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The calculation of the force on a dielectric material partially inserted between two parallel charged
conducting plates, typically done in undergraduate classrooms using energy considerations, is
performed by explicitly considering the effect of the fringing electric field. © 2004 American
Association of Physics Teachers.
#DOI: 10.1119/1.1764563$

Most contemporary undergraduate electromagnetism text-
books include, either as part of the expository text or as a
problem, the calculation of the force exerted on a slab of
dielectric material partially inserted between two parallel
charged conducting plates !see Fig. 1". This problem has
enjoyed a resurgence of interest as the basis for a simple
laboratory demonstration with a homemade apparatus.1 The
calculation is ubiquitous because it showcases the power and
efficiency of the energy method in such situations and is an
adumbration of later discussions of Lagrangian and Hamil-
tonian mechanics.
In the energy method solution,2 the virtual work done by

an external force along the y axis is equated to the change in
the electrostatic energy of assembly, %UE , of the charges in
the system if no change in kinetic energy occurs during
the virtual displacement, that is, if the applied force is equal
and opposite to the electric force FD on the dielectric.
The expression for UE as a function of the y position of
the air–dielectric interface is then used to obtain
FDy : FDy!" (&UE /&y). Students are told that it is actually
the fringing field which is responsible for the effect, an ob-
servation that generates a bit of skepticism initially, because
the emphasis of the calculation of %UE during the virtual
displacement seems to be on the interface between the air
and the dielectric. Sometimes this derivation is accompanied
by a remark about how, by virtue of the energy method, they
were spared the nastiness of having to deal with the com-
plexity of the fringing field itself.
In this paper I argue that a simple extension of this discus-

sion, suitable for upper-division courses, that attributes the
force directly to the fringing field is not only pedagogically
useful, but is even simpler. The field lines are shown sche-
matically in Fig. 1 for a system comprising the charged
plates with separation d and a partially inserted slab of lin-
ear, homogeneous, isotropic dielectric material of relative
permittivity '. The dielectric slab has a width W along the z
direction !out of the page" which is much smaller than the
corresponding dimension of the plates, so that the z compo-
nent of the fringing electric field is nearly zero in the mate-
rial. The insertion is symmetric with respect to the x– y plane
and the material extends to infinity along "y !or at least to
where the electric field is small enough to be ignored". The
air–dielectric interface at y!0 is far enough away from the
plate edges so that the electric field E here has only an x
component #denoted by Ex(0)] with negligible partial de-
rivatives, and thus the potential difference between the plates
is V!Ex(0)d . The force on a single electric dipole p within
the dielectric is given2 as (p"“)E, so at a point where the

polarization is P, the force on a volume element d( of ma-
terial is dFD!(P"“)E d( . By using the constitutive relation-
ship P!)0('"1)E for the dielectric, the y component of
the total force on the slab is
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where the integration is over the volume of the slab. Because
we have assumed that the plates are wide enough compared
to W so that Ez in the slab is negligible, the third term in the
integrand does not contribute substantially to the force. The
middle term can be rewritten as
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so that the innermost integral becomes
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The force is thus derived in its entirety from the first term
in the integrand of Eq. !1", as can be understood physically
by noting that the existence of a gradient of Ey along x has
the effect of producing an unbalanced force along #y ; this

Fig. 1. Linear dielectric slab partially inserted between parallel conducting
charged plates. Unbalanced forces F¿ and FÀ are shown acting on a dipole
p in the fringing field region. The #z direction is out of the page.
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situation is depicted qualitatively in Fig. 1 for a physical
dipole near the bottom of the slab. Note that the zero-curl
condition for the electrostatic field precludes any discontinu-
ity in Ex along the y direction, which implies both that Ex is
continuous at the air–dielectric interface between the plates
and that there must be fringing at the plate edges, where Ex
cannot suddenly vanish. Because “Ã E!0, we have
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and so in Eq. !1" the inner integral along y is
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If we substitute Eq. !3" in Eq. !1" and do the remaining
integrals along x and z , we obtain the generally accepted
result:

FDy!
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The assumed symmetry of the configuration obviates the
calculation of the other components of FD , which vanish. It
is interesting to note that the dominant contribution to the
integral in Eq. !1" is due to the fringing field region, whereas
in the more standard energy approach, the major contribution
is apparently from the region of uniform field near y!0.
The present treatment is simple enough so that it should,

either by itself or as an extension to the standard application
of the energy method, enhance student insight regarding
forces on dielectrics. The fact that two apparently very dif-
ferent approaches give the same answer illustrates the mar-
velous internal consistency of the theory of electrostatics.
1Paul Gluck, ‘‘Force on the dielectric in a parallel plate capacitor,’’ Phys.
Teach. 41, 521–523 !2003".
2See, for example, David J Griffiths, Introduction to Electrodynamics, 3rd
ed. !Prentice Hall, Upper Saddle River, N.J., 1999", Chap. 4. The calcula-
tion of the force on the slab by the energy method starts on p. 194. The
force on a dipole is given on p. 165.

Time of Descent Apparatus. A standard problem for mechanics students involves the calculation of the minimum time needed for a body to pass, under the
gravitational force, from an upper level to a point on a lower level. This is usually called the Brachistrochone problem, and the path giving the minimum time
is a segment of a cycloid. The other paths for the rolling ball are parabolic and straight. This apparatus was at the Lawrenceville School in Lawrenceville, New
Jersey when I photographed it in 1980 during a week spent as an exchange teacher at the school. The 1888 James W. Queen catalogue lists a similar device
at $18.00. !Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College"
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