Aula 12

F 502 - Eletromagnetismo I 2o semestre de 2020
27/10/2020

Aulas passadas

Problema: resolver a Equação de Laplace numa certa região R do espaço, dadas condições de contorno na fronteira da região. $\nabla^{2} V=0$ ea. de laplace

A escolha do sistema de coordenadas é ditada pela geometria do problema: p. ex., esférica.

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0 .
$$

Aulas passadas

Solução geral com simetria azimutal:

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{(l+1)}}\right) P_{l}(\cos \theta)
$$

$P_{l}(x)$ são polinômios de Legendre

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\left(3 x^{2}-1\right) / 2 \\
& P_{3}(x)=\left(5 x^{3}-3 x\right) / 2 \\
& P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8 \\
& P_{5}(x)=\left(63 x^{5}-70 x^{3}+15 x\right) / 8
\end{aligned}
$$

Exemplo 3.8: Uma esfera condutora neutra num campo uniforme

Campo externo: $\mathbf{E}=E_{0} \mathbf{Z}$
Condições de contorno: REGIAAO $\quad \because \geqslant R$
$V(r \rightarrow \infty, \theta) \rightarrow-E_{0} z+$ const. $=-E_{0} r \cos \theta+$ const.
$V(R, \theta)=$ const. $\equiv V_{0}, \quad \forall \theta$

$$
\left.\begin{array}{rl}
V(R, \theta)= & \sum_{l=0}^{\infty} \underbrace{\left(A_{l} R^{l}+\frac{B_{l}}{R^{(l+1)}}\right)}_{a_{l}} P_{l}(\cos \theta)=V_{0}, \forall \theta \\
V(R, \theta)= & \sum_{l=0}^{\infty} a_{l} P_{l}(\cos \theta)=V_{0} P_{0}(\cos \theta) \\
\Rightarrow & a_{0}=V_{0} \\
& a_{l}=0, l=1,2,3, \ldots
\end{array}\right\} \begin{aligned}
& A_{0}+\frac{B_{0}}{R}=V_{0} \Rightarrow B_{0}=R\left(V \circ A_{0}\right) \\
& A_{l} R^{l}+\frac{B_{l}}{R^{(l+1)}}=0 \quad(l=1,2,3, \ldots)
\end{aligned}
$$

$$
\Rightarrow B_{e}=-A_{Q} R^{(2 e+1)}(l=1,2,3, \ldots)
$$

REESCREVENDO O POTENCIAL:

$$
V(\Lambda, \theta)=A_{0}-\frac{R\left(A_{0}-V_{0}\right)}{\mu}+\sum_{l=1}^{\infty} A_{l}\left(r^{l}-\frac{R^{(2 l+1)}}{r^{(l+1)}}\right) P_{l}(\cos \theta)
$$

A OUTRA CONDIGÃD DE CONTORNO: $\mu \rightarrow \infty$

$$
\begin{aligned}
& V(n \rightarrow \infty, \theta)=A_{0}+\sum_{l=1}^{\infty} A_{l} n^{l} P_{l}(\cos \theta)=-E_{0} R \cos \theta+\operatorname{const} \text {. } \\
& =A_{0}+A_{1} \sim \underbrace{P_{1}(\cos \theta)}_{\cos \theta}+\sum_{e=2}^{\infty} A_{Q} \Omega^{l} P_{l}(\cos \theta)=-E_{0} \sim \cos \theta+\cos s t \text {. } \\
& \Rightarrow \quad A_{1}=-E_{0} \quad A_{l}=0 \quad l=2,3,4 \ldots \\
& \Rightarrow V(\Lambda, \theta)=A_{0}+\frac{\left(V_{0}-A_{0}\right) R}{\mu}-E_{0}\left(r-\frac{R^{3}}{\mu^{2}}\right) \cos \theta
\end{aligned}
$$

- potenclal da carga induzida er $\left[\left(V_{0}-A_{0}\right) \frac{R}{r}+E_{0} \frac{R^{3}}{r^{2}} \cos \theta\right]$

QUAL E' A DISTRIBUICAAO $\sigma(R, O)$ DA CARGA INDUZIDA NA ESFERA?

