2χ
(E ′ − E) ,

if Edx denotes the mass of free electricity in the element of length dx at the end of the arc
r(π − χ) and E ′dx denotes the mass of free electricity in an equally-long element dx at the
end of the arc r(π + χ). The length of the piece of the circuit that lies between those two
elements is then equal to 2rχ. If one now denotes the mass of free electricity in two such
elements dx, but between which only a piece of the circuit of unit length lies, by εdx and
ε′dx, then one will get:

ε′ − ε =
E ′ − E

2rχ
,

and as a result:

a = r2(ε′ − ε) ,

and when one substitutes that value of a in the expression above for the integral value of
the free negative and positive electricity, one will get:

−π
2r2

2
(ε′ − ε) and +

π2r2

2
(ε′ − ε) .

From page 370, the electromotive force that results from that is:

2π

χ
(E ′ −E)

(

log cot
eα

8r
− βπ

)

= 4πr(ε′ − ε)
(

log cot
eα

8r
− βπ

)

.

If one lets k denote the resistance of a unit length and cross-section of the conductor in the
units that were established in Section 13.27 (so the resistance of the entire circuit whose
length equals 2πr and whose cross-section in equal to πα2 will be denoted by 2rk/α2),
then the quotient of that electromotive force and that resistance will represent the current
intensity eu, where e is the mass of the positive or negative that is included in a piece of the
circuit of unit length and u denotes the drift velocity, so:

4πr(ε′ − ε)
(

log cot
eα

8r
− βπ

)

=
2r

α2
k · eu .

Now, should the current intensity in that circuit change by a ratio of 1 : n, then neu would
have to enter in place of eu, and as a result n(ε′ − ε) would also have to enter in place of
(ε′−ε), and in that way, the free negative and positive electricity would take on the following
expression:

−π
2r2

2
· n(ε′ − ε) and +

π2r2

2
· n(ε′ − ε) .

That would then yield a change in that integral value that is equal to:

−π
2r2

2
(n− 1)(ε′ − ε) and +

π2r2

2
(n− 1)(ε′ − ε) .

However, the possibility of that change assumes that the increase in drift velocity that is
equal to (n−1)u at the beginning of the circuit where the strengthening of the electromotive
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force takes place by which the change in current intensity is accomplished, happened earlier
than in the middle of the circuit, which is most distant from that location, and indeed
during a time interval T in which a mass of negative or positive electricity that is equal
to (n − 1)eu · T flowed through the cross-section of the circuit as a result of the change in
velocity (n− 1)u, which is equal to the change in the integral value above, which will yield
the following equation:

π2r2

2
(n− 1)(ε′ − ε) = (n− 1)eu · T .

It follows from that, in conjunction with the equation that was found before:

4πr(ε′ − ε)
(

log cot
eα

8r
− βπ

)

=
2r

α2
k · eu ,

that the time interval T is:

T =
π2r2

2
· ε

′ − ε

eu
=
πr2

4α2

k

log cot eα
8r

− βπ
.

It is assumed here that n goes to nu at the same time as the first moment of the change in
drift velocity in the first element of the circuit and that this new drift velocity nu will persist
unchanged in that element from that point onward. With the assumption that a similar
sudden transition in the drift velocity from u to nu takes place in all parts of the circuit, one
can ultimately determine the velocity of the current distribution in each part of the circuit.
Namely, under that assumption, the time t that it takes for the current to propagate through
a piece of the circuit corresponding to an arc rψ is determined by the following equation:

t =
ψ2r2

4πα2
· k

log cot eα
8r

− βπ
.

One obtains the speed of propagation rdψ/dt by differentiating that equation with respect
to t and ψ:

rdψ

dt
=

2πα2

krψ

(

log cot
eα

8r
− βπ

)

,

which says that this speed will get smaller as the piece rψ of the circuit through which the
change in the current has already propagated gets larger.

In that expression for the speed of propagation, k denotes the resistance of the conductor
per unit length and cross-section and indeed in the units that were defined in Section 13.27.
If one lets q denote the resistance of a conductor with the same length and cross-section in
the units that were defined in Section 13.26 (which is measurable by known methods), then
from Section 13.27 one will have:

k =
16

c2
q ,

and if one substitutes that value of k in the equation above, then one will get the speed of
propagation rdψ/dt:

rdψ

dt
=
πc2α2

8qrψ

(

log cot
eα

8r
− βπ

)

,
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from which it will follow that when one knows the velocity c with which two electric masses
must move relative to each other when they are neither attracted nor repelled, the speed of
propagation rdψ/dt can be calculated from that, and conversely, when the speed of propa-
gation rdψ/dt is measured, the speed c can be calculated from it. However, if both speeds
c and rdψ/dt can be determined by independent observations, then one would have ob-
tained the means to test the validity of the equation above experimentally. That equation
implies that the speed of propagation rdψ/dt differs, not merely between different circuits,
but also at different places in the same circuit. That is because the numerical coefficient
1
8
(log cot eα/8r − βπ) has different values for different circuits, and in one and the same

circuit for which the numerical coefficient is given as

1

8

(

log cot
eα

8r
− βπ

)

= n ,

the speed of propagation at a well-defined location in the circuit will be inversely-proportional
to the resistance in that piece rψ from which the propagation of the current took place from
its source to there. If one denotes that resistance in the unit that was defined in Section 13.26
by w = q · rψ/πα2, then rdψ/dt = n · c2/w. The speed of propagation will then decrease
as the propagation gets more distant from its source and will therefore be much easier to
measure in very long circuits that it is in shorter ones.

However, as far as the drift velocity u is concerned, one easily sees that ultimately, except
for the obstacles that one finds in performing the measurement of the speed c in the way
that was given in Section 13.34 or in this Section, its determination primarily breaks down
due to one’s complete ignorance of the masses of positive or negative electricity ±e that are
contained in a piece of the conductor of unit length. That is because in order to determine
the product eu, from Section 13.27, one has the equation:

eu =
c

4
i ,

where i can be measured in the known way. It would seem that the possibility of getting
detailed information about the values of e and u would be based upon the fact that the
resistance of a conductor, which is defined only by its effects up to now, namely, by the
dependency of the current intensity in it upon a given electromotive force, could also be
defined more closely by its causes. Namely, if one succeeds in ascertaining the sources of
the resistance and if that implies, for example, that the resistance in a conductor depends
upon the value e that pertains to the conductor, and indeed the fact that it will be larger or
smaller according to whether the value of e is smaller or larger, and it can be represented by
d/e, where d is determined independently of e from the other properties of the conductor,
then that would explain the fact that, from Section 13.27, i can be set equal to the quotient
of the electromotive force ε · 4/c (in which ε is measurable, as in Section 13.26) and the
resistance d/e, and as a result:

eu =
c

4
i =

ε

d
e ,

so

u =
ε

d
.

The value of e would, at the same time, be obtained from that determination of u, as well.
That shows the importance of a closer investigation of the causes of resistance in the study
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of electricity, which have still not been discussed up to now.

13.36 On the Causes of Resistance in a Conductor

For a complete understanding of resistance, it does not suffice to define the magnitude of
the resistance by its effects, i.e., by the strength of a current that is produced by a given
electromotive force, but it is also necessary to define the magnitude of the resistance from its
causes. Without that essential extension, our knowledge of the essence of resistance would
be lacking, and the magnitude that is ascertained would be merely a tool for electrodynamics
whose true physical significance would still be unknown. Now, if resistance has merely been
considered in terms of its effects up to now, then that is based upon the fact that nothing
at all of a fundamental nature regarding its causes has been ascertained up to now. Merely
the dependency of resistance on the external dimensions of the conductor (namely, its length
and cross-section) has been ascertained, but that dependency is merely concerned with the
absolute resistance of a conducting wire and has no relationship to the specific resistance
of conducting metals, about whose causes nothing at all is known. The causes seem to lie
hidden so deeply in the nature of the body that they are inaccessible by the paths of research
up to now. Briefly, the question of the causes of galvanic resistance lead to a realm of science
that is still entirely unconstructed. I shall therefore restrict myself to only a specialized
discussion, namely, a discussion of the relationship of resistance to the nature of the electric
fluid itself, how it is to be defined, and what relationship it has to the double electric currents,
and how they are to be adapted to and established in the usual representation.

The question of the causes of resistance first leads one to focus upon the extent to which
those causes lie in the ponderable carrier of the current and the extent to which they lie
in the electric fluid that it contains. The fact that there exist ponderable parts of channels
through which electric fluids flow that restrict it more or less and can therefore influence the
electric current is self-explanatory. However, that raises the question of whether that cause
alone is already sufficient to explain resistance. That cause would merely restrict the mass of
electric fluid that can take part in the current. However, it is in the nature of resistance, as
we understand it by its effects, that the magnitude of the resistance will not merely restrict
the mass of electric fluid that takes part in the fluid motion, but that it will also restrict
the motion itself. However, that restriction of motion itself cannot be based upon merely
the presence of ponderable parts, but must necessarily assume that there are forces that
preserve the equilibrium of the continuing electromotive forces, because without those forces
the electric fluids would have to keep accelerating their motion, which is not the case for a
steady, uniform current.

One then further asks, from whence originate the forces that preserve the equilibrium of
the continuing electromotive forces for a steady, uniform current, and in that way prevent
further acceleration of the electric fluid in its motion? Are those forces purely-electric forces
or are they forces that the ponderable parts exert upon the electric fluids that flow through
them? If we assume, as we have always done, that there are two electric fluids in the
galvanic current that simultaneously flow through that conductor in opposite directions,
then we are very close to looking for a cause of the resistance to the motion of that fluid
in the fluid that opposes it. Namely, the positive and negative fluid will combine into a
neutral mixture at the moment that they meet, and no matter how easy that it might be
to also separate that neutral combination, such a new separation could result only from a
new electromotive force, and not as a consequence of a persistence of the motions that the
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two fluids possessed before their combination, because they must be considered as cancelling
each other out as a result of their meeting and combination. That implies that whereas
each fluid must be ascribed a persistent motion by itself, the motions of both fluids together
will not persist in the double current. However, even if that reason for the motion of the
electric fluids to not persist in the double current is also the correct one, nonetheless, one
would not gain any clear insight into the phenomenon itself in that way as long as one
does not know the forces that act upon the mixing and combination of the electric fluids
when they meet and which must be overcome during their repeated separation. One then
asks whether even more forces come into consideration in that way besides the ones that
are already determined by the general fundamental law of electricity, e.g., whether special
molecular forces act upon the electric fluid, as well. If that were not the case, then the
evolution of the alternating combination and separation of the electric fluid in the double
current would have to be determined more precisely according to the known fundamental
law of electric action. Without such a more precise determination, one can generally assume
with some plausibility only that the intensity of a double electric current must depend upon
not just the mass of the electric fluid that takes part in the current, but also upon the
number of separations that result in a certain time interval, and that the number of those
separations must be proportional to the electromotive force that continues to act during
that time interval. If that implies, e.g., the fact that every electric particle will always suffer
an equal number of combinations and separations in an equal time interval for an equal
electromotive force, and in that way would proceed along an equal path segment, then the
drift velocity u would always be the same for an equal electromotive force, and the current
intensity for equal electromotive force would vary merely with the amount of electricity e
that is contained in such a path segment (e.g., in a unit length of the conductor), and would
indeed be proportional to it, which implies that the so-called resistance would likewise vary
with only e, and indeed it would be inversely proportional to e, which is the case that was
cited at the end of the previous Section as an explanation.

Should the cause of resistance be actually contained in the alternating combination and
separation of the electric fluids when they meet in the double current, then it would further
follow that a steady double current without continual external electromotive forces would be
impossible, and one would then have to ask how the assumption of steady molecular currents
could be compatible with the explanation for magnetic and diamagnetic phenomena. The
possibility of such molecular currents must then necessarily rest upon an action of ponder-
able molecules by which the paths of the electric fluids that move around that molecule in
opposite directions would remain separate from each other when, e.g., the one fluid describes
a narrower orbit, while the other fluid describes a wider one, such that the two fluids can
never meet and combine during their motions.

The following argument will serve to explain the evolution of the alternating combination
and separation of the electric fluids in the double current, as it would be derived from the
fundamental law of electric action without resorting to special molecular forces in that fluid:
Let positive electric masses be at A, B, C, ... , about which one might initially assume that
they are fixed at the locations where they are found, [Figure 6].
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At a, one presently finds a mobile negative electric mass upon which the neighboring
positive mass at A acts strongly enough that the action of the more distant masses B, C,
... can be neglected. The masses at A and a act upon each other with a force that depends
upon their magnitudes, relative velocity, and the change in it. Meanwhile, for the sake of
simplicity, one might assume that the correction to the electrostatic force (which depends
upon the masses and the distance)451 from the relative velocity and its change proves to
be so small in comparison to the latter force that it can likewise be neglected. With those
assumptions, it will follow that when no other force acts upon the mass at a, that mass
must obey the laws of motion in central forces, which are inversely proportional to the
square of the distance. As a result, the mass at a will describe, e.g., an elliptical orbit
around A, according to Kepler’s laws.452 However, a perturbation of that motion of the
mass in question will occur at A as long as an electromotive force parallel to the line AB
with constant intensity acts upon the mass considered, in addition to the central force. The
elements of the elliptical motion up to now would then be changed continually, and the orbit
that is described by the mass considered would go over to a spiral curve in that way, in which
the mass considered would ultimately be led so far from A that it would leave the sphere
of action of A and arrive in the sphere of action of B, and so on, until it had described a
number of spiral windings around B that also led it so far from B that it left the sphere of
action of B and entered the sphere of action of C. In that way, an electromotive force can
then cause the negative electricity to flow away in the direction ABC, which the positive
masses at A, B, C take no part in. The essence of that argument consists of the fact that
as soon as the electromotive force ceases to act, the mass in question will, at the same time,
once more move in an elliptical orbit according to Kepler’s laws around the positive mass
in whose neighborhood it is found, because after the perturbing force disappears, no other
change in the elements of its central motion will take place. One also easily sees that nothing
would change in that fundamental relationship if the positive masses at A, B, C, ... were
likewise assumed to be mobile, and that the negative masses in whose neighborhoods they
are found would be subject to not only the central force, but also the perturbing effect of the
same electromotive forces, although it would have a direction for the positive masses that is
the opposite of the one that it had for the negative ones. That implies the following result:
If the electromotive force c acts upon the negative mass considered alone, then it would
impart a velocity ct upon that mass in the direction ABC during the time t, with which the
mass must advance steadily in the direction ABC, also after the force c has ceased to act.
However, when combined with the central forces of the positive masses at A, B, C, ..., as
long as the electromotive force c acts, it will indeed likewise cause the mass considered to
advance in the direction ABC, but as soon as the force c ceases to act, that advance will also
cease, i.e., that advance of the mass considered cannot happen in the direction ABC with
a velocity that persists after the force that produced the advance ceases to act. Therefore,
the reason why the mass considered will not advance further in the direction ABC after the

451[Note by AKTA:] That is, which depends upon the amount of electric charge on the two interacting
particles and upon their distance.
452[Note by AKTA:] J. Kepler (1571-1630).
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electromotive force has ceased to act lies in the central forces that the positive masses exert
upon the negative mass in question. However, in the theory of galvanic currents, the word
resistance refers to essentially nothing other than the fact that the advance of the electric
fluid in a galvanic current is proportional to the electromotive force, i.e., it will cease as
soon as the electromotive force ceases to act. It then follows from this that the reason for
resistance might lie in the central forces that the positive and negative masses mutually exert
upon each other when they meet in the electric double current. It would be important for the
sake of further theoretical investigations to derive a precise and unambiguous definition for
resistance on that basis and develop its relationship to the way that it is defined by its effect.
In that way, one would mainly arrive at a determination of the time that a particle needs in
order to pass from one winding around a central mass A to the corresponding winding around
the central mass B that follows it in its spiral orbit. However, the theory of perturbation in
astronomy shows that such a determination can also encounter great difficulties, even when
all of the essential elements for the calculation are given.
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VI - Comparing the General Principles of Neumann’s

Mathematical Theory of Induced Electric Currents with

the Laws of Induction that are Derived from the Fun-

damental Law of Electric Action

13.37 On the Difference Taking Place at Sliding Con-

tacts According to Neumann

The treatise that Neumann presented to the Berliner Akademie der Wissenschaften in 1845,
namely, “Die mathematischen Gesetze der inducierten Ströme,”453 was cited before in Sec-
tion 26 of the first treatise on Electrodynamic Measurements.454 That treatise, which has yet
to be published, can be cited only in the form of the abstract that appeared in Poggendorff’s
Annalen. Since then, Neumann presented a more comprehensive work on the same topic to
the Berliner Akademie der Wissenschaften: “Ueber ein allgemeines Princip der mathematis-
chen Theorie inducierter Ströme,” which appeared in the Schriften der Berliner Akademie der
Wissenschaften in 1847 and was published by Reimer in Berlin in 1848.455 In that treatise,
Neumann established the following general theorem:

“If a closed, unbranched, system of conducting arcs A| is carried over to another
one A|| with a new form and position by an arbitrary displacement of its elements
that does not alter the connectivity of the conductors, and if that alteration of
A| to A|| takes place under the influence of a system of electric currents B| that
simultaneously experiences a change in position, form, and intensity from B| to B||
by an arbitrary displacement of its elements, then the sum of the electromotive forces
that are induced by that change in the system of conducting arcs will be equal to
the induction constant ε times the difference in potential values of the current B||
relative to A|| and the current B| relative to A|, when the unit current is thought of
as flowing through A|| and A|.”

Once Neumann had developed that theorem, along with its consequences, in the first
four paragraphs of his treatise, he continued in § 5:

“In his treatise “Elektrodynamische Maassbestimmungen, etc.,” W. Weber had paved
the way that would bridge the chasm in our knowledge of the electrostatic and
electrodynamic action of electricity. He showed how Ampère’s laws for the action of
two current elements456 could be derived from the action of positive and negative
electricity in the one element on the two electric currents in the other element. That
analysis of Ampère’s laws led to the fundamental law of two electric masses, by
which the law depended upon not only their relative distance, but also on the relative
velocity and its variation. At the same time, as Weber showed, that fundamental law
explained the induction phenomena and their laws. The subject of this paragraph is
to establish the extent to which the results that are contained in the foregoing agree

453[Note by AKTA:] See [Neu46]. See also [Neu47] with French translation in [Neu48].
454[Note by AKTA:] See Section 5.26.
455[Note by AKTA:] [Neu49].
456[Note by AKTA:] See footnote 10 on page 13.
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with the laws of induction that are deduced from Weber’s fundamental law of electric
action.”

Neumann, loc. cit., developed a general expression for the induction from that funda-
mental law of electric action, as it was presented in the first treatise on Electrodynamic
Measurements,457 in his own treatise, which he then applied to various types of induction,
namely, to the cases in which:

1. Neither the current element nor the conducting element suffers a change in position,
and the induction originates in merely a change in current intensity.

2. The induction is produced by merely a change in position of the conducting element
that takes place under the influence of a constant and immovable current.

3. The induced conductor was at rest and the induction is excited by a motion of the
entire carrier of a constant current.

All of those cases implied the result that the law of induction that was derived from that
fundamental general law of electric action agreed completely with the results of the general
principle of the mathematical theory of induced currents that Neumann had presented.

Neumann continued:

“Things are different with the equation that expresses the electromotive force that is
induced by a simple circulating current458 under the assumption that it consists of a
moving piece of conductor and one at rest. The sum of the electromotive forces that
are excited during the traversal of the inducing element is the same in both formulas,
but the direction of the induced current is the opposite one.”

