Aula 14

F 502 - Eletromagnetismo I 2o semestre de 2020

$$
03 / 11 / 2020
$$

Aula passada

Efeitos de campos elétricos na matéria

- Dipolos induzidos:
$\mathbf{p}=\alpha \mathbf{E} \quad \alpha \rightarrow$ polarizabilidade
$t+++++++t$
Polarização: dipolo total por unidade de volume

$$
\mathbf{P}=\frac{\Delta \mathbf{p}}{\Delta V}
$$

$\Rightarrow \mathbf{P}=\chi_{e} \varepsilon_{o} \mathbf{E}$
$\chi_{e} \rightarrow$ susceptibilidade elétrica

Aula passada

- Dipolos permanentes: o campo alinha os dipolos

(o)

O campo elétrico exerce um torque sobre o dipolo, que tende a alinhá-lo ao campo elétrico:

$$
\mathbf{N}=\mathbf{p} \times \mathbf{E}
$$

$$
\Rightarrow \mathbf{P}=\chi_{e} \varepsilon_{o} \mathbf{E}
$$

Aula passada

Um corpo com uma polarização $\mathbf{P}(\mathbf{r})$ é equivalente a (produz o mesmo campo elétrico que):
1.Uma densidade volumétrica de carga:

$$
\rho_{B}(\mathbf{r})=-\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{r})
$$

2. E uma densidade superficial de carga em sua superfície:

$$
\begin{aligned}
& \sigma_{B}(\mathbf{r})=\hat{\mathbf{n}} \cdot \mathbf{P}(\mathbf{r}) \\
& \mathbf{P}(\mathbf{r}) \rho_{\sigma_{B}(\mathbf{r})}^{\sim} \underbrace{\hat{n}}_{-\hat{n}} \\
& \underbrace{\hat{\mu}}(\mathbf{r})
\end{aligned}
$$

Deslocamento elétrico
situacão onde há diele'tricos e outras cargas (CONDUTORES, CARGAS PONT UAIS):

$$
\vec{\nabla} \cdot(\underbrace{\vec{P}+\epsilon_{0} \vec{I}}_{\vec{D}: V E T O R})=\rho_{f}
$$

DESLOCAMENTO ELÉTRICO: $\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$

$$
\Rightarrow \vec{\nabla} \cdot \vec{D}=\rho_{F}
$$ FORMA INTEGRAL:

$$
\oint_{s(v)} \vec{D} \cdot d \vec{s}=\int_{v} \rho_{f} d v=Q_{f}(v)
$$

$$
\begin{aligned}
& \rho=\rho_{B}+\rho_{F} \\
& \Rightarrow \vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}}\left(\rho_{B}+\rho_{F}\right)=\frac{1}{\epsilon_{0}}\left(\rho_{F}-\vec{\nabla} \cdot \vec{P}\right) \\
& \epsilon_{0} \vec{\nabla} \cdot \vec{E}+\vec{\nabla} \cdot \vec{P}=\rho_{F} \\
& \rho_{B} \text { : DENSIDADE DE carqas } \\
& \text { LIGARAS OU DE POLARIZASAAO } \\
& \text { (} a \in L E \text { 'TRICOS) } \\
& S_{F} \text { : RESTO } \rightarrow \text { CONDUTOREE, } \\
& \text { CARQAS PONTUAIS }
\end{aligned}
$$

Eletrostática em meios materiais

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{D} & =\rho_{F} \\
\boldsymbol{\nabla} \times \mathbf{E} & =0
\end{aligned}
$$

pelo teorema de helmholtz, um campo vetorial só e untvocamente determinado se foreu ESPECIFICADOS SEU DIJERGENTE E SEU ROTACIINAL as equaçós acima são, portanto, INSUFICIENTES parA resolver o problema. na prática:
(i) MEIOS LINGARES, $\vec{P}=x_{e} \epsilon_{0} \vec{E}, \vec{D}=\epsilon_{0} \vec{I}+\vec{P}=\epsilon_{0}\left(1+x_{e}\right) \vec{B}$ $\Rightarrow \vec{D}=\epsilon \vec{E}$, ONDE $\epsilon=\epsilon_{0}\left(1+x_{e}\right), \epsilon_{1}=\frac{\epsilon}{\epsilon_{0}}=1+x_{e}$

