Aula 13

F 502 - Eletromagnetismo I 2o semestre de 2020
29/10/2020

Campos elétricos na matéria
Campos EM DIELETRICOS (Isolantes)

Dipolos induzidos

Caso de átomos ou moléculas sem dipolo elétrico permanente: $\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \ldots$

$$
O=c_{t+}=0
$$

$$
O=0 \quad N=N
$$

Dipolos induzidos: um modelo

$$
\begin{aligned}
& |\vec{E}|=\left|\vec{E}_{E S F}\right| \Rightarrow E=\frac{q}{4 \pi \epsilon_{0}} \frac{d}{a^{3}}=\frac{q d \longrightarrow}{4 \pi \epsilon_{0} a^{3}} P \\
& \Longrightarrow P=\left(4 \pi a^{3}\right) \epsilon_{0} E \Rightarrow \vec{P}=\left(4 \pi a^{3}\right) \epsilon_{0} \vec{E}
\end{aligned}
$$

DIPOLO INDUZIDO É LINEAR NO CAMPOEE.
$\vec{p}=\alpha \overrightarrow{\underline{I}} \Rightarrow \alpha=\left(4 \pi a^{3}\right) \epsilon_{0} \Rightarrow$ POLARIZABILI DADE Do átomo
Polarizaçáo: $\vec{P}=\lim _{\Delta \rightarrow 0} \frac{\Delta \vec{P}}{\Delta V}$ MOMENTO DE DIPOLD ELETRTCO por unidade de volume
se houner wo grande wúmero de dipolos INDUZIDOS, A POLARIZACĀO $£$ TAMBÉM PROPORCIONALA $\vec{E}:$
$x_{e}=$ SUSCEPTIBLLIDADE ELE'trica

$$
\vec{P}=x_{e} \epsilon_{0} \vec{E}
$$

DO MEIO

Polarizabilidade de alguns átomos

H	He	Li	Be	C	Ne	Na	Ar	K	Cs
0.667	0.205	24.3	5.60	1.67	0.396	24.1	1.64	43.4	59.4

TABLE 4.1 Atomic Polarizabilities $\left(\alpha / 4 \pi \epsilon_{0}\right.$, in units of $\left.10^{-30} \mathrm{~m}^{3}\right)$. Data from: Handbook of Chemistry and Physics, 91 st ed. (Boca Raton: CRC Press, 2010).

Tendências da polarizabilidade

A polarizabilidade é a facilidade com a qual o átomo se deforma.
Bate bem com o modelo simples.

Size of Atom

Polarizability

Dipolos permanentes

Algumas moléculas polares:

(a)

Methanol

FIGURE 10.14
Some well-known polar molecules. The observed magnitude of the permanent dipole moment p is given in units of 10^{-18} esu-cm.

(b)

Torques em dipolos elétricos
FORGA TOTAL SOBRE O DIPOLO:

$$
\vec{F}_{+}+\vec{F}_{-}=0
$$

TORQUE TOTAL SOGRE CADA DIPOLO:

$$
\begin{aligned}
\vec{N} & =\sum_{i=1}^{2} \vec{n}_{i} \times \vec{F}_{i} \\
& =\left(\frac{\vec{d}}{2}\right) \times \vec{F}_{x}+\left(-\frac{\vec{d}}{2}\right) \times \vec{F}- \\
& =q\left(\frac{\vec{d}}{2}\right) \times \vec{E}-q\left(-\frac{\vec{d}}{2}\right) \times \vec{B} \\
\vec{N} & =q \vec{d} \times \vec{E}=\vec{p} \times \vec{E}
\end{aligned}
$$

$$
|\vec{N}|=P E \sin \theta
$$

0 TORQUE ATUA PARA ALINHAR - dipolo ao campo \Rightarrow USANDO FÍSICA ESTATISTICA, MOSTRA-SE QUE $\vec{P}=X_{e} \epsilon_{0} \vec{E}$

Efeitos não-lineares, anisotropia e ferroeletricidade
i) SE O CAMPO \vec{E} É MUITO FORTE OU, DEPENDENDO DO MATERIAL;:

$$
\vec{P}=\epsilon_{0}\left[x_{e} \overrightarrow{\underline{E}}+x_{e}^{(3)}(\vec{E} \cdot \vec{E}) \vec{E}+\cdots\right]
$$

ii) ANLSOTROPIA: EX SÓlIDOS NATO CÚBICOS, VOCE PODE TER:

$$
\vec{P}=\epsilon_{0} \overline{\bar{X}}_{e} \cdot \vec{E}=p\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\epsilon_{0}\left(\begin{array}{lll}
X_{e 11} & \chi_{e 12} & \chi_{e 13} \\
\chi_{e 21} & \chi_{e 22} & \chi_{e 23} \\
\chi_{e 31} & \chi_{e 32} & \chi_{e 33}
\end{array}\right)\left(\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)
$$

\vec{P} PODE NAO APONTAR NA MESMA DIREEAO DE \vec{E} iii) FERROELETRICIDADE: \vec{P} EXISTE MESMO NA AUSÊNCIA de camdo Elétrico externo aplicado ($\mathrm{BaTiO} \mathrm{O}_{3}$) \rightarrow ELETRETOS

