Aula 1

F 502 - Eletromagnetismo I 2o semestre de 2020
17/09/2020

Site da disciplina na minha página:
http://sites.ifi.unicamp.br/emiranda

Aba Ensino

Google Classroom: G_F 502A_2020S2:

- Listas de exercícios (submissão).
- Blog para troca de informações, discussão de dúvidas, perguntas, etc.
- Videos das aulas gravadas.

Livro adotado: Eletrodinâmica, David J. Griffiths, $3^{\text {a }}$ edição, Pearson, 2010.
Fontes adicionais:
Fundamentos de Teoria Eletromagnética, , J. R. Reitz, F. J. Milford e R. W. Christy, 31ª edição, Elsevier, 1982. The Feynman Lectures on Physics - vol. II, R. P. Feynman, R. B. Leighton e M. Sands, Addison-Wesley, 1964.

Ementa: Aproximadamente, caps. 1 ao 7 do Griffiths (ou 1 ao 12 do Reitz).

1. Preliminares matemáticas.
2. Eletrostática no vácuo e na presença de condutores.
3. Equações de Poisson e Laplace; Método de imagens; Método da separação de variáveis; Expansão multipolar.
4. Elestrostática na presença de dielétricos.
5. Magnetostática no vácuo na presença de correntes estacionárias.
6. Materiais magnéticos.
7. Força eletromotriz induzida e energia magnética.

Prof. Eduardo Miranda
 Universidade Estadual de Campinas (Campinas State University)

Quem sou Pesquisa Publicacōes Teses edissertacōes Ensino notas de aulas Links

Estrutura das aulas de F-502 (1.o sem. de 2019)

ATENÇÃO: ARTIGOS DE REVISTAS CIENTÍFICAS PODEM SER BAIXADOS DE DENTRO DA UNICAMP (OU DE FORA, USANDO O VPN), APÓS A INSTALAÇÃO DA EXTENSÃO CAPES-PORTAL DE PERIÓDICOS

28/02 - Preliminares matemáticas: Propriedades de transformação de vetores sob rotações. Campos
escalares e vetoriais. O operador nabla: o gradiente, o divergente e o rotacional.

05/03 - Feriado.

07/03 - Preliminares matemáticas

12/03 - Preliminares matemáticas

Capítulo 2: Eletrostática (5 aulas) (Notas de aula)

14/03 - Introdução geral. Lei de Coulomb, princípio de superposição, campo elétrico, distribuições contínuas de carga. Exemplos.

19/03 - Potencial elétrico. A relação entre o potencial e o campo elétricos. Potencial elétrico de uma casca esférica. Outra prova de que diferenças de potencial elétrico independem do caminho. O rotacional do campo elétrico.

21/03 - O fluxo elétrico. A lei de Gauss. Exemplo de uso da lei de Gauss. As equações fundamentais da eletrostática. As equações de Poisson e Laplace. Condições de contorno na eletrostática.

26/03 - Eletrostática de condutores. Pressão eletrostática. Cargas induzidas em condutores. Blindagem eletrostática. Problema 2.35

Avaliação

- Listas de problemas, dos quais um será escolhido para correção. Em torno de 10 listas ao todo.
- Média final (MF) é a média das notas nas listas.
- Se MF ≥ 5 (conceito Suficiente, sem necessidade de exame) se MF<5 (exame). Se persistir MF<5 (conceito Insuficiente).

APLICATIVO CAMSCANNER PARA fotos das listas

Capítulo 1

Preliminares Matemáticas

Vetores

PROPRIE DADES DE TRANSFORMAGÃO DOS VETORES.
COMPONENTES AO LONGO DE EIXOS CARTESIANOS ORTOGONAIS NA FIGURA AO LADO, XEY (2D)

$$
\begin{aligned}
& \vec{A}=A_{y} \hat{y}+A_{z} \hat{z} \\
& \vec{A}=A_{y}^{\prime} \hat{y}^{\prime}+A^{\prime} z \hat{z}^{\prime}
\end{aligned}
$$

