Aula 16

F 502 - Eletromagnetismo I 2o semestre de 2020
10/11/2029

Aulas passadas

Polarização: dipolo total por unidade de volume

$$
\mathbf{P}=\frac{\Delta \mathbf{p}}{\Delta V}
$$

Cargas ligadas: Um corpo com uma polarização $\mathbf{P}(\mathbf{r})$ é equivalente a

$$
\begin{aligned}
\sigma_{B}(\mathbf{r}) & =\hat{\mathbf{n}} \cdot \mathbf{P}(\mathbf{r}) \\
\rho_{B}(\mathbf{r}) & =-\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{r})
\end{aligned}
$$

Aulas passadas

Cargas livres e cargas ligadas:

$$
\rho(\mathbf{r})=\rho_{B}(\mathbf{r})+\rho_{F}(\mathbf{r})=-\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{r})+\rho_{F}(\mathbf{r})
$$

Deslocamento elétrico: $\quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}$

Leis da eletrostática em meios materiais:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{D} & =\rho_{F} \\
\boldsymbol{\nabla} \times \mathbf{E} & =0
\end{aligned}
$$

Aulas passadas

Condições de contorno na presença de dielétricos:

$$
\begin{aligned}
\Delta D^{\perp} & =\sigma_{F} \\
\Delta \mathbf{E}^{\|} & =0 \\
\Delta V & =0
\end{aligned}
$$

Em UM MEIO LINEAR COM PERMISSIVIDADE G

$$
\nabla^{2} \checkmark=-\frac{\rho}{\epsilon}
$$

Energia eletrostática na presença de dielétricos
na auséncia de dielétricos, a rnergia w DE UMA CONFIGUR ACATO DE CARGAS FOI DEFINIDA COMO O TRABALHO TOTAL REALIZADO CONTRA AS FORGAS ELE' TRICAS PARA CONSTRUIK A CONFIGURASAOO DE CARGAS.

WA PRESENGA DE DIELE'TRICOS, E' NO EWTANTO, MAIS UTIL DEFINIR O TRABALIO DAS LOKGAS EXTERNAS SOBRE AS CARGAS LIVRES APENAS, POIS AS CARGAS LIGADAS APARECIERAO NATURALMENTE, A MEDIDA θ UE OS CORCOS SE ROLARIZAREM, SEM QUE FAEAMOS FOREAS ADICIONAIS SOBRE ELAS.

DADA UMA CONFIGURAGAO COM POTENCIAZ $V(\vec{n})$ - TRAbALHO SOBRE A ADICATO DE CARGAS LIVRES S后 (\vec{R}) SERA':

$$
\begin{aligned}
& \delta W=\int_{\substack{\text { JODO } \\
\text { OSPACO }}} \delta \rho_{f}(\pi) V(\vec{r}) d V \\
& \vec{D} \cdot \vec{D}=\rho_{F} \quad \delta \rho_{F}=\rho_{F}-\rho_{F}^{0} \quad \delta \vec{D}=\vec{D}-\vec{D} \\
& \text { ONDE } \left.\vec{\nabla} \cdot \vec{D}^{2}=\rho_{F}^{0}\right\} \begin{array}{l}
\text { SURTRAINDO: } \\
\vec{\nabla}(\vec{D} \rightarrow \vec{D})=\rho_{F}-
\end{array} \\
& \left.\vec{D} \cdot \vec{D}=\rho_{F}\right) \xrightarrow{\vec{\nabla}}\left(\vec{D}-\vec{D}_{0}\right)=\rho_{F}-\rho_{F}^{0} \\
& \vec{\nabla} \cdot(\delta \vec{D})=\delta \rho_{F} \\
& \Rightarrow \delta W=\int_{T . E .} \vec{\nabla} \cdot(\delta \vec{D}) V(\vec{r}) d V
\end{aligned}
$$

USANDD: $\vec{\nabla} \cdot[V \delta \vec{D}]=[\vec{\nabla} \cdot \delta \vec{D}] v+\delta \vec{D} \cdot \vec{\nabla} v$

$$
\Rightarrow \delta V=\int_{T \cdot E} \vec{\nabla} \cdot[V \delta \vec{D}] d V-\int_{T \cdot E} \delta \vec{D} \cdot \vec{\nabla} V d V=\int_{S_{\infty}} V \delta \vec{D} \cdot d \vec{S}+\int_{T \cdot E .} \vec{E} \cdot \delta \vec{D} d V
$$

