ON ANGULAR MOMENTUM

Julian Schwinger

The commutation relations of.an arbitrary angular momentum vector can be
reduced to those of the harmonie oscillator. This provides a powerful method
for constructing and developing the properties of angular momentum eigen.
vectors. In this paper many known theorems are derived in this way, and some
new results obtained. Among the topics treated are the properties of the rotation
matrices; the addition of two, three, and four angular momenta; and the theory
of tensor operators.

1. INTRODUCTION

One of the methods of treating a general angular momentum in quantum
mechanics is to regard it as the superposition of a number of elementary
“spins,” or angular momenta with j = }. Such a spin assembly, considered as
a Bose-Einstein system, can be usefully discussed by the method of second
quantization. We shall see that this procedure unites the compact symbolism
of the group theoretical approach with the explicit operator techniques
of quantum mechanics.

We introduce spin creation and annihilation operators associated with a
given spatial reference system, af = (at,af) and a,=(a,,a_), which
satisfy

[ac, acl] = 0, [ag., agr-] =O,
[y, af] =&, (L.1)
The number of spins and the resultant angular momentum are then given by

n =) ala =n, +n_,
¢
J= CZCIG?(CH"IC')acu o (1.2)

With the conventional matrix representation for o, the components of J
appear as

Jy=dh+idy=ala_,J_=J, —wy=ata,,
Jy=4%ala, —ata_ )=}n, —n_) (1.3)

Of course, this realization of the angular momentum commutation properties
in terms of those of harmonic oscillators can be introduced without explicit ,
reference to the composition of spins. :

£
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To evaluate the square of the total angular momentum »

r =“,;;m af apatar({|}oll’) (¢"|4alC™), (1.4)
4
we employ the matrix elements of the spin permutation operator
" PUD 41 oW.g®), (1.5)
Thus ' .
(Clo2) - (€71018™) = 28y — Sy B (16)
and
P =1 afaafa, —in. (17)
{34

According to the commutation relations (1.1),

Zajaca;fac=2ac+(n+2)ac=n(n+1), (1.8)
{3 4
whence
32 = ju(in + 1); (1.9)
& given number of spins, n =0, 1, 2, ..., possesses a definite angular mo-

mentum quantum number,
J=i=0,41,.... (1.10)

) We further note that, according to (1.3), a state with a fixed number of
5 positive and negative spins also has a definite magnetic quantum number,

m=%}n, —n_), j=}n, +n_). (1.11)

o Therefore, from the eigenvector of a state with prescribed occupation num-
' bers, ' .

_ @)™ @~

O = G Gy o o r.
ai‘P‘o=0, ) "

we obtain the angular momentum eigenvector! ‘
(@})tmaty -
[+ m)l(g —m)'72 ="

Familiar as a symbolic expression of the transformation properties of angular }
momentum eigenvectors®, this form is here a precise operator construction of
the eigenvector. :

¥(jm) =

(1.13)

! A direct proof is given in Appendix A.

2 See, for example, H. Weyl, “The Theory of Groups and Quantum Mechanics "
(E. P. Dutton and Company, Inc., New York, 1931), p. 189.
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On multiplying (1.13) with an analogous monomial constructed from the
components of the arbitrary spinor z, = (z,, 2_)

.1+mxj_—m

= s
#m®) = TG — T

we obtain, after summation with respect to m, and then with respect to j,

(1.14)

j . (xa+ )2;'
m;_j%m(x)‘l’(am) =@ Yo, (1.16)
and
Y bim(@) ¥ (jm) = e, (1.16)
im
in which we have written
(za*) = wa}. (1.17)

¢
To illustrate the utility of (1.16), conceived of as an eigenvector generating

-function, we shall verify the orthogonality and normalization of the eigen-

vectors (1.13). Consider, then,

(€** W, eVWg) = 3 Bim(@*)(F(Gm), W(§'m)) by (y)

= (¥, e&* MWy ), (1.18)
According to the commutation relations (1.1), and a,V, =0, we have
of (a*)
(a* = — , 1.19
a fla™)¥ ( aac*' 'Yy ( )

whence
(l}ro’ PACal)) e(y«*)\}!’o) — e("”)(e(”'“)‘l"'o, l}ro) = e®*W

=T bim(@)bmv). (1.20)
im
We have thus proved that
(¥(jm), W(i'm) =8 Sy (1.21)

As a second elementary example, we shall obtain the matrix elements
of powers of J, by considering the effect of the operators e¥+ on (1.16).
We have

1; Pim(@)e™ ' (jm) = £1430- 2N, = gho-al (A
== gl HAzlal Yo g (1.22)

= Z ¢jm(.’t+ + Ax_, x_ )‘P'(jm)s
m : L

4
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and therefore

e ) gae) = il + D, ), (1.23)
"o
which, on expansion, yields the nonvanishing matrix element
’ gz [ (4 —m')l]‘ﬂ
Jm—m =] - s —m' >0. 1.24
Similarly )
| 2 e m ) bpla) = (s 2 + Az,), (1.25)
and
o ot s [(j+m) (j—m) T2
T =M i) = | 2L - , "—m>0. 1.26
(jm| lgm’) G _m,)!] m —m (1.26)
A particular consequence of (1.24) and (1.26) is
. 1 (j—m) 2 L.
¥ =] — = B Enal T T
(gm) @G m)!] ¥ r(d =) ;
1 (j+m) 2 ..
== — | JI"™()), 1.27
| @) (5 —m)!] W) (40 ?

which details the construction of an arbitrary eigenvector from those possess-
ing the maximum values of |m| compatible with a given j.

It is also possible to exhibit an operator which permits the construction of
an arbitrary eigenvector from that possessing the minimum value of j com-
patible with a given m. Indeed, (1.13), written in the form

(aiat)j—lml

Y(jm) = — . af)mitmgtym-mgs (] 9g
U = (G Tl — s o 43
states that : ‘
. (2|mi) vz
W m)=[ - - K7™ (|m], m), (1.29)
= GG —y ]
where K and two associated operators are defined by
K, =ala?, K_=a,a_, (1.30)

It is easily seen that

(g K, ]=[Jg, K3] =0, (1.31)
and that
K, K, 1=K, [Kyy K_]=—K_,
[K,, K_]=—-2K,. (1.32)
!
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The latter are analogous to the commutation properties of J, save for the
algebraic sign of the commutator [K,, K_]. In keeping with this qualified
analogy we also have

Ji—3}=KyK;—1)—K,K_=K(K,+1)—K_K, (1.33)

as compared with

Pr=JyJy— 1)+ J_ =T+ 1) +J_J,. (1.34)

Noting that the eigenvalue of K, is j -+ }, we see that the roles of j and m are
essentially interchanged in K. The hyperbolic nature of the space in which the
latter operates is thus related to the restriction |m| < j.

If (1.29) is multiplied by a similar numerical quantity, and then summed
with respect to j, one obtains

E: [ (2|m])!
(4 + |m)l(G — |m|)!

1/2
] N™ImE(im) = Fyp, (AK )W (Im|, m), (1.35)

- j=iml

where

-] l
— plo—1/2 1/2y 4 n
F(2) =rlz"21 (2 )_,.Z=on__!(r i (1.36)

and 1, is the cylinder function of imaginary argument. A simpler generating
function is given by

1 j P2 .
Z[@Tmm %J M= (jm) = K (), m).  (1.37)
J

2. RoTATIONS

A significant interpretation is obtained for (1.15) by introducing the opera-
tors
af =(@xa*), a =(z*a), (2.1)

at =[z*a*], a_ =[za],
where
[ryl ==z, y_ —2z_y,. (2.2)
With the restriction
(x*x) =1, 2.3)

these operators also obey the commutation relations (1.1), and must therefore
constitute spin creation and annihilation operators associated with an altered
spatial reference system. Accordingly, (1.156) can be viewed as the expression
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of the state m =j, in a rotated coordinate system, as a linear combmatlon of
the eigenvectors in a fixed coordinate system,

B o @) )2’

¥'(4) =: (@it o= ()2 Z Bim(@)F (jm). (24)
i ((2 )l) M —F
The unitary nature of this transformation is here easily verified,
2 2 fjm(@*)pym(@) = (z*2)¥ =1. (2.5)
m
In general
F(jm’) = gjela’*)¥y = Y. ¥(im)U,, (2.6)
m
where the coefficients are to be inferred from
% im0 = fyulwsaf + 2ok, —a¥al+alat). @)
It is useful to introduce the unitary operator that generates ¥'(jm’) from
F(jm),
¥(jm') = U¥(jm), (2.8)
which permits an alternative construction of the coefficients in (2.6),
U, = (jm|U]jov). (2.9)
| In terms of the successive rotations characterized by Eulerian angles, ¢, 6, ,
U is given explicitly by
U =e W3 g~ g—it/a (2.10)
where h

J‘=8—W3JCW3’
J e J gitVs ' 2.11)

are the operators appropriate to the coordinate systems produced by the
previous rotations. The resulting expression for U(¢6y) is

U=e g ®2e-ia  [J=1 . gibla gitJs 4id3 (2.12)

The angular momentum operators associated with the new coordinate
system,
J' =U0JU, (2.13)

can be constructed from the transformed creation and annihilation operators,
af =UalU! = W2U+d cog §0 at 4 e~ /26-dgin j0a*  (2.14)

at =UafU™"' = —e~ /209 gin 16 at -+ £/D+4) cog 46 a*.
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In evaluating (2.14), we have made use of the relations
e~ WJa al— eWJs — gFli/2W aI,

e~ %3 aI %2 — ¢og 10 aI + sin 36 a, (2.15)

- of which the former follows inimediately from the significance of al as a

positive (negative) spin creation operator, while the latter may be verified by
differentiation with respect to 6, in conjunction with the commutation
relations

[af,Jp) = F (i/2) ak. (2.16)
The form of (2.14) is in agreement with (2.1) and (2.3), where
z, =e" WA cog 10, z_ = e~ /DU~ gip 14, (2.17)

To construct the matrix of U, we consider
(e(:u#)lp‘o, Ue“’“’)‘Fo) — Z qg,jm(x*)Uan, jm’(y)
jm
= (¥, =0 N, (2.18)

in which the a’* are the operators (2.14). On writing

(ya't) = (a*tuy) (2.19)
where u is the matrix

e~ W26+ 0o 19, —e~W/DW=W gin 19
= . . (2.20)
e~ W/2~¥) giyy 10, e6/26+9) goq 10
we immediately obtain
2. Pim@*) U bimely) = €=, (2.21)
m
Since (2.12) implies that
Uin($0) =™ U (6)e™ 9, (2.22)
where
Uiwe(6) = (jm]e=%'2| jm"), (2.23)

we may simplify (2.21) by placing ¢ = =0, thereby obtaining
Y Pim(@*)UDA0)d;m(y) = exp {cos }0(z*y) — sin }0[z*y]}. (2.24)
im

The matrix u is unitary and unimodular, that is, possesses a unit deter-
minant. Its representation in terms of spin matrices has, as it must, the form

of (2.12),
u = ¢~ (/D03 g=(i/2)003 o—(i/2woy (2.25)
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Any such unijtary matrix can be presented as
u=e (2.26)

where J# is a Hermitian matrix. Since
det u = e~t4¥, (2.27)

S must be a traceless Hermitian matrix and, accordingly, is a linear combina-
tion of the spin matrices, with real coefficients. Hence u can be written as

U =g~/ (2.28)

where n is a unit vector, specified by two angles, « and B. The fact that (2.28)
is the matrix describing a rotation through the angle y about the axis n
affirms the well-known equivalence between an arbitrary rotation and a sim-
ple rotation about a suitably chosen axis. The rotation angle y is easily
obtained by comparing the trace of u, in its two versions,

4tr u = cos {y = cos 46 cos P+ ). (2.29)
More generally, the trace of U for a given j depends only upon the rotation
angle y. We define®
. i .
=¥ jUﬁ,{Zn =tr P;U, (2.30)

m=—

in which P; is the projection operator for the states with quantum number 7.
If we remark that U must also have the form of (2.28),

U=eimJ (2.31)
we immediately obtain
j . . -
X = 5 gmim B+ )y (2.32)
Mm=—j sm i}’ ’ .