(SISTEMA $y z$)
(SISTEMA $\left.y^{\prime} z^{\prime}\right)$
DA FIGURA: $\theta=\theta^{\prime}+\phi ; \theta^{\prime}=\theta-\phi$

$$
\begin{aligned}
A_{z}^{\prime} & =A \sin \theta^{\prime}=A \sin (\theta-\phi)= \\
& =\underbrace{A \sin \theta}_{A^{A z}} \cos \phi-\underbrace{A \cos \theta}_{A y} \sin \phi \\
A_{y}^{\prime} & =A \cos ^{\prime}(\theta-\phi)=\underbrace{A \cos \theta}_{A_{y}} \cos \phi+\underbrace{A \sin \theta}_{A_{z}} \sin \phi
\end{aligned}
$$

$A_{z}=A \sin \theta$

$$
A_{y}^{\prime}=A \cos \sigma^{\prime}
$$

$$
A_{z}^{\prime}=A \sin \theta^{\prime}
$$

$$
\left\{\begin{array}{l}
A_{y}^{\prime}=A_{y} \cos \phi+A_{z} \sin \phi \\
A_{z}^{\prime}=-A_{y} \sin \phi+A_{z} \cos \phi
\end{array}\right\} \Rightarrow\binom{A_{y}^{\prime}}{A_{z}^{\prime}}=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\binom{A_{y}}{A_{z}}
$$

EM 3D: ROTAGÁO DE UM Ángulo 申 LIM TORNO DE

$$
\left(\begin{array}{c}
A_{x}^{\prime} \\
A_{y}^{\prime} \\
A_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{c}
A_{y} \\
A_{y} \\
A_{y}
\end{array}\right) \quad \begin{gathered}
A_{y}^{\prime}=A_{x} \\
\vdots
\end{gathered}
$$

de maneira geral:

$$
\left(\begin{array}{l}
A_{x}^{\prime} \\
A_{y}^{\prime} \\
A_{y}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right)\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
\bar{A}_{x} \\
\bar{A}_{y} \\
\bar{A}_{z}
\end{array}\right)=\left(\begin{array}{lll}
R_{x x} & R_{x y} & R_{x z} \\
R_{y x} & R_{y y} & R_{y z} \\
R_{z x} & R_{z y} & R_{z z}
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right) \quad R^{\prime 1} \\
& \mathbf{A}_{i}^{\prime}=\sum_{j=1}^{3} R_{i j} A_{j}(k) \quad j_{i} i=1,2,3(x, y, z)
\end{aligned}
$$

há alguma restricto sobre a matriz $R_{i j}$? A Rotag̃̃o preserua o vódgulo de it

$$
\begin{aligned}
& \left(A_{x}^{\prime}\right)^{2}+\left(A_{j}^{\prime}\right)^{2}+\left(A_{z}^{\prime}\right)^{2}=A_{p}^{2}+A_{j}^{2}+A_{z}^{2} \\
& \sum_{i}\left(A_{i}^{\prime}\right)^{2}=\sum_{i}\left(A_{i}\right)^{2} \\
& \sum_{i}\left(\sum_{k=1}^{3} R_{i k} A_{k}\right)\left(\sum_{j=1}^{3} R_{i j} A_{j}\right)=\sum_{i=1}^{3}\left(A_{i}\right)^{2} \quad \text { DRLTA DE } \\
& \sum_{j=1}^{3} \sum_{k=1}^{3}\left(\sum_{i=1}^{3} R_{i k} R_{i j}\right) A_{k} A_{j}=\sum_{j=1}^{3}\left(A_{j}\right)^{2}=\sum_{j=1}^{3} \sum_{k=1}^{3} \delta_{j k R} A_{j} A_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{j k}=\left\{\begin{array}{ll}
1 & \text { SE } j=k \\
0 & \text { SE } j \neq k
\end{array} \Rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \begin{array}{c}
\text { COMPONENTES } \\
\text { DA MATRLZ } \\
\text { IDSNTIDADE }
\end{array}\right. \\
& (* *)=\sum_{j=1}^{3} \sum_{k=1}^{3} \underbrace{\delta_{j k} A_{j} A_{k}}_{\mathbb{U}}=\sum_{j=1}^{3} A_{j} A_{j}=\sum_{j=1}^{3}\left(A_{j}\right)^{2} \\
& \left(\begin{array}{lll}
A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=\left(A_{1}\right)^{2}+\left(A_{2}\right)^{2}+\left(A_{3}\right)^{2} \\
& \sum_{j=1}^{3} \sum_{k=1}^{3} \underbrace{\left(\sum_{i} R_{i k} R_{i j}\right)}_{R} A_{k} A_{j}=\sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\delta_{j k} A_{k} A_{j}}{P R R} \\
& \text { VÁLIDA PARA QUALQUER VETOR } \vec{A} \sum_{j=1}^{\sum A_{i j} B_{j k}=(A B)_{i k}} \\
& \begin{array}{l}
\sum_{i} R_{i k} R_{i j}=\delta_{j k} \\
\sum_{i=1}^{3} R_{i j} R_{i k}=\sum_{i=1}^{3}\left(R^{\top}\right)_{j i} R_{i k} \rightarrow P \text { PODUTO MATRICINL }
\end{array}
\end{aligned}
$$

