Aula 11

F 502 - Eletromagnetismo I 2o semestre de 2020
22/10/2020

Aula passada

Nas duas situações abaixo, a região $z>0$:
-Tem a mesma carga $+q$ e, portanto, o mesmo $\rho(\mathbf{r})$.
-Potencial nulo em $z=0$ e no infinito.
$>$ Segue que $V(\mathbf{r})$ e E(r) são os mesmos nas duas situações.

Aula passada

$\mathbf{E}(\mathbf{r})=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{\mathbf{r}-a \hat{\mathbf{z}}}{|\mathbf{r}-a \hat{\mathbf{z}}|^{3}}-\frac{\mathbf{r}+a \hat{\mathbf{z}}}{|\mathbf{r}+a \hat{\mathbf{z}}|^{3}}\right],(z \geq 0)$
$V(\mathbf{r})=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{\sqrt{x^{2}+y^{2}+(z-a)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+(z+a)^{2}}}\right],(z \geq 0)$

Porém, $V(\mathbf{r})=0$ e $\mathbf{E}(\mathbf{r})=0$, se $z<0$.

Aula passada

Carga induzida no plano

$$
\sigma(x, y)=\left.\varepsilon_{0} \hat{\mathbf{z}} \cdot \mathbf{E}\right|_{z=0^{+}}=-\frac{q a}{2 \pi} \frac{1}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}}
$$

A carga induzida:
(i) tem sinal oposto à carga $+q$.
(ii) decai rapidamente com a distância.
(iii) a carga total induzida é $-q$.

Aula passada

Problema: resolver a Equação de Laplace numa certa região R do espaço, dadas condições de contorno na fronteira da região.

A escolha do sistema de coordenadas é ditada pela geometria do problema.

$$
\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Aula passada

Método de separação de variáveis

$$
V(x, y, z)=X(x) Y(y) Z(z)
$$

No exemplo simples ao lado, não há dependência com z.

$$
\begin{gathered}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0 \\
V(x, y)=X(x) Y(y)
\end{gathered}
$$

Aulas passadas

$\xrightarrow{\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0}: \underbrace{v=0}_{V=0} \underbrace{V}_{V=0}$

$$
V(x, y)=X(x) Y(y) \Rightarrow \frac{1}{X(x)} X^{\prime \prime}(x)=-\frac{1}{Y(y)} Y^{\prime \prime}(y)=\text { const. }=k^{2}
$$

$V(x, y)=\left(A e^{k x}+B e^{-k x}\right)(C \sin k y+D \cos k y)$
Impondo as condições de contorno

$$
\begin{aligned}
V(x \rightarrow \infty, y) & =0 \Rightarrow V(x, y)=e^{-k x}(C \sin k y+D \cos k y) \\
V(x, y=0) & =0 \Rightarrow V(x, y)=C e^{-k x} \sin k y \\
V(x, y=a) & =0 \Rightarrow V_{n}(x, y)=C_{n} e^{-k_{n} x} \sin k_{n} y, k_{n}=\frac{n a}{\pi}(n=1,2,3, \ldots)
\end{aligned}
$$

Aula passada
Solução geral: superposição de todas as soluções particulares (Equação linear).

$$
V(x, y)=\sum_{n=1}^{\infty} C_{n} e^{-k_{n} x} \sin k_{n} y
$$

$$
k_{n}=\frac{n a}{\pi} \quad(n=1,2,3, \ldots)
$$

PRECISAMOS IMPOR: $V(0, y)=V_{0}(y) \quad \forall y \in[0, a]$

$$
\begin{equation*}
V(0, y)=\sum_{m=1}^{\infty} C_{\mu} \sin \left(\frac{\operatorname{may}}{\hbar}\right)=V_{0}(y) \quad \forall y \in[0, \infty] \tag{1}
\end{equation*}
$$

isSo é uma representasão de $V_{0}(y)$ em Série de FOURIER.