Now, in order to decide whether a discrepancy existed in those individual cases between
the results of the law of induction that Neumann had derived from the fundamental general
law of electric action and the results of his own general principle of the mathematical theory
of induced currents, and which of them was actually correct, Neumann cited an experiment
in his treatise that had proved that the formula that was derived from Neumann’s general
principle was also the correct one in that case. I have also repeated that experiment, which
will be described below, and completely confirmed the result that Neumann obtained. Once
the law that applied to that case was guaranteed to be factual by that experiment, Neumann
subjected the derivation of that law of induction that he himself has given for that case from
the fundamental general law of electric action to a more thorough proof. He said:

“One must examine where the derivation of the formula from Weber’s fundamental
law breaks down. The fact that the contradiction in question occurs only for inducing
currents with sliding contacts, immediately leads one to consider that fact. In that
case, new elements will enter or leave the current path, in which the current strengths
will change from i to 0 within a very short time, and by means of which their change
in intensity will exert an inducing effect that is already contained in my formulas, but
must still be considered in order to apply Weber’s fundamental law.”

457[Note by AKTA:] See Chapter 5 on page 33.
458[Note by AKTA:] In German: von einem einfachen Stromumgang.
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That test led Neumann to the result that this second part of the induction that was not
considered in the first derivation of the fundamental general law of electric action compen-
sated for the one-half of the contradiction in question, since the sum of the electromotive
forces then proved to be equal to zero in the first and second parts.

Finally, from that test of the calculation, which did not lead to a satisfactory result,
Neumann went on to test the assumption that was at the basis for that calculation in regard
to the physical circumstances that existed in that case under which the induction took place.
That assumption consisted of assuming that the current strengths in the conducting elements
that entered or exited that current path at the sliding contact changed from 0 to i or from
i to 0 within a very short time interval. However, it is a condition for a steady current that
the same current intensity must be found in all elements of the closed circuit, and therefore
when the current intensities in the elements that enter or exit the sliding contact also vary, it
would seem that the mean value of the current intensity over the short time interval in which
it varies would also have to satisfy that condition, here as well, and if the current intensity in
the entire circuit is to be the same (= i), then that would assume that the current strengths
vary from 0 to 2i or from 2i to 0 in the elements that enter or exit the sliding contacts. Now,
with that assumption about the physical circumstances under which induction takes place,
it can be easily proved that the initially-remarked contradiction will vanish completely, and
the law of induction that is derived from the fundamental general law of electric action will
also agree with Neumann’s general principle of the mathematical theory of induced currents
for this case.

However, as far as the assumption itself is concerned, upon which the elimination of the
contradiction in question rests, Neumann said that it was “justified less by its evidence than
by its success.” Nonetheless, despite the concerns that might be raised in regard to that
assumption itself, it seems to me that if the assumption were true, then it would necessarily
lead to a consequence that would once more negate that success entirely. Namely, if it is
given that the current strengths in the elements that enter or exit the sliding contact actually
change from 0 to 2i or from 2i to 0 within a very short time interval, then it seems to me that
this would necessarily have to lead to the consequence that immediately after the current
strengths in the entering elements increased to 2i, they will likewise once more drop down
to i in the elements that remain in the chain, because i refers to the current intensities in
all parts of the circuit, which are necessarily equal. In the same way, for the parts that
exit the sliding contact, in which the current intensity was constantly equal to i, before that
current intensity would decrease from 2i to 0, it would first have to rise from i to 2i. If one
introduces not only the change that was assumed above into the calculation, but also that
one, which is necessarily linked with it, then that will give the same results as when one
ignores that assumption and simply assumes, as was done before, that the current strengths
in the elements that enter or exit the sliding contact change from 0 to i or from i to 0 within
a very short time interval.

It then seems to me that the insoluble contradiction will solve itself with the assumption
above when one makes a closer study of whether all of the given relative motions of the electric
fluid and their variations are actually included in the calculations in the derivation of the
law of induction from the fundamental general law of electric action that Neumann gave,
and that solution will be given once I have presented my description of the aforementioned
experiment that Neumann carried out in order to resolve that important question, along
with my repetition of it.
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13.38 Description of Neumann’s Experiment and Its

Repetition

Neumann said on p. 59 of the cited treatise [related to Figure 7 below]:

“Although I have excluded any description of experiments from this treatise, due to
the importance of this case, I will give a brief outline of the device to which I appealed
in order to test the formulas that were spoken of. One part of the closure wire of a
galvanic circuit α is bent into a circle βγδ. The end δ of that circle comes very close
to its starting point β without making a conductive connection with it. A rotating
axle εη that is perpendicular to the plane of the circle at its center leads the moving
part of the path εγ around in a circle, and indeed in such a way that its end γ will
continually drag against the ring. Starting from α, the inducing current enters the
ring at β and leaves it at γ to enter the moving part of the path, and then leaves
that part and enters the conducting axle εη, and at η, it returns to α through the
conducting wire ηζ , which is at rest. The direction of the current is suggested by
arrows in the figure. Concentric to the ring, there is a circular conductor bcd, in
which a current is induced by the motion of the path segment εγ. Due to the short
distance from δ to β, the path itself can be regarded as closed when the moving path
segment β advances from γ to δ, which is why the given formulas can be applied to
the determination of the electromotive force that is developed during a cycle... In
order to observe the direction and magnitude of the induced current, the following
arrangement was employed: The induced circular conductor was broken at b459 and
equipped with two continuations e and f there, one of which was connected directly
to the end of the multiplier wire, while the other one was connected to a metal spring
that made a sliding contact with a metal case that was isolated from the axle εη.
The induced current then went through that spring into the case, left it by way of
a second metal spring that pressed against it, and then left it to go to the other
end of the multiplier wire. The case had a cutout that was filled with wood, upon
which the one spring lay at the moment when the moving path segment γε left the
ring βγδ at δ, in order to once more become connected with it conductively at β.
Namely, at that moment, the closure of the inducing current will be broken and then

459[Note by AKTA:] Due to a misprint in the original, we have β here instead of b.
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reestablished, so that current will vanish and then reappear, but no induction will be
excited in the conductor in so doing, because the arrangement that was given above
will offer no closed, connecting path. Therefore, only the current that is induced by
the motion of the path segment γε will arrive at the multiplier, and its direction and
intensity can be observed, since it always flows in the same direction under continued
rotation of the axle εη. Observation indicated an induced current, and as far as
its direction was concerned, it was the same as the one that my formula required.
In order to prove that not only the direction, but also the strength of the induced
current was expressed correctly by that formula, I proceeded as follows: The spring
that broke the conductive connection in the inducing current path was placed so high
that it no longer met the wood-filled cutout in the case through which that break
was effected. The induced currents are now always offered a closed path. With a
rapid rotation of the axle εη, three currents arrived at the multiplier within a very
short time, namely, the one that was induced by the motion of the path segment
γε, then the one that was induced by the vanishing of the inducing current at the
moment when the moving path segment left the ring at δ, and finally, the one that
was induced by its reappearance once the piece again reached the ring at β. The force
that those three currents exerted during the brief duration of a traversal of the path
segment γε on the magnetic needle of the multiplier is proportional to the sum of
their electromotive forces. The needle will take its almost-fixed position on one side
or the other of the meridian according to whether the sign of that sum is positive or
negative, or it will keep its position at the meridian when that sum is equal to zero...
Observation showed that when the rotation happened rapidly, the needle remained at
the meridian, which proves the validity of my formula in regard to both the direction
and strength of the induced current.”

In order to repeat that experiment, 1 kilogram of copper wire that was 2/3 millimeters
thick and wound with silk was wound around a thin brass ring of diameter 120 millimeters.
A wooden cylinder whose diameter was somewhat smaller than the brass ring was placed
inside that brass ring, and that cylinder was provided with a metal axle by which it could
be rotated rapidly by means of a gear. A copper strip was laid in the wooden cylinder that
reached from the metal axle to the periphery. Three brass springs were connected to that
copper strip on its periphery that contacted the brass ring at three internal points that lay
along a line that was parallel to the axis of rotation. Those three springs served to establish a
secure contact in order for the connection between the brass ring and the other two springs to
be maintained when one of the three springs failed for a moment. One of the two conducting
wires from a Grove cell460 was fixed at the position of the rotational axis, while the other
one was fixed to any point on the brass ring. The two ends of the silk-wound copper wire
that was wound around the brass ring were connected to the multiplier of the galvanometer,
whose needle possessed a period of oscillation of about 10 seconds.

The apparatus that was described differed from Neumann’s in essentially just one respect,
namely, due to the fact that the brass ring was not cut, which had the effect that the current
in the rod that entered into the metal rotational axis could follow two paths from the place
on the brass ring to which it was led by the brass spring to another place on the brass
ring form which it returned to the rod. The current then split between those two paths,
namely, between the two parts of the brass ring that connected the contact point of the

460[Note by AKTA:] See footnote 98 on page 53.
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brass springs with the locations where the other conducting wire of the rod was attached
to the brass ring. Essentially the same thing was achieved by that splitting of the current
as the intention in Neumann’s second experiment for maintaining the closure of the induced
circuit at the moment when the sliding contact passed the cut in the brass ring, namely, that
the sum of the electromotive forces that were exerted by the current-elements that entered
and exited the sliding contact would be equal to zero for an entire rotation of the axle, and
therefore under rapid rotation, the observed effect on the galvanometer would depend upon
just the sum of those electromotive forces that originated in the motion of the path segment
γε. The splitting of the current that was just described likewise made it possible for the
sum of the electromotive forces that were exerted from elements that entered and exited
the sliding contact to be equal to zero, and indeed, for not only the entire duration of a
rotation, but for each individual instant, which gave one an advantage in performing the
experiment that its success was no longer coupled with the condition of rapid rotation, as
was the case in Neumann’s experiment.461 Another apparatus that was devised in order to
repeat Neumann’s first experiment, as well as the second one, completely unchanged shall

461[Note by WW:] The fact that the splitting of the current that was described actually has the given effect
can be shown in the following way: One denotes the constant intensity of the undivided current by i and
splits that current into two parts when it enters the brass ring, one of which has an intensity i| and goes
through the circular arc ψ to the exit point, while the other one has an intensity i|| and goes through the
arc 2π − ψ to the exit point. Ohm’s law then gives the following equations for the splitting:

i| + i|| = i ,

i| : i|| = (2π − ψ) : ψ .

If one now increases ψ by dψ, then the current intensity i|| in the arc element dψ will vanish, and in its place,
the current intensity −i| (where the negative sign means that the direction of the newly-created current has
the opposite direction to the increasing arc ψ) will arise in the same element. The vanishing of a positive
current i|| in the element dψ creates an electromotive force that is proportional to i||dψ, and the creation
of a negative current −i| in the element dψ will produce an electromotive force that is proportional to
−(−i|dψ) = i|dψ, whose sum is then equal to:

a(i| + i||)dψ = aidψ ,

if a denotes a constant factor. However, when ψ grows by dψ, the ratio of i| : i|| = (2π−ψ) : ψ will likewise
change, while the sum i| + i|| = i will remain unchanged, which will imply the two differential equations:

di| + di|| = 0 ,

ψdi| − (2π − ψ)di|| = −idψ ,

and as a result, di| = −idψ/2π and di|| = +idψ/2π. The change in intensity di| of the current i| in the
arc ψ in the direction of decreasing values of ψ will generate an electromotive force +aψdi| = −aψidψ/2π
that is proportional to ψdi|. The change in intensity di|| in the arc (2π − ψ) in the direction of increasing
values of ψ will generate an electromotive force = −a(2π − ψ)di|| = −a(2π − ψ)idψ/2π that is proportional
to −(2π−ψ)di||. That makes the sum of all electromotive forces that result from the increase dψ in the arc
ψ equal to:

aidψ − aψ
idψ

2π
− a(2π − ψ)

idψ

2π
= 0 ,

which was to be proved.
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be described later on.
The following two experiments were made: First of all, the wooden cylinder was rotated

around its axis 10 times per second by way of a gear, while the inducing current flowed
through the rotational axis and the brass ring, and it was observed that no current was in-
duced in that way. The unperturbed state of the galvanometer needle could be authenticated
to within 1/2 a scale division. That result agreed completely with that of Neumann’s second
experiment. Secondly, yet another auxiliary wire was wound around the brass ring, and its
ends were connected with the rod, such that the current would have to go through that
wire, instead of the rotational axis and the brass ring. At the moment when that circuit was
closed, an induced current was observed with the galvanometer whose direction was oppo-
site to that of the inducing current. Opening the circuit produced an induced current of the
same strength, but the same direction as the inducing one. In both cases, the galvanometer
needle obtained a deflection of about 22 scale divisions. The second experiment served to
prove that in the first experiment, for 100 rotations of the moving current segment during
one oscillation, the galvanometer needle would have to take on a deflection of 1000 scale
divisions if each rotation were to generate an electromotive that would be equal to the one
that was determined in the second experiment. Such a force was not present.

That experiment deserved especial interest with the current splitting that was described,
since it corresponded precisely to the known electrodynamic rotation experiment in which
a moving current segment was found inside of a fixed circular current that pointed to the
center of that circle. For that electrodynamic rotation experiment, see Poggendorff in the
Annalen, Vol. 77 (1849), pp. 22 et seq.462 It is known that the circular current made the
moving radial current rotate in the direction of the circular current itself or the opposite
one according to whether the direction of the current in the moving current segment pointed
towards the center or away from it. From the otherwise-valid rule that says that electromag-
netic or electrodynamic experiments will invert into magneto-electric or voltaic induction
experiments, it would seem that when that moving radial current is rotated (as was the case
in our experiment), a current must be induced in the fixed circular conductor that is parallel
or opposite to the direction of rotation according to whether the current in the moving con-
ductor points towards the center or away from it, respectively. That also explains the fact
that replacing the mercury trough in which one cares to immerse the moving current segment
in the aforementioned rotation experiment with a brass ring that contacts the moving cur-
rent segment is inessential and can have no influence on the result. However, the experiment
has taught us that the induction current that we would expect from the cited rule did not
exist in this case. That rule of inversion is not true in general then, but an exception to
it will exist when the closed inducing current consists of a moving current segment and an
immobile one that are connected by a sliding contact. As is known, the induction current
will exist when the induced conductor consists of two parts that are connected by a sliding
contact.

Furthermore, I have also repeated Neumann’s experiment unaltered, in which the brass
ring was cut through next to the place where the conducting wire that came from the rod was
attached to it. The one connection between the wire that was wound around the brass ring
and the multiplier of the galvanometer was established by a spring and could be broken by
compressing that spring. That compression was effected by a wooden rod that was attached
to the wooden cylinder and placed in such a way that releasing the spring would take place
at the moment when the brass springs that were attached to the wooden cylinder came to be

462[Note by AKTA:] [Pog49].
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at the cut location on the brass ring. It should be further pointed out that the wire that was
wound around the brass ring had a smaller number of windings than before. The following
experiment was then made: First of all, the wooden cylinder was rotated around its axis
by means of the gear 10 times per second, and an induced current was observed with the
galvanometer that was so strong that the deflection of the needle amounted to over 500 scale
divisions and could no longer be measured with that scale. Secondly: After removing the
wooden rod, the wooden cylinder was fixed in the position where the brass springs that were
attached to it contact the end of the sliced brass ring that was not connected to the pile, such
that the current would have to flow through the entire brass ring. Now, at the moment when
the pile was closed, an induced current was observed in the galvanometer that deflected the
needle by 13.5 scale divisions in the same direction as in the first experiment, assuming that
the direction of the inducing current was the same, and that the first attempt was turned in
that direction, in which brass springs would advance from their aforementioned position to
the cut in the brass ring. Thirdly: An auxiliary wire was wound around the brass ring one
time, and the pile was then closed in such a way that the current flowed through that wire
winding in the same direction as it did before in the brass ring. At the moment when the
pile was closed, an induced current was then observed with the galvanometer that deflected
the needle by 13.8 scale divisions in the same direction as before. Fourth: the multiplier
was weakened, and the first experiment was repeated again. The induced current then
produced a residual deflection of the magnetometer needle of 377 scale divisions, although a
finer measurement of that deflection could not be performed, due to significant fluctuations
that were probably based in the incompleteness of the engineering implementation of the
rotation device. Fifth: the second experiment was also repeated once more, and it yielded
only a deflection of 8 scale divisions with the weakened multiplier, instead of the previously-
observed deflection of 13.5 scale divisions. Sixth: and finally, the second of Neumann’s
experiments was also repeated, which differed from the fourth experiment only in that the
wooden rod was removed from the wooden cylinder, which had the effect that the induced
circuit would always remain closed under the rotation of the wooden cylinder. No deflection
of the galvanometer at all was observed for a rotation that was just as rapid as in the first
and fourth experiment, and that state of rest could be guaranteed up to a pair of scale
divisions inside of which the needle fluctuated.

The results of the measurements that were made in the fourth and fifth experiments
admit a comparison that deserves to be pointed out, even when those measurements did
not possess any great precision. Namely, the result of the measurement that was made in
the fourth experiment allowed one to calculate the greatest elongation from rest that the
magnetometer needle would achieve as a result of the motion that would be imparted upon
it by a single instantaneous rotation of the wooden cylinder. To that end, it should only be
added that the logarithmic decrement of the decrease in the arc of oscillation of the needle
was equal to 0.471 60, or that when one denoted that number, divided by the modulus of
the system of logarithms, by λ, one would have λ = 1.088. If, in addition, one lets y denote
the deflection that was observed in the fourth experiment for n rotations during the period
of oscillation of the needle, then that would yield the following expression for the greatest
elongation that the needle would have attained as a result of motion that was imparted upon
it by one rotation:463

463[Note by WW:] See Supplement 13.39, where the angular velocity that is imparted upon the needle at
rest, when one includes damping, is expressed by
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x =
y

n
·
√
π2 + λ2 · e− λ

π
arctan π

λ .

Now, it was found that y = 377 in scale divisions and that λ = 1.088, moreover n =
100 (because 10 rotations took place in 1 second, and the period of oscillation was τ =
10 seconds). As a result, the greatest elongation from rest that the magnetometer needle
attained as a result of the motion that was imparted upon it by one rotation was:

x = 8.164 ,

in scale divisions, while an elongation of 8 scale divisions was actually observed in the fifth
experiment when the wooden cylinder was not rotated, but left fixed in the position in which
the current that arose from closing the pile would have to flow through the entire brass ring.
It follows from the agreement that emerges from that comparison that the current that
was induced in the fourth experiment was only a direct consequence of the rotation that
was induced by the current that was generated in the entire brass ring by each rotation
(whose re-vanishing could have no influence, since the multiplier circuit was opened at the
moment when it vanished). The rotation of the moving current segment itself then had no
component in the induced current. One then finds that the determinations that Neumann
gave are confirmed completely by that experiment.

