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Aulas passadas
Problema: resolver a Equação de Laplace numa certa 
região R do espaço, dadas condições de contorno na 
fronteira da região.

A escolha do sistema de coordenadas é ditada pela 
geometria do problema: p. ex., esférica.

3.3 Separation of Variables 141

Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet
of metal, insulated from the others, and held at a constant potential V0. Find the
potential inside the box. [What should the potential at the center (a/2, a/2, a/2)

be? Check numerically that your formula is consistent with this value.]11
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FIGURE 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate,
since the boundaries were planes. For round objects, spherical coordinates are
more natural. In the spherical system, Laplace’s equation reads:
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= 0. (3.53)

I shall assume the problem has azimuthal symmetry, so that V is independent of
φ;12 in that case, Eq. 3.53 reduces to
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As before, we look for solutions that are products:

V (r, θ) = R(r)$(θ). (3.55)

Putting this into Eq. 3.54, and dividing by V ,
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11This cute test was suggested by J. Castro.
12The general case, for φ-dependent potentials, is treated in all the graduate texts. See, for instance,
J. D. Jackson’s Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Chapter 3.
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Since the first term depends only on r , and the second only on θ , it follows that
each must be a constant:
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Here l(l + 1) is just a fancy way of writing the separation constant—you’ll see in
a minute why this is convenient.

As always, separation of variables has converted a partial differential equation
(3.54) into ordinary differential equations (3.57). The radial equation,

d
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)
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has the general solution

R(r) = Arl + B
rl+1

, (3.59)

as you can easily check; A and B are the two arbitrary constants to be expected
in the solution of a second-order differential equation. But the angular equation,
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is not so simple. The solutions are Legendre polynomials in the variable cos θ :

"(θ) = Pl(cos θ). (3.61)

Pl(x) is most conveniently defined by the Rodrigues formula:
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The first few Legendre polynomials are listed in Table 3.1.

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2

P3(x) = (5x3 − 3x)/2

P4(x) = (35x4 − 30x2 + 3)/8

P5(x) = (63x5 − 70x3 + 15x)/8

TABLE 3.1 Legendre Polynomials.

Solução geral com simetria azimutal: 
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Pl (x) são polinômios de Legendre



Exemplo 3.8: Uma esfera condutora 
neutra num campo uniforme

Condições de contorno:
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Solution
The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero
at large z. In fact, far from the sphere the field is E0ẑ, and hence

V → −E0z + C.
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FIGURE 3.24

Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly,
the boundary conditions for this problem are

(i) V = 0 when r = R,
(ii) V → −E0r cos θ for r # R.

}
(3.74)

We must fit these boundary conditions with a function of the form 3.65.
The first condition yields
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� r+ aẑ
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Expansão multipolar
Objetivo: obter o campo/potencial de uma configuração 
localizada de cargas, num ponto longe da distribuição.



Expansão multipolar
Primeira resposta: longe da distribuição, o campo é

onde Q é a carga total.
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and hence

V (r) ∼= 1
4πε0

qd cos θ

r2
. (3.90)

The potential of a dipole goes like 1/r2 at large r ; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. If we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes
like 1/r3; for back-to-back quadrupoles (an octopole), it goes like 1/r4; and so
on. Figure 3.27 summarizes this hierarchy; for completeness I have included the
electric monopole (point charge), whose potential, of course, goes like 1/r .
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FIGURE 3.27

Example 3.10 pertains to a very special charge configuration. I propose now to
develop a systematic expansion for the potential of any localized charge distribu-
tion, in powers of 1/r . Figure 3.28 defines the relevant variables; the potential at
r is given by
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Mas e se a carga total for zero?
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Expansão multipolar





O dipolo elétrico



Dipolos elétricos somam-se 
vetorialmente



O campo elétrico de um dipolo
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FIGURE 3.36

This formula makes explicit reference to a particular coordinate system (spher-
ical) and assumes a particular orientation for p (along z). It can be recast in a
coordinate-free form, analogous to the potential in Eq. 3.99—see Prob. 3.36.

