Aula 18

F 502 - Eletromagnetismo I 2o semestre de 2020
17/11/2020

Aula passada

Correntes geram campos magnéticos

Regra da mão direita

Aula passada

Campos magnéticos atuam sobre correntes/cargas em movimento

$$
\begin{gathered}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} \\
d \mathbf{F}=d \mathbf{I} \times \mathbf{B}
\end{gathered}
$$

Wire 1
Wire 2

Aula passada

Aula passada

Lei de conservação (local) da carga

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0 \\
& \oint_{S(V)} \mathbf{J} \cdot d \mathbf{S}=-\frac{d Q(V)}{d t}
\end{aligned}
$$

Correntes estacionárias

1. Correntes que náo variam no tempo:

$$
\vec{J}(x, y, z i x \gg \vec{J}(x, y, z)
$$

2. A CORRENTE FLUI NO ESPAGO SEM QUE HAJA ACÚMULO DE CARGA EM QUALQUER PONTO NO espago

$$
\Rightarrow \frac{\partial \rho(x, y, z, t)}{\partial t}=0 \Rightarrow \vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t}=0 \Rightarrow \vec{\nabla} \cdot \vec{J}=0
$$

fisicamente, a corrente apenas circula no Espaco.

Lei de Biot-Savart
CAMPO MAGNÉTICO $\overrightarrow{d B}(\vec{n})$ CRIADO POR um elemento de corrente dit (\vec{n}^{\prime})

$$
d \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} d \vec{I}\left(\vec{r}^{\prime}\right) \times \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}
$$

COMPARE COM:

$$
d \vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} d q\left(\vec{r}^{\prime}\right) \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left(\vec{n}-\vec{r}^{\prime}\right)^{3}}
$$

PARTICULARIEA NDO PARA OS VÁrIDS ELEMENTOS DE CORRENTES:

$$
\vec{B}(\vec{n})=\frac{\mu_{0}}{4 \pi} \int I^{\prime} d \vec{l}^{\prime} \times \frac{\left(\vec{n}-\vec{n}^{\prime}\right)}{\left.\mid \vec{n}-\vec{n}^{\prime}\right)^{3}}
$$

00

$$
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \vec{K}\left(\vec{r}^{1}\right) \times \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} d s^{\prime}
$$

E:

$$
\vec{B}(\vec{n})=\frac{\mu_{0}}{4 \pi} \int \vec{J}(\vec{n}) \times \frac{(\vec{n}-\vec{\lambda})}{\left|\vec{\lambda}-\overrightarrow{\lambda^{\prime}}\right|^{3}} d V^{\prime} \quad(\vec{\nabla} \cdot \vec{J}=0)
$$

Compare com:

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \rho(\vec{r}) \frac{\left(\vec{n}-\vec{n}^{\prime}\right)}{\left|\vec{\lambda}-\vec{r}^{\prime}\right|^{3}} d v^{\prime}
$$

O divergente de \mathbf{B}

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{B}(\vec{n})=\frac{\mu_{0}}{4 \pi} \vec{\nabla} \cdot\left[\int \vec{J}(\vec{n} \cdot) \times \frac{\left(\vec{n}-\overrightarrow{\lambda^{\prime}}\right)}{\left|\vec{\lambda}-\vec{\lambda}^{\prime}\right|^{3}} d v^{\prime}\right] \\
& =\frac{\mu_{0}}{4 \pi} \int \vec{\nabla} \cdot[\vec{J}(\vec{\lambda})) \times \underbrace{(\vec{\lambda}-\vec{\lambda})}_{\vec{A}} \underbrace{\left|\vec{\lambda}-\overrightarrow{\lambda^{\prime}}\right|^{3}}_{\vec{B}}] d V^{\prime} \\
& \vec{\nabla} \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\vec{O} \times \vec{A})-\vec{A} \cdot(\vec{\nabla} \times \vec{B}) \\
& \longrightarrow \vec{\nabla} \times \vec{J}(\vec{n})=0 \\
& \vec{\nabla} \cdot \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int(-1) \vec{J}(\vec{r}) \cdot\left[\vec{\nabla} \times \frac{\left(\vec{\lambda}-\overrightarrow{\lambda^{\prime}}\right)}{\left(\vec{\lambda}-\vec{i}^{\prime}\right)^{3}}\right] d v^{\prime}=0 \Rightarrow \vec{\nabla} \cdot \vec{B}=0 \\
& \left.\vec{\nabla} \times\left(\frac{\vec{\lambda}}{|\vec{\lambda}|^{3}}\right)=\vec{\nabla} \times\left(\frac{\hat{r}}{r^{2}}\right)=0 \Rightarrow \vec{\nabla} \times \frac{(\vec{r}-\vec{\lambda})}{\left(\vec{\lambda}-\left.\vec{r}\right|^{3}\right.}=0\right) \\
& \frac{\partial}{\partial x} f\left(x-x^{\prime}\right)=f^{\prime}\left(x-x^{\prime}\right)
\end{aligned}
$$