13.39 The law of Induction for Inducing Currents with

a Sliding Contact

The general principle of the mathematical theory of induced electric currents that Neumann
proposed is a theorem that refers to the currents and conductors as a whole, and indeed,
it merely refers to their strengths and positions at the beginning and end of the induction
considered and represents the desired sum of the electromotive forces independently of any
consideration of all interacting elements individually and the consideration of the gradual
transition of the currents and conductors from their states at the beginning of the induction to
the end of it. The simplification that a theorem of such simplicity and generality contributes
whenever it can be applied to the actual determination of the desired sum of electromotive
forces is obvious. Things are quite different with the fundamental general law of electric
action, because it should give a rule that is valid only for all elementary actions from which
the desired sum of electromotive forces will not be obtained directly, but they can be found
only indirectly from a summation of all completely-combined elementary actions. When

x

τ

√

π2 + λ2 · e λ

π
arctan π

λ ,

if x denotes the desired elongation and τ denotes the period of oscillation under the influence of damping.
However, that angular velocity is given by the angular momentum F that corresponds to the deflection y,
divided by the moment of inertia of the needle K, and multiplied by the time of one rotation τ/n in the
fourth experiment, so it equals τ/n ·F/K. Finally, the angular momentum that corresponds to the deflection

y is F = π2+λ2

τ2 Ky, and as a result:

x

τ

√

π2 + λ2 · e λ

n
arctan π

λ =
τ

n
· π

2 + λ2

τ2
y ,

which will yield the expression for x that was cited above.
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one is deriving a law of induction for a particular case, one mainly arrives at a complete
combination of all of the elementary actions that the given case assumes. The derivation
of the law of induction from the fundamental general law of electric action then demands
a very special attention to all of the relationships that should be determined in each given
case. That is what happens in the case of the inductions that current elements exert upon
other current elements or other conducting elements in the first treatise on Electrodynamic
Measurements,464 as well as in the derivation that Neumann gave in § 5 of the cited treatise,
which is why one can exhibit essentially two different types of elementary actions for that
case, namely, the ones that a current element exerts due to its motion relative to the induced
element and the ones that a current element exerts due to changes in its current intensity.

Now, Neumann had also applied that classification of elementary actions to the case of
an inducing current with sliding contact. That current splits into a moving and an immobile
current segment that have conducting connections at two places, at least one of which is
a sliding contact. That easily implies that the elementary actions of the moving current
segment belong to the first kind, namely, the ones that the current elements exert due
to their motion relative to the induced elements. That likewise implies that the elementary
actions of the immobile current segment belong to the second kind, namely, the ones that the
current elements exert due to changes in their current intensities. Neumann has calculated
only the part of the electromotive force that originates in the former sources, but then added
the following test of the part of the electromotive force that originates in the other sources.

A further test can be directed to only the question of whether the combination of the
elementary actions of the two given types is actually exhaustive in the case of an inducing
current with sliding contact. In fact, it would be truly exhaustive only if the induced current
elements were given in that case, because they must belong to either the moving or the
immobile current segments, which implies that their elementary actions must be of either
the former or latter type, respectively. However, if one examines more closely in the present
case whether all given motions of the electric fluid and its variations can truly be traced
back to motions of the electricity in the current elements and their variations, then that will
easily imply that this reduction is possible everywhere, with the exception of sliding contact.
Namely, a sudden change in the motion of all electric particles occurs at the sliding contact,
since the ones that go from the moving current segment to the immobile one cease to take
part in the motion of the former component, and the ones that go from the immobile current
segment to the moving one begin to take part in the motion of the latter. That sudden
change in the motion of all electric particles at the sliding contact cannot be addressed
along with the changes that take place in the current elements themselves, because that
change does not occur in either the current elements of the moving current segment (since
all electric particles must also take part in the motion of those current elements, as long they
belong to those components) or in the current elements of the immobile current segment. No
sudden change in the motion of all electric particles at the sliding contact can be attributed
to changes in the motions in the current elements themselves then, and it is therefore the
source of a third type of elementary action that must be distinguished from the two types
of elementary action that pertain to inducing current elements. One then asks only whether
the electromotive forces actually do or do not arise from the given sudden change in the
motion of all electric particles at the sliding contact according to the fundamental general
law of electric action. In the former case, one sees that those electromotive forces must still
be added to the sum of electromotive forces that Neumann calculated, since Neumann did

464[Note by AKTA:] See Chapter 5 on page 33.
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not include them in his calculations.
The derivation of the electromotive forces that arise in an electric fluid from the sudden

change in the motion of the electric fluid at a sliding contact is also not included in the
derivation of the law of voltaic induction from the basic general of electric action in Section
30 of the first treatise on Electrodynamic Measurements,465 because that law was restricted
expressly to the induction in current elements, so only the changes in motion of the electric
fluid that occurred in the current elements needed to be considered. However, when there
are changes in the motion of the electric fluid that do not occur in any current element, but
only at the boundary between two current elements or at the moment when the electric fluid
goes from one current element to the other (and such a case actually occurs at a sliding
contact), the law of induction above will require some extension if it is to subsume that
case. That extension can be given easily, because in order to do that, it is only necessary
that the electric masses that suffer such sudden changes in the velocity of their motion and
the magnitudes of those changes must be determined precisely in order to apply the basic
general of electric action to them, as well. In that way, for ease of understanding, the same
relationships shall be used as in the derivation that was given in Section 30 of the first treatise
on Electrodynamic Measurements. Moreover, for the sake of brevity, none of the arguments
that were valid in the same way shall be developed once more but shall only be borrowed
from that reference.

As far as the change in mass466 that the electric fluid suffers due to a sudden change in
its motion at the sliding contact is concerned, it cannot be expressed by the product ±αe,
as it is for a current element, where α denotes the length of the current element,467 instead,
α must be replaced by the length of the path-element udt which the electricity would pass
through with the velocity u with which it crosses the sliding contact in the time-element dt.
By contrast, just as in Section 30 of the cited treatise, the induced masses can be represented
by +α′e′ and −α′e′, where α′ denotes the length of the induced element, and ±e′ denotes the
positive or negative electricity that is contained in a unit length of the induced conductor.

The motion of those inducing masses +eudt and −eudt, and the paths that they flow
through can be depicted in the following way, [Figure 8]:

465[Note by AKTA:] See Section 5.30.
466[Note by AKTA:] That is, the change in the amount of electric charge of an infinitesimal length of the

conductor.
467[Note by AKTA:] And ±e denotes the positive or negative charge per unit length for this element.
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Let A be the sliding contact, let AB be the bounded part of the moving part of the
current segment, and let AC be the bounded part of the immobile one. The electric fluid
will flow through the path CA = AB with a velocity of u during the same time interval in
which the moving current segment advances from A1B1 to AB or from AB to A′B′. The
composition of the two motions yields the path B1AC for the negative mass (when it goes
from the moving current segment to the immobile one), and the path segment B1A will be
traversed in the same amount of time as AC. For the positive mass, one likewise gets the
path CAB′, and the segments CA and AB′ will be traversed in the same amount of time.
In that representation, it is assumed, for the sake of clarity, that the current makes a sudden
turn at the sliding contact A and goes from the direction CA to the direction AB. In reality,
such a sudden turn cannot happen, but one can assume that the two elements of the true
current paths CA and AB define something close to a straight line, [as in Figure 9].
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If one then lets v denote the velocity of the moving current segment, then A1A = AA′ =
B1B = BB′ = vdt, while the length of the current element is CA = AB = udt. That will
then imply that in two equal successive time elements dt, the positive mass will traverse
the paths CA = udt and AB′ = (u + v)dt, while the negative mass will traverse the paths
B1A = −(u− v)dt and AC = −udt in the same time elements. The velocity of the positive
electricity then goes suddenly from +u to +(u + v) at A. By contrast, the velocity of the
negative electricity goes suddenly from −(u− v) to −u at A. Should that change in velocity
happen according to the law of continuity, then one can denote the time during which that
transition takes place (although it is also quite small) by τ . One denotes the velocity of
the positive electricity at any moment dσ at the end of the time period σ within the time
interval τ by +(u+ v · σ/τ), and likewise denotes the velocity of the negative electricity by
−(u + v · σ/τ − v). In addition, as in Section 30 of the cited treatise, one lets ϑ denote the
angle that the direction of +u (i.e., AB) makes with Aα′ = r, while ϑ′ denotes the angle that
the direction in which the positive electricity moves with the velocity +u′ in the immobile
induced element α′ makes with lengthened line Aα′, and ω denotes the angle between the
two planes that are laid through Aα′ parallel to the directions of +u and +u′. Finally, r1
denotes the distance from the mass +eudt to the mass +α′e′, r2 denotes the distance from
the mass −eudt to the mass −α′e′, r3 denotes the distance from the mass +eudt to the mass
−α′e′, and r4 denotes the distance from the mass −eudt to the mass +α′e′, which are all
equal to r at the moment considered, but they do not remain the same under the differing
motions of those masses. The fundamental general law of electric action then implies that
the difference in the forces that act upon the positive and negative electricity in the element
α′, which is what the induction depends upon, will be:
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That equation differs from the expression for the difference in an inducing current element
that was derived in Section 30 of the cited treatise (p. 197) by only the fact that eudt
appears in place of αe. Furthermore, one finds, in the way that was given there, that for our
case:

dr1
dt

= −
(

u+
σ

τ
v
)

cosϑ+ u′ cosϑ′ ,

dr2
dt

= +
(

u+
σ

τ
v − v
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dr3
dt

= −
(
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v
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cosϑ− u′ cosϑ′ ,

dr4
dt

= +
(

u+
σ

τ
v − v

)

cosϑ+ u′ cosϑ′ ,

which differ from the equations that were found in loc. cit. only by the fact that the velocity
of the inducing positive electricity was set to +(u + v · σ/τ), instead of +u, the velocity of
the inducing negative electricity was set to −(u+ v · σ/τ − v), instead of −u, and the term
that depended upon the motion of the induced element α′ was dropped. One then has:468
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One gets the second differential quotient from this in the manner that was given in the
cited reference when one considers the fact that u, u′, and v have given constant values here,
namely:
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One then has:

468[Note by AKTA:] The expression cosϑ2 should be understood as cos2 ϑ.

393



(

d2r1
dt2

− d2r2
dt2

+
d2r3
dt2

− d2r4
dt2

)

= +
(

u+
σ

τ
v
)

sin ϑ

(

dϑ1
dt

+
dϑ2
dt

+
dϑ3
dt

+
dϑ4
dt

)

−u′ sinϑ′
(

dϑ′1
dt

+
dϑ′2
dt

− dϑ′3
dt

− dϑ′4
dt

)

−v sinϑ
(

dϑ2
dt

+
dϑ4
dt

)

− 4
v

τ
cosϑ

and one finds, in the manner that was given in the cited reference, that:
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If one substitutes those values, then one will get:
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and as a result:469

469[Note by AKTA:] The expression sinϑ2 should be understood as sin2 ϑ.
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which finally yields the difference between the forces that act upon the positive and negative
electricity in the element α′, and upon which the induction depends, namely:
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If one multiplies that expressions by the time element dσ and integrates from σ = 0 to
σ = τ , then one will get the value of the integral of that difference over the duration of the
transition τ , which is equal to:
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or when τ is vanishingly small (i.e., when the change in velocity in the electric fluid at the
sliding contact happens very rapidly), it is equal to:

−a
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′e′

r
· v cosϑ .

If one now sets aeu = i in this (as was done in loc. cit., p. 202) and multiplies by cosϑ′/e′,
then that will give the electromotive force that is exerted upon the electricity that flows
through the sliding contact onto the induced element α′ during the time element dt, which
is equal to:

−1

2

α′vdt

r
· ai cos ϑ cosϑ′ .

However:

vdt = α

is the length of the conducting element that newly enters into the circuit at the sliding
contact during the time dt, in which the current strength then grows from 0 to i. However,
the electromotive force that is exerted on α′ by the element α due to the growth in current
intensity di/dt (loc. cit., p. 202) was found to be equal to:
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and as a result, the electromotive force when the current intensity grows from 0 to i will be
equal to:
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αα′

r
ai cos ϑ cosϑ′ .

Finally, if one sets α equal to its value vdt in that, then one will see that the electromotive
force that is exerted upon the induced element during the time element dt due to the elec-
tricity that goes through the sliding contact is equal in magnitude, as well as in direction, to
the electromotive force that is exerted upon the induced element α′ by the recently-entering
current element ai at the sliding contact during the same time element dt, and that in or-
der to include the former force in the calculation, one must merely double the latter force.
However, as Neumann proved, that doubling is the condition for the law of induction that
is derived from the fundamental general law of electric action to agree with the results of
Neumann’s general principle in the mathematical theory of induced currents, as well with
experiments, in the case of a sliding contact, as well. That agreement is verified by that fact.
The sudden change in the motion of all electric particles that occurs at the sliding contact
is then the source of electromotive forces that Neumann had not included in his calculations
for the derivation of the law of induction from the fundamental general law of electric action
that he gave, and if one adds the sum of the electromotive forces that arise from that source
to the sum that Neumann found, then one will find that the contradiction that seems to exist
between the results of the fundamental general law of electric action and Neumann’s general
principle in the mathematical theory of induced currents disappears completely, which was
to be proved.

Finally, the results of all of the experiments that were described in Section 13.38 can be
predicted with the laws that were developed here. Namely, if one lets R denote the radius
of the circle that is described by the sliding contact (which differs from the radius R| of the
induced circle only slightly), and if m is the number of the latter, while n is the number of
rotations of the moving current segment per unit time, and if i is the strength of the inducing
current, while one ultimately sets:
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R2R′2
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·
{

1 +
15

8

(

RR′

R2 +R′2

)2

+
315

64

(

RR′

R2 +R′2

)4

+ ...

}

,

for the sake of brevity, then the laws above will imply that:

1. The sum of the electromotive forces in the moving current segment is equal to:

+mnπ2 · aiR0 .

2. The sum of the electromotive forces on the current segment that enters gradually
at the sliding contact (when the action of its sudden vanishing is cancelled by an instanta-
neous opening of the induced circuit with each rotation, as was the case in Neumann’s first
experiment) is equal to:

−mnπ2 · aiR0 .
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3. The sum of the electromotive forces on the electricity that goes through the sliding
contact due to the sudden change in its velocity at the sliding contact is equal to:

−mnπ2 · aiR0 .

For the derivation of that value, see Supplement 13.39. The total electromotive force
for all of the experiments that were described in Section 13.38 can be easily combined from
those partial sums. Namely, one gets:

a) The electromotive force for the first of Neumann’s experiments by adding all three
partial sums, which is equal to:

−mnπ2 · aiR0 .

The same thing is true for both repetitions of that experiment, as long as one sets m equal
to its appropriate value in each experiment. The negative sign means that the current in
the induced circle has the opposite direction to the current in the circular inducing current
segment when the latter increases through the newly-entering element at the sliding contact.

b) For Neumann’s second experiment, where the electromotive force on the newly-entering
current element at the sliding contact was cancelled by its sudden vanishing at the end of
each rotation, the partial sum in (2) drops out, and one merely adds the two partial sums
in (1) and (3), which gives an electromotive force that is:

= 0 .

The same thing is true for the repetition of that experiment, as well as for the modification
of it where the same effect that was produced by the sudden vanishing at the end of the
rotation of all new current elements that enter gradually during a rotation would be achieved
by a current division.

c) All that remain then are the experiments in which the inducing current that goes
through a circular conductor suffers a change in intensity from either 0 to i or from i to 0,
and in which that current either did not flow through the moving segment of the conductor
at all or that segment was not moving while the current was flowing. For that experiment,
the partial sums in (1) and (3) drop out completely, and what remains as the electromotive
force is just the partial sum in (2), in which one sets n equal to the value 1, so that sum
equals:

−mπ2 · aiR0 .

The negative sign means that when the circuit is closed, the current in the induced circle
has the opposite direction to the current in the inducing circle.

All of those electromotive forces are expressed in the general force units of mechanics,
and from Section 13.27, they can be converted into the absolute unit that was defined in
Section 13.26 upon multiplying them by c/4 = 1/a. The unknown factor a in the expression
for those forces will drop out by that reduction, and the reduced value can be determined by
measurement. Moreover, the expressions above give the mean strengths of the electromotive
force or its integral value per unit time in all of the experiments in which the action persisted
uniformly. By contrast, for the experiments in which the action was only instantaneous, the
expressions above give the integral value of the electromotive force over the total duration of
the action. If T0 generally denotes the time for which the integral value of the electromotive
force is valid (so one sets T0 = 1 in all of the experiments for which the action persisted
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uniformly), then one will get the mean strength of the electromotive force by dividing the
integral value that was found by T0, and it can then be represented by:

±mnπ2 · R0

T0
· i ,

for (1), (2), and (3), in which m denoted the number of the induced circle, and n denotes
the number of rotations. If one divides that mean strength of the electromotive force by
the resistance in the induced circuit, as it is found according to the unit that was defined in
Section 13.26, then one will get the mean intensity of the induced current. However, it now
appears that the resistance can be represented by:

p
R′

T ′ ,

in the given units, where p is a pure number, but R′, just like R0, refers to the chosen length
unit, and T ′, just like T0, refers to the chosen time unit. As a result, that will give the
following expression for the mean intensity of the induced current:

±mnπ
2

p
· R0

R′ ·
T ′

T0
· i ,

in which (mnπ2/p) · (R0/R
′) · (T ′/T0) is a pure number that is calculated from the measure-

ments and gives the ratio of the strength of the induced current to that of the inducing one.
In that way, it is also possible to predict the strength of the induced current in the given
units.
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Supplements

A - Description of a Magnetic Inductor to be Used for

Resistance Measurements

In the attempts to compare the resistances of two conductors, a magnetic inductor was used
as an electromotor that was designed in the following way: Two cylindrical magnetic rods
of length 300 millimeters and thickness 15 millimeters were fixed in a wooden tube in such a
way that they both pointed towards the same pole (viz., the North pole), but in order that
they did not weaken each other in that position, they were separated from each other by
a gap of 150 millimeters. The wooden tube AB (Figure 10),470 together with the magnets
sn, sn that were included in it, could be raised perpendicularly by a level apparatus CDEF
that was set in motion with one’s foot and once more lowered, as well as displaced back
and forth through the cavity in an inductor coil GG, which was immovably attached to the
upper side of the frame HHHH , which was screwed to the floor.

Figure 10 represents a vertical Section of that apparatus. The South poles of the two
magnetic rods are denoted by s and the North poles, by n. The wooden tube in which the
magnetic rods are fixed is sealed at both ends with caps that could be unscrewed. If the
tube in the inductor coil were displaced so far downwards (as in Figure 10) that the upper
cap contacted the inductor coil GG, then one would find the midpoint of the upper magnetic
rod at the center of the inductor coil. By contrast, if the tube were displaced so far upwards

470[Note by AKTA:] See footnote 379 on page 293.
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that the lower cap contacted the frame HH to which the inductor coil GG was attached,
then the midpoint of the lower magnetic rod would be found at the center of the inductor
coil. The induction would be zero in those two extreme positions since the electromotive
forces of the poles that lay symmetrically on the two sides of the inductor coil when both of
them moved simultaneously upwards or downwards would cancel. The induction took place
in the same sense during the entire displacement of the tube from below to above and was
strongest when the two North ends of the magnetic rod went through the induction coil. The
induction took place in the opposite sense during the entire displacement in the opposite
direction from above to below. Each such motion is called an induction thrust, and indeed
it will be positive or negative according to whether the displacement happened upwards or
downwards, respectively. The fact that each induction thrust began and ended in a position
for which the induction was zero had the objective of making the total value of the induction
that corresponded to an induction thrust be a maximum and remain unchanged, even when
those extreme positions were not attained exactly. The simple displacement by which such a
total induction thrust was accomplished could be performed very rapidly, and was therefore
especially suited to measurements for which the induction thrusts had to take place at the
moments when the galvanometer needle went through its equilibrium position. In order to
be able to adhere to those moments exactly, the convention was established that the positive
induction thrust (i.e., the displacement down to up) was accomplished by pushing the foot
down on the lever EF , while the negative induction thrust (i.e., the displacement from up
to down) resulted from the weight of the inductor itself when the foot was raised again. In
that way, the observer that followed the course of the galvanometer needle with the telescope
could see the induction thrust at precisely the moment when the needle passed through its
equilibrium position without abandoning the telescope.