Notice that the dipole field falls off as the inverse cube of r ; the monopole field
(Q/4πε0r2)r̂ goes as the inverse square, of course. Quadrupole fields go like
1/r4, octopole like 1/r5, and so on. (This merely reflects the fact that monopole
potentials fall off like 1/r , dipole like 1/r2, quadrupole like 1/r3, and so on—the
gradient introduces another factor of 1/r .)

Figure 3.37(a) shows the field lines of a “pure” dipole (Eq. 3.103). For com-
parison, I have also sketched the field lines for a “physical” dipole, in Fig. 3.37(b).
Notice how similar the two pictures become if you blot out the central region; up
close, however, they are entirely different. Only for points r ! d does Eq. 3.103
represent a valid approximation to the field of a physical dipole. As I mentioned
earlier, this régime can be reached either by going to large r or by squeezing the
charges very close together.17
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(a)  Field of a “pure” dipole (b)  Field of a “physical” dipole

FIGURE 3.37

17Even in the limit, there remains an infinitesimal region at the origin where the field of a physical
dipole points in the “wrong” direction, as you can see by “walking” down the z axis in Fig. 3.35(b). If
you want to explore this subtle and important point, work Prob. 3.48.



O resto da expansão

Mas, das propriedades dos polinômios de Legendre:

“Função geratriz”
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and hence

V (r) ∼= 1
4πε0

qd cos θ

r2
. (3.90)

The potential of a dipole goes like 1/r2 at large r ; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. If we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes
like 1/r3; for back-to-back quadrupoles (an octopole), it goes like 1/r4; and so
on. Figure 3.27 summarizes this hierarchy; for completeness I have included the
electric monopole (point charge), whose potential, of course, goes like 1/r .
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FIGURE 3.27

Example 3.10 pertains to a very special charge configuration. I propose now to
develop a systematic expansion for the potential of any localized charge distribu-
tion, in powers of 1/r . Figure 3.28 defines the relevant variables; the potential at
r is given by

V (r) = 1
4πε0

∫
1
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Problema 3.26 (3ª. ed.)/3.27 (4ª. ed.)
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This is the desired result—the multipole expansion of V in powers of 1/r .
The first term (n = 0) is the monopole contribution (it goes like 1/r ); the sec-
ond (n = 1) is the dipole (it goes like 1/r2); the third is quadrupole; the fourth
octopole; and so on. Remember that α is the angle between r and r′, so the inte-
grals depend on the direction to the field point. If you are interested in the poten-
tial along the z′ axis (or—putting it the other way around—if you orient your r′

coordinates so the z′ axis lies along r), then α is the usual polar angle θ ′.
As it stands, Eq. 3.95 is exact, but it is useful primarily as an approxima-

tion scheme: the lowest nonzero term in the expansion provides the approximate
potential at large r , and the successive terms tell us how to improve the approxi-
mation if greater precision is required.

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density

ρ(r, θ) = k
R
r 2

(R − 2r) sin θ,

where k is a constant, and r , θ are the usual spherical coordinates. Find the approx-
imate potential for points on the z axis, far from the sphere.

Problem 3.28 A circular ring in the xy plane (radius R, centered at the origin) carries
a uniform line charge λ. Find the first three terms (n = 0, 1, 2) in the multipole
expansion for V (r, θ).

3.4.2 The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r ) by the monopole
term:

Vmon(r) = 1
4πε0

Q
r

, (3.97)

where Q =
∫

ρ dτ is the total charge of the configuration. This is just what we
expect for the approximate potential at large distances from the charge. For a point
charge at the origin, Vmon is the exact potential, not merely a first approximation
at large r ; in this case, all the higher multipoles vanish.

If the total charge is zero, the dominant term in the potential will be the dipole
(unless, of course, it also vanishes):

Vdip(r) = 1
4πε0

1
r2

∫
r ′ cos α ρ(r′) dτ ′.

Since α is the angle between r′ and r (Fig. 3.28),

r ′ cos α = r̂ · r′,

and the dipole potential can be written more succinctly:

Vdip(r) = 1
4πε0

1
r2

r̂ ·
∫

r′ρ(r′) dτ ′.