However, we can also derive this directly from the generating function (2.21).

For simplicity we shall assume the reference system to be so chosen that
 is a diagonal matrix, with eigenvalues e*¥/2, We replace x; with t(o/ay,)
and evaluate the derivatives at ¥, =0. According to

Pim(P12Y)bim(Y) o = Sy » (2.33)
we then have

, . 0 . a
1293 — ex te— /2w ; -exp (teli/2v __
; X P By, Y+) oD eV

; y_)] (2.34)
y;=0

in which the notation reflects the necessity of placing the derivatives to the
left of the powers of Y;- Now

8 This trace is the character of group theory.
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a -2 Aﬂ a n n w l
i)=Y ()= an L 2.35
OB OISR S
and therefore
. 1 1
(29, ()
}J: " 1 —t%ex ¢ 1—t-ex i
- ! (2.36
" 1—2t-cos 3}y + &’ -36)
which is a generating function for the ¥, On writing
1 1
1—¢ ‘ 1—¢ i
— . x — — !e
© 2¥ P gY
1. 1 1

~ 2i-sin §y i\ | #37)
1 —t-exp 37 1 —t-exp 14

and expanding in powers of ¢, one obtains
sin(j + )y
sindy

Symmetry properties of U @) A$0y) are easily inferred from (2.21). Accord-
ing to the invariance of (z*uy) under the substitutions pod+ 7, a* ey,
and ¢—>¢—u, 0 >m—0, y> — ¥, Y, —>1yz, we have

Us,’,zn(¢0|/1) = Ug?m(lﬁ +70,¢—m) = iz"Uf,{')_m.(gb —m o —0, —y). (2.39)

Among the additional equivalent forms produced by successive application
of these transformations are

i2jU(—j)mm’(_¢’ 7—0, ‘/J +m) = U(—j)m-m’ (m— ¢’ 0, —m — ¢)
= Uy~ 6, —9). (2.40)

xy) = (2.38)

We also note that
Uiw(p0d) = UD(—4, 0, —§) = UL, ($+m, 6, —m). (241)

On removing the angles ¢ and  with the aid of (2.22), we find that the
content of (2.39) and (2.40) is

Uniw(6) = (=1 ""UQ_ (e — 6) = (=1~ UV, . (r — 6)

= (=1)" U, (6) = (—1)" ™ UD(0) = UD,,__(6). (2.42)
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In view of these relations, it is sufficient to exhibit U{),(6) fof non-negative
values of m and m',

On expanding the generating function (2.24) in terms of $im(2*), or of
éim(y), we obtain the equivalent expressions

2, Ui (O0bimly) = dym(cos 40y, —sin §0y_,sin 10y, + cos }0y_), (2.43a)

Y $im(@*) U (60) = &y, (co8 40 2% -+ 8in 30 2* , —sin 36 x§ + cos §6z*),
: (2.43b)

of which the latter is the counterpart of (2.7). As a convenient means of

constructing U{)..(6), we place

zy =sin §0cos 46, z* =t —cos? 36,
80 that (2.43b) reads

(sin 36 cos 36)/+™
2 G+ miG —myn ¢

cos® 36)'~™ U).(6)

(sin 36)7+™(cos 36) ™
(G + m)(G —m')1]V/2

| Jerma -t e

Thus

UD (0) = (—1))—™ [(j 4 m)! 1 ]1/2

(G —m) (5 +m)(j —m')!
“[(sin 36)™™*™ (cos 36)~™~™]

Cra\iem '
. ((E) EEL -y ]t = cos? }4. (245

The structure of the right side will be recognized as that of the Jacobi poly-
nomial,

F S = AP (kDL b~a
,,(a,b,t)—F(—n,a-l—n,b,t)——mt (l—t)
.(ad__t)ntb-i-n—l(l _t)a—b+n’ b (246)

whence*
—1Vi-mT (3 ; ’
U%m=(1>frﬁwmq+¢ﬂ
(m +m M| (j —m)! (j —m’)!
Fi—mlZm 41, m 4+ m' +1; cos® 36). (2.47)
4 This is equivalent to the result obtained by P. Giittinger, Z. Phys. 73, 169 (1931).

1/2
] (sin 36)™"™ (cos }9)™+™
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Other forms can be obtained from (2.43), corresponding to the variety of
transformations permissible to hypergeometric functions. Thus the known
relation

Fla,b,¢c;z)— (1 — w)‘“F(a, c—b,ci — z ) (2.48)

applied to (2.47), gives
(=1 [(j + m)! (j + m')!
(m +m' )| (j —m)! (j—m)!
‘Fim —j,m' —j, m+m' +1; —cot? 16). (2.49)

UDA0) =

172
] (sin }6)* (cot 36)™+™

Another aspect of reference system transformation is best discussed in
terms of
Udi$8y) = em™UD,(0)e™® = (jm'| U~ jm). (2.50)

This quantity is the transformation function
(F'(jm’), ¥ (jm)) = (w,jm’| jm), (2.51)

in which we have used w to designate collectively the angles ¢y, relating
the new reference system to the fixed one. We shall be interested in the differ-
ential characterization of this transformation function, in its dependence
upon the Eulerian angles. Now

-—=U1l=U0"1Y

i o 3

1

12 g1 — vy (2.52)

t O

1o Ul=U-le W3] ,eis = 1]

i 00 2 o ;
where |

Jy=Jzcos 8+ }sin O(J e 4 J_e¥), (2.53) 5

1 . ,
Jy =5 (J,e™% —J_e¥),

and, therefore ;

{ 10
| ;a(wl ) =(wlJ3] )
Ao 1 10 10
e"”[ﬁ + prawr <; g/’ —cos @ 7 —)](wl ) = (wlJ .| ) (2.54)

J 2, 1 Nna 1 B
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This is & differential operator representation of an arbitrary aii‘gular momen-
tum vector. The familiar differential operators associated with an orbital
angular momentum emerge if the transformation function is independent of
Y. Since this corresponds to m’ =0, the quantum number Jj must then be an
integer.5

The differential operators (2.54) are well-known in connection with angular
momentum of a rigid body, and, accordingly, the eigenvalue equation for J2
in this representation will be identical with the symmetrical top wave
equation. To construct this equation directly, we remark that

JE=T3+ (e % 4 T _e¥) — (3 e — 3T _oiéy?

Jo—J, cos O

=J§+[———3 Binaoos ] +J? (2.55)

J2 2 J? 1

=8 T8 ‘f;so'*' 3 4 J2+cot 0= J,
s1n ?
since
) . a1

[Jg, J3] = sin 0 ;J,,. (2.56)

On referring to (2.52), we immediately obtain

i o 1 (& A P
(2.67)

and the analogous differential equation for (w| ), including the eigenvalue
equation )

m? — 2mm’ cos 0 -+ m'?

26? sin?0

a2 a .. o ' ~
[ +cot0% +i(G+1) — J(w,ﬁnbm)=0- (2.58)

An integral theorem concerning the angular dependence of U, or U™}, is
stated by
JUdw =P, (2.59)

where P, is the projection operator for the state j=0, and
) 1 1
dw = } sin -d6--— de- — dyJ, (2.60)
4 4
Jdw=1.

5 The fact that the general differential operators (2.54) admit half-integral values
of j has been noticed by F. Bopp and R. Haag, Z. Naturforsch. 5a, 644 (1950).
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The integration domain is here understood to be

0<d<dm, O0<Y<dm, 0<6<Zm. (2.61)

To prove this theorem we subject (2.57) to the angular integrations contained
in dw. In virtue of the periodicity possessed by U~! over 4+ intervals of ¢
and ¢, we obtain

. 0 dé df I |
-1 2 __ -1 —0. . ;
J' U ldwJ? = z}l:sm 0 60_[U o 4‘”:L=0 0 (2.62) |

This result asserts the vanishing of [ U~! dw, and the Hermitian conjugate ;
J U dw, except for the state with j = 0. The fact that the rotation operator U |
reduces to unity for this spherically symmetrical state completes the proof }
- of (2.69). We shall defer application of this theorem to the next section. E
!

|

3. AppITION OF Two ANGULAR MOMENTA

Two kinematically independent angular momenta, J, and J,, can be
‘expressed by
= ‘Z af ({4a]{a;,
X

I, =Y bf (Llial )by, (3.1)

Ly

where the a and b operators individually obey (1.1), but are mutually com-
mutative. In studying the eigenvectors of the total angular momentum,

J=J+1, (3.2)
the following scalar operators play an important role:
Fy=(@%h), JF_=(b*a),

Fs=13H(a" a) — (b* b)] = }(n, —n,), 3.3)
and
A, =[a*b*], A _ —=[ab],

Hy=Ha*a)+ b)) +1=in+1. (3.4)

As one can easily verify by direct calculation, the operators ¢ and ¢
commute with each other (as well as with J), and obey

[jwji]':ifir [j+sf—]=2/3p
[fav xi]’::’:fi: [f+,f_]=—2f3. . (3.5)

It will be noted that the commutation properties of the # operators are those
of a conventional angular momentum, while the " operators are analogous
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to the hyperbolic angular momentum K, which was discussed in the first
section. We shall denote the eigenvalues of £, and X by pand v, respective-
ly. These quantities have the following significance,

U p=jr—Jja v=J1+Js+1. (3.6)
In evaluating the square of the resultant angular momentum, we encounter

210, =4 3 _afahibelloll) (L"lolt")

= ;‘: afapbib, — dnyn,. (3.7)
This can be expressed either in terms of the ¢ operators, or of the " opera-
tors, since
F I = ; btapatb, =n,+ Z: ata,blb,, (3.8)
and
H A _ = Z af b (ahy —ayb) =nm, — 3 ata.bib,. (3.9)
Indeed, ¢ o
Jz=fa(fs+1)+f—f+=fs(js_1)+f+f—, (3.10)
and

ﬁ=xuxy—n—x;x;=xyxy+n—xgx;. (3.11)

From the first, conventional, representation of J? in terms of the angular
momentum ¢, we infer that

j=|ul, (3.12)
or .
J =131 —Jals } (3.13)
while the hyperbolic representation implies that '
y—1>], ‘ (3.14)
or
htie=j (3.15)
We have thus arrived at
Ji e 23 2151 —Jal» (3.16)

the familiar restriction on the composition of two angular momenta.