$$
\begin{aligned}
& \sigma(R, \theta)=\varepsilon_{0} \hat{\mu} \cdot \vec{E}(R, \sigma)=-\left.\epsilon_{0} \hat{\mu} \cdot \vec{\nabla} V\right|_{\sim=R^{+}}=-\left.\epsilon_{0} \hat{r} \cdot \overrightarrow{\nabla V}\right|_{r=R^{+}} \\
& \sigma(R, \theta)=-\left.\epsilon_{0} \frac{\partial V}{\partial \mu}\right|_{r=R^{+}} \\
& \left.\frac{\partial V}{\partial r}\right|_{r=R^{+}}=-\frac{\left(V_{0}-A_{0}\right)}{R}-E_{0}\left[1+\frac{2 R^{3}}{R^{3}}\right] \cos \theta=\frac{A_{0}-V_{0}}{R}-3 E_{0} \cos \theta \\
& \Rightarrow \sigma(R, \theta)=\epsilon_{0}\left[\frac{V_{0}-d_{0}}{R}+3 E_{0} \cos \theta\right] \\
& q_{\text {ind }}=\int \sigma(R, \theta) d S=\int \sigma(R, \theta) R^{2} \sin \theta d \theta d \phi=2 \pi R^{2} \int_{0}^{\pi} \sigma(R, \theta) \sin \theta d \theta \\
& =2 \pi \epsilon_{0} R^{2}[\left(\frac{V_{0}-A_{0}}{R}\right)_{(\theta}^{\int_{\theta}} \underbrace{\pi}_{2} \sin \theta d \theta+3 E_{0} \int_{0}^{\pi} \cos \theta \sin \theta d \theta]=4 \pi \epsilon_{0} R\left(V_{0}-A_{0}\right)
\end{aligned}
$$

COMO A carga total da esfera é qind $=0$

$$
\begin{aligned}
& \Longrightarrow V_{0}=A_{0} \\
& V(\Lambda, \theta)=V_{0}-E_{0}\left(\Lambda-\frac{R^{3}}{\Lambda^{2}}\right) \cos \theta \\
& \sigma(R, \theta)=3 \epsilon_{0} E_{0} \cos \theta \\
& V_{\text {IND }}(\Lambda, \theta)=E_{0} \frac{R^{3}}{\Lambda^{2}} \cos \theta
\end{aligned}
$$

Expansão multipolar

Objetivo: obter o campo/potencial de uma configuração localizada de cargas, num ponto longe da distribuição.

Expansão multipolar

Primeira resposta: longe da distribuição, o campo é

$$
V(\mathbf{r})=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r}, \mathbf{E}(\mathbf{r})=\frac{Q}{4 \pi \epsilon_{0}} \frac{\hat{\mathbf{r}}}{r^{2}}
$$

onde Q é a carga total. $\quad Q=\sum_{i} q_{i}$

Mas e se a carga total for zero?

Expansão multipolar
SOLUÇÃo GERAL:

$$
\begin{aligned}
& V(\vec{\lambda})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\pi^{\prime}\right) d V^{\prime}}{\left(\bar{\pi}-\pi^{\prime} \mid\right.} \quad \vec{\lambda}^{\prime} \quad \begin{array}{c}
\text { VARIA } \\
\text { CARGA REGIAO OND }
\end{array} \text { HA } \\
& |\vec{\lambda}| \gg|\vec{n} \| \text { (MUITO LONGE DAS } \\
& \text { cafgas) } \\
& |\vec{r}-\vec{n}|=\left[r^{2}+r^{\prime 2}-2 \vec{\imath} \cdot \vec{n}\right]^{1 / 2}=\left[r^{2}+n^{\prime 2}-2 \mu n^{\prime} \cos \gamma^{\prime}\right]^{1 / 2}
\end{aligned}
$$

ONDE $\gamma^{\prime} E ́$ O ANGULO ENTRE $\vec{\lambda} E \vec{r}^{\prime}$

$$
\begin{aligned}
& \begin{array}{l}
\left.\Rightarrow\left|\vec{n}-\vec{n}^{\prime}\right|=r\left[1+\frac{\lambda^{\prime}}{\mu^{2}}-2 \frac{\mu^{\prime}}{\mu} \cos \gamma^{\prime}\right]^{1 / 2} \Rightarrow \frac{1}{\left|\lambda-\lambda^{\prime \prime}\right|}=\frac{1}{\mu} \frac{1}{\left[1+\frac{\lambda^{\prime 2}}{\mu^{2}}-2 \frac{\lambda^{\prime}}{n} \cos \gamma\right.}\right]^{1 / 2} \\
1
\end{array} \\
& \frac{1}{\sqrt{1+x}} \cong 1-\frac{x}{2}+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+\cdots \quad|x| \ll 1 \\
& \frac{1}{\left|R_{R}^{R}-\pi^{2}\right|}=\frac{1}{\sim}\left[1+\left(\frac{\Lambda^{\prime}}{\sim}\right) \cos \gamma^{n}+\left(\frac{\Lambda^{\prime}}{r}\right)^{2} \frac{3 \cos ^{2} \gamma^{\prime}-1}{2}+0\left(\frac{\Lambda^{\prime}}{\sim}\right)^{3}\right]
\end{aligned}
$$

