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Aula passada
Nas duas situações abaixo, a região z > 0:
•Tem a mesma carga +q e, portanto, o mesmo r(r).
•Potencial nulo em z = 0 e no infinito.
ØSegue que V(r) e E(r) são os mesmos nas duas situações.
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Porém, V(r)=0 e E(r)=0, se z<0.
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Carga induzida no plano
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|r� aẑ|3
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A carga induzida:
(i) tem sinal oposto à carga +q.
(ii) decai rapidamente com a distância.
(iii) a carga total induzida é –q. z
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Aula passada
Problema: resolver a Equação de Laplace numa certa região R do 
espaço, dadas condições de contorno na fronteira da região.
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|r� aẑ|3
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3.3 Separation of Variables 131

3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”
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FIGURE 3.17

Solution
The configuration is independent of z, so this is really a two-dimensional problem.
In mathematical terms, we must solve Laplace’s equation,

∂2V
∂x2

+ ∂2V
∂y2

= 0, (3.20)

subject to the boundary conditions

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = V0(y) when x = 0,

(iv) V → 0 as x → ∞.





(3.21)

(The latter, although not explicitly stated in the problem, is necessary on physical
grounds: as you get farther and farther away from the “hot” strip at x = 0, the
potential should drop to zero.) Since the potential is specified on all boundaries,
the answer is uniquely determined.

The first step is to look for solutions in the form of products:

V (x, y) = X (x)Y (y). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of
solutions to Laplace’s equation do not have such a form. For example, V (x, y) =

A escolha do sistema de 
coordenadas é ditada pela 
geometria do problema.
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3.3 Separation of Variables 131

3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”
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(The latter, although not explicitly stated in the problem, is necessary on physical
grounds: as you get farther and farther away from the “hot” strip at x = 0, the
potential should drop to zero.) Since the potential is specified on all boundaries,
the answer is uniquely determined.

The first step is to look for solutions in the form of products:

V (x, y) = X (x)Y (y). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of
solutions to Laplace’s equation do not have such a form. For example, V (x, y) =

No exemplo simples ao lado, não há 
dependência com z.
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3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”
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The configuration is independent of z, so this is really a two-dimensional problem.
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Impondo as condições de contorno
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3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”
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Solução geral: superposição de todas as 
soluções particulares (Equação linear).
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|r+ aẑ|3
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your
hand at it, if you like); the result is

V (x, y) = 2V0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
. (3.37)

In this form, it is easy to check that Laplace’s equation is obeyed and the four
boundary conditions (Eq. 3.21) are satisfied.

The success of this method hinged on two extraordinary properties of the sep-
arable solutions (Eqs. 3.28 and 3.29): completeness and orthogonality. A set of
functions fn(y) is said to be complete if any other function f (y) can be expressed
as a linear combination of them:

f (y) =
∞∑

n=1

Cn fn(y). (3.38)

The functions sin(nπy/a) are complete on the interval 0 ≤ y ≤ a. It was this fact,
guaranteed by Dirichlet’s theorem, that assured us Eq. 3.31 could be satisfied,
given the proper choice of the coefficients Cn . (The proof of completeness, for
a particular set of functions, is an extremely difficult business, and I’m afraid
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your
hand at it, if you like); the result is

V (x, y) = 2V0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
. (3.37)

In this form, it is easy to check that Laplace’s equation is obeyed and the four
boundary conditions (Eq. 3.21) are satisfied.

The success of this method hinged on two extraordinary properties of the sep-
arable solutions (Eqs. 3.28 and 3.29): completeness and orthogonality. A set of
functions fn(y) is said to be complete if any other function f (y) can be expressed
as a linear combination of them:

f (y) =
∞∑

n=1

Cn fn(y). (3.38)

The functions sin(nπy/a) are complete on the interval 0 ≤ y ≤ a. It was this fact,
guaranteed by Dirichlet’s theorem, that assured us Eq. 3.31 could be satisfied,
given the proper choice of the coefficients Cn . (The proof of completeness, for
a particular set of functions, is an extremely difficult business, and I’m afraid

O potencial como função de x e y.

O potencial em x=0 como função de y.
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coordenadas esféricas
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Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet
of metal, insulated from the others, and held at a constant potential V0. Find the
potential inside the box. [What should the potential at the center (a/2, a/2, a/2)

be? Check numerically that your formula is consistent with this value.]11
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z

x

V0

a

a

a

FIGURE 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate,
since the boundaries were planes. For round objects, spherical coordinates are
more natural. In the spherical system, Laplace’s equation reads:

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
+ 1

r2 sin2 θ

∂2V
∂φ2

= 0. (3.53)

I shall assume the problem has azimuthal symmetry, so that V is independent of
φ;12 in that case, Eq. 3.53 reduces to

∂

∂r

(
r2 ∂V

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
= 0. (3.54)

As before, we look for solutions that are products:

V (r, θ) = R(r)$(θ). (3.55)

Putting this into Eq. 3.54, and dividing by V ,

1
R

d
dr

(
r2 d R

dr

)
+ 1

$ sin θ

d
dθ

(
sin θ

d$

dθ

)
= 0. (3.56)

11This cute test was suggested by J. Castro.
12The general case, for φ-dependent potentials, is treated in all the graduate texts. See, for instance,
J. D. Jackson’s Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Chapter 3.
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Solution
The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero
at large z. In fact, far from the sphere the field is E0ẑ, and hence

V → −E0z + C.
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y
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FIGURE 3.24

Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly,
the boundary conditions for this problem are

(i) V = 0 when r = R,
(ii) V → −E0r cos θ for r # R.