An eigenvector of J? is conveniently labelled by the eigenvalues of J,,
F3 and Ay In virtue of (3.6), the resulting eigenvector ¥( Jmuv) is equiva-
lently designated as W'(j,j,jm). In particular, the state with y — j+1 cor-
responds to j; +j, =j, and 2j, =j+ u, 2j,=j— u. The special state
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L

of this type with m =j can be realized in only one way, since m =j, + j,
requires that m, = j,, m, =j,. Thus

(ai)”“ (b}:)j—u

P+ ) =G5 o0 G = @17
With an arbitrary reference system, this result becomes
. 3 o (xa+)j+“(xb+)j""
211/ (@Y 1) =— , ¥, (318
((2)1 mzZ_jqu @Fmig + 1) = o e (318)

according to (2.4). We multiply this # analogue of (1.13) with ¢, (£), and sum

with respect to y,

(€, (zat) + £_(ab*))™
()

(22 Y. (@) (E)F (Gmpg + 1) = ¥o. (3.19)
my

Further summation with respect to j then yields
> (22 (@)bs (E)F (mpf + 1) = ef+E#IHEEDY - (3.20)
. Imu
To complete the determination of the eigenvector W(jmuv), we need the

analogue of (1.29), specifying the eigenvector with arbitrary v in terms of that
with the minimum value, j + 1. For this purpose, we examine the operator®

Y =¢2¥s"1 (8.21)
which has the following significant properties,
taV—2.9£" ny ta 2V—-2.9£’ 1)?¥V 3.22
ét- - ( 3 ) ’ a_t _( 3 ) ’ ( . )
and
Vi _ V=0x_, A_V=3VA_. (3.23)

In conjunction with

4)2 41 =(2.7i’3——-l)2—4.9f+.7f_, (3.24)
we obtain
# 1o 4341
(Et_z -ta—————ﬁ—-)V—4f+Vf_=O, (3.25)

an ordered operator form of Bessel's equation. The solution is
2
V=Wt g b B P o), (3.26)

where P is an integration constant, and the notation is intended to indicate
that P is inserted between the powers of )", and X _ in the ordered operator

8 Our procedure here is based upon the general method of Appendix A.
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expansion of the function F defined in (1.36). The second solution of the
Bessel equation has been rejected in order to conform with the fact that
2*¥3~1 must vanish as t—0, in view of the non-negative character of
X'y — 1. The operator (3.26) can also be written as

V =;t2‘!+lF2j+l (t2‘x‘+; Pj,j+1; f«—)

0
=2 ) 7P, (3.27)
T v=j+1

where P, is the projection operator for the state with the indicated eigen-
values. According to the well-known Bessel function power series we then have

where
(254 1) ve o
wA) = . : =it 3.29
“ [(v+1)l(v—3—l)! 520
This yields the desired eigenvector relation,
W(jmpv) = w; (K )Y (jmug + 1). (3.30)

It will be noted that, with respect to j and v, Eq. (3.30) is converted into
(1.29) by the substitutions

j—>Im| —%  voj+ 4, (3.31)

which are in accord with the significance of K. Corresponding, then, to the
generating functions (1.35) and (1.37), we have

_;_ le,()\)‘lf'(jm,uv) =Foj11 QA )Y (g + 1), (3.32)
and )
@5+ 3 v myw) = Wijm +1), (339
in which !

. 172
v +J) ] Y=is1, (3.34)

o =5

The application of the operator &**+ to (3.20) thus produces
Z (2j + l)—l/2¢jm(x)¢j“(£)ij(A)‘F(jm,uv) — e/\[a+b+]+£+(xa+)+€_(zb+)\{fo_ (3.35)
Jmuy
The eigenvectors are exhibited somewhat more explicitly” in the result
? The normalization constant does not automatically appear in the corresponding

group theory formula. B. I.. van der Waerden, ** Die gruppentheoretische Methode in der
Quantenmechanik ** (Berlin, 1932).

QuaNTUM THEORY OF ANGULAR MOMENTUM




[

t

ON ANGULAR MOMENTUM .

obtained by applying w; (A, ) to (3.18),
: 1/2
m;j-f’"'(x) Hlrdagm) = [(jl +Z ijl T 1)!] /
[atdtrtiz=i.(gg+)i+it=ia. (gp+yiz+i=i
'[m'l i =G + iy —3a)lGe + 5 —G)T72
in which we have employed Jr and jy, rather than u and v. For the purpose of
converting (3.36) into a convenient expression for the transformation function

]‘I’O, (3.36)

(Jrgedm] jimyjgms) = (¥, Gagm), F(Gym, jomy)), (3.37)
we make the replacement z, —2*, z_ —z, and take the scalar product

with the generating function of the W J1myJams),

Z ¢j1m1(x)(’sizmz(y)‘lr(jlmljzn"Z) = e(mﬂﬂym\}’o- (3.38)
Jimyjame .
The ensuing formula can be written
> ¢j1m1(x)¢jzmg(y)¢j3m3(z)X(jlj2j3;mlm2m3)
3

mimom.

=[(j1 +j2 +j3 + l)!]—llz'

[yz]jz+f3‘j1 [zx)fatir—iz [axy)rtie—is
[(J2 +Js ~ s + 4, —J2 +Jj2 —j)V*
(3.39)

in virtue of the definition8
(jlj2jm,jlmlj2m2) = (25 + 1)1/2(—1)]'1_].“7"){(.7'1].2.7'; mym, —m). (3.40)

Multiplication with
D jasa (By) =[(J +1)!]/2

a.’—ZjlﬁJ—2j2_yJ—2j3
[(J—2j1)!(=’ —2j2)!(J_2j3)!]l/2
I =jr+Jjz +dss (3.41)

and summation with respect to Ji» Jo» and jy, then yields the generating
function

Z ¢i1m1(x)¢jzmz(y )¢137"3(z)¢jlizja(“:87)x (J1Jeds; mymomy) = eolvel+Blazl+yizy)
jm
(3.42)

8 This X coefficient is related to the V coefficient of G. Racah, Phys. Rev. 62, 438
(1942), by X = (—1)j2+i~i1V. We have introduced the X coefficient by virtue of its
greater symmetry: compare Egs. {3.44), (3.45) with Eq. (19a) of Racah’s paper (hence-
forth referred to as R). Editors’ note: This X coefficient is identical to the Wigner 3.5
1 g2 ])

mimam

symbol; i.e., X(j1jaj; mimam) = (

P
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Symmetry properties of the X coefficients can be easily inferred from the
invariance of the generating function to particular substitutions. Thus, the
null effect of multiplying z,, y,, z, by eé¥/?¥, and z_, y_, z_ by e~ /2,
indicates that X vanishes unless

m, + my + mg =0. (3.43)

The invariance of the generating function for simultaneous cyclic permuta-
tions of z, y, z and «, B, y implies the corresponding property for X:

X(j1dodss mimemg) = X(ojadss momamy) = X(jaj1je; mamymy). (3.44)

The interchange of « and y, combined with the substitutions «+» —f,

y — —, discloses the behavior of the X coefficients with respect to non-cyclic
permutations,

X(jogrdss memimg) = X(§)J3des mymamy) = X(jiajodys mamem,)
= (— 1) X(jyodas mymgmy), (3.45)

while the exchange of v, y,, 2, withz_, y_, z_, in conjunction with sign
reversals for «, B, y, leads to

X (J1dodss —my—my—mg) = (—1) X (j)Joda; mymoms). (3.46)
Among the implied properties of the transformation function (3.37) are
(Jodrdmljamagymy) = (Jrjed — m|Jy — my jo — my)
= (= 1)tHI873(j o jm] §ymy jam). (3.47)
The expression for X(j,j,75; mm,m,), obtained by expanding (3.39), is
S (s + m)lgs — m)UT — 251"/

X(Gm)y=[+ DYV Y (=" . (3.48)
U ; ¢1;11 J —2j; —ny)lnd .
in which ‘

n =n, + ny+ ng, (3.49)
and the summation is to be extended over all n; subject to

J—25,=n;, =0, (3.50)
and

Ny — Ny =My — fy + Jg Ny — Ny =my —jg+jy, 0y — Ry =my —j; +j,. (3.51)

The latter conditions can also be written as
J—2j,—ny=jy+my—ng=j; —mg—mn,

J —2jp —ny =jg + my —ny =j; —m; —ny

J —2jy —ng=jy +my —ny=j; —my —ny. (3.62)
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It follows from the non-negative character of these quantities that the n; are
uniquely determined if one of the nine integers J — 2j,, j; + m,, j; — m, is equal
to zero. In general, the number of terms in the sum (3.48) exceeds by unity
the smallest of these nine integers. It is a matter of convenience which of the
n,; is chosen as the summation parameter.

The X coefficient can also be exhibited in closed form whenever the {m,| have
the minimum values compatible with the given j;. The simplest illustration of
this is provided by X(j, j,js; 000) corresponding to integral values of J11 Jes and
Js- Note that this quantity vanishes, according to (3.46), if 3J is not an integer.
Our procedure here is to place z_ = 8/dz ., with analogous substitutions for
y_ and z_, and to evaluate the derivatives at « + =¥Y4 =2, =0. Since

(s +m)l(Gy —m)N]~V2- (0w, Yr-maiptm), =85, ., (3.53)

this effectively isolates the m = 0 terms in (3.42). The reduction of the genera-
ting function can be performed with the aid of the following theorem con-
cerning ordered operators, which will be proved in Appendix B. If a and a*
are two operators satisfying [a, at] =1, and f(a*) is an arbitrary function,
we have

1 + z_ ..
e fgty = — f[ 2}, (3.54)
1—2"\1-—-
The differential operator realization of this, with a =9/dat, is the form
actually employed.
The result of the calculation is

Z D, jss (@BY) X (J1J2dss 000) = (1 4 a® 4 B2 4 43)71, (3.55)
]
which is a generating function for X(5; 0). On writing

At +F+y)7 = F (DY (@ 4y

l20

o 21 g1 =24 o ) ~23

=Y (=Y ) , (3.56
PR e S e e g U

we obtain the explicit formula?®
X(] 0) = (—l)” (é'])l 3 ((J — 2ji)l]1/2 (3‘57)

[(J + 1)17'/2 .IJI # — il

We extend this argument by making the substitutions z_ — ooz,
Y. —>90/0y,, 2, —0/0z_, and evaluating the derivatives for arbitrary = +1 Y

;

? This result is contained in R, Eq. (22).
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and z_. In view of

(4 +m)! 12 ximl
Poum "‘"’_[(,-, —m,)l] Gmyr ™ =0
0, m; <0, (3.58)
and
(Js -+ |mg])1 ]2 22mal
$iams(?) > [(js —'Imal)!:l @m0
0, my >0, (3.59)

we shall thereby obtain the X coefficient for m, > 0, m, >0, —my =m, + m,.
The values of X when two of the m, are negative can then be inferred from
(3.46). The generating function now becomes

eolval+Blzzl+vizy) (] 4 o2 32 + 91

‘exp {l + az :__Bz + ')’2 [(ay - ﬂ)x+ + (B‘y - “)y+]} (360)

and, on expanding in powers of 2, y,, and z_, we find that

3 )2
; (D.iu'zia(‘xﬁy) 1:1 [(]'_—'_M] X(j;m)