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r}[\underbrace{\int \rho\left(\pi^{\prime}\right) d v^{\prime}}_{\theta=\text { CARGA TOTAL }}+\int \frac{r^{\prime}}{r} \cos \gamma^{\prime} g\left(\pi^{\prime}\right) d v^{\prime}+\theta\left(\frac{\Lambda^{\prime}}{\sim}\right)^{2}]
$$

- 1: TERMO É O QUE EU TINHA ANTECIPADO. E o 2??

$$
\begin{aligned}
V_{1}(\vec{r}) & =\frac{1}{4 \pi \epsilon_{0}} \frac{1}{\mu r^{2}} \int \underbrace{\mu r^{\prime} \cos r^{\prime}}_{\pi^{\prime} \cdot \pi^{\prime}} \rho\left(\pi^{\prime}\right) d v^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}} \int\left(\vec{\lambda} \cdot \vec{r}^{\prime}\right) \rho\left(\pi^{\prime}\right) d v^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{1}{\lambda^{3}} \vec{\pi} \cdot[\underbrace{\left.\int \vec{r}^{\prime} \rho\left(\vec{r}^{\prime}\right) d v^{\prime}\right]}_{\vec{P}} \\
P_{x} & =\int x^{\prime} \rho\left(\pi^{\prime}\right) d v^{\prime} \quad \quad P_{y}=\int y^{\prime} \rho\left(\pi^{\prime}\right) d v^{\prime} \quad P_{z}=\int z^{\prime} \rho\left(\pi^{\prime}\right) d v^{\prime}
\end{aligned}
$$

\vec{P} E' O MOMENTO DE DIPOLO ELETRICO DA DISTRIBUIÇÃO

$$
\begin{equation*}
\Rightarrow V_{1}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p} \cdot \vec{r}}{r^{3}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}} \tag{t}
\end{equation*}
$$

O dipolo elétrico

\vec{P} APONTA DA CARGA NEGATIVA 8ARA A CARGA POSITVU

$$
V_{1}(\vec{\imath})=\frac{d q}{4 \pi \epsilon_{0}} \frac{\hat{z} \cdot \hat{n}}{\Lambda^{2}}=\left(\frac{q d}{4 \pi \epsilon_{0}}\right) \frac{\cos \theta}{n^{2}}
$$

Dipolos elétricos somam-se
vetorialmente
SEJA UMA DISTRIBUIGÃO COM DUAS CONTRIBUIC包E S:

$$
\begin{aligned}
& \rho(\vec{n})=\rho_{A}(\vec{r})+\rho_{B}(\vec{r})
\end{aligned}
$$

$$
\begin{aligned}
& \vec{p}_{A} I_{q} \dot{q}_{q} \quad\left[\vec{p}_{B}^{q} \quad \Rightarrow \vec{P}_{A}+\vec{P}_{B}=0\right.
\end{aligned}
$$

O campo elétrico de um dipolo

$$
\begin{gathered}
V_{1}(\vec{r})=\frac{P}{4 \pi \epsilon_{0}} \frac{\cos \theta}{r^{2}} \text { PARA UM DIPOLO NA DIRECATO } \hat{z}: \vec{P}=P \hat{z} \\
\vec{E}_{1}=-\vec{\nabla} V_{1} \Rightarrow E_{1 \sim}=-\frac{\partial V}{\partial \sim} \quad E_{1 \theta}=-\frac{1}{\sim} \frac{\partial V}{\partial \theta} \\
\vec{E}_{1}=E_{1 n} \hat{r}+E_{10} \hat{\theta}
\end{gathered}
$$

Tomando as derivadas (ver notas de aula):

$$
\begin{aligned}
& \vec{E}_{1}=\frac{P}{4 \pi \epsilon_{0} r^{3}}(3 \cos \theta \hat{n}-\hat{\jmath}) \\
& \text { MAS } p \cos \theta=\vec{p} \cdot \hat{\imath} \quad \sqrt{ } \quad p \hat{z}=\vec{p} \\
& \vec{E}_{1}=\frac{1}{4 \pi \epsilon_{0} \imath^{3}}[3(\vec{p} \cdot \hat{\imath}) \hat{\imath}-\vec{P}] \\
& \text { ESSA FORMA E' GENEERICA } \\
& \text { MESMD QUE } \vec{P} \text { WATO SEJA } \\
& \text { NA DIRECAO } \hat{z}
\end{aligned}
$$

DIPOLO "PURO" TEM DIMENSAO ZERO: PARA CARGAS $\perp q$ $d \rightarrow 0$
$q \rightarrow \infty$$\quad$ TAL QUE $\quad p=q d=\operatorname{CONST}$.