E: PERMISSIVIDADE do MEIO
En: " RElATIVA dO MEIO=CONSTANTE DIELETRICA

Meios dielétricos lineares
DADO $\epsilon: \quad \vec{\nabla} \cdot \vec{D}=\epsilon \vec{\nabla} \cdot \vec{E}=\rho_{F}$

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=\rho_{\delta} / \epsilon \\
\vec{\nabla} \times \vec{E}=0
\end{array}\right\} \begin{aligned}
& \text { INRORMACAIO } \\
& \text { SUFICIENTE }
\end{aligned}
$$

OUTRA POSSIBILIDADE:

$$
\begin{gathered}
(i i) \vec{P} \text { E DADA: } \begin{array}{c}
\vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}} S_{F}-\frac{1}{\epsilon_{0}} \vec{\nabla} \cdot \vec{P} \\
\vec{\nabla} \times \vec{E}=0
\end{array}\left\{\begin{array}{l}
\text { IWFORMASARE } \\
\text { SUFICIENTE }
\end{array}\right. \\
\text { (iNA }
\end{gathered}
$$

Constante dielétrica

$\in>\epsilon_{0}$			
	Dielectric		Dielectric Material
Constant	Material	Constant	
Helium	1	Benzene	2.28
Neon	1.000065	Diamond	$5.7-5.9$
Hydrogen $\left(\mathrm{H}_{2}\right)$	1.00013	Salt	5.9
Argon	1.000254	Silicon	11.7
Air (dry)	1.000517	Methanol	33.0
Nitrogen $\left(\mathrm{N}_{2}\right)$	1.000536	Water	80.1
Water vapor $\left(100^{\circ} \mathrm{C}\right)$	1.000548	Ice $\left(-30^{\circ} \mathrm{C}\right)$	104

TABLE 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm, 20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).

Exemplo 4.5
Esfera condutora (raio a, carga Q), envolta por uma camada dielétrica (raio externo b, permissividade ε)
SIMETRIA ESFÉRICA:

$$
\begin{aligned}
& \vec{E}=E_{n}(n) \hat{n} \\
& \vec{D}=D_{\sim}(n) \hat{n} \\
& \vec{P}=P_{n}(n) \hat{n}
\end{aligned}
$$

$$
\bar{\nabla} \cdot \vec{D}=\rho_{F} \Rightarrow \oint_{S(v)} \vec{D} \cdot d \vec{G}=\theta_{F}(v) \Rightarrow 4 \pi r^{2} D_{\sim}(v)=\theta_{F}(v)
$$

(i) MKO: DEWTRO DA ESFEKA: $\vec{E}=0,4 \pi \mu^{2} D_{N}(n)=0 \Rightarrow \vec{D}=0$

$$
\vec{P}=0
$$

(ii) $a<\sim<b: 4 \pi r^{2} D_{\lambda}(n)=Q \Rightarrow D_{\lambda}(\mu)=\frac{Q}{4 \pi r^{2}}$

$$
\Rightarrow E_{\sim}=\frac{D_{\sim}}{\epsilon}=\frac{Q}{4 \pi \epsilon} \frac{1}{r^{2}}, P_{\sim}(\sim)=D_{\sim}(n)-\epsilon_{0} E_{\sim}(\sim)=\left(1-\frac{\epsilon_{0}}{\epsilon}\right) \frac{Q}{4 \pi r^{2}}
$$

$$
\text { (iin) } \Omega>b: D_{\mu}(\mu)=\frac{Q}{4 \pi r^{2}}, E_{\sim}(\sim)=\frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}
$$

$$
P_{\sim}(n)=0
$$

E a carga ligada? ela está na casca dielétrica

$$
\begin{aligned}
& \rho_{B}=-\vec{\nabla} \cdot \vec{P}=-\frac{1}{\mu^{2}} \frac{\partial}{\partial r}\left(\mu^{2} P_{\sim}\right)=-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\mu^{2}\left(1-\frac{\epsilon_{0}}{\epsilon}\right) \frac{Q}{4 \pi r^{2}}\right]=0 \\
& \sigma_{B}=\hat{\mu} \cdot \vec{P}
\end{aligned}
$$

NA SUPERFICIE INTERNA DA CASCA: $\hat{\mu}=-\hat{\imath}$

$$
\begin{aligned}
& \sigma_{B}(n=a)=-\left.\hat{\sim} \cdot \vec{P}\right|_{n=a}=-P_{n}(a)=-\left(1-\frac{\epsilon_{0}}{\epsilon}\right) \frac{Q}{4 \pi a^{2}} \\
& \sigma_{B}(n=a)=-\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \frac{Q}{4 \pi a^{2}}
\end{aligned}
$$