Cargas ligadas

Qual é o potencial elétrico gerado por um corpo com polarização $\mathbf{P}(\mathbf{r})$? WhO IMPORTA CONO $\vec{P}(\pi)$ FOI CRIADA Potencial de um dipdloj na drigem:

$$
V(\vec{\lambda})=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{P} \cdot \hat{\lambda}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{P} \cdot \vec{r}}{\hat{r}^{3}}
$$

SE D DIPDLD ESTIVEA WO PONTO $\vec{\lambda}$:

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \vec{p} \cdot \frac{(\vec{r}-\vec{r})}{\left|\vec{n}-\vec{l}^{\prime}\right|^{3}}
$$

PARA O CORRO CONO UM TODO $\therefore d \vec{p}=\vec{P}\left(\vec{n}^{\prime}\right) d V^{\prime}$

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\vec{P}\left(\vec{n}^{\prime}\right) \cdot\left(\vec{n}-\vec{n}^{\prime}\right)}{\left|\vec{n}-\vec{r}^{\prime}\right|^{3}} d V^{\prime}
$$

$$
\begin{aligned}
& \text { MAF: } \vec{\nabla}\left(\frac{1}{n}\right)=-\frac{\hat{n}}{n^{2}}=-\frac{\vec{n}}{n^{3}} \Rightarrow \vec{\nabla}\left(\frac{1}{\left|\vec{n}-\vec{r}^{\prime}\right|}\right)=-\frac{\left(\vec{n}-\vec{n}^{\prime}\right)}{\left|\vec{n}-\vec{n}^{\prime}\right|^{3}} \\
& \vec{\nabla}^{\prime}=\hat{x} \cdot \frac{\partial}{\partial x^{\prime}}+\hat{y} \frac{\partial}{\partial y^{\prime}}+\hat{z} \frac{\partial}{\partial z^{\prime}} \\
& \vec{\nabla}^{\prime}\left(\frac{1}{|\vec{n}-\vec{n} \eta|}\right)=+\frac{\left(\vec{n}-\vec{n} \vec{n}^{\prime}\right)}{|\vec{n}-\vec{n}|^{3}} \\
& {\left[\frac{d}{d x} f\left(x-x^{\prime}\right)=-\frac{d}{d x^{\prime}} f\left(x-x^{\prime}\right)\right]} \\
& f^{\prime \prime}\left(x-x^{\prime}\right)=(-)(-1) f^{\prime \prime}\left(x-x^{\prime}\right) \\
& a V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \vec{P}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}^{\prime}\left(\frac{1}{\left|\vec{\lambda}-\vec{r}^{\prime}\right|}\right) d V^{\prime} \\
& \text { USANDO } \vec{\nabla} \cdot(f \vec{A})=(\vec{\nabla} f) \cdot \vec{A}+f(\vec{\nabla} \cdot \vec{A})
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi \epsilon_{0}} \int_{S(v)} \frac{\hat{c}_{B}\left(\vec{n}^{\prime}\right)}{\frac{\left.\sigma^{\prime}\right) \cdot \hat{m}}{\left|\vec{r}-\vec{n}^{\prime}\right|}} d S^{\prime}+\frac{1}{4 \pi \epsilon_{0}} \int_{v} \frac{\overbrace{B}\left(\vec{n} \vec{\nabla}^{\prime} \cdot \vec{P}\left(\vec{n}^{\prime}\right)\right]}{\left|\vec{n}-\vec{n}^{\prime}\right|} d v^{\prime}
\end{aligned}
$$

$\rho_{B}(\vec{n})=-\vec{\nabla} \cdot \vec{P}(\vec{n}) \quad$ E 'VIVE" NO VOLUME DO CORPO

$$
\begin{gathered}
\sigma_{B}(\vec{n})=\vec{P}(\vec{r}) \cdot \hat{m} \text { E"VIVE" NA SUPERFICIE } \\
\int \quad \text { CORPO }
\end{gathered}
$$

NOTE QUE $\hat{\mu}$ APONTA PARA FORA DO CDRPO

Densidades de cargas ligadas

$$
\begin{aligned}
\sigma_{B}(\mathbf{r}) & =\hat{\mathbf{n}} \cdot \mathbf{P}(\mathbf{r}) \\
\rho_{B}(\mathbf{r}) & =-\nabla \cdot \mathbf{P}(\mathbf{r})
\end{aligned}
$$

$$
\begin{aligned}
B \rightarrow & \text { "BOUND" }= \\
& \text { LIGADA } \\
& \text { CARGAS LIGADAS }
\end{aligned}
$$

im contraste com as cargas "livres" DE CONDUTDRES

Resumo

Um corpo com uma polarização $\mathbf{P}(\mathbf{r})$ é equivalente a (produz o mesmo campo elétrico que):
1.Uma densidade volumétrica de carga:

$$
\rho_{B}(\mathbf{r})=-\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{r})
$$