MAS, NO INFINITO, DARA UMA DISTRIBUICATO LOCALIZNIDA DE cARGAS:

$$
\begin{aligned}
& V(\vec{r}) \sim \frac{1}{n} \quad(\wedge \rightarrow \infty) \\
& \delta \vec{D}(r) \sim \frac{1}{r^{2}}(\sim \rightarrow \infty)
\end{aligned}
$$

ASSIM, o prigeiro termo se anula.

$$
\Rightarrow \delta W=\int_{T \cdot E}(\vec{E} \cdot \delta \vec{D}) d V
$$

SUPONDO QUE HÁ APENAS MEIOS LINEARES: $\vec{D}=\epsilon \vec{E}$

$$
\begin{aligned}
& \delta \vec{D}=\epsilon \delta \vec{E} \Rightarrow \vec{E} \cdot \delta \vec{D}=\epsilon \vec{E} \cdot \delta \vec{E}=\frac{\epsilon}{2} \delta[\vec{E} \cdot \vec{E}]=\delta\left[\frac{\vec{E} \cdot \vec{D}}{2}\right] \\
\Rightarrow & \delta W=\int_{T \cdot E} \delta\left[\frac{\vec{E} \cdot \vec{D}}{2}\right] d V=\delta\left[\int_{T \cdot E}\left(\frac{\vec{E} \cdot \vec{D}}{2}\right) d V\right]
\end{aligned}
$$

INTEGRANDO AS NARIACEDES DO INÍCIO AD FIM:

$$
W=\int_{T \cdot \Sigma \cdot} \frac{1}{2}(\vec{D} \cdot \vec{E}) d V
$$

compare com:

$$
W=\frac{\epsilon_{0}}{2} \int_{T \cdot E} \frac{E^{2}}{2} d V
$$

Energia de um capacitor de placas paralelas com dielétrico

CaMO VIMOS:

$$
f_{d}
$$

$$
\sigma_{f}=\frac{\theta}{A}
$$

$$
D=\frac{Q}{A}=E E
$$

$$
C=\frac{\theta}{|\Delta v|}=\frac{\epsilon A}{d}
$$

$$
W=\frac{1}{2} \int \vec{D} \cdot \vec{E} d V=\frac{\epsilon}{2} \int E^{2} d V=\frac{\epsilon}{2} E^{2}(A d)
$$

$$
\left.W=\frac{6}{2}\left(\frac{\theta}{A \epsilon}\right)^{2} A d=\frac{\theta^{2}(d}{2(A G}\right)^{1 / c}
$$

$$
W=\frac{Q^{2}}{2 C}=\frac{1}{2} C(\Delta v)^{2}
$$

E AS EXPRESSOES DARA A ENERGIA CONTINUAM VA'lIDAS $\operatorname{COM} \subseteq$ DADA comO CALCUCADO ANTERIOQMENTE.

Forças em dielétricos devido a cargas externas

COMO CALCULAR \vec{F} ?
SE APLICARMOS $\vec{F}_{E X T}=-\vec{F}$
SOBRE O DIELE'TRICO E O dielétrico se deslocar de $\delta \rightarrow$, O TRABALHO DESSA FORGA ExTERNA SERA' IGUAL A vARIAgÃO de energia fromazenada:

$$
\begin{aligned}
& \delta W=\vec{F}_{\text {ext }} \cdot \delta \vec{n}=-\vec{F} \cdot d \vec{n} \Rightarrow S_{E} \delta \vec{n}=\delta x \hat{x} \\
& \Rightarrow \delta W=-F d x \Rightarrow F=-\left.\frac{\delta W}{\delta x}\right|_{\theta} \int_{\text {ESSA NOTA\&AD IMPLICA }}^{\text {QUE A VARIACAD É }} \begin{array}{l}
\text { CALCULADA MANTENDD }
\end{array} \\
& \text { AS CARGAS LIVRES FIXAS. }
\end{aligned}
$$