NA SUPERFÍCIE EXTERNA DA CASCA: $\hat{\mu}=\hat{\imath}$

$$
\sigma_{B}(\Omega=b)=\left.\hat{r} \cdot \vec{P}\right|_{\Lambda=b}=\left(1-\frac{\epsilon_{0}}{\epsilon}\right) \frac{\theta}{4 \pi b^{2}}=\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \frac{Q}{4 \pi b^{2}}
$$

NOTEM $Q U E$, SE $Q>0, \sigma_{B}(a)<0, \sigma_{B}(b)>0$
$Q>0$

- condutor induz carga DE SINAL CONTRA'RIO NA SUPERFICIE INTERNA DA CASCA.
pela neutralidade da casca DIELE'TRICA, SERA' INDUZIDA cARGA DE MESMO SINAL QUE θ NA SUPERFICIE EXTIRNA da casca.

$$
\begin{gathered}
\theta_{B}(n=0)=\int \sigma_{B}(n=a) d S=-\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \int \frac{\theta d S}{4 \pi^{2}}=-\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \theta \\
\theta_{B}(n=b)=\int \sigma_{B}(n=b) d S=\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \theta \\
\theta_{B}(n=a)=-\theta_{B}(n=b) \\
\theta_{T}(n=a)=\theta_{F}+\theta_{B}(n=a)=Q-\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right) \theta=\left[1-\left(\frac{\epsilon-\epsilon_{0}}{\epsilon}\right)\right] \theta=\frac{\epsilon_{0}}{\epsilon} \theta<\theta
\end{gathered}
$$

Exemplo 4.6
Capacitor de placas paralelas (área A, separação d), com um dielétrico no meio (constante dielétrica ε_{r}) $\quad \epsilon_{\sim}=\frac{\epsilon}{\epsilon_{0}} \Rightarrow \epsilon_{=}=\epsilon_{0} \sigma_{\sim}$

$$
\oint_{S(V)} \vec{D} \cdot d \vec{S}=O_{F}(V) \quad G A U S S I A N A \text { AD LADO }
$$

NA TAMPA DENTRO DO CONPUTOR:

$$
\vec{E}=0, \vec{P}=0, \vec{S}=0
$$

NO DIELE TRICD, $\vec{D} \neq 0:$

$$
\begin{aligned}
& \Rightarrow D \neq \theta_{F}(v)=\sigma_{F} \beta \quad \text { ONDE } \subseteq \text { E' A A'REA } \\
& D=\sigma_{F}=\frac{Q}{A} \quad \text { DA TAMPA DA CAIXINHA } \\
& \Rightarrow E=\frac{D}{E}=\frac{Q}{G A}
\end{aligned}
$$

DIFERENGA DE BRTENCIAL: $|\Delta V|=\left|-\int \vec{E} \cdot d \vec{Q}\right|=\frac{\theta}{\epsilon A} d$

$$
\begin{aligned}
& \Rightarrow C=\frac{Q}{|\Delta V|}=\frac{\epsilon A}{d}=\epsilon_{n}(\underbrace{d}_{C_{0}: \epsilon_{0} A}) \\
& \Rightarrow C A P A C I T A \hat{A C I A} \text { No } \\
& \text { VA'CUO }
\end{aligned}
$$

Problemas de valor de contorno com dielétricos

CONDICEES DE CONTORNO na presenga de dielétricos:

DE: $\vec{\nabla} \times \vec{E}=0$
$\Rightarrow E_{E_{\| \text {SOVE }}}=\vec{E}_{\| \text {BELOW }}$

Problemas de valor de contorno com dielétricos

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{D}=S_{F} \\
& \dot{C}_{r} D_{\text {masomex }}-D_{\text {meicion }}=\sigma_{F}
\end{aligned}
$$

Problemas de valor de contorno com dielétricos

$$
\begin{aligned}
& V=-\int_{a}^{b} \vec{E} \cdot d \vec{l} \\
& V_{a}=V_{b}\left(\operatorname{cont}\left(\operatorname{m} \omega_{0}\right)\right.
\end{aligned}
$$