B - Description of the Galvanometer

The following description was given by the mechanic Leyser in Leipzig,471 who had already
constructed several such instruments and gave them the price that is noted below. The
galvanometer was also designed so that the strengths of the currents that were observed
with it could be determined in the absolute units that were established in Section 13.10,
for which two multipliers that could displace along yardsticks at various distance from the
needle could be used. Since that device was not necessarily coupled with the instrument and
was not used here, it shall not be mentioned any further in the following description.472

471[Note by AKTA:] See footnote 105 on page 58.
472Another reproduction of Figures 11, 12 and 13 appear on page 402.
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“The associated markings represent the fifth parts of the galvanometer’s actual linear
dimension, and indeed Figure 11473 shows a longitudinal section of the galvanometer
in the direction of the magnetic meridian. Figure 13 shows a section of it that is
perpendicular to the direction of the magnetic meridian. Except for the magnetic
needle, iron and steel were carefully avoided in the construction of the instrument,
such that some of its parts consist of copper, and some of them consist of iron-free
brass. The frame itself upon which the instrument stands is a circular wooden disc
that has three movable feet attached to it whose ends converge to metal points, in the
manner of the tripods that are used for measuring instruments. Next, a circular metal
plate aa is embedded in that circular wooden disc whose center has been removed and
machined to be spherical, such that a suitable spherical surface bb can be installed
in all possible directions and attached to the circular plate aa by means of a bolt
c and a nut d. Now, the actual galvanometer is attached to the aforementioned
spherical surface bb. To that end, that spherical surface bb is continued upwards
to two parallel side plates, which are suggested by dotted lines in Figure 11, while
they are seen clearly in Figure 13. Between those side plates, there is the copper
damper eeee, which is bent into the form of an oval, self-returning ring of width 80
millimeters and thickness 8 millimeters that is attached to each side with two screws.
The cross-section of that damper is an ellipse along whose major axis the needle
floats. A frame that is prepared from thin brass sheets is slid sideways over that
damper. It is equipped with vertical walls and incorporates a quantity of spun copper
wire that is wound around it, so it then represents a multiplier mmmm above the
damper. The wire windings of that multiplier go around the damper elliptically and
consist of nine concentric layers that are one on top of another, each layer of which
consists of 80 windings that are laid next to each other; the wire had a thickness of
about 2/3 millimeter. In that way, the device is constructed so that the multiplier
can sometimes be used completely and sometimes partially in three sections with
three locations. Those three sections can also be connected in such a way that the
same current will flow through them simultaneously that gets split between them. To
that end, the device that gives the multiplier is clearly illustrated in Figure 12, which
is seen from above. qp is a crossbar of boxwood that is attached to the foregoing
walls of the frame for the multiplier mm. The first section of the multiplier begins
with the first — or lowest — layer of the windings, which starts at the button f . It
goes around the copper damper towards its right-hand side u and thus defines the
first layer. It then turns to the left-hand side l, and in that way defines the second
layer. From there, it once more goes to the right-hand side u, which thus creates
the third layer, whose end is found at the button f ′. Now, in complete analogy with
the way that the first section of the multiplier defined three layers that had their
start at fand their end at f ′, the second and third sections each have three layers.
However, the start of the second section is at g, while its end is at g′, and finally the
start of the third section is at h, while its end is at h′. (Those six copper buttons
are drilled through transversely and firmly inserted in the boxwood crossbar qp with
screws, but isolated from each other. With that arrangement for the multiplier, one
easily sees that the three sections that the multiplier consists of can be combined
in different ways according to how the buttons are coupled by wires.) One finds a
little frame kkkk over the damper eeee that is attached to it with screws, one of

473[Note by AKTA:] See footnote 382 on page 294.
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whose open sides is sealed with a soft metal plate, while the other is sealed with a
glass plate with parallel outer surfaces, which then represents a closed, rectangular
space. A tube rr is mounted above it that can be lengthened or shortened by an
adjustable graduated extension tube r′r′. That extension tube r′r′ concludes with a
torsion circle t whose construction is elucidated directly in the figures. That torsion
circle has a small eyelet in which is fixed the cocoon thread that hangs down inside
the combined tube and carries a light rectangular metal plate on a hook o, to which a
planar mirror s is attached by three screws. That rectangular plate goes underneath,
and in fact through two cutouts that are installed in the sides of the damper eeee
(which are suggested by xx in Figure 12), beyond two soft rods whose ends appear
as the hook gg in the figures. The magnetic needle nn was inserted into that hook,
and its end was enclosed in a narrow sleeve and equipped with a small crossbar that
was attached to that sleeve, whose ends extended cylindrically and were inserted in
that hook gg. The position of the needle relative to its tube was regulated by the
extension tube r′r′. The torsion in the filament can be brought to zero by rotating
the torsion circle t. However, the entire system of the instrument can be positioned
vertically by means of the spherical motion that the spherical surface bb with the plate
aa allows, and that positioning is easiest when one fastens the extension tube in the
vicinity of the torsion circle and effects the positioning by very lightly tightening the
screw d, and the correct position of the instrument is then established by tightening
the screw d. The still-open viewing ports on both sides of the damper eeee are
closed off by inserting glazed wooden frames whose cross-sections are illustrated by
iiii. The price of the instrument with the device for absolute measurements is 80
Thaler, and 60 Thaler without it.”

C - Overview of the Method of Observation for Gal-

vanic Measurements when One Includes the Influence

of Damping

Ordinarily with galvanic measurements, only those galvanic currents are included in the
calculations that are excited outside of the multiplier and flow through it in order to be
measured by the deflection that is imparted to the needle. If that current is constant and
the deflection of the needle had not been measured before it came to rest, then the deflection
of the needle would truly depend upon just that current. However, if the current is not
constant or lasts for only a very short time, and one observes the deflection before the needle
comes to rest (e.g., one observes the first elongation of the needle), then other currents
besides the current to be measured will be present that frequently have a great influence on
the observations that cannot remain unobserved. Those currents originate in the motion of
the magnetic needle, which induces galvanic currents in all of the surrounding conductors
whose intensities will be proportional to the magnetism of the needle and to the velocity
with which it moves, and whose directions will always be such that their reactions on the
needle will slow or damp the motion of it that exists.

Such a current will be induced by the moving magnetic needle, first of all, in the multiplier
itself, and will be stronger when the metallic cross-section of the entire multiplier and the
fraction that the resistance of the multiplier represents in the resistance of the total circuit
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are larger. It will be strongest when the multiplier is closed and weakest when the circuit of
the multiplier is open.

Secondly, such a current will also be excited by the moving magnetic needle in all metallic
parts of the instrument, and the reaction on the magnetic needle will be especially strong
when vertical plates are found in the direction of the magnetic meridian close to the needle
or when the needle is surrounded by a vertical metal ring, which is why such a ring, when
it is installed for that purpose intentionally, is called a damper. For most measurements,
the application of such a damper not only affords much more ease of observation, but also
often contributes to greater precision in them. See the “Resultate aus den Beobachtungen
des magnetischen Vereins im Jahre 1837,” p. 18.474,475

One then comes to the problem of making the results of the observations independent
of the damping influence of those two currents or of determining the correction that must
be made to the observations due to the damping. That correction will become especially
important and meaningful when one makes one’s galvanic measurements with either a mag-
netometer that is equipped with a damper or an astatic double needle,476 which is composed
of two strong magnetic needles and is either likewise equipped with a damper or is tightly
enclosed in a strong multiplier. Such a correction can be especially necessary in the latter
case, where the damping arises from the multiplier and can be very different for different
closings of the multiplier, if one is to make the experiments comparable to each other.

In order to determine that correction, first of all, the damping force of the instrument
must be determined more closely, which can be done easily by observing the decrease in the
arc of oscillation. Secondly, one must then show how the influence of that damping force on
the various methods of observation can be determined in or eliminated from the calculation
of the results.

1. Determining the Damping Force of a Galvanometer.

The damping force of a galvanometer is split into two parts that must be separated from
each other, namely, a constant part that is independent of the circuit to which the multiplier
belongs and a variable one.

One obtains the constant part of the damping force by observing the decrease in the
arc of oscillation when the circuit to which the multiplier belongs is closed. Namely, when
the arc of oscillation is not too large, it defines a decreasing geometric series that can be
represented by Ae0, Ae−λ

′

, Ae−2λ′ , ... , Ae−nλ
′

, where n denotes the number of oscillations
that the needle has made, as counted from the moment when the arc was equal to A. After
one period of oscillation,477 the arc will then have decreased by the ratio:

eλ
′

: 1 ,

474[Note by HW:] Gauss’s Werke, Vol. V, p. 372.
475[Note by AKTA:] [Gau38b] with English translation in [Gau41c].
476[Note by AKTA:] The adjective “astatic” is used in physics with the meaning of something having no

tendency to take a definite position or direction. An astatic needle can be a combination of two parallel
magnetized needles having equal magnetic moments, but with their poles turned opposite ways, that is, in
antiparallel position. The arrangement protects the system from the influence of terrestrial magnetism. It
was invented by Ampère, [Amp21] and [LA98]. An earlier system composed of a single magnetized needle
had also been created by Ampère, [Amp20b, p. 198] with Portuguese translation in [CA09, p. 133], [Amp20a,
p. 239] and [Amp, p. 2], see also [AC15, p. 57].
477[Note by AKTA:] See footnote 96 on page 51.
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after two periods of oscillation, it will have decreased by the ratio:

e2λ
′

: 1 ,

and after n periods of oscillation, it will have decreased by the ratio:

enλ
′

: 1 .

If one then takes the exponent λ′ to be the unit of damping during the period of one
oscillation, or during τ ′ seconds, if τ ′ expresses the period of oscillation of the needle in
seconds, then 2λ′ will be unit of damping for 2τ ′ seconds, and nλ′ will be the unit for nτ ′

seconds. The ratio of the damping force thus-determined to the time interval to which it
refers, then ultimately gives the constant λ′/τ ′ = 2λ′/2τ ′ = nλ′/nτ ′, which expresses the
unit of damping, when reduced to the unit of time. However, λ′ is nothing but the natural
logarithm of the ratio of two successive oscillation arcs, and τ ′ is the period of oscillation
of the needle under the influence of damping. One then obtains the unit of damping, when
reduced to the unit of time, when one divides that logarithm by that period of oscillation,
both of which can be easily determined from the observations.

In order to determine the variable part of the damping force, the decrease in the oscillation
arc is observed when the multiplier is closed. If eλ

′′

: 1 is the ratio of two successive oscillation
arcs that is found by observation and τ ′′ is the period of oscillation, then the unit of damping
per unit time will be equal to:

λ′′

τ ′′
.

That will then yield the damping force in the closed multiplier as being equal to:

λ′′

τ ′′
− λ′

τ ′
.

In most cases, the difference between the periods of oscillations τ ′′ and τ ′ is negligible, and
the unit of damping for the closed multiplier will then be equal to:

1

τ ′
(λ′′ − λ′) .

Now, one can determine the variable part of the damping from that, when one knows the
fraction of the total resistance of the circuit that the resistance of the multiplier defines. If
a denotes the resistance of the multiplier, while a+ b is resistance of the entire circuit, then
the desired value of the variable part of the damping will be equal to:

a

a + b

(

λ′′

τ ′′
− λ′

τ ′

)

,

in which only b is variable and must be determined for each individual case in particular. If
one combines that with the unit of constant part of the damping (which equals λ′/τ ′), then
that sum will give the value of the actual damping, which equals λ/τ :

λ

τ
=

a

a+ b
· λ

′′

τ ′′
+

b

a+ b
· λ

′

τ ′
,

in which λ denotes the natural logarithm of the ratio of two successive oscillation arcs for
the case considered, and τ denotes the period of oscillation.
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2. Calculating the Galvanic Measurements when one Includes Damping.

If one has determined the damping force in the instrument in that way, then that de-
termination can be employed to eliminate the influence of damping from the calculation of
the results of the various methods of observations, in which one follows the advice of Gauss
in “Resultaten aus den Beobachtungen des magnetischen Vereins im Jahre 1837,” pp. 58 et
seq.478,479 for determining the period of oscillation of a magnetic needle, in which one will
find the development of the laws by which the damping acts upon the state and period of
oscillation of the needle. The various methods of observation shall be considered here, but
only for small oscillations of the needle in all cases.

Observation of the First Elongation.

1. If one observes only the first elongation that the magnetic needle makes after a
constant current enters it in galvanic measurements, then it is known that when no damping
is present, that elongation will be twice the deflection of the needle for which it would
persist in equilibrium under the effect of that current. By contrast, when there is damping,
the deflection E of the needle that corresponds to equilibrium can be determined from the

478[Note by HW:] Gauss’s Werke, Vol. V, p. 374.
479[Note by AKTA:] [Gau38a].
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observed first elongation x of the needle in the following way:480

E =
x

1 + e−λ
,

which one can set to:

E =
1

2
x+

1

4
λx .

for small values of λ.
2. In galvanic measurements, if one observes the first elongation after the resting needle

is set into motion by an instantaneous current (e.g., by an induction thrust), then one will
essentially have to derive the velocity that the instantaneous current has imparted upon the

480[Note by WW:] When there is no damping, one has the expression:

x = p+A sin
π

T
(t−B) ,

for the state of the oscillating needle that equals x at the end of a time equal to t, where T denotes the
period of oscillation. By contrast, when there is damping, one has:

x = p+Ae−λt/τ · sin π
τ
(t−B) ,

where τ expresses the period of oscillation of the needle under the influence of damping, and is determined
from the following equation:

π2

τ2
=
π2

T 2
− λ2

τ2
.

See “Resultate,” 1837, pp. 74, 75 [Note by HW: Gauss’s Werke, Vol. V, p. 389; Note by AKTA: [Gau38a]],
in which ε denotes the same thing that λ/τ denotes here, and T ′ denotes the same thing that τ denotes
here. Now, if the starting point of the time t is chosen to be the moment when the constant current begins
to move the needle, when the velocity will then be dx/dt = 0, which will make tan(−Bπ/τ) = π/λ, and as
a result

−B =
τ

π
· arctan π

λ
=

1

2
τ − τ

π
· arctan λ

π
;

and if the state of the needle up to that starting point were taken to be the elongation x, so x = 0 for t = 0,
then the equation above would take the following form:

x = − πA√
π2 + λ2

+Ae−λt/τ cos

(

π

τ
t− arctan

λ

π

)

,

where −πA/
√
π2 + λ2 = E denotes the rest state of the needle under the influence of the constant current.

As a result, at the moment of the first elongation, t = τ , when one considers that

cos

(

π − arctan
λ

π

)

= − 1
√

1 + λ2/π2
,

one will have:

x = − πA√
π2 + λ2

·
(

1 + e−λ
)

= E
(

1 + e−λ
)

,

and as a result:

E =
x

1 + e−λ
.
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needle from the observed elongation of the needle (= x). The velocity C is obtained from
the following equation:481

C = x · π
T

· eλ
π
arctan π

λ ,

in which T denotes the period of oscillation of the needle when there is no damping. For
small values of λ, one can set:

C =
π

T
x+

1

2

π

T
λx .

Method of Multiplication.

1. Due to the weakness of the constant current that one measures, if one does not just
observe the first elongation, but lets the needle swing back and forth while one inverts the
direction of the current in the multiplier at the end of each oscillation and then observes the
increasing magnitude of the successive oscillation arcs, which will be denoted by x1, x2, x3,
..., then the following equations will yield the deflection E of the needle that corresponds to
equilibrium:482

481[Note by WW:] Upon differentiating the equation that was given in the foregoing footnote, namely,

x = p+Ae−λt/τ sin
π

τ
(t−B) ,

one will get:

dx

dt
= −λ

τ
Ae−λt/τ sin

π

τ
(t−B) +

π

τ
Ae−λt/τ cos

π

τ
(t−B) .

If one then calculates the time t of the moment when the instantaneous current acts upon the needle and
imparts the velocity C upon it, then one will have B = 0 and dx/dt = C for t = 0; as a result, Aπ/τ = C
or A = Cτ/π. If one then sets the original state of the needle to p = 0, to simplify, then one will get:

x =
τ

π
Ce−

λ

τ
t sin

π

τ
t ,

and as a result, at the end of the first elongation, for which dx/dt = 0, so

tan
πt

τ
=
π

λ
, t =

τ

π
· arctan π

λ
, sin

πt

τ
=

1
√

1 + λ2/π2
,

one will have:

x = C · τ√
π2 + λ2

· e− λ

π
arctan π

λ .

However, one has τ/
√
π2 + λ2 = T/π, which one would get from the equation that was cited above π2/τ2 =

π2/T 2 − λ2/τ2, and as a result:

x = C · T
π
e−

λ

π
arctan π

λ or C = x
π

T
e

λ

π
arctan π

λ .

482[Note by WW:] The same equation is true here that was true in the footnote [480] on page 408 up to
the end of the first elongation, namely:

x = − πA√
π2 + λ2

+Ae−λt/τ cos

(

π

τ
t− arctan

λ

π

)

,

so at the moment of the first elongation, for which t = τ , one will have
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−x1
E

= 1 + e−λ ,

+
x2
E

= 2 + 3e−λ + e−2λ ,

−x3
E

= 2 + 4e−λ + 3e−2λ + e−3λ ,

+
x4
E

= 2 + 4e−λ + 4e−2λ + 3e−3λ + e−4λ .

x = −
(

πA√
π2 + λ2

)

·
(

1 + e−λ
)

.

At that moment, when the first oscillation ends and the second one begins, the current in the multiplier will
reverse, which will convert the previous rest state of the needle −πA/

√
π2 + λ2 into +πA/

√
π2 + λ2. The

deflection of the needle from its rest state, which was

x+
πA√
π2 + λ2

= −
(

πA√
π2 + λ2

)

· e−λ

at the end of the first oscillation, will then be converted into

−
(

πA√
π2 + λ2

)

·
(

2 + e−λ
)

,

which will yield the amplitude of the second oscillation from t = τ to t = 2τ :

x = +
πA√
π2 + λ2

+A
(

2 + e−λ
)

e−
λ

τ
(t−τ) cos

(

π

τ
t− arctan

λ

π

)

,

so at the end of the second elongation, at t = 2τ , one will have:

x = +
πA√
π2 + λ2

(

1 + 2 · e−λ + e−2λ
)

.

One likewise obtains the amplitude of the third oscillation from t = 2τ to t = 3τ :

x = − πA√
π2 + λ2

+A
(

2 + 2e−λ + e−2λ
)

e−
λ

τ
(t−2τ) cos

(

π

τ
t− arctan

λ

π

)

,

so at the end of the third elongation, at t = 3τ , one will have:

x = − πA√
π2 + λ2

(

1 + 2e−λ + 2e−2λ + e−3λ
)

,

and so on. If one writes the obtained values of x for t = 0, t = τ , t = 2τ , t = 3τ and so on under one another

0 ,

− πA√
π2 + λ2

(

1 + e−λ
)

,

+
πA√
π2 + λ2

(

1 + 2e−λ + e−2λ
)

,

− πA√
π2 + λ2

(

1 + 2e−λ + 2e−2λ + e−3λ
)

,

then the differences of two successive values of x, one after the other, give the desired oscillation arcs x1, x2,
x3, where πA/

√
π2 + λ2 = E.
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The larger that λ is, the faster that x/E will approach a limiting value, for which one will
get the following expression:

± x

E
=

4

1− e−λ
− 2 .

As a result, when one continues the experiment until the arc of oscillation stops increas-
ing, one will find the deflection E that corresponds to equilibrium of the needle from the
coincident values x of the last oscillation arcs in the following way:

E =
x

2
· 1− e−λ

1 + e−λ
.