(J; — | my)!
oy —’3)2"'1 (By — o)™
= (2|my))! T F T (3.61)
The result attained by further expansion of (3.61) is
(it mp)! 1 ]‘/2 .
J 4+ 1) - i X(j;
[( 1 1:1 (Ji — |m )t (J — 25! (75 m)
- (3J,)! (2m,)! (2m,)!
- __1\}J2—2|mgt
= T T @y — ol @y — g %)

where
J,=J +n —n,, Jy=dJ —n, +n,, Jy=J +n,+n, (3.63)

The double summation is to be extended over such non-negative integers
that satisfy

J—2j —n,=>2m; —n, >0
J—2j,—n, >2m, —n, >0
J —2j3 = 2|my| —ny —ny >0, (3.64)
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and for which J + n, 4+ n, is an even integer. The sum consists of a single
term if one of the J — 25, vanishes, or if My = my = 0. This simplification may
also result from the evenness requirement on J,. Thus

] ] J+DIPE_
[Ul +]%_}(:]31_§;()| + )] X(Jl_h]a; 30 —13)
‘ - (3N
= (—1)W-1. o
Y =5~ DA )T —j; — ) even
= (=¥ 47 + ! J odd, (3.65)

G =N —gp — HIGT —j,)v

which are the X coefficients with the minimum |m;| corresponding to half-
integral values for two of the Jie

The orthogonality and normalization of the eigenvectors ¥ Jjmuv) can be
verified, with the aid of (3.35), by an extension of the procedure leading to
(1.21). According to Eq. (C7) of Appendix C, we have

 (exp {Aa*b*] + £, (zat) + ¢_(xb+)) Y.,

1 * *
exp{rla*d*] +n, (ya*) + n_(yb+)} ¥,)= (T —x*p)2 &P [(51 z) (/\x*i/ )]’
(3.66)
and the expansion
1 [(E*n)(=*y)

(1 —A*K)2 °xp 1—A*x

1
= Z m ¢jm(x*)¢jm(y)¢ju(§*)¢ju(77)xj"(A*)Xj"(K) (3'67)

muy

establishes that
(IP'(jm/IV), lp(j'm,/l,v,)) = 81']' Smm' 8#[" Sw'. (3-68)

The unitary nature of the transformation W(jym,jym,) — W J1Jegm), and
of its inverse, imposes the following conditions upon the X coefficients,

1

m1zmz X (J1dadz mymymg) X (4,5, s; mymym,) = m 8ai'a Omgmry  (3.69)
and
jazms(2j3 + 1) X(5,5275 mymymy) X (5, 505s; mim;ma) = smlm'l amgm'g' (3.70)
As a particular consequence of (3.69), we have
;[X(J'; m)P=1., N (3.71)
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The Rotation Matrices e

The results of this section can be applied in developing further the proper-
ties of the matrices UY),.(46y), which were introduced in Section 2. If U is the
operator generating a reférence system rotation for the composite system
with angular momentum J = J, + J,, while U, and U, are the corresponding
operators for the individual angular momenta, we have

U = U1U2, (3.72)
according to the exponential form (2.31). In particular, theorem (2.59) states

that
[ U Udw = P, (3.73)

where P, is the projection operator for the j = 0 state of the resultant angular
momentum. On taking matrix elements of the latter equation, we find

] Uii}in,'(w) Ui.’i:l..',(w)dw = (J1mJom,| Poljlm;jzm;)

= (jlmlj2m2'jlj200)(j1j200|jlm;j2m;)
1

= 531—_]__1 sju'a S—mxm 6

ym-m2  (3.74)

-—m’lm’g( -
since

(513200] jymy Joms) = (25, 4 1)~V —1)1—™ 8150 O —myma: (3.75)
In view of (2.41), it is also possible to write (3.74) as

f U4, *(w)UY2), (w)dw = F) (3.76)

mym’y nmgm’a 25, +1 Siu'z Smwlz m'im’g
which expresses the orthogonality properties of the rotation matrices, in
their dependence upon the rotation parameters. :

The orthogonality relation of the trace y'¥, derived from (3.76), is

Ix(h)‘x(jz) dw =38 (3.77)

J1je
This integral can be simplified, since the x'/) depend only upon the rotation
angle v. We write

211
dw =J $dy sin 3y 8(008 3y — cos 360-cos &J’)dw, (3.78)
0

and, after first performing the dew integration, obtain

2n 1
; ; .oV
Jl) X(n)(y)*x(n)(y); sin2 3 dy = aju'z , (3.79)

which can be verified directly.
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We return to (3.72) and observe that its matrix element is

. . s o 5 . s . 1 . ! ,.
Uﬁ,f.{l,,,l(w) Uf,{:Z,.',(w) = _Z'(]lml]2m2 [d1dzgm) U%f(w)(]l]z.?mlhml]zmz)
Jmm
=,Z (25 + D)X (G1Jog; mmg — m)(—1)" "™ U (w) X (4,545 mymy — m'),
mm’
(3.80)
or
Ui, (@)Ud8, (o)
= ), (% + 1)X(GiJpd; mymem)USh) w)* X (j G mymym’).  (3.81)
jmm’
With the use of the orthogonality relation (3.76), this can be presented in the
symmetrical form
fUﬁ,{i)nl.Uﬁ,{:znleﬁ,{an.adw =X(J,J,dgs mm,m )X (j 5,5, mmm). (3.82)
Specializations of this integral are provided by
d7r 1/2 .
vd) = n .
and
U = Py(cos 6), (3.84)
where Y, is the spherical harmonic associated with integral [, and P/(cos 6)
is the Legendre polynomial.
Thus
) 1 21, 4 1Y ]2
Y mi Yigmg Y igmg 38in 0 20 — dop = IMl— X(1;0) X(I; m), (3.85)
1L o 27 ; 4
and
J. P, (cos 0) P, (cos 0) Py, (cos 6) 4 sin 0dO =[X(I; 0))%.  (3.86)
0
The multiplication property of the trace, as derived from (3.80) is ‘
( j=ith £
XD =" 3P, (3.87)
J=ljr—jal E:l
which can also be expressed in the form '*}
g
&
f.

" 1 1, J—-24,>0
(31}, (J2), (73) _ qin2 = : 3.88
J:X X7 "sm by dy {O, -otherwise. ( )
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One can regard this as a realization of the projection opei:ator statement of
the angular momentum composition law,
' J=jitia-
. Py Py = Z P, (3.89)
I=1j1~Jsl
since (3.87) is the trace of the equation obtained by muitiplying (3.89) with
Ul U2 = U-
. We shall conclude this discussion by deriving the completeness relations
for the functions y'(w) and UY) .(w). Referring to (2.36), the generating
function of the x*¥, we replace ¢ therein with te/?"" and obtain

;tzjx(f)(w)ei(jﬂ)y' = " 1 ” ” ,  (3.90) .
14+ cos - ——2tcos§ —ising (1—1t3)
the imaginary part of which can be written
; 2N w)y M)
- 212 4t (‘; —t'))" 2 Y YV @50
(1 —1¢7) (1 — T cos 3 cos E) -+ 4t'(cos 3~ cos E)
We now consider the limit ¢ — 1, and infer from the known result
lim 2 L= 8(), (3.92)
e TE + €
that
:l: xMNw)yNw') = gm S(cos)—; — cos 7—;) : (3.93)
However

]. 12 2 ’
J; sin——y/—é8<cos-§ — co8 %)dw =L S(cosg — co8 %)sin g tdy =1, (3.94)

so that (3.93) can be written

Z ¥ (w)yNw') = §(w — ), (3.95)
J

which is the completeness relation of the y‘¥). As a specialization of (3.95), we
place ' =0 and find

; (2j + 1xw) = 8(w). (3.96)
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An operator expression for the composition of successive rotations is given
by
V() U w') = Ulw — w'). (3.97)
We take the trace of this equation for the states with quantum number 7
and, in virtue of the unitary property of U, obtain
2, U () Ud(w)* = x9N w — '), (3.98)
mm’
which is in the nature of an addition theorem. The completeness relation for
the UY) .(w) is reached on multiplying (3.98) with 2j + 1 and summing with
respect to j. In view of (3.96), we have
2. (2 + DUG () U (w')* = 8(w — o). (3.99)
jmm’
On integration of (3.98) and (3.99) with respect to the Eulerian angle i, there

emerges the addition theorem and the completeness relation of the spherical
harmonics, '

4. THREE AND FOoUR ANGUIAR MoMENTA

Eigenvectors for the resultant of three angular momenta can be built up
in several ways, as symbolized by

J=Jl+(J2+J3)=J2+(13+J1)=J3+ (J1+Jg). (41)

Thus, according to the first procedure, we construct, W(j1m,Joj3jasmag) and
then W'(j,[,75]j255m), while the last method yields W'(jy[4,75]512m). The
notation [j,j,], for example, is intended to indicate that these angular
momenta are not involved explicitly in the composition of j, and j,, to
form j. Similarly, four angular momenta can be combined in various pairs,

J= (Jl + 12) + (J:; + J4) = (Jz + Js) + (J4 + Jl) = (J1 + Ja) + (Jz + 14):
(4.2)

in which the first method, say, yields W([4,7515100435,1F5.5m) through the
intermediary of W(j, JoJ1aMy2J354J34Ms,). Our problem in this section is the
evaluation of the transformation function connecting two such schemes of
adding four angular momenta. The analogous question for three angular
momenta can be regarded as a specialization of this more symmetrical prob-
lem.

To facilitate the addition of angular momenta in pairs, we observe that the
generating function (3.35), written as

; jz (25 + 1)—1/2¢jm(x)q)jlj,j(“1“2“3)‘?(.7’1.7.2]"”)
2im
' = explaglatb*] + z(aat) + oy (zb*) ¥, (4.3)
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L

can be obtained from
; ; Bimy E)Pramal) T (Gymydomy) =exp((tiat) 4+ (D* )Y (44)
1mpiams !

by the application of the differential operator

? d @ 0 2
R

with the understanding that the derivatives are to be evaluated at ¢, =¢, =0.
Accordingly, if we apply (4.5) and

w(s[L]n6 00

to the generating function of the W'(j,m,j,m,j,m,j,m,), namely,
exp((t,a*t) + (¢:0) + (te*) + (td )Y (4.7)

we shall obtain a function generating W(j,7,515M1275j4734M34)- The further
application of the operator

e e 0 2 7] 2 d ( 8)
3 ox 3:1/ 2 ox ! ay )
then produces

[(2j12 + 1)(2ja4 + 1)(2j + l)]—l/2¢jm(z)¢hhlu(a)

j1iaisjarziseim
'(Dis.‘iu'aa(B)q’J’lzJ‘au'(Y)l{r([jljz]jlz[jsjdjujm) = teFo’ (4.9)
in which
Q = aglatd*] 4 Byletdt] + y300 8,0t dt] + yyu, BolbF et ] + y3opBylatd ]
+ yaaaBolat et ] 4 yoon(zat) 4 yyo (2bF) + i Bylze™) 4 y1 By (2d ). (4.10)

As an important specialization of (4.9), yielding the eigenvectors with
Jj =0, we place y, =y, =0, and y3 = 1, with the result

" Zj ,,(2j’ + 1)7V20,, 5 (@) D ABVY (515215 135415°00) =" W,
1727374

R= “3[‘7’+b+] +Bs[°+d+] + “131[b+d+] + “1.32[b+°+] + “231[“+d+]
+ apBatct], (4.11)

where j' =j,, =js,- An analogous equation for a different mode of addition is

Y (@ 1) TR0 (o) Dy BV (1) (525 15700) = ™,

Jrizjajai’
"R =ojatet] 4 Bybtdt]+ eyBiletdt ]+ i Byletdt] 4 aBilatdt]
+ aéBé[a*‘b*]. (4.12)
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The transformation function connecting the two schemes is determined by!?

s T T 00 B, o) ABYW (s 557)

= (eR¥,, eFY¥,),  (4.13)
in which we have written!!