Equação de Poisson em meios lineares
NUM MEIO LIN太AR: $\vec{D}=G \vec{E} 0 \Longrightarrow \vec{\nabla} \cdot \vec{E}=\frac{\rho_{F}}{6}$
$E \quad \bar{\nabla} \times \bar{E}=0: 4 \vec{E}=-\vec{\nabla} v$
$\nabla^{2} V=-\frac{\rho_{F}}{\epsilon}$
EM CADA MEIO LINEAR

SE HOUVER DIVERSOS MEIOS $\epsilon_{1,} \epsilon_{2} \ldots$

$$
\nabla^{2} V_{1}=-\frac{\rho_{F}^{1}}{\epsilon_{1}} \quad \text { io } \quad \nabla^{2} V_{2}=-\frac{\rho_{F}^{2}}{\epsilon_{2}}, \cdots
$$

$$
\text { MAS E' PRECISO "CASAR" AS SOLUGOES } V_{1}, V_{2}, \cdots
$$

NAS INTERFACES ENTRE OS MEIOS, USANDO AS CONDIGOES CONTORNO DISLUTIDAS.

Exemplo 4.7: esfera dielétrica num campo uniforme

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

CAMPO EXTERNO: $\vec{E}=E_{0} \hat{z}$
CONDIEOES DE CONTOKND:
(i) $V\left(\Lambda=R^{-}, \theta\right)=V\left(\Lambda=R^{+}, \theta\right) \quad \forall \theta$
$(i i) \cup(r \rightarrow \infty, \theta)=-E_{0} z=-E_{0} \wedge \cos \theta \quad \forall \theta$

$$
\begin{array}{ll}
(i i i i) & D_{n}\left(r=R^{+}\right)=D_{n}\left(r=R^{-}\right) \quad J A^{\prime} \text { QUE } \sigma_{F}=0 \\
\in E_{r}\left(r=R^{+}\right)=\epsilon_{0} E_{r}\left(r=R^{+}\right) \quad \vec{E}=-\overrightarrow{\nabla V} \Omega E_{n}=-\frac{\partial V}{\partial r} \\
\left.\Rightarrow t \in \frac{\partial V}{\partial r}(r, \theta)\right|_{r=R^{+}}=\left.f \epsilon_{0} \frac{\partial V}{\partial r}(n, \theta)\right|_{r=R^{+}} \forall \theta
\end{array}
$$

$$
\begin{aligned}
& \text { iv) } E_{11}\left(n=R^{+}, \theta\right)=E_{11}\left(n=R_{1}^{-} \theta\right) \quad \forall \theta \\
& \frac{\partial V}{\partial \theta}\left(n=R^{+}, \theta\right)=\frac{\partial V}{\partial \theta}\left(n=R^{-}, \theta\right) \quad \forall \theta \\
& \Omega<R: V_{D}(n, \theta)=\sum_{e=0}^{\infty}\left(A_{e} \Lambda^{l}+\frac{B l}{/ n^{(l+1)}}\right) P_{l}(\cos \theta) \\
& r>R: V_{F}(\Lambda, g)=\sum_{e=0}^{\infty}\left(A_{e}^{\prime} r^{l}+\frac{B_{e}^{\prime}}{r^{(l+1)}}\right) P_{l}(\cos \theta)
\end{aligned}
$$

DENTRO DA ESFERA, O POTENCIAL VD NAO PODE DIVERGIR QUAADO $\sim \rightarrow 0 \Rightarrow B_{e}=0$
ForA da esfera, pela condictao (ii)

$$
\begin{aligned}
& V_{F}(\imath \rightarrow \infty, \theta) \rightarrow-E_{0} \wedge \cos \theta \quad \sim \quad A_{0}^{\prime}=0 \\
& V_{F}(r \rightarrow \infty, \theta)=A_{0}^{\prime}+A_{1}^{\prime} r \cos \theta+\sum_{l=2}^{\infty} A_{e}^{\prime} n^{\ell} P_{l}(\cos \theta) \quad \frac{A_{1}^{\prime}=-E_{0}}{A_{2}^{\prime}=A_{3}^{\prime}=\cdots}=0 \\
& \Omega>R: V_{F}(\Lambda, \theta)=-E_{0} \cap \cos \theta+\sum_{l=0}^{\infty} \frac{B_{2}^{\prime}}{\Omega^{(l+1)}} P_{l}(\cos \theta)
\end{aligned}
$$