2. Due to the weakness of the instantaneous current to be measured, if one does not just
observe the first elongation after the resting needle is set into motion, but lets the needle
swing back and forth while one lets the same instantaneous current for accelerating the needle
flow through the multiplier in the opposite direction each time at the next moment when the
needle once more passes its original position and then observes the increasing magnitudes of
the oscillation arc, which will be denoted by x1, x2, x3, ..., then that will give the velocity C
that the instantaneous current imparts upon the needle each time in the following way. If
one sets:

B = C · T
π
· e− λ

π
arctan π

λ ,

then:483

483[Note by WW:] For the first oscillation period from t = 0 to t = τ , the same equation will be true that
was true in the footnote [481] on page 409, namely:

x =
τ

π
· Ce−λ

τ
t sin

π

τ
t ,

and as a result, at the moment of the first elongation, for which one had

t =
τ

π
· arctan π

λ
, sin

π

τ
t =

1
√

1 + λ2/π2
=
T

τ
,

then

x =
T

π
· Ce− λ

π
arctan π

λ .

At the end of the oscillation period, when t = τ , that will yield dx/dt = −Ce−λ. Now, at that moment,
the velocity of the needle will be changed by −C due to the renewed instantaneous current, i.e., it will be
converted into −C(1+e−λ), so for the second period of oscillation from t = τ to t = 2τ , that will imply that:

x =
τ

π
· C
(

1 + e−λ
)

e−
λ

τ
(t−τ) · sin π

τ
t ,

and as a result, at the moment of the second elongation, for which:

t = τ +
τ

π
arctan

π

λ
, sin

π

τ
t = −T

τ
,

one will have:

x = −T
π
C
(

1 + e−λ
)

e−
λ

π
arctan π

λ .

For the third period of oscillation from t = 2τ to t = 3τ , one likewise has that:
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+
x1
B

= 1 ,

−x2
B

= 2 + e−λ ,

+
x3
B

= 2 + 2e−λ + e−2λ .

Here as well, x/B will approach a limiting value more rapidly as λ increases, and that will
yield a limiting value of:

x

B
=

2

1− e−λ
.

As a result, when one continues the experiment until the oscillation arc ceases to increase,
one will find the velocity C that the instantaneous current to be measured imparts upon
the needle each time from the coincident values x of the last-observed oscillation arc in the
following way:

C =
x

2
· π
T

(

1− e−λ
)

e
λ
π
arctan π

λ .

Throw-back Method.

Finally, the application of the method of observation that Gauss described in “Resultaten

x =
τ

π
· C
(

1 + e−λ + e−2λ
)

e−
λ

τ
(t−2τ) · sin π

τ
t ,

and from this, at the moment of the third elongation, for which one has

t = 2τ +
τ

π
· arctan π

λ
, sin

πt

τ
= +

T

π
,

one will get

x = +
T

π
· C
(

1 + e−λ + e−2λ
)

e−
λ

π
arctan π

λ ,

and so on. If one writes the values of x that are found for t = 0, t = τ/π ·arctanπ/τ , t = τ+τ/π ·arctanπ/λ,
t = 2τ + τ/π · arctanπ/λ and so on one after the other, in which one replaces T

πCe
−λ

π
arctan π

λ with B, for
brevity, namely:

0 ,

+B ,

−B
(

1 + e−λ
)

,

+B
(

1 + e−λ + e−2λ
)

,

... ,

then the differences between each successive pair of values will give the desired sequence of oscillation arcs
x1, x2, x3, etc.
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aus den Beobachtungen des magnetischen Vereins im Jahre 1838,” pp. 98 et seq.484,485

belongs here, which is also especially important because it gives one a precise and convenient
method of measuring the damping when it is strong, whereas the method that was cited
above, which was based upon observing the decrease in the oscillation arc, is recommended
for only weak damping. The aforementioned method of measurement is then especially suited
when one employs a galvanometer whose magnetic needle has a large period of oscillation
and never deviates more than a few degrees from its normal state, which is the case for a
magnetometer that is provided with a multiplier. If the instrument is not equipped with a
damper, then the influence of the weak damping that is still present and originates in the
multiplier, along with other influences, will be eliminated from the results by the combination
of observations that are peculiar to that method. On the other hand, for stronger damping,
the method of observation remains essentially the same, but the calculation of the results
from the observations must be modified if those results are to agree completely with the ones
that were obtained with no damping.

Now, that method essentially consists of suddenly setting the needle in motion with an
instantaneous current and observing its first elongation, and then when the needle again
passes its original state for the first time, an instantaneous current will again act upon it
that is, however, twice as strong as the first, and the same thing will be true for all of the
following ones. That second current shall have the same direction as the first one. The
motion of the needle will not only be suddenly inhibited by that current, but it will even
take on a velocity that is in the same direction as the one that it came from. One then once
more observes the first elongation that the needle makes thereafter, which will be almost
equal to the previous one with no damping, and lets the needle swing over to the other side
of its rest position, where one also observes the second elongation. It is only when the needle
again passes its rest position from the other side that one can make an instantaneous current
act in the opposite direction to the second time that will push the needle back to the same
side as the one from which it came and then observe the first and second elongations that
follow, whereupon one makes the instantaneous current act in the opposite direction to the
previous time as soon as the needle again passes its rest position, etc. The elongations that
are thus observed are then arranged in pairs of alternating position and negative elongations,
whose mean is taken when they differ from each other only slightly, which is the case for
weak damping. The differences between those successive positive and negative mean values
are found to be almost equal, and they give a unit for the intensity of the instantaneous
current that is to be measured.

It was assumed in this that only weak damping was present. However, the same method
can also be applied for strong damping, and it can even achieve greater precision then. How-
ever, the derivation of the results from the observations will suffer an essential modification
then.

Let it next be pointed out that for strong damping, the first instantaneous current should
not be exactly more than one-half of the following one, but when m denotes the ratio of
two successive oscillation arcs, the first current should be the (m + 1/m)th part of the
following one. However, when that ratio is not adhered to exactly, the observations will
not suffer essentially because of that, since one needs only to exclude the first observation

484[Note by HW:] Wilhelm Weber’s Werke, Vol. II, p. 115.
485[Note by AKTA:] [Web39b, p. 98 of the Resultate and p. 115 of Weber’s Werke]. See also [Gau38b] with

English translation in [Gau41c], [Gau38a], [Gau39] with English translations in [Gau41a] and [GT14], and
[Web38b].
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from the calculation of the results, since the influence of that initial nonuniformity on the
following observations will vanish very rapidly due to the damping. One then sees that the
corresponding observations (namely, 1st, 5th, 9th, etc., or 2nd, 6th, 10th, etc., or 3rd, 7th,
11th, etc., or 4th, 8th, 12th, etc.) will approach four limiting values very rapidly. If one
then denotes the difference between the first and third limiting values by b and the difference
between the second and fourth limiting values by a, then the ratio a : b will be equal to the
ratio of two successive oscillation arcs, and it will follow that:

λ = log nat
a

b
.

Moreover, the velocity c that each instantaneous current (except for the first one) imparts
upon the needle will be:

c =
π

2T

a2 + b2√
ab

· e− λ
π
arctan λ

π ,

so when a and b differ only slightly (i.e., for weak damping):

c =
π

2T
· a

2 + b2√
ab

,

and for even weaker damping, one can set:

c =
π

2T
(a+ b) .

The proof of that is similar to the ones for the previous rules. Namely, if one calculates the
time t from the moment when the instantaneous current pushed the needle towards the side
of positive elongation, then x will be:

x = Ae−λt/τ sin
π

τ
t

for the duration of the following two unperturbed oscillations. For the two observed elonga-
tions x′ and x′′, one will have dx/dt = 0, or:

0 = −λ
τ
Ae−λt/τ sin

π

τ
t +

π

τ
Ae−λt/τ cos

π

τ
t ,

and as a result, one will have:

t =
τ

π
arctan

π

λ

for the first moment of observation and:

t = τ +
τ

π
arctan

π

λ

for the second one. If one substitutes those values for t in the equation for x, then one will
get:
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x′ = +
Ae−

λ
π
arctan π

λ

√

1 + λ2

π2

,

x′′ = −Ae
− λ

π
arctan(π

λ)−λ
√

1 + λ2

π2

.

After a time t = 2τ has passed, the oscillation of the needle will again be changed by the
action of the current, namely, the velocity −c will be added to the velocity:

dx

dt
=
π

τ
Ae−2λ ,

that it has at the end of time t = 2τ , which will yield the amplitude of the following two
oscillations:

x =
(

Ae−2λ − τ

π
c
)

e−λ(t−2τ)/τ sin
π

τ
t .

For the two elongations x′′′ and x′′′′ that are observed during that time interval from t = 2τ
to t = 4τ , one will have dx/dt = 0 or:

0 = −λ
τ

(

Ae−2λ − τ

π
c
)

e−λ(t−2τ)/τ sin
π

τ
t

+
π

τ

(

Ae−2λ − τ

π
c
)

e−λ(t−2τ)/τ cos
π

τ
t ,

and as a result:

t = 2τ +
τ

π
arctan

π

λ

for the first moment of observation, while:

t = 3τ +
τ

π
arctan

π

λ

for the second. If one substitutes those values for t in the new equation for x, then one will
get:

x′′′ = +
(

Ae−2λ − τ

π
c
) e−

λ
π
arctan π

λ

√

1 + λ2

π2

,

x′′′′ = −
(

Ae−2λ − τ

π
c
) e−

λ
π
arctan(π

λ)−λ
√

1 + λ2

π2

.

After a time t = 4τ has passed, the oscillation of the needle will again be changed by the
renewed effect of the instantaneous current, namely, the velocity +c will be added to the
velocity:

415



dx

dt
=
π

τ

(

Ae−2λ − τ

π
c
)

e−2λ ,

that it has at the end of the time t = 4τ , and in that way cause the needle to have from now
on the same motion again that it had at the start for t = 0. However, the velocity for t = 0
was equal to:

π

τ
A ,

so:

π

τ
A = c+

π

τ

(

Ae−2λ − τ

π
c
)

e−2λ ,

from which it will follow that:

c =
π

τ
A
(

1 + e−2λ
)

.

If one substitutes that value in the expression above for x′′′ and x′′′′, then one will find that
x′′′ = −x′, x′′′′ = −x′′, and as a result:

a = x′ − x′′′ =
2Ae−

λ
π
arctan π

λ

√

1 + λ2

π2

,

b = x′′′′ − x′′ =
2Ae−

λ
π
arctan(π

λ)−λ
√

1 + λ2

π2

,

so:

a2 + b2√
ab

=
2Ae−

λ
π
arctan π

λ

√

1 + λ2

π2

· 1 + e−2λ

e−λ/2
=

2Ae
λ
π
arctan λ

π

√

1 + λ2

π2

·
(

1 + e−2λ
)

,

which implies that:

c =
π

2τ

√

1 +
λ2

π2

a2 + b2√
ab

e−
λ
π
arctan λ

π .

Now, the equation:

π2

τ 2
=
π2

T 2
− λ2

τ 2
,

was quoted in the footnote [480] on page 408 above, from which it will follow that:

1

T
=

1

τ

√

1 +
λ2

π2

and

c =
1

2

π

T
· a

2 + b2√
ab

· e− λ
π
arctan λ

π .
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At the same time, one sees that:

a

b
= eλ or λ = log nat

a

b
,

from which it will emerge that one can get a precise determination of the unit of damping
that is reduced to the period of oscillation by measuring a and b, and it will be especially
useful when no precise determination can be obtained due to the rapid decrease in oscillation
arc in the observations of the latter.

In order to explain the method of observation that was just developed, one might appeal
to those observations that were made in order to compare the resistance of two copies of
Jacobi’s basic unit using that method and were mentioned before on page 333. The first
copy consisted of an unvarnished wire that was wound around an unvarnished serpentine
cylinder, while the second copy consisted of an unvarnished wire that was wound around an
unvarnished glass tube. The experiments split into five sets. The ends of the inductor wire
were connected with the ends of the multiplier wire in the same way in all of them. In the
first set, the wires of the two copies and the inductor and multiplier wire were combined
in the manner that was described in item (8.) on page 295 and denoted by D. In the
second set, they were combined in the manner that was described in item (7.) and denoted
by B. In the third set, they were combined in the manner that was described in item (6.)
and denoted by A, in which the first copy enters in place of the basic unit. The fourth set
was a repetition of the second one, and finally, in the fifth set, the wires were combined in
the way that was described in item (9.) and denoted by C. The experiment began when
the galvanometer needle was at rest. The first positive induction thrust set the needle into
oscillation. The first positive elongation was not observed, and likewise the second negative
elongation was not observed, either. The second negative induction thrust took place at the
moment when the needle arrived at the location that corresponded to the rest state from that
second elongation in the positive direction, which not only inhibited the needle in the middle
of its positive motion, but it even pushed it back to the side from which it had come. The
third elongation that followed it was then, in turn, a negative one, and it was not observed,
as well as the fourth positive elongation. The third positive induction thrust took place at
the moment when the needle arrived at the location that corresponded to its equilibrium
from that fourth elongation in the negative direction, which not only inhibited the needle in
the middle of its negative motion, but even pushed it back to the side from which it came.
The experiment was continued for a long time in the same way, and the elongation of the
needle was recorded as it was observed on the scale from then on. The first four recorded
elongations are placed next to each other in the horizontal rows of the following Tables, but
the 5th is below the 1st, the 6th is below the 2nd, etc. Finally, the mean value of each
column of observations is given.

417



D.

775.8 436.6 199.6 538.2
775.7 436.3 199.5 537.9
775.0 435.9 198.9 537.3
774.6 435.4 198.5 537.2
774.6 435.4 198.8 537.2
774.2 435.3 198.5 537.1
774.0 435.1 198.2 536.8
773.8 434.7 197.9 536.6
773.5 434.4 197.6 536.6
774.0 434.0 197.5 536.0
774.52 435.31 198.50 537.09

B.

692.1 448.0 277.0 521.1
691.8 447.8 276.7 521.0
691.7 447.4 276.5 520.8
691.3 447.3 276.2 520.5
691.3 447.2 276.0 520.7
691.4 447.2 276.0 520.6
691.4 447.2 275.9 520.5
691.3 447.1 275.9 520.5
691.4 447.0 275.9 520.4
691.3 447.0 275.8 520.3
691.50 447.32 276.19 520.64

A.

691.9 447.7 276.9 521.0
691.6 447.7 276.8 520.9
691.7 447.7 276.8 521.0
691.8 447.6 276.7 521.1
691.8 447.8 276.8 521.0
691.8 447.8 277.0 521.1
691.8 447.8 276.9 521.1
691.6 447.6 276.8 520.8
691.3 447.3 276.4 520.7
691.0 446.9 275.9 520.1
691.63 447.59 276.60 520.88
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B.

691.6 447.0 275.7 520.5
691.4 446.9 275.6 520.3
691.2 446.7 275.3 520.0
690.9 446.3 275.2 520.0
690.7 446.2 275.0 519.7
690.5 446.1 274.9 519.8
690.5 446.5 274.8 519.7
690.3 445.9 274.6 519.4
690.1 445.8 274.6 519.2
690.1 445.6 274.3 519.2
690.73 446.30 275.00 519.78

C.

615.8 459.3 350.2 506.2
615.6 459.2 350.1 506.1
615.2 459.0 349.8 505.8
615.1 458.8 349.4 505.6
614.8 458.4 349.2 505.3
614.4 458.1 349.1 505.2
614.2 458.1 348.8 505.0
614.1 458.0 348.8 504.9
613.9 457.8 348.7 504.8
613.8 457.6 348.2 504.3
614.69 458.43 349.23 505.32

It should be remarked in regard to those Tables that the horizontal distance from the
mirror to the scale amounted to 2218 scale divisions. Moreover, one should observe that the
inductor coil that was used here was different from the one that was used before, page 296
[on Section 13.6]. The new inductor coil has a much smaller number of windings, but much
stronger wire, such that its resistance was much smaller than the resistance of the first
inductor coil. That fact had a significant effect on the relationship of the observations A, B,
C, D to each other.

The mean values of the observations above are clearly summarized in the following Table,
and the differences between the first and third values, as well as the second and fourth values,
for each set of experiments is added, and those two differences are denoted by a and b, just
as on page 414.
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774.52
435.31 a = 576.02

D. 198.50 b = 101.78
537.09
691.50
447.32 a = 415.31

B. 276.19 b = 73.32
520.64
691.63
447.59 a = 414.93

A. 276.70 b = 73.29
520.88
690.73
446.30 a = 415.73

B. 275.00 b = 73.48
519.78
614.69
458.43 a = 265.46

C. 349.23 b = 46.89
505.32

The values of a and b that are summarized in that Table now first require a correc-
tion, because they are the tangents of twice the elongation angles, according to the laws of
catoptrics. With the help of the given distance from the mirror to the scale, it is easy to
reduce them to values that are proportional to the elongation angles themselves, and that
reduction is sufficient because of the smallness of all of those elongations. To that end, if x
denotes the value of a or b that is given in scale divisions, then one must reduce the number
x by:

1

3

x3

44362
=

x3

59 034 288
.

After that reduction, one will get the following values for a and b:

a b
D. 572.78 101.76
B. 414.10 73.31
A. 413.72 73.28
B. 414.51 73.47
C. 265.14 46.89

If one now takes the mean of the two values a and b that are quoted in B, then one will
get the following summary:

a b log nata
b
= λ a2+b2√

ab
· e− λ

π
arctan λ

π

A. 413.72 73.28 1.730 902 768.22
B. 414.305 73.39 1.730 814 769.23
C. 265.14 46.89 1.732 454 492.44
D. 572.78 101.76 1.727 884 1063.11
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Now, as was shown on page 414 et seq., the values that are given in the last column can
serve as a unit of current strength in the multiplier, i.e, they can be considered to be the
values that were denoted by A, B, C, D on page 302. Finally, with those values, one will
get:

AB − BC

AB − AC
= 0.997 65 ,

√

AB −AD

AB −BD
= 0.997 62 ,

from the formulas that were presented there. With that, one will get the ratio of the resistance
of the first copy to the second one as equal to:

0.997 64 : 1 ,

in the mean.

D - Basis for the Rules for Calculating the Resistance

of a Conductor from the Observations

In order to base the rules for calculating the resistance of a conductor from the observations,
we shall start from the following two fundamental laws from the study of electromagnetism
and the study of magneto-electricity.

First law. The linear element of a galvanic current ds exerts a driving force on an
element of the magnetic fluid µ that is inversely proportional to the square of the distance
r between them. However, at the same time, an entirely anomalous situation enters in that
way, namely, that the direction of the force is not along the straight line that connects them,
but perpendicular to the plane that is laid through µ and the direction of ds, and in addition,
the strength of the force does not depend upon the distance alone, but likewise on the angle
that r makes with the direction of ds. If one calls that angle ϑ then:

sin ϑ · µds
r2

will be the unit of the driving force that ds exerts upon µ, and it is just as large as the
force that µ exerts upon the current element ds or its ponderable carrier, whose direction is
parallel, but opposite, to the former.

Remark. — One must understand the current element that is denoted by ds to mean the
product of its length α with the intensity i of the current that flows through it, so ds = αi. —
That fundamental law of electromagnetism is repeated here verbatim just as Gauss expressed
it in “Resultaten aus den Beobachtungen des magnetischen Vereins im Jahre 1839,” pp. 1,
2.486,487

Second law. If the element of magnetic fluid µmoves with a velocity u parallel to the force
that acts upon the current element ds = αi according to the first law, then an electromotive

486[Note by HW:] Gauss’s Werke, Vol. V, p. 198.
487[Note by AKTA:] [Gau40] with English translation in [Gau43].
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force that is parallel to the direction of the current i will be exerted upon the linear element
of the conductor α, whose strength will be represented by the expression that was given in
the first law, namely, sinϑ · µds/r2, when one exchanges ds = αi with αu, so by:

sinϑ · µαu
r2

.