$$
\left(R^{\top} R\right)=11 \Leftrightarrow R^{-1}=R^{\top}
$$

CONDICATO SOBRE
a glatriz R
A MATRIZ R E' CHAMADA
DE oRTDGONAL

- que sáo pseudo-vatdres?
a matriz .

$$
P=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) E^{\prime}
$$

ORTDGONAL
VETDRES SE TRANSFORMAM

$$
\vec{x} \rightarrow-\vec{x} \quad, \vec{v} \longrightarrow-\vec{v}
$$

MAS: $\vec{L}=\vec{r} \times(m \vec{v})$

$$
\vec{L} \longrightarrow \vec{L} \quad(n A \bar{O} O \text { MUDA } \sin A L!)
$$

Campos vetoriais e escalares

- que é um campo? é uma fungato das CODRPENADAS do ESPACO:

$$
f(x, y, z) \rightarrow \text { campo }[f(x, y, z, t)]
$$

SE ELE FOR UM VETOR: $\vec{A}(x, y, z)$

$$
\left.\rightarrow \begin{array}{l}
A_{x}(x, y, z) \\
A_{y}(x, y, z) \\
\\
A_{z}(x, y, z)
\end{array}\right\}
$$

NOTAC $\vec{A} O: \vec{A}(x, y, z) \Rightarrow \vec{A}(\vec{\lambda})$ Só NOTAS天O DE $\vec{A}(x, y, z)$
EXEMPLOS: $\vec{E}(\vec{n}), \vec{B}(\vec{n})$

O gradiente

- GRADIENTE DE OM, CAMPO ESCALAR $f(x, y, z) E$. UM CAMPD VETORIAL DADO POR:

$$
\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f}{\partial z} \hat{z}
$$

POR QUE ELE E' UN VETOR?

- posso provar da definicato (veja as notas)
- uma dutra prova mals elegante:

CONSIDERE: $(x+d x, y+d y, z+d z) \quad d \vec{n}=d x \hat{x}+d y \hat{y}+d z \hat{z}$

$$
\begin{aligned}
& f(x+d x, y+d y, z+d z)=f(x, y, z)+\frac{\left[\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right]}{\nabla P f \cdot d \vec{r}} \\
& \quad \text { (SE'RIE DE TAYLOR) }
\end{aligned}
$$

$$
d f=f(x+d x, y+d y, z+d z)-f(x, y, z)=\vec{\nabla} f \cdot d \pi
$$

$\begin{array}{l}d \vec{r} \\ d f \\ d f \\ \text { E }\end{array}$ ESTDRLAR $\}$ o SEU PRODUTO ESCMLAR pelo vetor dit oá um ESCALAR df

Interpretação física do gradiente

Olhando pro gráfico da função: $f(x, y)$

- Direção e sentido: mais íngreme
- Módulo: inclinação naquela direção

O divergente

- DIVERGENTE DE Un CANPO VETORIAL $\vec{A}(x, y, z)$ E' UM CAMPO ESCALAR :

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial z}+\frac{\partial A_{z}}{\partial z} \\
& \text { SE } \vec{\nabla}=\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) \text { ou }\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
\end{aligned}
$$

$$
\nabla \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
$$

(a)
$\nabla \cdot \mathbf{v} \neq 0$

(b)
$\nabla \cdot \mathbf{v}=0$

(c)
$\nabla \cdot \mathbf{v} \neq 0$

Interpretação física do divergente

$$
\nabla \cdot \mathbf{v}=\lim _{V \rightarrow 0}\left(\frac{\oint_{S(V)} \mathbf{v} \cdot d \mathbf{S}}{V}\right)
$$

onde V é um volume que contém o ponto em questão e $S(V)$ é a superfície que contém V.

(a)

(b)

(c)