Força sobre uma placa dielétrica dentro de um capacitor

ϵ

H
$d x$

SE O DIELE'TRYCO COMESA BEN DENTRO DO CAPACITOR E TERMINA LONGE DA BORDA, só á contriquicão para A VARTAGÃO DE W $=\int \frac{\epsilon}{2} E^{2} d V$ NA REGIAO 1 , POIS EN 2 $\vec{E} \simeq 0$
\$
DO CIRCUITD EOA AZUL E $\oint \vec{E} \cdot d \vec{Q}=0 \Rightarrow E^{D}=E^{F}=E$
ONDE D I E SIGNIFICAM "DENTRO" E "FORA" DO DIELETRICO
DAS CAIXINHAS EM PRETO: $D^{F}=\sigma^{F} \quad E \quad D^{D}=\sigma^{D}$
$E \quad D E \quad \vec{\nabla} \cdot \vec{D}=\rho_{F}$

$$
D^{F}=\epsilon_{0} E^{F} \quad E \quad D^{D}=\epsilon E^{D}
$$

$$
\begin{aligned}
& \Rightarrow Q=\left[\sigma^{F}(w x)+\sigma^{D}[w(l-x)]\right]=w\left[D^{F} x \rightarrow D^{D}(l-x)\right]=w\left[\epsilon_{0} E_{x}^{F} \epsilon_{E^{D}}^{D}(l-x)\right] \\
& \theta=w E\left[\epsilon_{0} x+\epsilon(l-x)\right]=w \frac{V}{d}\left[\epsilon_{0} x+\epsilon(l-x)\right] \\
& \Rightarrow C=\frac{Q}{V}=\frac{w}{d}\left[\epsilon_{0} x+\epsilon(l-x)\right] \Rightarrow \frac{d C}{d x}=\frac{w}{d}\left[\epsilon_{0}-\epsilon\right]=-\frac{w}{d}\left(\epsilon-\epsilon_{0}\right) \\
& W=\int \epsilon(x) \frac{E^{2}}{2} d V=\int_{\text {DENTRO }} \epsilon(x) \frac{E^{2}}{2} d V+\int_{\text {FORA }} \epsilon(x) \frac{E^{2}}{2} d V
\end{aligned}
$$

isso É COMPLICADO PORQUE ENVOLUE AS BORPAS

MAS A VARIACĀO dE W QUANDO DESLOCAMOS - dielétrico de $d x$ nato envolve as bordas. portanto, podehos olhar apenas:

$$
\left.\begin{array}{rl}
W^{\prime}= & \int_{\substack{\text { BEM } \\
\text { DENTRO } \\
\text { DO }}} \frac{\epsilon(x)}{2} E^{2} d V=\frac{E^{2}}{2} \int_{B D C} \epsilon(x) d V=\frac{E^{2}}{2}(w d) \int \epsilon(x) d x \\
& \text { CAPACITDR (BDC) }
\end{array} \quad=\frac{(w d)}{2} E^{2}\left[\epsilon_{0} x+\epsilon(l-x)\right]\right)
$$

$$
\begin{aligned}
& \text { USAWDO: } E=\frac{Q}{W\left[c_{0} x+\epsilon(l-x)\right]} \\
& \begin{aligned}
&\left.\Rightarrow W^{\prime}=\frac{(d, A)}{2} \frac{Q^{2}}{w^{2}[}\right]^{2}= \\
& \Rightarrow F=-\frac{d W^{\prime}}{d x}=\frac{Q^{2}}{2 c^{2}(x)} \frac{d c(x)}{d x}=-\frac{Q^{2}}{2 c^{2}(x)} \frac{w}{d}\left(\epsilon-\sigma_{0}\right)=-\frac{(\Delta V)^{2}}{2} \frac{w}{d}\left(\epsilon-\epsilon_{0}\right) \\
& \Rightarrow F<0
\end{aligned}
\end{aligned}
$$

Problema 4.28
Altura de uma coluna de óleo (ϵ) dentro de um capacitor coaxial carregado.