By contrast, if the element of the magnetic fluid µ were to move in a different direction
that makes an angle ψ with the one that was referred to above, then the expression for the
strength of the force must be multiplied by cosψ.

Remark. — If one introduces two other angles in place of the two angles ϑ and ψ,
namely, the angle ϕ that the direction in which µ moves makes with r, and the angle ε that
the direction of α makes with the normal to a plane that is laid parallel to the direction in
which µ moves and goes through r, then the expression sinϑ ·µαu ·cosψ/r2 will be converted
into sinϕ ·µαu cos ε/r2. — The latter expression agrees with the one that one obtains when
one decomposes the elementary electromotive force that was given in the first treatise on
“Elektrodynamische Maassbestimmungen,” p. 345,488,489 in the direction of the induced
element α. The expression thus-obtained will indeed contain a constant factor whose value,
however, depends upon the choice of unit for the electromotive force and is equal to 1 for a
certain unit.

The arguments that follow were derived from these two laws:
1. A relationship exists between the electromagnetic and magneto-electric forces such that

when two arbitrarily-placed magnetic elements µ and µ′ along a current element ds = αi
exert equal and equally-directed electromagnetic forces, then their electromotive forces on
the linear element of the conductor α (when it is moving) will be equal. The same thing
will be true when µ and µ′ are replaced with an ensemble of arbitrarily-distributed magnetic
elements. It then follows from this that when the geomagnetism at a location is equal and
equally-directed to the electromagnetic force that a distant bar magnet would exert, then
the electromotive force of geomagnetism on an inductor that is itself moving will likewise
be equal to that of the bar magnet, no matter how the magnetism of the Earth might be
distributed.

2. When the current element ds belongs to a circular current, the component of the
electromagnetic force that ds exerts upon µ that is perpendicular to the plane of the circle
will be obtained when sinϑ ·µds/r2 is multiplied by the cosine of the angle that the plane of
the circle defines with the plane that goes through µ and the direction of ds. This component
is called C.

The current element ds might be decomposed into its factors, namely, into its current
intensity i and its length, which will be denoted by adα as the length of a circular element,
when a is the radius of the circle that it belongs to and α is the angle that the associated
radius defines with the radius that lies in a plane that is perpendicular to the plane of the
circle, along with µ. Furthermore, if one lets b denote the perpendicular that is dropped from
µ to the plane of the circle, while x denotes the distance from the foot of that perpendicular
to the midpoint, then:

r2 = a2 + b2 + x2 − 2ax cosα ,

and one will get the expression:

488[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 177.
489[Note by AKTA:] See page 169 on Subsection 5.25.4.
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sinϑ · iµ · adα
a2 + b2 + x2 − 2ax cosα

,

for the total force that ds exerts upon µ. Moreover, the cosine of the angle that the plane
of the circle defines with the plane that is laid through µ and the direction of ds is:

a− x cosα

r sinϑ
=

a− x cosα

sinϑ ·
√
a2 + b2 + x2 − 2ax cosα

.

The product of that cosine with the expression for the total force above gives the expression
for the desired component C, namely:

C = iµ · adα a− x cosα

(a2 + b2 + x2 − 2ax cosα)3/2
.

With those two stated laws, which are the basic laws of magneto-electricity, one gets the
electromotive force that µ exerts upon ds, when µ moves with a velocity u parallel to the
direction of the force C, upon multiplying by the value that C has, when i = −1, with u,
namely:

−uµ · adα a− x cosα

(a2 + b2 + x2 − 2ax cosα)3/2
.

By contrast, when ds moves with a velocity u in the same direction that is perpendicular to
the plane of the circle, the electromotive force that µ exerts upon ds will be:

+uµ · adα a− x cosα

(a2 + b2 + x2 − 2ax cosα)3/2
.

If one further develops the expression for C above in powers of cosα, then one will get:490

C =
iµ

(a2 + b2 + x2)3/2

{

a2dα + (2a2 − b2 − x2)
ax

a2 + b2 + x2
· cosαdα

+
3

2
(3a2 − 2b2 − 2x2)

a2x2

(a2 + b2 + x2)2
· cosα2dα

+
5

2
(4a2 − 3b2 − 3x2)

a3x3

(a2 + b2 + x2)3
· cosα3dα+ ...

}

.

3. The expression for the electromagnetic force that the total circular current exerts upon
µ, perpendicular to the plane of the circle, is obtained in the following way: Since the radius
a and the current intensity i, like b and x, are equal for all circle elements, the desired force,
or the sum of all electromagnetic forces that all current elements exert upon µ, which are
perpendicular to the plane of the circle, will be:

490[Note by AKTA:] The expressions cosα2, cosα3 etc. in this equation and in the next ones should be
understood as cos2 α, cos3 α etc., respectively.
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iµ · a
∫ 2π

0

a− x cosα

(a2 + b2 + x2 − 2ax cosα)3/2
dα

=
iµ

(a2 + b2 + x2)3/2
·
{

a2
∫ 2π

0

dα + (2a2 − b2 − x2)
ax

a2 + b2 + x2

∫ 2π

0

cosαdα

+
3

2
(3a2 − 2b2 − 2x2)

a2x2

(a2 + b2 + x2)2
·
∫ 2π

0

cosα2dα

+
5

2
(4a2 − 3b2 − 3x2)

a3x3

(a2 + b2 + x2)3
·
∫ 2π

0

cosα3dα+ ...

}

,

that is:

2πa2 · iµ
(a2 + b2 + x2)3/2

{

1 +
3

4
(3a2 − 2b2 − 2x2)

x2

(a2 + b2 + x2)2
+ ...

}

. (I)

Moreover, one can easily convince oneself that the current intensity in that must be deter-
mined in the absolute units that were established in Section 13.10, when one sets the area of
the circle πa2 = 1, from which one finds that one must have i = 1 in order for the force that
is exerted upon µ at a distance (where a2 vanishes in comparison to b2 + x2), perpendicular
to the plane of the circle, to be equal to the force that is exerted upon a magnet in the same
direction, when that magnet has one absolute unit of magnetism491 and its axis is normal to
the plane of the circle. Let A [in Figure 14] be the midpoint of the magnet, let AB be the
direction of its axis, and let the element µ be found at C.

Let ABC be a rectangular triangle at C, and let AD = AB. From a known theo-
rem (“Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1840,” pp. 33,
34),492,493 CD will be the direction of the force that acts upon µ, and its strength will be
µ/AC3 ·CD/AD. If one drops CE perpendicular to AB, then the component that is parallel
to the axis of the magnet will be µ/AC3 · CD/AD · ED/CD = µ/AC3 · ED/AD. Now, if
AE and CE are the lines that were denoted above by b and x, then that will make:

491[Note by AKTA:] See footnote 392 on page 306.
492[Note by HW:] Gauss’s Werke, Vol. V, p. 434.
493[Note by AKTA:] [Gau41d].
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AC =
√
b2 + x2 ,

AD =
1

3
AB =

1

3

AC2

AE
=
b2 + x2

3b

and

ED = AE − AD =
2b2 − x2

3b
;

and as a result, the desired force will be:

µ · 2b2 − x2

(b2 + x2)5/2
.

By contrast, when one sets πa2 = 1 and a2

b2+x2
= 0 in the expression above, one will get:

iµ · 2b2 − x2

(b2 + x2)5/2
,

which implies that one must have i = 1, if the current that flows around a unit area is
supposed to have the same effect as the absolute unit of magnetism. However, that current
intensity is the absolute unit that was established in Section 13.10, which explains the fact
that the current intensities must be determined in the absolute unit that was established in
the applications of the electromagnetic laws above.

4. The expression for the electromotive force that µ exerts upon the entire circle when
it494 moves with a velocity u in a direction that is perpendicular to the plane of the circle
is obtained in the following way: The two laws that were stated previously imply that the
electromotive force that µ exerts upon ds when it moves with a velocity u parallel to the
direction of the force C is obtained by multiplying u by the value of C, in which one has set
i = −1, namely:

− µu

(a2 + b2 + x2)3/2
·
{

a2dα + (2a2 − b2 − x2)
ax

a2 + b2 + x2
· cosαdα

+
3

2
(3a2 − 2b2 − 2x2)

a2x2

(a2 + b2 + x2)2
· cosα2dα

+
5

2
(4a2 − 3b2 − 3x2)

a3x3

(a2 + b2 + x2)3
· cosα3dα + ...

}

.

As a result, the sum of the electromotive force that µ exerts upon all elements of the circle
is as follows:

− µu

(a2 + b2 + x2)3/2

{

a2
∫ 2π

0

dα+ (2a2 − b2 − x2)
ax

a2 + b2 + x2

∫ 2π

0

cosαdα

+
3

2
(3a2 − 2b2 − 2x2)

a2x2

(a2 + b2 + x2)2

∫ 2π

0

cosα2dα

+
5

2
(4a2 − 3b2 − 3x2)

a3x3

(a2 + b2 + x2)3

∫ 2π

0

cosα3dα+ ...

}

,

494[Note by AKTA:] That is, when µ.
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that is:

−µu πa2

(a2 + b2 + x2)3/2
·
{

2 +
3

2
(3a2 − 2b2 − 2x2)

x2

(a2 + b2 + x2)2
+ ...

}

. (II)

Moreover, one can easily convince oneself that this value of the electromotive force is ex-
pressed in terms of the absolute unit that was established in Section 13.10. Namely, if one
sets b = 0 in that value, then the linear velocity u of the element µ will be identical to an
angular velocity γ = u/x around diameter of the circle that is perpendicular to x, which
can then be set equal to the opposite angular velocity of the circle −γ around the same axis
without changing the electromotive force. The expression for the electromotive force of µ on
the circle that rotates with a velocity of −γ will then be:

−µγ πa2x

(a2 + x2)3/2

{

2 +
3

2
(3a2 − 2x2)

x2

(a2 + x2)2
+ ...

}

,

which is therefore −µγ · πa2/x2 on the circle that rotates with a velocity of +γ when µ acts
at a distance, where a2 vanishes in comparison to x2. That implies that the sum of the two
electromotive forces when one has, first of all, µ = +m and x = R+e and, secondly, µ = −m
and x = R− e, i.e., the electromotive force of a magnet M = 2em that acts at a distance R
will be:

−mγ πa2

(R + e)2
+mγ

πa2

(R − e)2
=Mγ

2πa2

R3
.

If one now makes the angular velocity γ of the circle large enough that its projection onto
a plane that is normal to x changes by one unit of area in a unit time, that is, γπa2 = 1,
then one will find that the value of the electromotive force above must be equal to 1 when
M is the magnetism of the bar that has the same effect as the unit of geomagnetism whose
direction is parallel to x. If, namely, in the direction of terrestrial magnetism T of a place at
the distance R there is an identically directed magnet M , then the effect of M in magnetic
units will be equal to the effect of T at that location when one has:

2M

R3
= T .

M will then denote the magnetism of the bar that acts the same as one unit of geomagnetism
when one has:

2M

R3
= 1 ,

from which it emerges that when, at the same time, γπa2 = 1, the value of the electromotive
force above will also be equal to 1. However, that electromotive force is itself the absolute
unit that was established in Section 13.10, which explains the fact that the electromagnetic
force is determined in the given absolute unit in the applications of the magneto-electric laws
that were developed here.

Up to now, we have considered the forces that an element of a magnetic fluid µ exerts
or experiences. The application of that to experiments requires that all elements of both
magnetic fluids that are contained in a magnetic needle should be included in the calculation.
However, that explains the fact that, with Gauss,495 one can then focus on the elements of

495[Note by AKTA:] See footnote 406 on page 321.
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the ideal magnetic fluids that are distributed over the surface, that are completely separated
from each other. If the sum of the positive elements is equal to +m, then the sum of the
negative ones will be equal to −m, and if one denotes the distance from the midpoint of the
one from the midpoint of the other by 2e, then the [magnetic] moment of the needle will be
equal to 2em, and the length of the line e is a measurable quantity. That also explains the
fact that when all of the positive elements lie close together, and similarly for all the negative
ones, their effect will be almost the same as if they were concentrated at their respective
midpoints. Only the effect of two points would be included in the calculation with the needle
used then, namely, the one at which all north-magnetic fluid is thought to be concentrated
and the one at which the south-magnetic fluid is concentrated. That will then imply:

5. The comparison of the angular moment that the multiplier exerts upon the needle that
is found at its midpoint with the one that it would exert if the needle were at a great distance
as follows: The meridian plane in which the needle lies divides the multiplier in such a way
that an equal number of windings lie on both sides. If one draws a horizontal line in that
plane through the midpoint of the multiplier, then the point at which all north-magnetic
fluid +m is concentrated will lie along that line, and the distance from it to the midpoint will
be called +e. The distance from the point along the same line at which the south-magnetic
fluid −m is thought to be concentrated will be called −e. Let a′ and a′′ be the inner and
outer diameters of the multiplier and let 2b′ be the width of its cross-section, which will then
be 2(a′′ − a′)b′. The part of that cross-section of the entire ring that comes to a winding,
whose diameter is a and whose plane lies at a distance b from the midpoint of the multiplier,
will be denoted by dadb: From (I), the product of the cross-section of a winding with the
force that it exerts upon +m will then be:

+im
2πa2dadb

(a2 + b2 + e2)3/2

{

1 +
3

4
(3a2 − 2b2 − 2e2)

e2

(a2 + b2 + e2)2
+ ...

}

.

If one multiplies that product with the perpendicular e that is dropped from the rotational
axis to the direction of the force, then one will get the product of the cross-section of the
winding with the angular moment that it exerts. Finally, if one substitutes −m for +m and
−e for +e in that expression, then one will get an equal value for the product of that cross-
section with the angular moment that is exerted upon the negative fluid by that winding.
As a result, the product of the angular moment that is exerted by that winding on the entire
needle will be:

iM
2πa2dadb

(a2 + b2 + e2)3/2

{

1 +
3

4
(3a2 − 2b2 − 2e2)

e2

(a2 + b2 + e2)2
+ ...

}

,

when one denotes the magnetism of the needle by M = 2em. Since e is a smaller fraction of
a, all parts that have the fourth or higher powers of it as a factor can be dropped, and one
will then get:

iM
2πa2dadb

(a2 + b2)3/2

{

1 +
3

4

a2 − 4b2

(a2 + b2)2
· e2
}

.

It then follows from this that the sum of the products of the cross-section of each winding
with the rotational moment that it exerts will be:

427



iM · 2π
∫ α′′

α′

a2da

∫ +b′

−b′

db

(a2 + b2)3/2

{

1 +
3

4

a2 − 4b2

(a2 + b2)2
e2
}

= iM

{

4πb′ · log a
′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2
+
π

b′

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· e2
}

.

If one divides that expression by the product of the cross-section of a winding with the
number of windings — i.e., by the cross-section of the entire ring 2(a′′ − a′)b′, — then one
will get the mean rotational moment that a winding exerts upon a needle, from which will
emerge the rotational moment of the multiplier on the needle that is found at its midpoint
when one multiplies by the number of windings n, namely:

iM · 2nπ · 1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e2

b′2

}

.

For the case in which b′ vanishes compared to a′, and in which a′ differs only slightly from
a′′, that will be iM · 2nπ/a′, and a′ will be the radius of the multiplier in that case. If one
now generally understands that the radius of the multiplier of a given central needle has the
expression:

a′′ − a′

log
a′′+

√
a′′2+b′2

a′+
√
a′2+b′2

+ 1
4

(

a′′3

(a′′2+b′2)3/2
− a′3

(a′2+b′2)3/2

)

e2

b′2

and one denotes it by r′, then the rotational moment will be:

2nπ

r′
·Mi .

By contrast, if the needle is at a great distance from the multiplier, but +m and −m
remain on the same line at distances of R + e and R − e, respectively, from the midpoint,
then one must revert to the expression C on page 423 for the force that an element ds exerts
upon µ perpendicular to the meridian plane, in which one substitutes +m or −m for µ, and
R + e or R− e for x. One will then get:

im · adα a− (R + e) cosα

(a2 + b2 + (R + e)2 − 2a(R + e) cosα)3/2
,

for +m, and:

−im · adα a− (R− e) cosα

(a2 + b2 + (R− e)2 − 2a(R− e) cosα)3/2
,

for −m. The sum of the former value, multiplied by +e, and the latter one, multiplied by
−e, will give the rotational moment that ds exerts upon the needle, namely, when one writes
M for 2em and observes that a, b, and e vanish in comparison to R:
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iM · adα · a−R cosα

(R2 − 2aR cosα)3/2

= −iM
a

{

a2

R2
cosαdα +

a3

R3
(3 cosα2 − 1)dα+ ...

}

,

and as a result, the rotational moment that the entire circle to which ds belongs exerts upon
on the needle will be:

−iM
a

{

a2

R2

∫ 2π

0

cosαdα+
a3

R3

∫ 2π

0

(3 cosα2 − 1)dα+ ...

}

= −πa
2

R3
·Mi ,

because the following terms, which include fourth or higher powers of a/R, can be dropped.
If one integrates that value, multiplied by dadb, between the limits from a = a′ to a = a′′

and from b = −b′ to b = +b′, then the product of that integral with n/[2(a′′ − a′)b′] will be
the rotational moment that the multiplier exerts upon the distant needle:

−1

3

nπMi

R3
· a

′′3 − a′3

a′′ − a′
= −nπMi

R3
· a

′2 + a′a′′ + a′′2

3
.

For the case in which a′ differs slightly from a′′ that will give:

−nπa
′2

R3
·Mi ,

and a′ will be the radius of the multiplier in that case. If one now generally understands the
radius of the multiplier of a distant needle to mean the expression:

√

1

3
(a′2 + a′a′′ + a′′2) ,

and denotes it by r′′, then the rotational moment will be:

−nπr
′′2

R3
·Mi .

Finally, if one compares the expression that was found for the rotational moment that the
multiplier exerts upon the needle that is found at its midpoint with the one that it would
exert if the needle were at a great distance, then that would give the ratio:

2nπ

r′
·Mi : −nπr

′′2

R3
·Mi = 1 : −r

′r′′2

2R3
.

Rules for Calculating the Resistance from Observations
that are Performed by the First Method in Section 13.14.
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Let the line NS [in Figure 15] denote the direction of the horizontal component of geo-
magnetism, whose strength equals T ′ at the location A, and T ′′ at the location B.

Let a closed circuit consist of two vertical rings whose centers are at A and B. Let the
ring B, which defines the multiplier, be fixed, while the ring A, which defines the inductor,
can rotate about its vertical diameter. Let the sum of the areas that are bounded by all
windings of the ring A be S, and if ψ denotes the angle that the normal to the plane of the
ring defined with the direction NS at the end of the time interval t, then the projection of
S onto a plane that is perpendicular to NS at that moment will be equal to S cosψ, and
the increase in that during the time element dt will be −S sinψ · dψ. That will give the
absolute value of the electromotive force that geomagnetism T ′ exerts upon the ring A as in
Section 13.10:

eE = −ST ′ · sinψdψ
dt

·E .

The value of the integral of that from the moment when ψ = π to the moment when ψ = 0
will be denoted by e′E, so:

e′ = 2ST ′ .

The current that is produced by that electromotive force in the entire closed circuit, whose
intensity at the end of the time interval t will be denoted by iJ , goes through the multiplier
ring B, and when it flows, it will exert a rotational moment on the needle that is found at
its midpoint whose magnetic axis coincides with NS and can be expressed in the following
way:

2nπ

r′
·Mi ,

as on page 428, in which:

1

r′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2
+

1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e2

b′2

}

.