(0319215153541 0L31 301" (52§ 13"0) = (—1)F +5"~ir—3s
125+ D@5+ D12 W(iGojsda 557).  (4.14)
We now employ the theorem [Eq. (C28)]

4 4
(explt 3 MIATAITY, explt 3 [T AT
Byy= H,v=

=[1 =33 ALk, + XV xV2)72, (4.15)
in which the 4, are four sets of two component operators, obeying
[ACu’ A;_v] = 8,4;. 8“') (4.16)

and |2, | «| are the determinants of the antisymmetrical matrices A, and k.
For the application in question,

A2 k|2 = — oyBy0sBs,
%Z)\w"pu = “3“.‘;Bé + .33“;3; + “;“2/32 + ,3:;“1/31 - “1/32“1’18; + “251"‘;/31- (4.17)
uy

On changing the signs of «, and B3, we obtain for the generating function of
the W coefficients,

L (Djljzj'(“)q)jaju'(B)‘Djljaj' (a,)q)jzju"(ﬂl)W(jlj2j3j4;jlj”)
J1iajajai'i”
= [1—oyoy8— Bsi B — oty — .3:,;“1131"'“1:32“;&'“ o105, +ogBaasfy] 2.
(4.18)
The symmetry properties expressed by
WG1d2dadss 3'5°) = W(Gehrdeda; 357) = W (sjedodas 3'57)
= W(j1dsdedas 53" (4.19)
follow from the invariance of (4.18) under the respective substitutions:
aray Biofy, & B ajeray, BB aef; aero’, B> B, while the
more complicated transformation (a,apes) — ( —agagay), (xyocg05) > (8,8,Bs),
(BiB36:) — (B85 — B3 yields |
W(jrdedadss 379") = (=1 M= 1=0aW (%5, 5.5 3. 5,). (4.20)

10 For simplicity we have assumed that the parameters «, f are real. The generating
function (4.18) is valid without this restriction.
11 The W coefficient thereby defined is the same as that discussed in R,
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Twenty-four equivalent forms for W are obtained by réepeated use of (4.19)
and (4.20).

Further characteristics of W follow from the composition properties of the
transformation function (4.14), which we shall temporarily indicate by
(12, 345°|13, 245"). Thus

,Z. (12, 345'|13, 24;7)(13, 245712, 345") = 8 (4.21)

. and

Y (12, 34j'|13, 2457)(13, 247|14, 23j") = (12, 345'|14, 23j"). (4.22)
Z

All of these quantities can be expressed in terms of W. The interchange of 2
and 4, and of 3 and 4 in (4.14) yields, with the aid of (3.47),

(13, 2457|114, 23§") = (1)t s t3a=D1[(25" 4 1)(25" 4 1))'2W (§1d4ddes 575",

(4.23)
and
(12, 34|14, 23j") = (— 1"+ N[(25" + 102" + 1)]VEW (§yjodads; 5737)-
(4.24)
Therefore
Y 2"+ V)W (Gidedsdss 3 VW (rdedsdas 5737) = oo 855 (4.25)
i 2'+1
and

Z, (1) I kit et i 25" 4 1YW (1o 0das 357 YW (G1dadades 5757
J

= W(j1jejudsi 3'3"). (4.26)
These formulae can be combined by placing j, =j,. 7' =j" in (4.26) and,

after multiplication with 2j° + 1, performing the summation with respect to j’
by means of (4.25). We obtain

2 (23" + DW(iyjadals 357y = 2, (1) 7745, (4.27)
J

o

7

in which the values assumed by j” are those compatible with the existence of
W(j1dodadas 3'37), namely, §" =|jy —jsl, j" < Jjy + Js, 2jo- Accordingly,

1, keven

; (25" + V)W (51J2d2dss JT) = {O, k odd (4.28)

where k is the smaller of the two integers j; + j; — |j; —Jsl, 242 — |j; —Jal-
One of the consequences of (4.28),

W(j1J2J20; Jojo) = 2_7'—-]—1’ J1 =< 25, (4.29)
2
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is a particular example of

W(5132350; Gaie) =1(25s + 1Ny + DIV, |y — ol <y <o +Jsr  (4.30)

which follows from (4.14) on remarking that, with j, = 0, the interchange of
Jz and j; simply multiplies the eigenvector with (—1)ie+is—i1,

The relation between the W and X coefficients can be inferred from (4.14)
by writing

W((515210'[555:15°0)
= Z '+ l)"l/z(—1)f'—’"la‘l"(jlj2j’m12j3j4j’ — Myp)
mig
=(2j' + 1)1/2(_1)11+ja—iz—j4 Z X(jydad"s mlmz_mlz)(—‘l)j'_m”

mia
*X(J3Jud"s mymymy ) (jymy jomyjomajm,), (4.31)
which, with the similar representation of W'([4, j;] 31J27,1370), yields
2 X(1ded"s mymy—mp)(—1)7 M2 X (5,55 mgmmy,)
XU mma— (1)K Gy g
= (=LY HHI W (G oo 557). (4.32)

The general expression obtained for W by expanding the generating
function (4.18) can be cast into the form

W(j1dedsdss 39") = 1 [0+ p + 1 —n, )]V [T [(n, + p, 1]/

1!
) (—l)”s(—%;—,), (4.33)
where "
1 3
n=>ymn, p= lea , (4.34)
r=1 8=

and the summation is to be extended over the non-negative integers, n,, Py
for which

JetJ —h—P1=Js+J —Js—Pa=Jo+js—J —ps =My,
Jsti —js—Pr=§1+3J —Jo —Pa=J1+js —J —ps =1,
Js i =i —Pi=Js I —da—Pa=GJs+ji—J —Ps=ny,
Joti"—di—Py =4 +i" —Js—Pr =41 +Jo—5 —p3=n, (4.35)

The number of terms in the sum exceeds by unity the smallest of the twelve
quantum number combinations, j, + j' —j,, ete.; the sum reduces to a single
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term if one such combination vanishes. The choice of summation parameter is
& matter of convenience. '

We now return to the general problem, that of evaluating the transfor-
mation function - .

(1 dedireldsdddsadmilisislirsldodildaagm) = (—1)1s+ia=in=ds

“[(212 + 1)(2gs + 1)(2j1 + 1)( 204 + 1))V28(j1Jedsdes redssdrsdess §)-  (4.36)
A generating function for the S coefficient is given by!'?
Z(thl1n(a)(Djahhu(B)¢jldacl(7)q)leaj1s(“,)
: q’j,;.,j,.(ﬂ')‘ij,4j(‘)")'s(j1j2jsj4; Jredsadrsdess 9)
={1 + ctgBgorsfs — Ys(“;“zﬁz + BsuBy) — ')’;(“3“‘/.:.3; + BsoiB)
- 7371,)(“2ﬁla2”ﬁ; + o,By18s) — yeyalogss + BaBsoacry) — yir1(BiBr + ot3t38582)
— y172(Beos + sBiBrocs) + oy (2B + B, (4.37)
where the sum is over all j’s. The connection with the X coefficients is con-
tained in

Y X (J1dedizs My —myg) X (Jsfsdses Mmamy—mg) X (Jr12Jsads MgMigy—m)

* X(jydsdrgs mymg—m13) X (Jodedoes Mamy—mo) X (J13Joe]s MagMaa—m)

= (—1)fsatS1atintdat2i8(j, j,jades Gredsedradoss J) (4.38)
(the sum is over all m’s) and the W coefficient appears as a special example,

8(jydadade: 3737997 0) =[2" + 1)(25" + 1))V W(j1dadalss 557 (4.39)

In view of the complexity of the § coefficient we shall be content to record
here only those cases that can be expressed in terms of W. This occurs when-
ever one of the nine quantum numbers involved in the S coefficient equals
zero, which is a consequence of (4.39) and the fact that the symmetry of S is

such that any of the other quantum numbers can appear in the position of j.
Thus, it follows from either (4.37) or (4.38) that

S(j1j2j3j4?j12j34j13j24§j)
= ( —1)etdea=irtie=93=0a8(j . j\ jaudas Jodadirss J2a)
= (—1)f2a+isa=d12=12=34738(jj o 512515 aadadasdes Ja)s {4.40)

which are representative of the eight permutations of this type. We obtain
from (4.39) that

S(j1dzdsdes J12J3401305 Jrs)
= (—1)/13= 1= 5[(25, + 1)(2jy5 + )]V W (j1J1edsdae Jors)  (4:41)
12 This is obtained with the aid of Eq. (C30).
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and
S(jljzjsoijlzjsjwjzij)
= (—1)f~12~9[(25, 4 1)(2j5+1)]71/2 W(5ji2dradrs Jaje).  (4.42)

The latter result contains the solution to the problem of three angular
momenta. Expressed in terms of a transformation function, without explicit
reference to the angular momentum with zero quantum number, (4.42) states
that

([jlj2]jl2j3jml[jlja]jlsjzjm)
= ("‘l)jlz+jla—j1_j[(2j12 + 1)(2jy3 + 1)]1/2W(j1j2j3j;j12j13)- (4.43)

A slightly simpler form'® is obtained on permuting the indices 1 and 2,
together with a change in sense of addition for j, and Joa

([jsz]jlzjsjmljl[jzjs]jzajm)
=[(2J12 + 1)(245 + 1)]*/2 W(jljzjja;jlzjzs)- (4.44)

Asa pa.‘rticula,r consequence of this result, note that, according to (4.30),

([jlj2]j3j30ljl[j2j8]jlo) =1, (4-45)

that is, the eigenvector for the null resultant of three angular momenta is
independent of the mode of addition, provided that the order of the angular
momenta is preserved. As one representation of this eigenvector we have

W(5152d50) = ) (25 + 1)}~V A1y o)y —magamy),  (4.46)
mg
and therefore
(Gimydamyiamsy) gy jajs0) = [(24; + l)]—1/2(__1)j3+ma(jlmlj27n2ljlj2j3 —ny)
= (—l)jlﬂa*hx(jljzja; mymyms), (4.47)

in virtue of (3.40). Thus, the X coefficient, originally defined in terms of the
addition of two angular momenta, now appears as characterizing three
angular momenta with a null resultant.