MULTIPLICD A ER. (1) POR $\sin \left(\frac{M \pi y}{a} y\right)$ E INTEGRO EOH y DE 0 ATs' a :

$$
\begin{aligned}
& \int_{0}^{a} d y \sum_{m=1}^{\infty} C_{m} \sin \left(\frac{m \pi y}{a}\right) \min \left(\frac{\mu \pi y}{a}\right)=\int_{0}^{a} V_{0}(y) \sin \left(\frac{m \pi y}{a}\right) d y \\
& \int_{0}^{a} \sin \left(\frac{m \pi y}{a}\right) \operatorname{irn}\left(\frac{\mu \pi y}{a}\right) d y=\left\{\begin{array}{ll}
0 & S E m \neq n \\
\frac{a}{2} & \text { SE } m=n
\end{array}\right\}=\frac{a}{2} \delta_{m, n} \\
& \rightarrow \frac{a}{2} \underbrace{}_{C_{m=1}^{\infty} C_{m} \delta_{m, n}}=\int_{0}^{a} V_{0}(y) \sin \left(\frac{m \pi y}{a}\right) d y \\
& C_{m}=\frac{2}{a} \int_{0}^{a} V_{0}(y) \sin \left(\frac{m \pi y}{a}\right) d y
\end{aligned}
$$

EXEMPLO: $V_{0}(g)=V_{0}=$ CONST.

$$
\begin{aligned}
C_{\mu} & =\frac{2}{a} \int_{0}^{a} v_{0} \sin \left(\frac{n \pi y}{a}\right) d y=\left.\frac{2 v_{0}}{f}\left(\frac{\alpha}{n \pi}\right)(-1) \cos \left(\frac{n \pi y}{a}\right)\right|_{y=0} ^{y=a} \\
& =-\frac{2 v_{0}}{n \pi}[\cos (n \pi\rangle-1]
\end{aligned}
$$

SE $\mu=P A R: \quad \cos (\mu \pi)=1 \Rightarrow C_{\mu}=0$
SE $M E_{E}$ COMPAR, $\cos (\mu \pi)=-1 \Rightarrow C_{\mu}=\frac{4 V_{0}}{\mu \pi}$

$$
V(x, y)=\frac{4 v_{0}}{\pi} \sum_{\substack{\mu=1,3,5, \ldots \\ M \operatorname{ImPAR}}}^{\infty} \frac{1}{\mu} e^{-\left(\frac{\mu \pi}{\sigma}\right)} \sin \left(\frac{\mu \pi y}{a}\right)
$$

O potencial como função de x e y.

O potencial em $x=0$ como função de y.

Solução da Equação de Laplace em coordenadas esféricas

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0 .
$$

PROBLEMS NA REGIAO $n>R$
SEPARACAO DE VARIÁvEIS:

$$
V(\sim, \theta, \phi)=R(n) T(\theta) F(\phi)
$$

VAMOS SUPOR SIMETRIA AZIMUTAL:
INDEPENDE DE $\phi \Rightarrow F(\neq) \Rightarrow V(\wedge, \theta)=R(n) T(\theta)$

$$
\frac{T(\theta)}{R^{2}} \frac{d}{d r}\left[r^{2} \frac{d R}{d r}\right]+\frac{R(r)}{R^{2} \sin \theta} \frac{d}{d \theta}\left[\sin \theta \frac{d T}{d \theta}\right]=0
$$

DIVIDO POR T $(\theta) R(n)$.

$$
\frac{1}{R(n)} \frac{d}{d r}\left[r^{2} \frac{d R}{d n}\right]=-\frac{1}{T(\theta) \sin \theta} \frac{d}{d \theta}\left[\sin \theta \frac{d T}{d \theta}\right]=\operatorname{con} T .=k
$$

PARTE RADIAL: $\frac{d}{d r}\left[\Lambda^{2} R^{\prime}\right]=k R=\Lambda^{2} R^{\prime \prime}+2 \wedge R^{\prime}-R R=0$
CHUTE: $R(\mu)=A \Lambda^{\alpha} \Rightarrow A\left[\alpha(\alpha-1) r^{2} r^{(\alpha-2)}+2 \alpha \mu r^{(\alpha-1)}-k r^{\alpha}\right]=0$

$$
\begin{aligned}
& {\left[\alpha(\alpha-1) \Lambda^{\alpha}+2 \alpha \Lambda^{\alpha}-k \Lambda^{\alpha}\right]=0 \quad[\alpha(\alpha-1)+2 \alpha-k] \mu^{\alpha}=0} \\
& \Rightarrow \\
& \alpha^{2}+\alpha-k=0 \quad[k=\alpha(\alpha+1)]
\end{aligned}
$$