Here, n denotes the number of windings of the multiplier ring B, a′ and a′′ denote the
smallest and largest radii, respectively, and 2b′ denotes their height, while M denotes the
magnetism of the needle in absolute units, and 2e is the quotient M/m, when m expresses
the amount of north-magnetic fluid that is spread over the surface of the needle in the ideal
distribution.

If K denotes the moment of inertia of the needle, then that will yield the acceleration of
the rotation of the needle as equal to:

2nπ

r′
· Mi

K
.
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Furthermore, if one denotes the value of the integral of the current intensity iJ over the time
interval from the moment when ψ = π to the moment when ψ = 0 by i′J , then the value of
the integral of the acceleration over the same time interval — i.e., the angular velocity that
is imparted to the needle by the induction thrust — will be:

dϕ

dt
=

2nπ

r′
· Mi′

K
,

from which, upon multiplying by t′/π, the width of the elongation α will be:

α =
2nt′

r′
· i

′M

K
,

and as a result, one will get:

i′ =
αKr′

2nMt′
,

in which t′ denotes the period of oscillation of the needle.
If 1 : (1 + ϑ) is the increased ratio of the magnetic directive force to the elasticity of the

thread from which the needle hangs, and T ′′ is the strength of the horizontal component of
geomagnetism at the location of the multiplier, then:

t′
2
=

π2K

(1 + ϑ)MT ′′ ,

or

K

Mt′
=

(1 + ϑ)T ′′t′

π2
,

and as a result:

i′ =
(1 + ϑ)T ′′r′t′

2nπ2
· α .

Finally, if wW denotes the resistance of the entire closed circuit, then that will give the
following rule for calculating the coefficient w:

w =
e′

i′
=

n

1 + ϑ
· T

′

T ′′ ·
4π2S

αr′t′
,

which was to be proved.

Rule for Calculating the Resistance from Observations
that are Performed According to the Second Method in Section 13.15.

If the fixed ring B that is parallel to the magnetic meridian is closed and the needle that
hangs from its center is made to oscillate, then an electromotive force will be exerted by that
needle on the ring B that can be determined in the following way:

Let +m denote the north-magnetic fluid, which is thought of as spread over the surface
of the needle in the ideal distribution, and let +e denote the distance at which the midpoint
of that magnetic mass lies from the center of the ring B. Furthermore, let −m denote the
south-magnetic fluid, which is thought of as spread over the surface of the needle in the ideal
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distribution, and let −e denote the distance at which the midpoint of that magnetic mass
lies from the center of the ring B. If:

M = 2em ,

as a result of the needle magnetism, then if γ is the angular velocity of the needle, for
small elongation widths of the needle, the electromotive force that the needle exerts upon a
winding of the ring B whose radius is equal to a and whose plane lies at a distance b from
the center of the ring B, from page 426, can be determined by the following expression:

−γM πa2

(a2 + b2 + e2)3/2

{

2 +
3

2
(3a2 − 2b2 − 2e2)

e2

(a2 + b2 + e2)2

}

,

in which one first sets µ = +m and u = +eγ in it and secondly sets µ = −m and u = −eγ
and takes the sum of both values. The electromotive force that the needle exerts upon the
entire ring, whose inner and outer radii are a′ and a′′, respectively, whose height in 2b′, and
which possesses n windings, follows from that to equal eE, where:

e = − n

2(a′′ − a′)b′
· γMπ

∫ a′′

a′
a2da

∫ +b′

−b′

db

(a2 + b2 + e2)3/2

(

2

+
3

2
(3a2 − 2b2 − 2e2)

e2

(a2 + b2 + e2)2

)

,

or

e = −γM · 2nπ 1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e2

b′2

}

,

or

e = −2nπ

r′
·Mγ ,

when one sets:

1

r′
=

1

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

e′2

b′2

}

as above.
The current that is induced in the multiplier ring, whose intensity will be denoted by

−γiJ , where iJ is the current that would be produced by the electromotive force 2nπ/r′,
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once more exerts a rotational moment backwards on the oscillating needle that is expressed
in the following way, according to page 428:

−2nπ

r′
·Mγi .

If K denotes the moment of inertia of the needle, then that will imply a retardation of
the angular velocity γ that is equal to:

−2nπ

r′
· Mγi

K
.

Finally, if one lets ϕ denote the small angle that the oscillating needle makes with the mag-
netic meridian at any moment, so γ = dϕ/dt, then the rotational moment that geomagnetism
T exerts upon the needle will be equal to:

−MTϕ ,

and that will cause a retardation of the velocity γ that equals:

−MT

K
ϕ ,

to which one adds the part of the retardation that originates in the elasticity of the suspension
thread, and which is equal to:

−ϑMT

K
ϕ

when ϑ expresses the directive force on the needle that arises from it, in units of its magnetic
directive force. The total retardation of the velocity γ = dϕ/dt then amounts to:

−d
2ϕ

dt2
= (1 + ϑ)

MT

K
ϕ+

2nπ

r′
· Mi

K
· dϕ
dt

,

from which it follows that:

ϕ = Ae−
nπMi
Kr′

t sin t

√

(1 + ϑ)
MT

K
−
(

nπMi

Kr′

)2

,

where e is the base for natural logarithms, t is the time that is measured for the needle to
go through the meridian once, and:

π
√

(1 + ϑ)MT
K

−
(

nπMi
Kr′

)2

is the period of oscillation of the needle t′, and finally:

1 : e− nπMit′

Kr′

is the ratio of two successive oscillation arcs. The natural logarithm of that ratio or the
logarithmic decrement of the decrease in the oscillation arc is:

λ =
nπMit′

Kr′
.
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It follows from that equation that one can determine the intensity iJ of the current in the
closed ring B that is produced by the electromagnetic force e = 2nπM/r′:

i =
Kr′

nπMt′
· λ ,

and it finally follows from this that one can determined the resistance wW of the ring B:

w =
e

i
=

(

nπM

r′

)2

· 2t′

Kλ
.

That expression for w can be put into another form when one observes that the period of
oscillation of the needle is:

t′ =
π

√

(1 + ϑ)MT
K

−
(

nπMi
Kr′

)2

and

λ =
nπMi

Kr′
· t′ ,

from which, one gets that:

MT

K
=

π2 + λ2

(1 + ϑ)t′2
,

and when one observes that, in addition, when one sets:

2M

Tr′3
= tan v0 ,

v0 can be determined from the magnetometric deflection experiments by known methods.
Upon multiplying those two equations together, one will get:

2M2

Kr′3
=

π2 + λ2

(1 + ϑ)t′2
· tan v0 ,

and as a result:

w =
n2π2

1 + ϑ
· tan v0 ·

π2 + λ2

λ
· r

′

t′
,

which was to be proved.

E - Rules for calculating the Current that is Induced by

a Current with a Sliding Contact

Suppose that one is given a current of constant intensity i that enters into the circular arc
ab at a and flows through it to the location b, at which point, it flows through the radius bc
to the center c and is conducted back to a from c, [as in Figure 16].496

496[Note by AKTA:] The letter α in Figure 16 should be replaced by letter a.
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One needs to calculate the electromotive force that this current exerts upon one or more
concentric circles def while the moving current segment bc describes a circle about c, or more
precisely, while the end b of the moving current segment bc traverses the arc abz, which is
smaller than the total periphery by the arbitrarily small gap za. One must then distinguish
three types of electromotive forces, namely:

1. The electromotive forces that are exerted upon the elements of the moving current
segment bc.

2. The electromotive forces that newly-entering current elements exert upon the ends of
the arc ab as a consequence of the advance of the moving current segment bc.

3. The electromotive forces that the electricity at the sliding contact b of the arc ab exerts
upon the radius bc, or that bc exerts upon ba, as a result of the change in velocity that it
experiences.

As far as the first type of electromotive force is concerned, from Section 30, p. 367,497,498

of the first treatise on Electrodynamic Measurements, the electromotive force of an element
α of the moving current segment bc on an element α′ of the induced conductor def can be
determined from the following expression:

−αα
′

r2
i

(

sin ϑ sin η cos ε− 1

2
cos ϑ cos η

)

· av cos ϑ′ .

The explanation for the symbols that was given in loc. cit. is clarified by applying this to
the present case. Namely, let C [in Figure 17] be the center of the circular arc A′A, through
which the inducing current i flows from A′ to A, and the moving radius CA = R defines the
moving current segment through that current i flows from A to C.

497[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 202.
498[Note by AKTA:] See page 192 on Section 5.30.
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The inducing element α lies along that radius at a distance of ρ from the center C. Let
the induced element α′ be an element of a concentric circle whose radius is equal to R′,
and the moving radius CA that defines an angle of ϕ = ACα′. Let r be the line that is
drawn from α to α′, that makes an angle of α′αC = ϑ with the direction of the current at α,
namely, αC. Since the induction depends upon only the relative motion of the two elements
α and α′, that explains the fact that one can replace the rotation of α around the center C,
while α′ remains unmoved, with the rotation of α′ around that center C with the same value
of the arc and the opposite direction, while α remains unmoved. One then assumes that
the element α′ moves with a velocity v in the direction of the negative tangent α′B′. That
direction defines an angle of Dα′B′ = η with the lengthened r, i.e., with α′D. Moreover,
since α′ itself is an element of the circle whose direction coincides with the positive tangent
to the circle α′B, the angle that its direction makes with the lengthened r will be ϑ′ = η+π.
Finally, the angle ε between the two planes that are laid through r parallel to the direction
of the current at α and parallel to the direction in which α′ is displaced, will be ε = 0 when
ϑ and η are either both smaller or both larger than π, or ε = π when one of the two angles
ϑ, η is smaller, while the other is larger than π. If one sets the extended angle ϑ or η equal
to the 2π (as long as they are greater than π), then one will always have cos ε = +1. One
then gets:

+
αα′

r2
i

(

sinϑ sin ϑ′ − 1

2
cosϑ cosϑ′

)

· av cosϑ′

for the expression above, in which the value of ϑ is always smaller than π and that of ϑ′ is
always larger, and furthermore:
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r2 = R′2 + ρ2 − 2R′ρ cosϕ ,

r sin ϑ = R′ sinϕ ,

r cosϑ = ρ−R′ cosϕ ,

r sinϑ′ = ρ cosϕ− R′ ,

r cosϑ′ = −ρ sinϕ .

If one sets α = −dρ and α′ = R′dϕ, in addition, then one will get the following expression:499

+
1

2
avi ·R′ sinϕ2dϕ ·

(

1− 3R′

r2
(R′ − ρ cosϕ)

)

ρdρ

r3
.

If one sets r2 = R′2 + ρ2 − 2R′ρ cosϕ, then one will find that:

∫
(

1− 3R′

r2
(R′ − ρ cosϕ)

)

ρdρ

r3
= −ρ

2

r3
+ constant.

The sum of all electromotive forces that all of the elements of the moving current segment
from ρ = R to ρ = 0 exert upon the induced element α′ when one sets R′2+R2−2R′R cosϕ =
r′2, is:

+
1

2
avi · R′R2 · sinϕ

2dϕ

r′3
.

Finally, the sum of the electromagnetic forces over all induced elements of the circle def ,
i.e., for all elements from ϕ = 0 to ϕ = 2π, is:

+
1

2
avi · R′R2 ·

∫ 2π

0

sinϕ2dϕ

r′3
.

The product of that expression with the time t is the value of the integral of the sum of
the electromagnetic forces for the time interval t or for the path vt that is traversed by
the inducing current during that time interval. As a result, if one sets vt = 2nπR′, i.e.,
equal to n times the length of the orbit, then one will get the value of the integral of the
electromagnetic force for n revolutions of the inducing current, namely:

+ai · nπR2R′2
∫ 2π

0

sinϕ2dϕ

r′3
.

If the induced conductor consists of not just one winding, but m of them whose radii are not
appreciably different, then one will get the sum of the electromotive forces that are exerted
upon allm windings of the induced conductor by the n windings of the inducing one, namely:

+ai ·mnπR2R′2
∫ 2π

0

sinϕ2dϕ

r′3
,

in which one sets r′2 = R′2R2 − 2R′R cosϕ. If one sets R = kR′, in which k < 1, then one
will get:500

499[Note by AKTA:] The expression sinϕ2 should be understood as sin2 ϕ.
500[Note by AKTA:] The expressions cosϕ2, cosϕ3 and cosϕ4 should be understood as cos2 ϕ, cos3 ϕ and

cos4 ϕ, respectively.
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1

r′3
=

1

R′3

{

1

(1 + k2)3/2
+

3k cosϕ

(1 + k2)5/2
+

15

2

k2 cosϕ2

(1 + k2)7/2
+

35

2

k3 cosϕ3

(1 + k2)9/2

+
315

8

k4 cosϕ4

(1 + k2)11/2
+ ...

}

,

and as a result:

∫ 2π

0

sinϕ2dϕ

r′3
=

π

(1 + k2)3/2R′3

{

1 +
15

8

k2

(1 + k2)2
+

315

64

k4

(1 + k2)4
+ ...

}

.

If one again sets k equal to its value R/R′ in this and:

R0 =
R2R′2

(R2 +R′2)3/2
·
{

1 +
15

8

(

RR′

R2 +R′2

)2

+
315

64

(

RR′

R2 +R′2

)4

+ ...

}

,

then one will get the expression:

+ai ·mnπ2R0 ,

which was to be proved.

As far as the second type of electromotive forces are concerned, from Section 30, p.
367,501,502 of the first treatise on Electrodynamic Measurements, the electromotive force that
an element of the immobile current segment α in which the current strength increases by
di during the time element dt exerts upon an induced element α′ will be determined by the
following expression:

−1

2

αα′

r
a cosϑ cosϑ′ · di

dt
.

Now, let α and α′ be elements of two circular arcs A′α and B′α′, that have a common center
C and radii R and R′, respectively, so A′α is the immobile segment of the inducing current
and αC is the moving segment [in Figure 18].503

501[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 202.
502[Note by AKTA:] See page 192 on Section 5.30.
503[Note by AKTA:] I replaced B by B′ at the bottom left of this Figure.
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The angle αCα′ = ϕ is the angle that the moving segment defines with the radius of
the induced element α′; α is the conducting element that enters the current circuit while
the end of the moving current segment advances by Rdϕ = α. The current direction αA in
the element α makes and angle of D′αA + π = ϑ with the direction αα′ = r. The direction
α′B of the induced element α′ makes an angle of αα′B + π = ϑ′ with the direction of the
lengthened r, i.e., with α′D. If one drops the perpendicular αE from α to Cα′, and the
perpendicular α′F from α′ to the lengthened Cα, then one will have αα′F = D′αA = ϑ− π
and α′αE = αα′B = ϑ′ − π. As a result, the perpendiculars are:

α′F = R′ sinϕ = r cosαα′F = −r cosϑ ,
αE = R sinϕ = r cosα′αE = −r cosϑ′ .

That implies that:

α cosϑ cosϑ′ =
R2R′

r2
sinϕ2dϕ .

If one substitutes that value in the expression above for the electromotive force, then one
will get:

−α
′

2

R2R′

r3
sinϕ2dϕ · adi

dt
.

If one sets di/dt = i/t, in which t denotes time during which the current strength increases
from 0 to i in the inducing element α = Rdϕ, then the electromotive force of the current ele-
ment α that newly enters with current strength i will be the product of the latter expression
with the time t, viz.:
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−α
′

2
ai · R

2R′

r3
sinϕ2dϕ ,

and the sum of the electromotive forces over all newly-entering current elements during one
rotation of the moving current segment will be:

−α
′

2
ai · R2R′

∫ 2π

0

sinϕ2dϕ

r3
= −α

′

2
ai · πR0

R′ ,

when one sets:

R0 =
R2R′2

(R2 +R′2)3/2
·
{

1 +
15

8

(

RR′

R2 +R′2

)2

+
315

64

(

RR′

R2 +R′2

)4

+ ...

}

.

That sum will be proportional to the length of any induced element of the circle to which α′

belongs. If the induced conductor then forms m windings whose radii are roughly equal to
R′, so its length will be equal to 2mπR′, then when one substitutes that length for α′ in the
expression above, one will get the sum of the electromagnetic forces that the newly-entering
current elements exert upon the entire induced conductor during one rotation of the moving
current segment, or when one multiplies by n, the sum over n rotations of the moving current
segment, assuming that the effect of the sudden vanishing of all current elements entering
at the end of that rotation is cancelled by closing the induced circuit at that moment. The
desired electromotive force will then be:

−ai ·mnπ2R0 ,

which was to be proved.
The third type of electromotive forces still remains to be considered, namely, the ones

that are exerted by the electricity that goes from immobile current segment to the moving
one at the sliding contact as a result of the change of velocity that they experience during
that transition. However, as was shown in Section 13.39, all of the elementary effects that
are produced in that way prove to be equal to the second type of electromotive forces. As
a result, that equality is also found to be true for the sum, so it is likewise valid for the
expression that was just found.

The total electromotive force over the duration of n rotations of the inducing current is
the sum of the three expressions that were found, the first of which is equal and opposite to
the last two, and it is then:

−ai ·mnπ2R0 .

Finally, if one lets T denote the duration of n rotations of the inducing current and lets
w denote the resistance of the induced conductor, then one will get the following equation
for calculating the strength i′ of the induced current, in comparison to the strength i of the
inducing current that has a sliding contact:

i′

i
= − a

w
·mnπ2R0

T
,

where the negative sign in the second term means that the direction of the induced current is
opposite to the direction of the inducing one, assuming that new elements are always added
to the immobile current segment by the rotation of the inducing current. On the other hand,
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it is obvious that the second term in the equation would take the opposite value under the
inverse rotation of the inducing current, by which elements would be withdrawn from the
immobile current segment.
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toutes les propriétés des conducteurs de l’électricité voltäıque, découvertes par M.
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über die Fortschritte der physischen Wissenschaften von Jacob Berzelius, 15:237–
245, 1836.
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Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-
physische Klasse, 17:55–61, 1855. Reprinted in Wilhelm Weber’s Werke, Vol. 3,
H. Weber (ed.), (Springer, Berlin, 1893), pp. 591-596.

[Web61] W. Weber. On the measurement of electric resistance according to an absolute
standard. Philosophical Magazine, 22:226–240 and 261–269, 1861. Translated by
Dr. E. Atkinson.

[Web64] W. Weber. Elektrodynamische Maassbestimmungen insbesondere über elek-
trische Schwingungen. Abhandlungen der Königlich Sächsischen Gesellschaft
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- Page 14, the 1st line should be replaced by:
2.3 Gauss to Weber, 19 March 1845

- Page 15, in the paragraph below the equation, two Figures from Gauss were missing:
and that I do not know, whether Ampère (whose Memoire, as I said, I do not have at hand)
used the first or the second notation. Both of them signify the same thing, and one uses the
first form, when one measures the angle θ, θ′ with the same delimited straight line; thus,
this line determines the side of the second angle in the opposite way,

but determines the other form, when one is considering a straight line of indeterminate
length, and, for the measurement of angle θ, θ′, one resorts to that line twice, in one sense
or another.

And, likewise, one can place a + sign in front of the whole formula instead of the − sign, if
one is considering as a positive effect, not repulsion, but attraction.

- Page 39, the last paragraph of footnote 83 should be replaced by:
According to this, the voltaic circuit is formed: (1) by the circular arc BB′ together with

the conductors MN and M ′N ′; (2) by a circuit which consists of the parts RJP and P ′J ′R′

of the apparatus, of the curvilinear conductor which goes from R′ to S, and of the battery
itself. The latter circuit acts as a closed one, because it is only interrupted by the thickness
of the glass plate which isolates the two cups P and P ′: it is therefore sufficient to observe
its action on the circular arc BB′ in order to empirically establish the action of a closed
current on a circular arc in the various positions which one can give them in relation to each
other.

