Problem 1.64 In case you're not persuaded that $\nabla^{2}(1 / r)=-4 \pi \delta^{3}(\mathbf{r})$ (Eq. 1.102 with $\mathbf{r}^{\prime}=\mathbf{0}$ for simplicity), try replacing r by $\sqrt{r^{2}+\epsilon^{2}}$, and watching what happens as $\epsilon \rightarrow 0 .{ }^{16}$ Specifically, let

$$
D(r, \epsilon) \equiv-\frac{1}{4 \pi} \nabla^{2} \frac{1}{\sqrt{r^{2}+\epsilon^{2}}}
$$

To demonstrate that this goes to $\delta^{3}(\mathbf{r})$ as $\epsilon \rightarrow 0$:
(a) Show that $D(r, \epsilon)=\left(3 \epsilon^{2} / 4 \pi\right)\left(r^{2}+\epsilon^{2}\right)^{-5 / 2}$.
(b) Check that $D(0, \epsilon) \rightarrow \infty$, as $\epsilon \rightarrow 0$.
(c) Check that $D(r, \epsilon) \rightarrow 0$, as $\epsilon \rightarrow 0$, for all $r \neq 0$.
(d) Check that the integral of $D(r, \epsilon)$ over all space is 1 .