2. E uma densidade superficial de carga em sua superfície:

$$
\sigma_{B}(\mathbf{r})=\hat{\mathbf{n}} \cdot \mathbf{P}(\mathbf{r})
$$

Interpretação física das cargas ligadas

$$
\rho_{B}(\mathbf{r})=-\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{r})
$$

Polarização divergindo de um ponto:

Interpretação física das cargas ligadas

$$
\sigma_{B}(\mathbf{r})=\hat{\mathbf{n}} \cdot \mathbf{P}(\mathbf{r})
$$

Linha de dipolos:

Cilindro de dipolos:

Exemplo 4.2: esfera uniformemente polarizada: $\mathbf{P}(\mathbf{r})=\mathbf{P} \sim \rho \hat{\jmath}$

$$
\begin{aligned}
& V(n, \theta)=? \\
& \rho_{B}=-\vec{\nabla} \cdot \vec{P}=0 \\
& \sigma_{B}=\hat{\mu} \cdot \vec{P}=\hat{n} \cdot \vec{P}=P(\hat{n} \cdot \hat{z})=P \cos \theta=\sigma_{B}(\theta)
\end{aligned}
$$

- PROBLEMA PODE SEK RESOLVIDO USANDO
a técarica do cap. 3:

$$
V(\sim, \sigma)=\sum_{l=0}^{\infty}\left(A_{r} r^{l}+\frac{B_{l}}{\Lambda^{(2+1)}}\right) P_{l}(\cos \theta)\binom{\Omega>R}{\Omega<0}
$$

\Rightarrow EXEMPLD 3.9 DO LIVRO:

$$
V(\sim, \theta)= \begin{cases}\sum_{l=0}^{\infty} A_{l} r^{l} R_{l}(\cos \theta) & (r<R) \\ \sum_{l=0}^{\infty} \frac{B_{l}}{r^{(l+1)}} R_{l}(\cos \theta) & (\Omega>R)\end{cases}
$$

$$
\begin{aligned}
& A_{e}=\frac{1}{2 \epsilon_{0} R^{(l-1)}} \int_{0}^{\pi} \sigma_{B}(\theta) R_{e}(\cos \theta) \sin \theta d \theta \\
& B_{C}=\frac{R^{(l+2)}}{2 \epsilon_{0}} \underbrace{\int_{0}^{\pi} \sigma_{B}(\theta) P_{l}(\cos \theta) \sin \theta d \theta}_{I} \\
& I=P \int_{0}^{\pi} \cos \theta P_{e}(\cos \theta) \sin \theta d \theta \quad x=\cos \theta d x=-\sin \theta d \theta \\
& =P \int_{-1}^{+1} x P_{e}(x) d x=P \int_{-1}^{+1} P_{1}(x) \quad P_{e} P_{e}(x) d x=P\left(\frac{2}{3}\right) \delta e_{1} \\
& A_{e}=\left\{\begin{array}{ll}
0 & \text { SE } l \neq 1 \\
\frac{P}{3 \epsilon_{0}} & \text { SE } l=1
\end{array} \quad B_{Q}= \begin{cases}0 & \text { SE } l \neq 1 \\
\frac{R^{3} P}{3 \epsilon_{0}} & \text { SE } l=1\end{cases} \right.
\end{aligned}
$$

$$
V(n, \theta)=\left\{\begin{array}{l}
A_{1} n P_{1}(\cos \theta)=\frac{P}{3 \epsilon_{0}} n \cos \theta=\frac{P}{3 \epsilon_{0}} z \quad(\Lambda<R) \\
\frac{B_{1}}{n^{2}} P_{1}(\cos \theta)=\frac{P R^{3}}{3 \epsilon_{0} r^{2}} \cos \theta=\frac{P R^{3}}{3 \epsilon_{0}} \frac{\hat{z} \cdot \hat{\mu}}{r^{2}}(\Lambda>R)
\end{array}\right.
$$

DENTRO DA ESFERA: $V \sim z$
$\Rightarrow \vec{E}=-\vec{\nabla} V=-\frac{P}{3 \epsilon_{0}} \hat{z} \rightarrow$ CAMPO ELÉERICO DENTRO pu ESFERA É CONSTANTE E aponta no sentido oposto - A polarizacta \vec{P}

FORA OA ESFERA: $\frac{P R^{3}}{3 \epsilon_{0}}=\frac{1}{4 \pi \epsilon_{0}}(\underbrace{\frac{4 \pi R^{3}}{3}}_{V})=\frac{P_{\text {ESF }}}{4 \pi \epsilon_{0}}$

$$
\Rightarrow V(n, 0)=\frac{1}{4 \pi \epsilon_{0}} \frac{\left(P_{\text {ESF }} \hat{j}\right) \cdot \hat{n}}{\Lambda^{2}}=\frac{1}{4 \pi \in 0} \frac{\vec{P}_{\text {ESE }} \cdot \hat{n}}{\Lambda^{2}} \quad \begin{aligned}
& \text { POTENCIAL DE UM } \\
& \text { DIPOLO } \vec{P}_{\text {ESF ND }} \\
& \text { CEENTRD DA ESFERA }
\end{aligned}
$$