CONDIGAO (ii):

$$
\begin{align*}
& C O N D I S \bar{A} D(i i): \\
& V_{D}(\sim=R, \theta)=\sum_{l=0}^{\infty} A_{l} R^{l} P_{l}(\cos \theta)=V_{F}(R, \theta) \\
&=-E_{0} R \cos \theta+\sum_{l=0}^{\infty} \frac{B_{l}^{\prime}}{R^{(l+1)}} P_{l}(\cos \theta) \\
& l=0: A_{0}=\frac{B_{0}^{\prime}}{R} \tag{1}\\
& l=1: A_{1} R=-E_{0} R+\frac{B_{1}^{\prime}}{R^{2}} \Rightarrow A_{1}=-E_{0}+\frac{B_{1}^{\prime}}{R^{3}}\left(1^{\prime}\right.
\end{align*}
$$

$\operatorname{COND}(\subset \bar{A} O$ ($i \vec{i} i)$

$$
\begin{align*}
& \left.\frac{\epsilon}{\epsilon_{0}} \frac{\partial V}{\partial r}\right|_{n=R^{-}}=\left.\frac{\partial V}{\partial r}\right|_{n=R^{+}} \\
& \frac{\partial V_{D}}{\partial \sim}=\sum_{e=1}^{\infty} l A_{e} \Lambda^{(l-1)} P_{e}(\cos \theta) \\
& \frac{\partial V_{F}}{\partial \sim}=-E_{0} \cos \theta-\sum_{l=0}^{\infty}(l+1) \frac{B_{l}^{\prime}}{\mu^{(l+2)}} P_{l}(\cos \theta) \\
& \infty \frac{\epsilon}{\epsilon_{0}}\left[\sum_{Q=1}^{\infty} l A_{Q} R^{(l-1)} P_{l}(\cos \theta)\right]=-E_{0} \cos \theta-\sum_{l=0}^{\infty}(l+1) \frac{B_{l}^{\prime}}{R^{l+2)}} P_{l}(\cos \theta) \\
& l=0: \quad 0=-\frac{B_{0}^{\prime}}{R^{2}} \Rightarrow B_{0}^{\prime}=0 \Rightarrow A_{0}=0 \\
& l=1: \frac{\epsilon}{\epsilon_{0}} A_{1}=-E_{0}-2 \frac{B_{1}^{\prime}}{R^{3}} \Rightarrow \frac{\epsilon}{\epsilon_{0}} A_{1}=-E_{0}-\frac{2 B_{1}^{\prime}}{R^{3}} \tag{2}\\
& l \geqslant 2: \frac{\epsilon}{\epsilon_{0}} l A_{2} R^{(l-1)}=-(l+1) \frac{B_{l}^{\prime}}{R^{(l+2)}}(4)
\end{align*}
$$

$$
\begin{aligned}
& l=1 ? \\
& (1) A_{1}=-E_{0}+\frac{B_{1}^{\prime}}{R^{3}} \\
& (2) \frac{\epsilon}{\epsilon_{0}} A_{1}=-E_{0}-\frac{2 B_{1}^{\prime}}{R^{3}} \\
& 2 x(1)+(2): \\
& \Rightarrow 2 A_{1}+\frac{\epsilon}{\epsilon_{0}} A_{1}=-2 E_{0}-E_{0}=-3 E_{0} \\
& \quad\left(2+\frac{\epsilon}{\epsilon_{0}}\right) A_{1}=-3 E_{0} \\
& \Rightarrow A_{1}=-\left(\frac{3 E_{0}}{2+\epsilon_{6}}\right) \\
& =\left(\frac{\epsilon / \epsilon_{0}-1}{\epsilon\left(\epsilon_{0}+2\right.}\right) E_{0}^{\prime} \\
& \frac{B_{1}^{\prime}}{R^{3}}=A_{1}+E_{0}=\left[1-\frac{3}{2+\frac{\epsilon}{\epsilon_{0}}}\right] E_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { PARA } l \geqslant 2: A_{l}=B_{l}^{\prime}=0 \\
& \text { (MOSTRE VOCE MESMO) } \\
& \text { FINALMENTE: } \\
& \left\{\begin{array}{l}
V_{D}(\Lambda, g)=-\frac{3 E_{0}}{\epsilon / \epsilon_{0}+2} 几 \cos \theta \\
V_{F}(\Lambda, \theta)=-E_{0} \sim \cos \theta+\left(\frac{\epsilon / \epsilon_{0}-1}{\epsilon / \epsilon_{0}+2}\right) \frac{E_{0} R^{3}}{n^{2}} \cos \theta
\end{array}\right.
\end{aligned}
$$