}
(3.74)

We must fit these boundary conditions with a function of the form 3.65.
The first condition yields

Al Rl + Bl

Rl+1
= 0,

or

Bl = −Al R2l+1, (3.75)

so

V (r, θ) =
∞∑

l=0

Al

(
rl − R2l+1

rl+1

)
Pl(cos θ).

For r # R, the second term in parentheses is negligible, and therefore condition
(ii) requires that

∞∑

l=0

Alrl Pl(cos θ) = −E0r cos θ .
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Since the first term depends only on r , and the second only on θ , it follows that
each must be a constant:

1
R

d
dr

(
r2 d R

dr

)
= l(l + 1),

1
" sin θ

d
dθ

(
sin θ

d"

dθ

)
= −l(l + 1). (3.57)

Here l(l + 1) is just a fancy way of writing the separation constant—you’ll see in
a minute why this is convenient.

As always, separation of variables has converted a partial differential equation
(3.54) into ordinary differential equations (3.57). The radial equation,

d
dr

(
r2 d R

dr

)
= l(l + 1)R, (3.58)

has the general solution

R(r) = Arl + B
rl+1

, (3.59)

as you can easily check; A and B are the two arbitrary constants to be expected
in the solution of a second-order differential equation. But the angular equation,

d
dθ

(
sin θ

d"

dθ

)
= −l(l + 1) sin θ ", (3.60)

is not so simple. The solutions are Legendre polynomials in the variable cos θ :

"(θ) = Pl(cos θ). (3.61)

Pl(x) is most conveniently defined by the Rodrigues formula:

Pl(x) ≡ 1
2l l!

(
d

dx

)l

(x2 − 1)l . (3.62)

The first few Legendre polynomials are listed in Table 3.1.

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2

P3(x) = (5x3 − 3x)/2

P4(x) = (35x4 − 30x2 + 3)/8

P5(x) = (63x5 − 70x3 + 15x)/8

TABLE 3.1 Legendre Polynomials.

Os primeiros polinômios de 
Legendre 





Solução geral (simetria azimutal)
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Notice that Pl(x) is (as the name suggests) an lth-order polynomial in x ; it con-
tains only even powers, if l is even, and odd powers, if l is odd. The factor in front
(1/2l l!) was chosen in order that

Pl(1) = 1. (3.63)

The Rodrigues formula obviously works only for nonnegative integer values
of l. Moreover, it provides us with only one solution. But Eq. 3.60 is second-
order, and it should possess two independent solutions, for every value of l. It
turns out that these “other solutions” blow up at θ = 0 and/or θ = π , and are
therefore unacceptable on physical grounds.13 For instance, the second solution
for l = 0 is

#(θ) = ln
(

tan
θ

2

)
. (3.64)

You might want to check for yourself that this satisfies Eq. 3.60.
In the case of azimuthal symmetry, then, the most general separable solution

to Laplace’s equation, consistent with minimal physical requirements, is

V (r, θ) =
(

Arl + B
rl+1

)
Pl(cos θ).

(There was no need to include an overall constant in Eq. 3.61 because it can be
absorbed into A and B at this stage.) As before, separation of variables yields an
infinite set of solutions, one for each l. The general solution is the linear combi-
nation of separable solutions:

V (r, θ) =
∞∑

l=0

(
Alrl + Bl

rl+1

)
Pl(cos θ). (3.65)

The following examples illustrate the power of this important result.

Example 3.6. The potential V0(θ) is specified on the surface of a hollow sphere,
of radius R. Find the potential inside the sphere.

Solution
In this case, Bl = 0 for all l—otherwise the potential would blow up at the origin.
Thus,

V (r, θ) =
∞∑

l=0

Alrl Pl(cos θ). (3.66)

13In rare cases where the z axis is excluded, these “other solutions” do have to be considered.



Exemplo 3.8: Uma esfera condutora 
neutra num campo uniforme
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Solution
The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero
at large z. In fact, far from the sphere the field is E0ẑ, and hence

V → −E0z + C.
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Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly,
the boundary conditions for this problem are

(i) V = 0 when r = R,
(ii) V → −E0r cos θ for r # R.

}
(3.74)

We must fit these boundary conditions with a function of the form 3.65.
The first condition yields

Al Rl + Bl

Rl+1
= 0,

or

Bl = −Al R2l+1, (3.75)

so

V (r, θ) =
∞∑

l=0

Al

(
rl − R2l+1

rl+1

)
Pl(cos θ).

For r # R, the second term in parentheses is negligible, and therefore condition
(ii) requires that

∞∑

l=0

Alrl Pl(cos θ) = −E0r cos θ .

E = E0 z