(a) Field of a "pure" dipole

(b) Field of a "physical" dipole

O resto da expansão

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r} \frac{1}{\sqrt{1-2\left(r^{\prime} / r\right) \cos \gamma^{\prime}+\left(r^{\prime} / r\right)^{2}}} \quad S \equiv \frac{\Omega^{\prime}}{\Omega}
$$

Mas, das propriedades dos polinômios de Legendre:

$$
\frac{1}{\sqrt{1-2 s x+s^{2}}}=\sum_{l=0}^{\infty} s^{l} P_{l}(x)(|s|<1) \quad \text { "Função geratriz" }
$$

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}\left(\cos \gamma^{\prime}\right)
$$

$$
\begin{aligned}
V\left(\vec{n}^{2}\right)= & \frac{1}{4 \pi \epsilon_{0}} 1 \frac{1}{\sim} \sum_{l=0}^{\infty} \int\left(\frac{N^{\prime}}{n}\right)^{Q} P_{l}\left(\cos \gamma^{\prime}\right) \rho\left(\vec{\pi}^{\prime}\right) d V^{\prime} \\
= & \frac{1}{4 \pi \epsilon_{0}}\left[\frac{Q}{\sim}+\frac{\vec{P} \cdot \hat{n}}{n^{2}}+\frac{1}{n^{2}} \int\left(\lambda^{\prime}\right)^{2}\left(\frac{3 \cos ^{2} \gamma^{\prime}-1}{2}\right) \rho\left(\pi^{\prime}\right) d V^{\prime}+\right. \\
& \left.+\sum_{Q \geq 3}^{\infty} \frac{1}{n^{e}} \int\left(n^{\prime}\right)^{l} P_{l}\left(\cos \gamma^{\prime}\right) \rho\left(\pi^{\prime}\right) d V^{\prime}\right]
\end{aligned}
$$

3- TERMO E' O TERMO PE QUADRUPOLO ELENTRICO

CADA TERMO E' CHAMADO DE MULTIPOLO ERE'TRICO

multipolos elementares:

Monopole
($V \sim 1 / r$)

Dipole
($V \sim 1 / r^{2}$)

Quadrupole
($V \sim 1 / r^{3}$)

Octopole
($V \sim 1 / r^{4}$)

Problema 3.26 (3a. ed.)/3.27 (4a. ed.)
Problem 3.27 A sphere of radius R, centered at the origin, carries charge density

$$
\rho(r, \theta)=k \frac{R}{r^{2}}(R-2 r) \sin \theta, \quad \Omega \leqslant R
$$

where k is a constant, and r, θ are the usual spherical coordinates. Find the approximate potential for points on the z axis, far from the sphere.
MONOPOLE: $\theta=\int \rho(\vec{\pi}) d v=k R \int \frac{1}{y^{2}}(R-2 \sim) \sin \theta \mu^{2} \sin \theta d \sim d \theta d \phi$ INTEGRAL RADIAL: $\int_{0}^{R}(R-2 n) d r=R^{2}-\left.r^{2}\right|_{0} ^{R}=R^{2}-R^{2}=0$
DIPOLE: $\int \lambda^{\prime} \underbrace{P\left(\cos \gamma^{\prime}\right.}_{\cos \theta^{\prime}}\rangle \frac{K R}{i^{2}}(R-2 i) \sin \theta^{\prime} i^{2} \sin \theta^{\prime} d i^{\prime} d \theta^{\prime} d \phi^{\prime}$
$R_{1}\left(\cos \gamma^{\prime}\right)=\cos \gamma^{\prime} \quad \operatorname{com} O$ So QUERO O POTENCIAL No $\underline{x} x_{0} \hat{z}(\vec{r}=z \hat{z}) \Rightarrow \cos \gamma^{\prime}=\cos \theta^{\prime}$

$$
\int_{0}^{\pi} \sin ^{2} \theta^{\prime} \cos \theta^{\prime} d \theta^{\prime}=\left.\frac{1}{3} \sin ^{3} \theta\right|_{\theta=0} ^{\theta=\pi}=0
$$

QUADRUPOLO: $\int\left(\Omega^{\prime}\right)^{2} \underbrace{R_{2}\left(\cos \theta^{\prime}\right)}_{3 \cos ^{2} \theta^{\prime}-1} \frac{k R}{r^{2}}(R-2 \Delta) \sin \theta^{\prime} r^{r^{2} d r^{\prime}} \sin \theta^{\prime} d \theta^{\prime} d \phi$

FAZENDO AS INTEGRAIS:

$$
V(\vec{i}) \cong \frac{\pi}{192 \epsilon_{0}} \frac{k R^{5}}{|z|^{3}}
$$

$\gamma^{\prime} \Rightarrow \hat{A N G U L D E N T R E ~}{\underset{\tau}{ }}^{\prime} E \hat{z}$
as CODRPENADAS ESfÉrIcas de

$$
\hat{r}^{\prime} S \pi o=r^{\prime}, \theta^{\prime}=\gamma^{\prime}, \phi^{\prime}
$$

