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Aula passada
Correntes geram campos magnéticos

5.1 The Lorentz Force Law 211

Battery Battery

(a) Currents in opposite
     directions repel.

(b) Currents in same
      directions attract.

+ − + −

FIGURE 5.2

Whatever force accounts for the attraction of parallel currents and the repulsion
of antiparallel ones is not electrostatic in nature. It is our first encounter with a
magnetic force. Whereas a stationary charge produces only an electric field E in
the space around it, a moving charge generates, in addition, a magnetic field B.
In fact, magnetic fields are a lot easier to detect, in practice—all you need is a
Boy Scout compass. How these devices work is irrelevant at the moment; it is
enough to know that the needle points in the direction of the local magnetic field.
Ordinarily, this means north, in response to the earth’s magnetic field, but in the
laboratory, where typical fields may be hundreds of times stronger than that, the
compass indicates the direction of whatever magnetic field is present.
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Aula passada
Campos magnéticos atuam sobre 
correntes/cargas em movimento
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where m is the particle’s mass and p = mv is its momentum. Equation 5.3 is
known as the cyclotron formula because it describes the motion of a particle in a
cyclotron—the first of the modern particle accelerators. It also suggests a simple
experimental technique for finding the momentum of a charged particle: send it
through a region of known magnetic field, and measure the radius of its trajectory.
This is in fact the standard means for determining the momenta of elementary
particles.

I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed v‖ parallel to B, this component of the motion is
unaffected by the magnetic field, and the particle moves in a helix (Fig. 5.6). The
radius is still given by Eq. 5.3, but the velocity in question is now the component
perpendicular to B, v⊥.

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include
a uniform electric field, at right angles to the magnetic one. Suppose, for instance,
that B points in the x-direction, and E in the z-direction, as shown in Fig. 5.7.
A positive charge is released from the origin; what path will it follow?

Solution
Let’s think it through qualitatively, first. Initially, the particle is at rest, so the mag-
netic force is zero, and the electric field accelerates the charge in the z-direction.
As it picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls
the charge around to the right. The faster it goes, the stronger Fmag becomes;
eventually, it curves the particle back around towards the y axis. At this point the
charge is moving against the electrical force, so it begins to slow down—the mag-
netic force then decreases, and the electrical force takes over, bringing the particle
to rest at point a, in Fig. 5.7. There the entire process commences anew, carrying
the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the posi-
tion of the particle at any time t can be described by the vector (0, y(t), z(t)); the
velocity is therefore
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Aula passada
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Aula passada
Lei de conservação (local) da carga
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Correntes estacionárias



Lei de Biot-Savart





O divergente de B



O rotacional de B







Leis da magnetostática
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A lei de Ampère na forma integral



Campo de um fio reto infinito5.3 The Divergence and Curl of B 235
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Example 5.8. Find the magnetic field of an infinite uniform surface current
K = K x̂, flowing over the xy plane (Fig. 5.33).

Solution
First of all, what is the direction of B? Could it have any x component? No: A
glance at the Biot-Savart law (Eq. 5.42) reveals that B is perpendicular to K.
Could it have a z component? No again. You could confirm this by noting that
any vertical contribution from a filament at +y is canceled by the corresponding
filament at −y. But there is a nicer argument: Suppose the field pointed away from
the plane. By reversing the direction of the current, I could make it point toward
the plane (in the Biot-Savart law, changing the sign of the current switches the sign
of the field). But the z component of B cannot possibly depend on the direction of
the current in the xy plane. (Think about it!) So B can only have a y component,
and a quick check with your right hand should convince you that it points to the
left above the plane and to the right below it.

With this in mind, we draw a rectangular Amperian loop as shown in Fig. 5.33,
parallel to the yz plane and extending an equal distance above and below the
surface. Applying Ampère’s law,

∮
B · dl = 2Bl = µ0 Ienc = µ0 Kl,

(one Bl comes from the top segment and the other from the bottom), so B =
(µ0/2)K , or, more precisely,

B =
{ +(µ0/2)K ŷ for z < 0,

−(µ0/2)K ŷ for z > 0.
(5.58)

Notice that the field is independent of the distance from the plane, just like the
electric field of a uniform surface charge (Ex. 2.5).

Example 5.9. Find the magnetic field of a very long solenoid, consisting of n
closely wound turns per unit length on a cylinder of radius R, each carrying a
steady current I (Fig. 5.34). [The point of making the windings so close is that
one can then pretend each turn is circular. If this troubles you (after all, there is
a net current I in the direction of the solenoid’s axis, no matter how tight the



Exemplo 5.5: campo de um fio finito





Campo de um fio finito
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Recuperando o campo do fio infinito



Exemplo 5.9: solenóide infinito236 Chapter 5 Magnetostatics
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winding), picture instead a sheet of aluminum foil wrapped around the cylin-
der, carrying the equivalent uniform surface current K = nI (Fig. 5.35). Or make
a double winding, going up to one end and then—always in the same sense—
going back down again, thereby eliminating the net longitudinal current. But, in
truth, this is all unnecessary fastidiousness, for the field inside a solenoid is huge
(relatively speaking), and the field of the longitudinal current is at most a tiny
refinement.]

Solution
First of all, what is the direction of B? Could it have a radial component? No. For
suppose Bs were positive; if we reversed the direction of the current, Bs would
then be negative. But switching I is physically equivalent to turning the solenoid
upside down, and that certainly should not alter the radial field. How about a
“circumferential” component? No. For Bφ would be constant around an Amperian
loop concentric with the solenoid (Fig. 5.36), and hence

∮
B · dl = Bφ(2πs) = µ0 Ienc = 0,

since the loop encloses no current.
So the magnetic field of an infinite, closely wound solenoid runs parallel to the

axis. From the right-hand rule, we expect that it points upward inside the solenoid
and downward outside. Moreover, it certainly approaches zero as you go very far

s
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