This possibility, of replacing J, + J, =J with J, + J, + J; =0, depends
upon the circumstance that the negative of an angular momentum operator
is, in a certain sense, also an angular momentum operator. The commutation
relations

IXJ=14] (4.48)
imply that
(—=3) X (=J) = —i(-)), (4.49)

13 G. Racah, Phys. Rev. 63, 367(1943).
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which reassume the form (4.48) on changing the sign of ¢ (complex, not Her-
mitian conjugation). Therefore
i

v

V=—J* (4.50)

is an angular momentum operator. To find the eigenvectors of J’, we notice
that a rotation operator U is a function of iJ and real angles. Therefore

U =U* (4.51)

is the same function of J’ that U is of J. On taking the complex conjugate of
the equation

U¥(jm') = ¥ W(im)UG, (4.52)
we obtain
UY*(jm') =3 V*(gm)(—1)"~ U9, _ ., (4.53)

with the aid of (2.41). Hence
W(jm) = (—1)+™F*(j —m) (4.64)

are the eigenvectors associated with J’.
Now observe that the following dyadic, formed from the eigenvectors of a
single angular momentum,

(2j 4+ 1) VY W(jm)\V*(jm), (4.55)

is unchanged by a rotation of the reference system, since

2, Y(Gm)(gm' | U] jm) gm| U~ jm")¥*(jm") = 3 ¥ (jm)¥*(jm). (4.56)

mm’m”
Therefore, on employing (4.54) we infer that the vector
(25 +1)71/2 Y W(jm)(—1) ™" (j —m) (4.57)
m

describes the spherically symmetrical state of two angular momenta, which
is in agreement with (3.75). This is the basic example of the relationship
involved in (4.47).

5. TENsOR OPERATORS

An irreducible tensor operator of rank j(=0, }, 1,...) is a set of 2j +1
operators, 7'(jm), which transforms in the following manner under a change
in coordinate system,

; .
UT(jm)U-t= Y T(jm)U,. (5.1)
)

m==—~
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»

On taking the Hermitian conjugate of this equation and employing (2.41), we
find that s*™7'(j — m)! transforms in the same manner as T(jm). We therefore
define the Hermitian conjugate tensor 7" according to

TY(jm) = *™(Tj —m)t. (6.2)
The tensor that is conjugate to T is then described by
T(jm) = #™(TH(j —m)t = #n(i= 2" T(jm)')t = (~1)*"T(jm), (5.3)
or
T = (-1)¥7T. (5.4)

This shows that Hermitian tensors, Tt =T, exist only for integral j,"* and
satisfy
T(jm) = (—1)"T(j —m)". (6.5)

The product of two tensor operators transforms under coordinate system
rotations according to
UT\(§ymy) Ty joma) U~ = (U Ty (5ym)) U= WU Ty(jpmy) U~Y)
= Y Ty(jym) To(jema) UL, UG (5.6)

mim’y ~ mom’g"

mymy
It follows from (3.80) that
2 Ty(Gimy) Tyl Goma)(§ymy Jomol i jojm) = T, jojm) (5.7)
obeys -
UT(jjojm' U~ = ; T(j\jogm) U, (6.8)

and is therefore an irreducible tensor of rank j.

For a tensor operator applied to an angular momentum eigenvector we
have, analogously,

U(T(§my)¥ (amz)) = (U T(jymy)U =) UW (jymy))
= Z T(jl'lnl)‘l"(j2m2)UU1) Ui (5.9

mym’y "~ mam’y

mimsg
so that
Z T(jym )Y (jamo)(Gym, Jomel 1 Jagm) = D(j,j,jm) . (5.10)
mimg
obeys .
UD(jyjojm’) = 3. P(j1jafm) UL, (6.11)

14 Tt is similarly impossible to identify the ¥"*(jm) of (4.54) with ¥ (jm), for all m, if j is
half-integral. . .
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and is therefore an angular momentum eigenvector with quantum numbers
jand m,

The magnetic quantum number dependence of tensor operator matrix
elements is contained in the last statement. On introducing explicitly the

additional quantum numbers necessary to form a complete set, we are led to
write '

2, Tkg)¥ (y'§'m’)kqj'm’|kj'jm) = 3 W (yjm)(2§ + 1)~V [yl TPly'§'), (6.12)
am Y

where we have employed different letters for the tensor operator indices in
order to simplify the notation. It follows from (5.12) that!®

(ygm| T'(kg)|y'j'm’) = (25 + 1)~ V2 [yj| TW|y'§'Ykj'jm| kegj'm’)
= (1T | T®y'51X (ki —mgm').  (5.13)
As an alternative derivation of the latter result,!® we remark that
(yim| T'(kq)ly'j'm’) = (U¥ (yjm), UT(kq)U ' U¥ (y'j'm’))
= > (m’|T(kg)ly§'m"(—1y"~"UD,._ BT,
m'g'm”
(6.14)
An integration with respect to w then yields, according to (3.82),
(im|T(kg)lyj'm’) = 3 (=)™ X(jkj’; —mgm')X(jkj'; —m"q'm")
m’qg’'m”
“(yjm’| T(kq')|y'j'm™), (6.15)
which is (5.13), with

il T = 3 (=) 7 "X(jkj'; —mgm')(yjm| T (kq)ly'j'm’). (5.16)

mgm’

According to the definition of the Hermitian conjugate tensor, we have
(rgm| T (kg)ly'j'm’) = % (y'j'm’| T(k — g)|yjm)*

=2 —1)E I G T® 1 X (jkj'; —mgm'), (5.17)
or

[y | T®My'5') = 1252y | T®)|y5]%, (5.18)

in which use has been made of the X coefficient properties contained in
(3.45) and (3.46). For a Hermitian tensor, this result reads

(il T®ly'5 = (=1~ ly/§'| T®|yj]*. (6.19)
15 The relation between the rectangular bracket symbol and the analogous quantity
defined in R is
Ly | T®|y'§ ] = (= 1638 (yjII TR ||ly'5").
16 This is the method employed by E. Wigner, ** Gruppentheorie und ihre Anwendung
auf die Quantenmechanik der Atomspektrem ™ (Braunschweig, 1931), p. 263.
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If the tensor operators T, and T, of (6.7) refer to the same dynamical
variables, we may write

(vgm| T (kykokg)|y'j'm') = (=D | 7Ol by 571X ks —mgm'),
(6.20)
where in view of (6.16),

[‘)’jIT(k)(klkz)')’lj'] = Z’(_l)j'—k_mx(jkj'; _mqm,)(qulk292lk1k2kq)
mgm

.;/'Z': '(ijl Tl(qul)l)’”j”m”)(‘}’”j”m”l Tz(k2q2)|y'j’m'). (6.21)
"m

The resulting magnetic quantum number summation, involving four X
coefficients, can be identified with a W coefficient,

[ Ty k)51 = (2 + 1) 3, Wlkikaii's ")
1 4
DI Ty 51y 57| T8}y 5. (5.22)

When T, and T, are tensor operators associated with different dynamical
variables, so that

(T, J,] =[T,,J,]1=0, (5.23)
we have -
(Ydrdagm| Tk, kokg)|y' 5, jaj'm')y = ( el AR (YW [Tk ko) y's1 5251
-X(jkj'; —mgm').  (5.24)
Here

[v515231 T®(kykey) ' 5135571 = 2 (=1 —k=mx e, —mgm')
* (k19 %29, kykokq )(.71.72.7"”'.71"”1.72"”2)(.71’.7é.7 ‘m’|j {m{Jémé)
“(ygimy| Tl(qul)l'}"b';m;)()’”jzmzl To(kogs)ly'iams), (5.25)

where the sum is over all m variables. This magnetic quantum number sum-
mation, involving six X coefficients, can be identified with an § coefficient,

[lejzj | T(k)(klkz)l‘}”j;j;j']
=[(2j + 1)(2j" + 1)(2k + l)]l/2(_l)ja+1_.'l—j'—k1+ks(jlj2j;j;;jj’klkZ; k)
* Z[ijl Tgk')'}’”j;][)’”jzl T(zkz)b"j;]- (5.26)
Y

Special examples which require only the W coefficient are

s 2 A1 N0) sal ot . 2j+1 1/2 Jeti1—j—k P
[y31523| Tk Ry )|y 1355] = o 1| (VIR GGGy gk,
1

. ;[w’llTﬁ""ly”j{][y”jzlTfo.""ly’jé], (5.27)
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[7d1ded| Ty 51325') ”
=[(2 + 1)@’ + DVAH(— 1Y =S WG i k)il Ty 5], (6:28)
and g
[vdrdeil T |‘)"j1j;j 1
=[] + 1))’ + DIV I3 IW (oo’ 51 R)del Ty G} (5:29)

" Further relations connecting the S and W coefficients can be deduced from
these results. We shall illustrate this for the simpler situation in which only W
is involved. We multiply the two scalar operators!’

TOY(keykey) = 2 (2k, + 1)_1/2T1(k141)(—‘1)h_ql Tolley —qy) (6.30)
i

and
TO(koky) = ¥ (2ky + 1)7V2T (kogo)(—1)2 72Tk, —q0),  (5.31)
to obtain “
Tk yJe,) T kegkes) =q§2[(2k1 + 1)(2ky + 1)1 2Ty (k19,) T (kag2)
(—lytkem ey —q,) To(ky —gg).  (5:32)
On writing
T, (ky0,) Ty (koo) = {Yq T'y(Jeykog) (kykgkq| k191 Fags) (5.33)

and
Ty(ky — q,) Talky — o) ZZ‘ Ty(kykgle — g)(—1)1H*2 = (ke kokglkyqiKogp),  (5-34)
this becomes
TOkykey) TOkegkep)
= kzq:[(2kl + 1)(2ky + 1)) V2T (kykokg)(—1) ™1 To(kok ok — g)

C 241 /2
E;[@k +1)Ek2 +1)] TO([kykey Jhlk Ko JE)- (5.35)
1

A matrix element of this equation, when evaluated with the aid of (6.22) and
(5.27), yields the information that

W(.71.72.7:J;!]kl)W(J;J;JIJ;’Jk2)
= (=1 (2 + 1)(— 1)tk W (5, 5o gy dos )
&
' W(klkzjlj;; kj;)W(kxkzjzj;§ kj;)- (5.36)

17 Here T, and T, are functions of different dynamical variables.

264 QuanTuM THEORY OF ANGULAR MOMENTUM




ON ANGULAR MOMENTUM

Tensor operators can be constructed from the spin creation and annihila-
tion operators. Thus, consider the operator

evEat)Fi-tea) kz bro(2)Pral D) Rger), (5.37)
qa

formed from the commuting quantities (za*) and [za}. On subjecting this to a
unitary transformation, we find

AN — 5 4 (@) O Ut(hqo) U1, (5.38)
kqa

where the transformed creation and annihilation operators are described by
(2.14). Now, according to (2.19), we have

(za't) =(2'a*), [w']=[za], 2 —uz, (6.39)

in which the second statement stems from the fact that a_ and o 4+ transform
in the same way as a} and —a*. Therefore,

et )+ jea'] =kZ brg(42)br({)t(kger)
a
=, m;a Uiy (2)ben(Ot(Reqer ), (5.40)
on employing (2.21). We have thereby shown that
Utkg'a)U~' = ¥ bkq) UL (5.41)
7
On taking the Hermitian conjugate of (5.37) and making the substitution

2y —>z_, 2* —2z,, L, - —{_, which restores this generating
operator to its original form, we find that

Hkqa) = (=1t %k — g — o). (5.42)
Accordingly, the adjoint tensor is given by
tt(kga) = i**t(kq — a). (5.43)
The significance of « can be appreciated from

(za+)k+a[za]k—a

[+ ot — 72 — & Pul@llkga), (5.44)

namely, 2« is the excess of creation with respect to annihilation operators.
Therefore, if t(kqa) is applied to an angular momentum eigenvector with
quantum number j, it will produce an eigenvector with quantum number I
such that

e=j—j. (6.45)
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-

‘ To evaluate the matrix elements of ¥(kq«), we examine
f A (€=, et+(za+)+c_[.ul Ll N

. = g, P NG 0B o () o §) = 50+,
. ‘m’kqa

t I (5.46)

The substitution z§ —z_, z* — —z_ places this in the form

! B R
% , (5.47)

and comparison with (3.42) shows that

ettt lvzl=tilaz) =, > . $1-m(@Bu &by )b, 5 (0)
mj'm’kq

,(-_1)k+,-_,~[(_1_° +5 +k+1)!