- Problema é essencialmente o resmo que o anterior, exceto que A GEOMETRIA E' CILINDRICA.
POR $\oint \vec{E} \cdot d \vec{e}=0 \Rightarrow E_{g} N \vec{A} O$ DERENDE DE z

$$
E_{\rho}^{D}=E_{\rho}^{F}=E_{\rho}
$$

DA LEI DE GAUSS: $\oint \vec{D} \cdot d \vec{S}=\theta(v)$

$$
(2 \pi \rho) / k D_{\rho}=(2 \pi a) d \sigma \Rightarrow D_{\rho}=\sigma \frac{a}{\rho}
$$

$\operatorname{DENTRO}\left(z\langle h\rangle: D_{\rho}^{D}=\epsilon E_{g}=\sigma^{D} \frac{a}{\rho}\right\}$

$$
E_{\rho}=\frac{\sigma^{D}}{\epsilon} \frac{a}{\rho}=\frac{\sigma^{F}}{\epsilon_{0}} \frac{a}{\rho}
$$

FORA $\begin{aligned} &(z>h): D_{\rho}^{F}=\epsilon_{0} E_{\rho} \\ & b=\sigma^{F} \frac{a}{\rho} \\ & b\end{aligned}$

$$
\Rightarrow \frac{\sigma^{p}}{\epsilon}=\frac{\sigma^{\gamma}}{\epsilon_{0}}
$$

$$
\Rightarrow|\Delta V|=\int_{a}^{b} E_{\rho} d \rho=\frac{\sigma^{D}}{\epsilon} a \int_{a}^{b} \frac{d \rho}{\rho}=\frac{\sigma^{D} a}{\epsilon} \ln \left(\frac{b}{a}\right)=\frac{\sigma^{F}}{\epsilon_{0}} a \ln \left(\frac{b}{a}\right)
$$

cA'lCULO da capacitância:

$$
\begin{aligned}
\theta & =2 \pi a\left[h \sigma^{D}+(H-h) \sigma^{F}\right] \\
& =2 \pi d\left[h \frac{\epsilon|\Delta v|}{\phi \ln \left(\frac{b}{a}\right)}+(H-h) \frac{\epsilon_{0}|\Delta V|}{p \ln \left(\frac{b}{a}\right)}\right] \\
\theta & =2 \pi \frac{|\Delta V|}{\ln \left(\frac{b}{a}\right)}\left[\epsilon h+\epsilon_{0}(H-h)\right] \\
C & =\frac{\theta}{|\Delta V|}=\frac{2 \pi}{\ln \left(\frac{b}{a}\right)}\left[\epsilon h+\epsilon_{0}(H-h)\right] \Rightarrow \frac{d c}{d h}=\frac{2 \pi}{\ln \left(\frac{b}{a}\right)}\left(\epsilon-\epsilon_{0}\right)
\end{aligned}
$$

A Engrgia w' é similar ao caso anterior e pode ser escrita:

$$
\begin{aligned}
& W^{\prime}=\frac{1}{2} \frac{\theta^{2}}{c(h)} \Rightarrow \frac{d W^{\prime}}{d h}=-\frac{\theta^{2}}{2[(h)]^{2}} \frac{d c}{d h}=-\frac{\mid \Delta v)^{2}}{x} \frac{2 \pi}{\ln \left(\frac{b}{2}\right)}\left(\epsilon-\epsilon_{0}\right) \\
\Rightarrow & F=-\frac{d w^{\prime}}{d h}=\frac{|\Delta|^{2}}{\ln (b / c)} \pi\left(\epsilon-\epsilon_{0}\right)
\end{aligned}
$$

igualando a forca to peso da coluna ds $O^{\prime} L E O$:

$$
\begin{aligned}
& \text { OLEO: } \\
& \qquad P=\rho_{0} g(V \text { olume })=\rho g \pi\left(b^{2}-a^{2}\right) h \quad S_{0}=\text { DEUSIDADE } \\
& \Rightarrow P=F \Rightarrow \rho_{0} g h\left(b^{2}-a^{2}\right)=\pi \frac{(\Delta V)^{2}}{\ln \left(\frac{b}{a}\right)}\left(\epsilon-\epsilon_{0}\right) \\
& \Rightarrow h \\
& \Rightarrow \frac{(\Delta V)^{2}}{\rho_{0} g} \frac{\left(b^{2}-c^{2}\right)}{h\left(\frac{b}{a}\right)}\left(\epsilon-\epsilon_{0}\right)
\end{aligned}
$$