- Page 45, the 10th line of the 2nd paragraph should be replaced by:
2). The two suspension wires are made of copper, 1 meter long, and 1/6 millimeter thick;

their distance

- Page 48, the words “derivation”, “drainage” or “diversion” should be utilized instead
of “deduction” as the translation of the German word “Ableitung” in the context of the fifth
line of Section 5.3, footnote 93.

- Page 55, the 10th line should be replaced by:



values of the deflection for the observations in the Table from 11 to 11 are derived from
the 11

- The last line of page 74 and the first two lines of page 75 should be replaced by:
this action for both current elements coincides with their connecting-line, and is opposite

for the two current elements, it is repulsive, when the above expression has a positive value,
attractive in the opposite case.

- Page 77, the 12th line should be replaced by:
which the perpendicular to the plane of the circle n makes with the coordinate axes, then

the

- Page 78, the 2nd line should be replaced by:
planes are perpendicular to one another, and the perpendiculars erected on them at their

centers intersect

- Page 84, the last line of the first paragraph below the Table should be replaced by:
(Section 5.5) in the determination of the dynamometer deflection at a 300-mm distance.

- Page 84, the two last lines of the third paragraph below the Table should be replaced
by:

The signs of the calculated values in the foregoing Table thus teach us, that if the fixed
coil acts on the bifilar coil at a distance from north or south, a rotation of the bifilar coil
results, which, if it amounts to 90 degrees, will cause the currents to go in opposite direction
around axes aligned in the same way; if, on the other hand, the fixed coil acts at a distance
from east or west, there will be a rotation of the bifilar coil, which, if it amounts to 90
degrees, would cause the currents to go about co-directed axes in the same direction. The
latter also takes place, according to calculation, if the centers of both coils coincide.

- Page 85, the first two lines of the 2nd paragraph should be replaced by:
For the purpose of our measurements, we have, however, based the unit of current inten-

sity on the electromagnetic principle, according to which the fundamental unit of current

- Page 87, the 7th line of the footnote should be replaced by:
simple association of these different classes of phenomena can easily be overlooked, which

does not immediately

- Page 89, the 2nd line should be replaced by:
and the comparison of the factor thusly determined with that utilized above, namely,

with

- Page 92, the 8th line from bottom to top should be replaced by:
in which the value of ψ for our case = 0, and δ is the complement of the observed

displacement

- Page 97, the 4th line of item (c) should be replaced by:
against the bounded conductor; however, if the bounded conductor moves against

- Page 98, the last sentence of the second paragraph should be replaced by:
After these experiments, he ascribes to these induced currents in parallel wires alternately

opposite directions; to the first, however, the same direction as the vanishing current of
Volta’s battery due to the breaking of the circuit.



- Page 98, the 2nd line of the last paragraph should be replaced by:

coil is swinging, with a voltaic battery, then, in order to induce a current in the other

coil,

- Page 102, the following sentence should be included at the end of the first paragraph:

It is also easy to see that the position in the last half of the observations was somewhat
greater than in the former.

- Page 116, the third sentence of the second paragraph should be replaced by:

The use of a wet string is, however, not absolutely necessary to this fundamental exper-
iment, but seems to be advantageous only when one wants to apply the electricity accumu-

lated in Leyden jars or batteries, and is dispensable if one directly connects the wire ends
of the multiplier of a sensitive galvanometer with the positive and negative conductors of
an electrical machine. One then also observes the deflection of the needle in the direction
predetermined by the electromagnetic laws during the rotation of the electrical machine.

- Page 118, the 3rd line from bottom to top should be replaced by:

relevant, in which a battery of 8 such jars as before was used, and a hemp string of

- Page 131, the 7th line of the third paragraph should be replaced by:

acting on the ponderable mass of the current conductor. Ampère did not deal with the
electrical

- Page 148, the 3rd line from bottom to top should be replaced by:

with Ampère’s formula, then a third will be derived from them for the same force, likewise

- Page 163, the 26th line should be replaced by:

obtained as

- Page 166, the 15th line should be replaced by:

the plane of the magnetic axis and of line r, from whose angle with straight line r the
sine is to sinψ

- Page 175, the 4th line from bottom to top should be replaced by:

has an equal value according to both coordinate systems, then

- Page 175, the 2nd line from bottom to top should be replaced by:

which was to be proven. That zdx− xdz has the same value for all right-angled

- Page 176, the 1st line should be replaced by:

evident from the fact that 1

2
(zdx − xdz) represents the area of the triangle projected on

a plane normal to

- Page 179, the 8th line should be replaced by:

or, since according to page240 144, aeu = i, consequently, because u is variable, ae·du = di,

- Page 180, the 6th and 7th lines of the second paragraph of Section 5.29 should be
replaced by:

which a current element of constant intensity i elicits, while the induced element is in-
finitely removed from a given position parallel to itself in the direction of the straight line r,
or, from an



- Pages 183 and 184, “conical surface” should be utilized instead of “cone”.

- Page 183, the 4th line of the first paragraph should be replaced by:
given element. On this theorem, see Section 5.31 below.

- Page 183, the 11th line from bottom to top should be replaced by:
have to be delimited by the same conical surfaces. And specifically, a current, which goes

into α′ from the outer conical surface to

- Page 184, the 4th line should be replaced by:
through them, it can be easily recognized, that if in A, sin(γ′ − γ) = ∓ cosϑ′, then in A′,

- Page 184, the 7th line should be replaced by:
It can occur, that in addition to α′ and a

′, yet a third element of the conductor is bounded

- Page 185, the 4th line from bottom to top should be replaced by:
positions through which it passes and of the speed, with which it runs through it, and

merely depends upon the difference in the potential

- Page 205, the 3rd line of the first paragraph should be replaced by:
translation has been published in 1852, 1966 and 2007.269 I am maintaining the original

title

- Page 210, the 3rd line should be replaced by:
hole d, and projects from it. When the wire is placed upon the reel and the end fixed by

- Page 212, the 3rd line from bottom to top should be replaced by:
wires, since these wires act at b and b′ as it were at the ends of a lever, the centre of

motion

- Page 220, the following paragraph should be inserted just below the first Table:
These observations are reduced so that the former furnish a measure of the electro-

dynamic force with which the two conductors of the dynamometer act upon each other,
when currents of equal intensity are transmitted through them, whilst the latter furnish a
measure of this intensity itself.

- Page 230, the 7th line of the first paragraph should be replaced by:
occurrence of the deflection of the dynamometer to one side or the other does not, as in

the

- Page 233, the 5th line should be replaced by:
Finally, if, fourthly, in the original expression we consider −αeα′e′ as the product of the

- Page 238, the 6th line of the second paragraph should be replaced by:
of application in those cases where the latter is inapplicable; hence its greater utility.

- Page 244, the last line should be replaced by:
element α, upon the induced element α′, in the ordinary meaning of the word,

- Page 246, the 4th line of the fifth paragraph should be replaced by:
consequently the induction for any period of time in which the intensity of the inducing

- Page 264, the 1st line should be replaced by:



R = − du

dN
,

- Page 265, the 13th line from bottom to top should be replaced by:
to a neighbouring one is only conditioned by the forces which are exerted upont the

particles

- Page 269, the 5th and 6th lines of the third paragraph should be replaced by:

from which it is clear that if the numbers e and i are determined by measurement, the
number w is also indirectly obtained without needing a special measurement.

- Page 269, the 10th and 11th lines of the fourth paragraph should be replaced by:
and hence it is clear that if the three numbers f , t, s are determined by measurement,

the number e is also thereby indirectly given without necessitating a special measurement.

- Page 270, the 7th and 6th lines from bottom to top should be replaced by:
velocity. But if, by an alteration of the given measures, the standard of velocity is

diminished or increased n times, an n times larger or smaller value is obtained for the factor
r′/s, and

- Page 272, the 3rd line should be replaced by:
BC = R, and ϕ the angle which the magnetic axis of the needle in C makes with the

direction

- Page 273, the 1st line of the third paragraph should be replaced by:

Hence the execution of the measurement of an electric resistance in absolute terms de-
pends on the mea-

- Page 273, the last line of the third paragraph should be replaced by:
is to be determined by measurement according to an absolute standard.

- Page 274, the 7th line should be replaced by:
into rings of large cros-section. In that case, however, the influence of all the windings

must

- Page 274, the 5th line of the second paragraph should be replaced by:
a semicircle around its vertical diameter, so that the perpendicular upon the plane of the

ring at the commencement and

- Page 274, the 2nd line of the third paragraph should be replaced by:
its plane coincided with the magnetic meridian, and the needle in the middle of the ring

B was

- Page 274, the 4th line of the third paragraph should be replaced by:
needle in the middle of the ring B was set in oscillation,348 and by means of the telescope

the

- Page 276, the last line of the second pargraph of Section 11.4 should be replaced by:

to form a single ring which serves at once for inductor and multiplier.

- Page 276, the 4th line of Section 11.4 should be replaced by:



in the centre of the ring formed by the induced conductor. The magnet may then either
be

- Page 277, the 3rd line should be replaced by:
powerful to cause a strong damping; and also that the length of the needle be very small

as compared with the diameter

- Page 285, the 2nd line of item 4. should be replaced by:
expression of the mass of magnetic fluid µ, of the velocity of inducing motion c, of the

length

- Page 292, the 34th and 35th lines should be replaced by:
like to further point out that the length of the weighed wire amounted to 251

8

′
(so 251

8

′
=

22.5495 g) and that 3

4

′′
of it at either end was soldered onto the screws.

- Page 294, the 7th line of Section 13.3 should be replaced by:
that it experiences in its rest position and will not take on a permanent deflection in that

way.

- Page 304, the last line of the second paragraph should be replaced by:
Absolute resistance measurements have an intrinsic meaning only when they are per-

formed in such a way that absolutely no new units are used as a basis, other than the ones
that are present and have already been used and are indispensable for other purposes, such
as, for example, those of space and time.

- Page 304 , the last line should be replaced by:
Rather, it will be shown that assuming Jacobi’s proposal will also remain the most

desirable on practical grounds, because a direct absolute determination of resistance can
be performed precisely only in isolated cases and under especially favorable conditions, but
accepting Jacobi’s proposal creates a bridge by which one will

- Page 307, the 11th and 12th lines from bottom to top should be replaced by:
plane of those circles. However, two more wires belong to that circuit that lie close to

each other, are insulated from one another, and exhibit a double connection between the two
circles. Finally, let each circle be cut

- Page 316, the 1st line of footnote 401 should be replaced by:
The rotation of the inductor, given its size, could not be accomplished so quickly that its

duration would be negligible against the period of oscillation of the needle.

- Page 316, the penultimate line of footnote 401 should be replaced by:
(1 + 2/3t2)α. Now, since the total oscillation arc 2α = 79.4 millimeters, and one had

t = 10.2818, the value of

- Page 317, the 3rd line from bottom to top should be replaced by:
distribution to the extent that it seemed necessary. Namely, a small compass was

- Page 318, the 2nd and 3rd lines should be replaced by:
deflections v3 and v4 were observed when the needle was displaced parallel to itself at an

equal distance on the opposite side from the compass, and the value of:

- Page 318, the 6th and 7th lines should be replaced by:



the compass and for different directions of the line that went through the middle of the
needle and the compass, namely, at distances of 400, 500, and 600 millimeters when the

- Page 319, the first sentence should be replaced by:
If these experiments are to be used as a basis for calculating the resistance of the cir-

cuit in absolute units, some complication arises from the fact that even with the moderate
dimensions of the needle compared to the diameter of the damper, the distribution of the
magnetism in the needle must not be completely disregarded.

- Page 319, in the third paragraph, the word “compass” should be used instead of the
word “galvanometer”.

- Page 320, the 7th line from bottom to top should be replaced by:
moved from the distance BC = R into the center of the circle B itself, which will increase

the

- Page 322, in the 4th line from bottom to top we should have a comma “,” instead of
the full point “.”, namely:

ϑ =
1

1770
,

- Page 324, the 10th and 11th lines of Section 13.18 should be replaced by:

λ = 0.064 445 ,

in natural logarithms.

- Page 325, in the first paragraph, the word “compass” should be used instead of the
word “galvanometer”.

- Page 325, in the last paragraph, the word “compass” should be used instead of the word
“galvanometer”.

- Page 329, the 12th line should be replaced by:

= 18542 · π2 · 0.05054 · π
2 + 0.0079442

0.007944
· 352.71
3.9527

,

- Page 343, the 11th line from botto to top of the footnote should be replaced by:
denote the distances of the elements ds and ds′ and the point of intersection of the

perpendicular x

- Page 353, the 4th line should be replaced by:
the basic law of electrostatics, the force that acts from H to E in the tangential direction

- Page 353, the 7th line should be replaced by:
while the force that acts from G to E in the same direction is equal to:

- Page 361, the 5th line of the first paragraph should be replaced by:
electromotive force equal to a shall be given for a single point of it.

- Page 361, the 4th line of the second paragraph should be replaced by:



electromotive forces at the two points A and B are balanced. If +e then denotes the

- Page 361, the 5th line of the third paragraph should be replaced by:

consequently for the requested balancing:

- Page 361, the 5th line of the fourth paragraph should be replaced by:

balanced. That is because if ±e1 denotes the free electricity at (A1), (A1), and ±e2
denotes

- Page 366, the 1st line of Section 13.32 should be replaced by:

It is clear that when electromotive forces are given only at the individual points

- Page 366, the 7th line of Section 13.32 should be replaced by:

in front of them persists in a state of rest, then that displacement of the positive fluid
from

- Page 373, the 1st line should be replaced by:

for the free positive electricity in the other half, in which, from page 370:

- Page 373, the 21st line should be replace by:

intensity eu, where e is the mass of the positive or negative electricity that is included in
a piece of the

- Page 374, the 2nd line of the last paragraph should be replaced by:

for the unit of its length and cross-section and indeed in the units that were defined in
Section 13.27.

- Page 378, the 4th line should be replaced by:

upon their magnitudes, distance, relative velocity, and the change in it. Meanwhile, for
the sake of

- Page 378, the 31st line should be replaced by:

If only the electromotive force c acts upon the negative mass considered, then it would

- Page 380, the 3rd and 4th lines of Section 13.37 should be replaced by:

tion 26 of the firste treatise on Electrodynamic Measurements.454 That treatise, which
was not yet printed at that time, could be cited there only in the form of the abstract that
appeared in Poggendorff’s

- Page 380, the 5th line of the fourth paragraph of Section 13.37 should be replaced by:

electricity in one element on the two electricities in the other element. That

- Page 384, the 3rd line from the bottom to the top should be replaced by:

ring from which it returned to the rod. The current then split between those two paths,

- Page 386, the 16th line should be replaced by:

divisions if each rotation were to generate an electromotive force that would be equal to
the one

- Page 387, the 20th line should be replaced by:

produced a permanent deflection of the magnetometer needle of 377 scale divisions, al-
though a



- Page 390, the 4th line should be replaced by:
derivation of the law of voltaic induction from the basic general law of electric action in

Section

- Page 398, the 4th line should be replaced by:
for (1), (2), and (3), in which m denotes the number of induced circles, and n denotes

- Page 408, the 3rd line of footnote 480 should be replaced by:
for the position of the oscillating needle that equals x at the end of a time equal to t,

where T denotes the

- Page 408, the 15th line of footnote 480 should be replaced by:
and if the position of the needle up to that starting point were taken to be the elongation

x, so x = 0 for t = 0,

- Page 409, the 5th line of footnote 481 should be replaced by:
If one then calculates the time t from the moment when the instantaneous current acts

upon the needle and

- Page 409, the 7th line of footnote 481 should be replaced by:
or A = Cτ/π. If one then sets the original position of the needle p = 0, to simplify, then

one will get:

- Page 413, the 3rd line of the second paragraph should be replaced by:
passes its original position for the first time, an instantaneous current will again act upon

it

- Page 417, the 5th and 6th lines of the second paragraph should be replaced by:
cylinder, while the second copy consisted of a varnished wire that was wound around a

varnished glass tube. The experiments split into five sets. The ends of the inductor wire

- Page 422, the 2nd and 3rd lines of the second paragraph should be replaced by:
when two arbitrarily-placed magnetic elements µ and µ′ exert equal and equally directed

electromagnetic forces on a current element ds = αi, then their electromotive forces on

- Page 424, the 5th line below Equation (I) should be replaced by:
to the plane of the circle, to be equal to the force that is exerted by a magnet in the same

- Page 427, the 1st line of item (5) should be replaced by:
5. The comparison of the torque that the multiplier exerts upon the needle that

- Page 432, the 2nd, 3rd and 4th lines should be replaced by:
lies from the center of the ring B. Consequently the needle magnetism is

M = 2em ,

then if γ is the angular velocity of the needle, for

- Page 433, the 21st and 22nd lines should be replaced by:
where e is the base for natural logarithms, t is the time counted from one passage of the

needle through the meridian, and:

- Page 434, the 2nd line should be replaced by:



closed ring B that is produced by the electromotive force e = 2nπM/r′:

- Page 435, the second paragraph should be replaced by:
1. The electromotive forces that are exerted by the elements of the moving current

segment bc.

- Page 436, the 2nd and 3rd lines should be replaced by:
the induced element α′ be an element of a concentric circle whose radius is equal to R′,

and let the movable radius CA form an angle ϕ = ACα′ with the radius through α′. Let r
be the line that is

- Page 437, the 10th line should be replaced by:
The sum of all electromotive forces that all of the elements of the moving current segment

- Page 437, the 14th line should be replaced by:
the electromotive forces for the time interval t or the path vt that is traversed by

- Page 437, the 17th line should be replaced by:
electromotive force for n revolutions of the inducing current, namely:

- Page 440, the 10th line should be replaced by:
expression above, one will get the sum of the electromotive forces that the newly-entering

- Page 440, the 3rd line of the 2nd paragraph should be replaced by:
one at the sliding contact as a result of the change of velocity that it experiences during
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This is the second of 4 volumes of the book “Wilhelm Weber’s Main Works on 
Electrodynamics Translated into English”. 

This second Volume begins with the text of the Gauss-Weber correspondence of 
1845. It is related to Ampère's force between current elements and Weber's ideas 
about the unification of the electrostatic and electrodynamic laws. It is followed by a 
paper by Fechner published in 1845 in which he presented some qualitative ideas in 
the same direction. That is, to unify Ampère's force and Faraday's law of induction 
with electrostatics. To this end he suggested a force depending not only on the 
distance between the interacting electrified particles, but also on their velocities. At 
the end of his paper, Fechner mentioned that his work might be seen as a forerunner 
of Weber's investigations.

Then comes Weber's First major Memoir on Electrodynamic Measurements, 
published in 1846. This work is probably Weber's most important publication. He 
introduced his bifilar electrodynamometer with which he could measure currents 
with high precision. Initially he utilized this instrument in order to prove Ampère's 
force. He then utilized Ampère's force between current elements in order to deduce 
his own force law between electrified particles. Weber's force between two 
electrified particles depends not only on their distance, but also on their relative 
velocity and relative acceleration. He showed that it was possible to unify the laws of 
Coulomb, Ampère and Faraday with his force law. 

This Volume contains also Weber's 1848 paper in which he introduced his velocity 
dependent potential energy. It is followed by Kirchhoff's 1849 paper on a deduction 
of Ohm's law in connection with the theory of electrostatics. 

This Volume finishes with Weber's Second major Memoir on Electrodynamic 
Measurements (1852). The main focus of this work was the absolute measure of 
resistance. Weber's Memoir contains also his pioneering calculation of the 
distribution of charges along the surfaces of resistive conductors carrying steady 
currents. In particular, he considered a cylindrical straight conductor and a resistive 
ring.
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