$$
\alpha=\frac{-1 \pm \sqrt{1+4 k}}{2}
$$

VAMOS VER MAIS ADIANTE QUE APENAS SOLUCİES COM α INTEIRO DÁO SOLUÇẼS PARA T(O) NÃO SINGULARIS. VAMOS OLHAR APENAS PARA LSSSES CASOS.
PARA QUE α SEJA INTEIRO, DEVEMOS TER:
a) $\sqrt{1+4 k} \rightarrow$ INTEIRO
b) $-1 \pm \sqrt{1+4 k} \rightarrow P A R \Rightarrow \sqrt{1+4 k} E$ 'MPAR $\left\{\begin{array}{l}\sqrt{1+4 k}=2 l+1 \\ l \in \mathbb{N}\end{array}\right.$

$$
\left.\begin{array}{rl}
=\sqrt{1+4 k}=2 l+1 & \Rightarrow 4\left(l+y=(2 l+1)^{2}=4 l^{2}+4 l l+1\right. \\
& \Rightarrow l=l^{2}+l=l(l+1)
\end{array}\right] \begin{aligned}
& \alpha=\frac{-1 \pm(2 l+1)}{2}=\left\{\begin{array}{l}
\frac{2 l}{2}=l \\
-\frac{2 l+2}{2}=-(l+1)
\end{array}\right. \\
& R(r)=A l^{l}+B r^{-(l+1)}=A \lambda^{l}+\frac{B}{l^{(l+1)}}=R(n)
\end{aligned}
$$

PARTE ANGULAR:

$$
\begin{aligned}
& \frac{d}{d \theta}\left[\sin \theta \frac{d T}{d \theta}\right]=-l(l+1) \sin \theta T(\theta) \\
\Rightarrow & \sin \theta \frac{d^{2} T}{d \theta^{2}}+\cos \theta \frac{d T}{d \theta}+l(l+1) \sin \theta T(\theta)=0
\end{aligned}
$$

MUPANGA DE VARIA'VEIS: $x=\cos \theta \quad \frac{d}{d \theta}=\frac{d x}{d \theta} \frac{d}{d x}=-\sin \theta \frac{d}{d x}$

$$
\begin{gathered}
T(x=\cos \theta): \quad x \in[-1,1] \\
\Rightarrow\left(1-x^{2}\right) \frac{d^{2} T}{d x^{2}}-2 x \frac{d T}{d x}+l(l+1) T(x)=0 \\
l=0,1,2, \ldots
\end{gathered}
$$

EQ. DE LEGENDRE

UM CONJUNTO DE SOLUEEIS PARA ESSA EQUASÃO SÃO POLINÔ MIOS! JSSES POLINOMIOS SAO CHAMADOS POLINOMCOS DE LEGENDRE: $P_{2}(x) ; x \in[-1,1]$

PROPRIEDADES DO $P_{l}(x)$:
(i) $\mathrm{P}_{l}(x) \mathbb{E}^{\prime}$ UM POLINômio DE ORDEM l
(ii) Fórrula dE RODRIGUES:

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{e}}\left[\left(x^{2}-1\right)^{l}\right]
$$

$(i i i) P_{e}(1)=1, \quad P_{e}(-1)=(-1)^{2}$
(iv) $P_{l}(x) E^{\prime}$ UNA FONĢ̃̃ PAR SE Q FOR PAR e ímpar se e gor fompar.
(0) EXEMPLOS: $\quad P_{0}(x)=1 \quad P_{1}(x)=x \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

$$
\begin{gathered}
P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
\text { (0i) }\left|P_{e}(x)\right| \leqslant 1 \quad x \in[-1,1] \Rightarrow-1 \leq P_{e}(x) \leqslant 1
\end{gathered}
$$

(Nii) ORTOGONALIDADE:

$$
\int_{-1}^{+1} P_{l}(x) P_{l^{\prime}}(x) d x= \begin{cases}0 & \text { SE } l \neq e^{\prime} \\ \frac{2}{2 l+1} & \text { SE } e=e^{\prime}\end{cases}
$$

