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Aulas passadas
Equações fundamentais da eletrostática

r ·E =
⇢

"0
r⇥E = 0

r ·E =
⇢

"0
r⇥E = 0 () E = �rV

3

r ·E =
⇢

"0
r⇥E = 0

r ·E =
⇢

"0
r⇥E = 0 () E = �rV

) r2V = � ⇢

"0

3

Solução geral:

F1 =
q1q2
4⇡"0

r1 � r2

|r1 � r2|3
= �F2

1

4⇡"0
= 9⇥ 109

Nm2

C2

F1 =
q1

4⇡"0

NX

i=2

 
qi

r1 � ri

|r1 � ri|3

!

E (r) =
F1

q1
=

1

4⇡"0

NX

i=2

 
qi

r� ri

|r� ri|3

!

⇢ (r) = lim
�V!0

�Q

�V
) dQ = ⇢ (r) dV

� (r) = lim
�S!0

�Q

�S
) dQ = � (r) dS

� (r) = lim
�l!0

�Q

�l
) dQ = � (r) dl

E (r) =
1

4⇡"0

Z
⇢ (r0)

(r� r0)

|r� r0|3
dV 0

E (r) =
1

4⇡"0

Z
� (r0)

(r� r0)

|r� r0|3
dS0

E (r) =
1

4⇡"0

Z
� (r0)

(r� r0)

|r� r0|3
dl0

V (r) = �
Z r

r0

E (r0) · dl0

V (r) =
Wcontra (r0 ! r)

q

V (r) =
q

4⇡"0

1

r

V (r) =
1

4⇡"0

Z
⇢ (r0)

|r� r0|dV
0

V (r) =
1

4⇡"0

Z
� (r0)

|r� r0|dS
0

V (r) =
1

4⇡"0

Z
� (r0)

|r� r0|dl
0

E (r) = �rV (r)

r⇥E (r) = 0 ,
I

8C
E · dl = 0

2

F1 =
q1q2
4⇡"0

r1 � r2

|r1 � r2|3
= �F2

1

4⇡"0
= 9⇥ 109

Nm2

C2

F1 =
q1

4⇡"0

NX

i=2

 
qi

r1 � ri

|r1 � ri|3

!

E (r) =
F1

q1
=

1

4⇡"0

NX

i=2

 
qi

r� ri

|r� ri|3

!

⇢ (r) = lim
�V!0

�Q

�V
) dQ = ⇢ (r) dV

� (r) = lim
�S!0

�Q

�S
) dQ = � (r) dS

� (r) = lim
�l!0

�Q

�l
) dQ = � (r) dl

E (r) =
1

4⇡"0

Z
⇢ (r0)

(r� r0)

|r� r0|3
dV 0

E (r) =
1

4⇡"0

Z
� (r0)

(r� r0)

|r� r0|3
dS0

E (r) =
1

4⇡"0

Z
� (r0)

(r� r0)

|r� r0|3
dl0

V (r) = �
Z r

r0

E (r0) · dl0

V (r) =
Wcontra (r0 ! r)

q

V (r) =
q

4⇡"0

1

r

V (r) =
1

4⇡"0

Z
⇢ (r0)

|r� r0|dV
0

V (r) =
1

4⇡"0

Z
� (r0)

|r� r0|dS
0

V (r) =
1

4⇡"0

Z
� (r0)

|r� r0|dl
0

E (r) = �rV (r)

r⇥E (r) = 0 ,
I

8C
E · dl = 0

2

A solução geral nem sempre é 
muito útil, principalmente 
quando há condutores 
envolvidos, pois não se sabe 
r(x) de antemão.



Aulas passadas

1º teorema de unicidade: O potencial 
V(r) é único numa região R se 
especificarmos:

R

S1

S2 S3

S4

Problema de valor de contorno: resolver a Eq. de Poisson 
em uma região R, com r(x) dado dentro de R e alguma 
informação sobre V(x) dada na fronteira S.
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Aulas passadas
2º teorema de unicidade: O potencial V(r) é único (a 
menos de uma constante) e o campo elétrico E(r) é unico
num região R circundada por condutores se 
especificarmos:122 Chapter 3 Potentials

ρ
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Integration surfaces

Outer boundary-
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Qd
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FIGURE 3.6

And both obey Gauss’s law in integral form for a Gaussian surface enclosing each
conductor:

∮
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surface
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Likewise, for the outer boundary (whether this is just inside an enclosing conduc-
tor or at infinity),
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As before, we examine the difference

E3 ≡ E1 − E2,

which obeys

∇ · E3 = 0 (3.7)

in the region between the conductors, and
∮

E3 · da = 0 (3.8)

over each boundary surface.
Now there is one final piece of information we must exploit: Although we

do not know how the charge Qi distributes itself over the i th conductor, we do
know that each conductor is an equipotential, and hence V3 is a constant (not
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O método de cargas imagens
Problema: Uma carga q perto de um plano condutor 
infinito aterrado (V=0). Achar V(x) para z > 0.

z

x



Problema auxiliar





A carga induzida no plano infinito





A força sobre a carga

z

x



A energia da configuração

z

x



Carga próxima a esfera condutora 
aterrada

128 Chapter 3 Potentials

Example 3.2. A point charge q is situated a distance a from the center of a
grounded conducting sphere of radius R (Fig. 3.12). Find the potential outside
the sphere.
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Solution
Examine the completely different configuration, consisting of the point charge q
together with another point charge

q ′ = − R
a

q, (3.15)

placed a distance

b = R2

a
(3.16)

to the right of the center of the sphere (Fig. 3.13). No conductor, now—just the
two point charges. The potential of this configuration is

V (r) = 1
4πε0

(
q
r + q ′

r′
)

, (3.17)

where r and r′ are the distances from q and q ′, respectively. Now, it happens (see
Prob. 3.8) that this potential vanishes at all points on the sphere, and therefore fits
the boundary conditions for our original problem, in the exterior region.7

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded con-
ducting sphere. (Notice that b is less than R, so the “image” charge q ′ is safely
inside the sphere—you cannot put image charges in the region where you are cal-
culating V ; that would change ρ, and you’d be solving Poisson’s equation with

7This solution is due to William Thomson (later Lord Kelvin), who published it in 1848, when he
was just 24. It was apparently inspired by a theorem of Apollonius (200 BC) that says the locus of
points with a fixed ratio of distances from two given points is a sphere. See J. C. Maxwell, “Treatise on
Electricity and Magnetism, Vol. I,” Dover, New York, p. 245. I thank Gabriel Karl for this interesting
history.
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Ver Seção 3.2.4 do Griffiths:



Solução da Eq. de Laplace por 
separação de variáveis

3.3 Separation of Variables 131

3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”
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Solution
The configuration is independent of z, so this is really a two-dimensional problem.
In mathematical terms, we must solve Laplace’s equation,

∂2V
∂x2

+ ∂2V
∂y2

= 0, (3.20)

subject to the boundary conditions

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = V0(y) when x = 0,

(iv) V → 0 as x → ∞.





(3.21)

(The latter, although not explicitly stated in the problem, is necessary on physical
grounds: as you get farther and farther away from the “hot” strip at x = 0, the
potential should drop to zero.) Since the potential is specified on all boundaries,
the answer is uniquely determined.

The first step is to look for solutions in the form of products:

V (x, y) = X (x)Y (y). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of
solutions to Laplace’s equation do not have such a form. For example, V (x, y) =
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