1/2
:l X(5kj"; —mgm').  (5.48)

G+j' —k)
Therefore
. . Cam| I DR
(jmlt(kga)|j'm) =8, ;_p(—1f~I+m =02 | X(jkj'; —mgm),
\i~3 G5 —Hl Jk)'s —mgm)
(5.49)
or
, . G+ +E+ 1)1
Ll =8, jo ] ——e | - 5.50)
] v ‘
Of particular interest are the operators with « = 0 (k integral),
(za)*[za)®
i =2 $u(k). (5.51)
Indeed
—(za*)[za] =a-], ' (5.52)
where a is a null vector,
ara=0, (6.53)
with the components
a, = —2% +2%, ay = —i(z% +2%), a;=2z.2_. (5.54)
It is well known that if r is a position vector, (a-r)* is a spherical harmonic
of order k,
(a-r)* 47 |12
S = | 2% i ; ¢kq(z) Y, (r), (5.55)

where Y, (r), which usually designates a surface spherical harmonic, here
includes the factor r*. Accordingly, we write

(a-J) [ dm ]1/2
= bre(2) Y (3, (5.56)
2%kt | 2k + 1 ; T
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in which Y, (J) differs from the analogous Y, (r) only in that the order of
factors is significant. With this notation, we have

47 |2
t(k90)=[2k +1] (=27, (), (5.57)
and
. o [2k 1] (2 + k+ 1)ve
(k) — (LY | ¥ R
Lty (J)IJ]-[ ym ] (-4 [ B ] : (5.58)

Notice also that the tensor (kq0) is Hermitian, according to (5.43), so that
the operator harmonics satisfy ;

Yt =(—1)Y,_ (J). (5.59)
The matrix elements of the tensor operator :
Y(krkokg) = 3 ¥y 0 (D) Y000 (5 (ky gy kggsl ko) (5.60) I
2192

are described by
L1 Y By ky)] 51 = (28 + 1)V2W (ke &y 5 Rj) ] YEO 1 Y095, (5.61) !

in view of (5.22). With respect to their effect on an eigenvector with quantum '
number j, one can assert that ;

L3 YOy ky) ]
LIY®)

which becomes a generally valid operator equation on replacing j(j + 1) *
with J2 Hence

Z Y k101 (1) Y0, (J )(kyq,kog,) k) Koy leg)
q172

Y ®0] 3775 Yk 5
= Yy (0)(2k + 1)V2W (ki k) [j,'ﬁ([,f):j] 1 (563

Y(kykokq) = Y, () (5.62)

The example of this result for £ = 0 can be written

1o is BT (254 k+ 1)
t__ ®) 312 e 5.
2V Y y()" = iy =—x Grne—m %
in which we have employed
W (kkij; 0) = (—1)*[(2f + 1)(2k + 1))~ 172, (6.65)

One can easily exhibit the right side of (5.64) as a function of j(j + 1), and

thus obtain the operator equation

2k+1
4

2V, (Y0 = {12},
- ,
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@E=T1] [J2 —~ g(’g— + 1)] (5.66)

n=0

The structure of the operator {J%}* can also be inferred from the two require-
ments that it annihilate any eigenvector with j < 4k, and that it simplify to
the kth power of J? as j becomes very large.

We return to (5.63), displayed in the form

'-Yklﬂ,(‘l) Ykzqa(J)
ok, + 1)(2k, 4+ 1) /2
=[( 1+ 4)£r 2+ )] kZqu(J)fk1k2k(J2)(klk2kq'qulk2q2)’ (5.67)
where ‘
{J‘.Z}k 1/2 .
[{“J—}"‘_{J_“*}T] FeitI®) = (25 + D)2 W(kikofjs ki) (5.68)

The analogous equation for ¥,,..(J)Y, . (J) differs from (5.67) only by the
inclusion of the factor (—1)¥1+*2=% as follows from (3.47). The addition and

subtraction of these two equations then yields

(2ky + 1)(2k; 4 1)
{Y 140, (3)s Yiggo (D)} =|: ! y 2 ]
evg . Yo fiprge 32V Ry kgl kyg,kog)  (5.69)
and )
(2k, + 1)(2k, + 1)]2
SONES Wi =[ 1+ ek, ]

. od;k YD S grar IV Ky kokg| yg, kngs), ~ (5.70)
» Kq

where the parity referred to is that of k, + k, — k. In the latter equation we
have the commutation properties of these operator functions of J.

As an elementary application of (5.70), we take its trace for the states with
quantum number j. In view of the null trace possessed by a commutator, we
infer that the trace of Y, (J) vanishes for every k that can occur in (5.70).
Since these k values are |k, —ky| + 1, |ky —ky| +3, ..., % + k& —1, we
obtain'®

trY,,(J) =0, k>0, (6.71)

18 This theorem is easily proved for an arbitrary tensor operator by taking the trace
of (5.1) for states with a given j, and integrating with respect to w

J
Y, (yimlT(ka)lyim) =0,  k>0.

m=—j

Of course, k must be integral if the individual matrix elements are not to vanish.
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or

5T trOY, (J) = 8. (5.72)

With the aid of this result, the trace of (5.67) is evaluated as

5T ey,

1
DY 4oy (D) = o VU + 1Y 8,8, ., (5.73)

which expresses the orthogonality of the operator harmonics. The multi-
plication of (5.67) with ¥ kagaJ) then yields

1 . 2k, +1 1/2
2j+1 tr(”thl(J) Ykzqz(J) Ykaqa(‘,) = [H 4 {35 + 1)}k']

5 T
"X (s @) (=142 + 1)V (ke by kyj). (5.74)
A comparison with (3.85) shows that, in the limit of large 7
(—1)"“"2(23' + 1)1/2W(klk2jj; ksj) — X (kykyky; 000). (5.75)

Turning to tensor operators formed from two angular momenta, we remark
that, for matrix elements diagonal in j,

Z Yqul(Jl)Ykzqg(Jz)(qulk2q2|klk2kq)
q192

= qu(-])(2j + 1)(2k 4 1)1/2(—1)j'+j2_j_kl+kS(j1j~)j1j2;ijlkz; k)

L3 YE0U 5,705, Y25,
(51 Y®) 5] '

No such restriction is required for the special example

LY 4 Y1) = (=) +32~3W (5o 5y R YOG Y9150 (5.77)
q

(5.76)

In terms of the Legendre polynomial operator defined by

2k -1
47

LY ANY, () = P.J, 1), (5.78)
q

the latter equation can be written
ISPy, By) = (—1yin+is=iggj, 4 Y224, + 1V2W (55,51 5,35%),
(6.79)

which indicates the limiting form of the right side for large jy, j,, and j. The
simple result obtained for j =0 can be expressed as

PJ, = 1) = (—1)4{J*}* (5.80)

-
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A multiplication theorem for the Legendre operator is obtained from the
observation that

»

2k, +1 2k, +1 '
1411‘ iﬂ Pkl(Jp JZ)Pk’(Jp Jz)
= .Zq (¥ iagalI1) Vi sgn(3) Yy, (32) Vi (Jo), - (6:81)
I{&mely,1° 2
Ph,(Jls Jz)sz(Jp 12)

= ; (2k 4+ 1)P,(J,, Jz)(_l)k‘+h_kfklkzk('l%)fhkzk(]%)' (5.82)

On placing k, =1, we obtain a simple recurrence relation from which the
Legendre operators can be constructed successively, starting with

Py(Jy, J) =1 (6.83)
The coefficients in the recurrence relation can be computed from
WLjjs b + 1) = —W(k + 1 14 k)

4G+ —R 2% k41 L
=l GGrn@g ) @+neers | @ O

and
Zk 2k + 1)(2j + DIW(k,1jj; KPP =1. (5.85)
Thus
. k41 e
fklk+l(“ ) - [(2k + l)(2k + 3)] ’
k 1/2 -1\
to =~ =i (=)
kik+1
(3 =1 ;k: 3 (5.86)

and therefore,

k(k +1 k+1
(025 D) P30 = G P

k B—1 21
2__ 2 _ " " \p
+ 2k+1 (Jl 4 )(J2 4 )I k—l(Jl’ J2) (5.87)

19 This is a particular example of the theorem on the product of two W coefficients
|Eq. (5.36)].
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g

As the first few Legendre operators, obtained in succession from (5.87) with
k=0,1,2, we have

Py, 3)=1,-1,,
Py 3p) = 33,-3,(0, -3, + B — 130,
Pyl o) = 431353 Ty + 13y Jo + 2) — 83,3, + 3113
— 33,3038 — DIE - 9). (5.88)

A useful check upon these results is afforded by (5.80).
A statement analogous to (5.62) can be made for an arbitrary tensor
operator; as far as matrix elements diagonal in J are concerned,

L1715

T(kq) = Y,,(J) GIFoT (5.89)
The coefficient in this relation can be expressed in other ways. Thus, we have

U1 T
Zykq(J)fT(kQ) = ZYIW(J)t qu(J) ST (5.90)

q q [Jl IJ]

which leads to the projection rule

, 4 1 R

T'(kg) -~ 1 Y, (J) EE > Y (M T(ke'), (5.91)
pr

for isolating the part of a tensor operator that contributes to matrix elements
diagonal in j. Alternatively, we consider the particular matrix element

L1795

(I T*0)3) = (4] ¥ 1o(D)] 4) GO (5.92)
Now
.\ .. e TN 1wy e s 2417721 (25
— (—1\T4 Yo C 30 — >
(5] Y eI 35) = (—1)*[j] YV 51X (jkj; —j05) [ - ] F BB (5.93)
8o that, for matrix elements diagonal in j,
A o L& =R 3
T(’ﬂ])—[m] Y, (2 @ (J71T'(k0)) 7). (5.94)

APPENDIX A

We shall describe a method which produces simultaneously the eigen-
values and eigenvectors of the angular momentum operators. Consider for
this purpose the unitary operator