(OiNii) SE $f(x) E^{\prime}$ CONTI'NUA POR PARTES NO in TERVALO $x \in[-1,1]$, ENTADO:

$$
f(x)=\sum_{l=0}^{\infty} a_{e} P_{e}(x) \quad x \in[-1,1]
$$

ONDE

$$
a_{2}=\frac{2 l+1}{2} \int_{-1}^{+1} P_{l}(x) f(x) d x
$$

Os primeiros polinômios de Legendre

legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\left(3 x^{2}-1\right) / 2 \\
& P_{3}(x)=\left(5 x^{3}-3 x\right) / 2 \\
& P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8 \\
& P_{5}(x)=\left(63 x^{5}-70 x^{3}+15 x\right) / 8
\end{aligned}
$$

A EQ. DE LEGENDRE E DE $2 G$ ORDEM. PORTANTO, DEVE TER UMA OUTRA SOLVGAE LINEARMENTE independente de $P_{e}(x)$. de fato, Ela Existe, PORÉM ELA E' SINGULAR $(\rightarrow \pm \infty)$ EM ALGUN PONTO DE $x \in[-1,1]$. NÁO ESTAREMOS INTERESSADOS NESSES CASOS
ALE'M DISSO, SE Q NATO FOR INTEIRO (E ASSIM \propto TAMBEM NATO), AS DUAS SOLUGOES SERÃO sing ulares e vamos tambér Ignorar ilsses casos.
ASSIM, SUPERRONDO TODAS AS SOLUCDES SERARA'VEIS:

$$
V(\mu, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{(l+1)}}\right) P_{l}(\cos \theta)
$$

Solução geral (simetria azimutal)

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Exemplo 3.8: Uma esfera condutora neutra num campo uniforme

$$
\begin{aligned}
& \mathbf{E}=E_{0} \mathbf{z} \\
& \text { problema para } \\
& V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{e} l^{l}+\frac{B_{l}}{l^{l+1}}\right) P_{c}(\cos \theta) \\
& \text { CONDICOES DE CONTORNO: } \\
& \text { - } V(R, \theta)=\operatorname{CONST}, V_{0} \forall \theta \in[0, \pi]
\end{aligned}
$$

- $\lambda \rightarrow \infty: V(\lambda, \theta) \rightarrow$ POTENCIAL DE $\vec{B}=E_{0} \hat{z}$

$$
\begin{aligned}
-\vec{\nabla} V_{\infty}(\cap, \theta)=E_{0} \hat{z} \Rightarrow V_{\infty}(z)=-E_{0} z \Rightarrow \mid V_{\infty}(\cap, \gamma)= & -E_{0} \wedge \cos \theta \\
& +\operatorname{covst} .
\end{aligned}
$$

$E M \sim=R:$

$$
\begin{aligned}
& V(R, \theta)=\sum_{l=0}^{\infty} \underbrace{\left(A_{l} R^{Q}+\frac{B_{e}}{R^{(e+1)}}\right)}_{a_{l}} P_{l}(\cos \theta)=V_{0} \\
& \Rightarrow \sum_{Q=0}^{\infty} C_{l} P_{l}(\cos \theta)=V_{0} \\
& \Rightarrow a_{l}=\frac{2 e+1}{2} \int_{-1}^{+1} V_{0} P_{l}(x) d x=\left(\frac{2 e+1}{2}\right) V_{0} \int_{-1}^{+1} P_{l}(x) d x
\end{aligned}
$$

Como $P_{\theta}(x)=1$:

$$
\begin{aligned}
& \int_{-1}^{+1} P_{e}(x) d x=\int_{-1}^{+1} P_{0}(x) P_{e}(x) d x=\delta_{0,0} \int_{-1}^{+1}\left[P_{0}(x)\right]^{2} d x=2 \delta_{2,0} \\
& \Rightarrow a_{Q}=\left(\frac{2 l+1}{2}\right) V_{0} \not r \delta_{e_{1} 0}=(2 e+1) V_{0} \delta_{Q, 0}=V_{0} \delta_{Q, 0} \\
& a_{e}= \begin{cases}0 & \text { Se } Q \geqslant 1 \\
V_{0} & \text { SE } Q=0\end{cases}
\end{aligned}
$$