V=explixin+igJ,), (A1)
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which has the eigenvalues exp(ijx + im¢). The operator V can be interpreted
as

V= ; [exp(tjx + ime))P(jm), (A2)

where P(jm), the projection operator for the state with the indicated eigen-
values, is represented in terms of the corresponding eigenvector by the
dyadio

P(jm) =¥ (jm)¥ (jm)*. (A3)

Accordingly, if ¥ can be constructed and displayed in the form (A2), we shall
have achieved our goal.
We write

V =exp(i(y,n, +y_n_)),
Ye=xt+¢é y_=x—4, (A4)

and deduce the differential equations

0 ) ‘
5;( V={%iata,V
= {ilexp(Yiy,)la; Va,, (A5)
with the aid of
V=la ¥V = (exp(iy,))a,. (A6)

The latter can be verified by differentiation,

]
5 V“acV = giV—l[ac, nlV = giV“acV, (A7)
Y

or from the general theorem _
ayf (n)) =f (n, + V)a. (A8)

In virtue of the operator ordering in (A5), the solution of these equations
which reduces to unity for ¥, = 0 is given by

V =exp{(e!”* —1)al;a, +(e"- —1)at;a_}) (A9)

where

AT
exp(lat;a) =Y i@ )@)” (A10)
is a correspondingly ordered form of the exponential. We write this solution
as
V =exp( ; edvgt; Py; a,), (A11)
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which is intended to indicate that
P, =exp(—af;a, —at;a_) =exp(—(at;a)) (Al12)

is to be inserted between the powers of a;}' and a, in the ordered operator
expansion of V:

< , @) et)- , (@)@ )™
V =”+‘;=0 {exp[di(n vy, +n_y_ )]} (n+!n_!)1/2 A (n++!n_!)1/2 . (Al13)
We have thus obtained the form (A2), with
i=in,+n_), m=}n,—n.), n,n_=0,12 .., (Al4)
and
P(jm) = ¢jm(a+)P0¢jm(a)1 (A15)
in which we have employed the notation
. (a+)j+"‘(af)j—’”
. (at) = + )
Pn@) = (Gl — (A1)
In terms of the eigenvector ¥, defined by
Py =Y,¥*, (A17)
the angular momentum eigenvectors are exhibited as
¥(jm) = $in(at)¥,. (A18)
The fundamental property of W, =¥ (00) is deduced from
[a,, Py = (8/0ai) P, = — Py, (A19)
or
a, P, =0, (A20)
namely
a ¥, =0. (A21)

The simple generating function for the eigenvectors, (1.16), can also be
obtained by noting that

(¥'(jm), eI ) = (¥, bjm(@)e® )

= ¢1m(®). (A22)
Indeed,
e =Y W (jm)(¥'(jm), &)
jm
=Y. $m(@) ¥ (jm). | (A23)
im . .
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ArpENDIX B P
The ordered operator

w  A=exp(za;a*), [a,a%]=], (B1)
satisfies '
[a, A] = (9/2a+)A =zaA4,

‘ fat, A] = —(9/éa)4 = —Azat, (B2)
or
(1 —2)ad =A4a, a*4=(1—2da". (B3)
Therefore
iA =qdat = Aaat Aata
o0z —z —z

1
= A
1—2 (1 —2)?

atAa, (B4)

the solution of which implies the ordered operator identity,

+ 1 2 ot
exp(za; a )=1_zexp i—__—za jal. (B5)

A particular consequence of this relation

1
exp(za;a*) ¥y = i ¥Y,, a¥,=0, (B6)

is derived directly in the text (Eq. (2.35)). The properties of A contained in
(B3) are also displayed in the generalizations

1 + .
1 —zf<_l_atz) exp(l i—za+; a),

2 1 a
1—z“+;“>1—zf(1 —z)' (57

The particular examples of these identities provided by

exp(za; at)-f(at) =

f(a) exp(za; a™) = exP(

+yr
exp(za; at)-(at) = a (jz;’“exP<1 z_za+; a) (B8)

and
a’ exp(za; at) =exp £ _a*ia L (B9)
1—2 (1 —z)*t

are operator forms of the Laguerre polynomial generating functions. Thus, if
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i

we place at = z, a = 8oz, and let both sides of (B8) operate upon e~%, we

obtain
22" a\" ,H_"_z " z 0\ _,
P !(ax)x T b St L
x’ z
= e— —_ -z B
(l——z)'*lexP< l_zx>e R (B10)
- or
exp( — P2
1—2 hid R
T = Zoz L), (BI11)
n=
where
LNz =-l:i:“" dy ntrg—z B12
V@) = - ) @ tre), (B12)

A similar procedure applied to (B9) yields
a r
© S/ H\ntr .z z o <a> _
— = r'e *=ex T, —}j—L "7
il z S P frpmpe L

__=r 2 o)z
_mexp TR (B13)

which proves the equivalence between (B12) and

n+r
LP(z) = (= 1) ( dx) (z"e—2). (Bl4)

T

Another example of an ordered operator identity involves the cylinder
function [Eq. (1.36)]

| exp(t + Et)
r
— ply—r/ —
F(2) = rlz="/2] (221/2) — 271'35‘”? . (B15) :
We have |
r! ¢t
a'F(za;at) = 5 dttr—“a exp<—a a+)
7l ,§ et 2z
——— d +; r
i t(t—z)"“exP t—e" *9)°
= e’F (2a*; a)a’, (B16)
and similarly
F,(ea; a*)@*) = ea* ) F,(za*; a). (B17)
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From these identities we obtain the Laguerre polynomial geperating function

et r!

, N LN p) — e F . (—
P Lt e =eF ®18)

ArPENDIX C

It is our purpose in this section to evaluate a class of scalar products, the
simplest illustration of which is

T® = (exp(Ma*b+] + £, (aa) + £_ (@b )Y,
exp(klatb*]+ 5, (ya*) + n_(yb*))'¥,). ey
Differentiation with respect to £} yields

(3/35:_)71(2) —_ (e...\P‘o’ (x*a)e-- 1}}0)

=, (@*y) TP + x([zble--- ¥y, e---Fy), (C2)
or
(1 = X*k)(2[0£L) TD =y (x*y) TD. (C3)
The solution of this, and analogous equations, is
(§*n)(z*y
™ =exP<T:7\I;‘ TP, (C4)

where
T = (exp(Ma*d*])¥,, exp(rfa*tb*])¥,)

1
= (¥y, exp(A*k(at; a))¥y) = Ty Tk (C5)
in view of the simple generalization of (B6)
1
exp(z(a; at))¥, = (1_————2-)5‘1"0. (C86)
Therefore
1 (£*n)(z*y)
(2) —
T (I_A*K)zexp< e | (CT)

One can prove, in a similar manner, that
(exp(Ala™dt] + (z,a™) + (xd 1))y, exp(rfatdt] + (y,at) + (w1 )W)

BT T

l * * %k
P (l — ,\*K{(“’r%) + (roy,) + klz;x] + )\*[ylyz]}). (C8)
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The general member of the class exemplified by (C1) is
T™ = (exp(} “Z AJAFAY]+ ; =AY,
exp(} uZ kA AT+ ; Y4 N, (C9)
where the 4, are n sets of two-component operators, obeying

[Ac“: AS'L,] = 8,“855': (C10)

while A, and «,, form antisymmetrical matrices. F ollowing the same pro-
cedure, we evaluate

(6/35:)7'(”) = (e .lIfo’ (Z*A“)e- . \Fo)
= nu(x*y)T(”) + Z Kyv([xAy]e" 'lP.O’ e .‘P‘o)’ (Cl l)

whence '
(BIOENT™ + Y ke, Ag(B[OE))T™ = ), (a*y) T, (C12)
. ]
The solution of this equation can be expressed in a matrix notation as
1
(n) * * (n)
T eXP[(x )] “Z fu(l " K/\*)an:ITO , (C13)
where
T = (exp(} T, A LA A )W, exp(} Y i, [4F AF )W)
1y m
= (¥, Q¥,), (C14)
and
Q=exp(} ¥ AL[4,4,])-exp(} Y x,[4} A}]). (C15)
(224 (4
To evaluate T{", we employ the following properties of Q,
(8/2A})Q =[4,4,1Q, (C16)
and
(v4,]Q —Qlz4,] = —Q Y «, (24]), (C17a)
Q4)) — (=41)Q = Y A} [24,1Q, (C17b)

in which z is an arbitrary constant spinor. One can combine (C17a, b) into

L0+ ), [54,)0 = 0led, ] ~F k=41)Q, (C18)

or
1 1 +
[4,1Q =Y (W),BQ[M"] — %(m K)yﬂ(zAB )@.  (C19)

vB
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Therefore

1 : 1

=y [+——m— - AtA
[4,4,]Q %(1 T "’\‘)ys[A“QAﬁ] %,(1 T K»)ﬁ( s 4.0
1
— 2(1 o x)m Q, (C20)
from which we obtain (4,¥,=0)
1
(3/3):,)1' = —2 (1 + kA* K)m Tg ), (C21)

Thus, with respect to changes in the matrix A*, we have

dlog T(" =43 86X, (8/ax%) log T{M = —tr (—1* KSA*). (C22)
uy

14 xkA*
On comparing this with the theorem on differentiation of a determinant,
8 log |A| =tr(4-154), (C23)
we obtain the desired general evaluation,
o1 (C24)
|14 xA*|

A recurrence relation for T can also be established with the aid of (C13).
Thus, we have

n—1 n—1
T =(exp(} Y AJ4AFAI+ Y A JAFAIDY,,
ur=1 uv=1

n—1 n-—1
exp(} Zl k(A AF] 4 Zl Ko [AF ATNY)
wv= [

y=

* 1 n—
= <\P‘0’ exp ((An; Ar—:—) % Anu (1 + KIA");;,, Kﬂv>l}’0)T(() Y
* 1 o (n—1)
=|1-=-Y A — TS
[ % nu(l + KIA’*)“V Knv] 0 ’ (025)

in which «’ and )’ designate the matrices of dimensionality n — 1.

The actual construction of the T{" can be performed without detailed
calculations. It follows from (C24) and (025) that T( has the form of the
inverse square of a power series in the com ponents of A* and «, where the last
terms of the series, (—1)!"|A*|'/%||!/2, vanishes for n odd. Thus, beginning
with

TR =[1 — Afpkyp] ™2 = [1 — | A%|1/2| /2] -2, (C26)
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We infer that 7'¢) has the same structure, suitably extended for the additional
dimension,

TG =01~ Ayrsg + Ayicps + A1 ¢3:)] 72

3
=[1—1% Z A:,xw]“z, (C27)
y=1
and therefore *
4
Tg‘) =[1-1} Z A:yx“, + | A¥|1/2| | 1/2) 2, (C28)
pwr=1

where

Wl/z = sz)‘u + A23A14 + )‘31A24
=1 Z e“m)\",hm , (C29)

and ¢ is the completely antisymmetric symbol. For the last indication of this
general procedure we remark that, as the extension of (C28), we have

5 5
TP=0=1 Y Nwut ¥ M), 0x),1% (C30)
' v=1 y=1
in which ! -
5
A),=1 Z leﬂll“"A#”A”"" (C31)
HyoT =
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