O rotacional de B

$$
\begin{aligned}
& \vec{\nabla} \times \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \vec{\nabla} \times\left[\vec{J}(\vec{r}) \times \frac{\left(\vec{n}-\vec{n}^{\prime}\right)}{\left|\vec{n}-\overrightarrow{N^{\prime}}\right|^{3}}\right] d V^{\prime} \\
& \begin{array}{c}
\bar{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla} / \vec{A}-(\vec{A} \cdot \vec{\nabla}) \vec{B}+\vec{A}(\vec{D} \cdot \vec{B})-\vec{B}(\vec{\nabla} / \vec{A}) \\
0 \quad \text { AMBOS }+\hat{E M M} \text { ATUANDO } 0_{0}^{0} \\
\vec{J}(\vec{n})
\end{array} \\
& \text { 玉の } \left.\vec{J} \text { (} \vec{n}^{(0)}\right)
\end{aligned}
$$

$$
\bar{\nabla} \times \vec{B}(\pi)=\frac{\mu_{0}}{4 \pi} \int \vec{J}\left(\vec{r}^{\prime}\right) \vec{\nabla} \cdot[\underbrace{\left[\frac{\left(\pi-\lambda^{\prime}\right)}{\left(\pi-\lambda^{\prime}\right)^{3}}\right]}_{\downarrow} d v^{\prime}-\frac{\mu_{0}}{4 \pi} \underbrace{\int[\vec{J}(\vec{\lambda}) \cdot \vec{\nabla}]\left[\frac{\left(\pi-\lambda^{\prime}\right)}{\left.\left(\pi-\lambda^{\prime}\right)^{3}\right]}\right]}_{\vec{I}} d v^{\prime}
$$

$\vec{\nabla} \cdot\left[\frac{\vec{n}}{\vec{n}^{3}}\right]=\vec{\nabla} \cdot\left[\frac{\hat{n}}{\lambda^{2}}\right]=4 \pi \delta^{(3)}(\vec{r}) \quad$（VER AULAS lavic｜A｜S） $\Rightarrow \vec{\nabla} \cdot\left[\frac{\left(\pi-\pi^{\prime}\right)}{\left|\pi-\pi^{\prime}\right|^{3}}\right]=4 \pi \delta^{(3)}\left(\bar{n}-\pi^{\prime}\right)$

$$
1=\text { TERMD: } \frac{\mu_{0}}{4 \pi} \int \vec{J}(\vec{\pi})(4 \pi) \delta^{(3 n}\left(\pi-\lambda^{\prime}\right) d v^{\prime}=\mu_{0} \vec{J}(\vec{\pi})
$$

para o cálculo do 2 E termo eu preciso de:

$$
\left[\vec{J}\left(\vec{n}^{\prime}\right) \cdot \vec{\nabla}\right]\left[\frac{\left(\vec{\lambda}-\vec{\lambda}^{\prime}\right)}{\left(\vec{\lambda}-\left.\vec{\lambda}^{\prime}\right|^{3}\right.}\right]=-\left[\vec{J}\left(\vec{n}^{\prime}\right) \cdot \vec{\nabla} \mid\right]\left[\frac{(\vec{n}-\vec{\lambda})}{|\vec{\lambda}-\vec{\lambda}|^{3}}\right]
$$

SE TIVERHOS $f\left(x-x^{\prime}\right)$ Entào:

$$
\underbrace{\frac{d}{d x} f\left(x-x^{\prime}\right)}_{f^{\prime}\left(x-x^{\prime}\right)}=-\underbrace{\frac{d}{d x^{\prime}} f\left(x-x^{\prime}\right)}_{f^{\prime}\left(x-x^{\prime}\right)(-1)}
$$

Tenioo algo coro $(\vec{A} \cdot \vec{\nabla}$) $) f$, uso a identidade:

$$
\begin{aligned}
& \vec{\nabla}^{\prime}[f \vec{A}]=\vec{A} \cdot\left(\overrightarrow{\nabla^{\prime}} f^{1}\right)+f(\vec{\nabla} \cdot \vec{A}) \\
& \vec{A}\left.=\frac{\mu_{0}}{4 \pi} \int \vec{J}\left(\vec{\lambda}^{\prime}\right) \cdot \vec{\nabla}\right) \\
& I_{x}\left.\left.=\frac{\left(\vec{\pi}-\lambda^{\prime}\right)}{4 \pi-\left.\vec{\lambda}^{\prime}\right|^{3}}\right] d V^{\prime}\right) \\
& 2 \pi \vec{J}(\vec{a}) \cdot \vec{\nabla}
\end{aligned}
$$

$$
\begin{aligned}
& I_{x}=\frac{\mu_{0}}{4 \pi} \int \vec{\nabla}!\left[\frac{\left(x-x^{\prime}\right)}{\left|\vec{\pi}-\vec{n}^{\prime}\right|^{3}} \vec{J}(\vec{\pi})\right] d v^{\prime}-\frac{\mu_{0}}{4 \pi} \int \frac{\left(x-x^{\prime}\right)}{\left|\pi-\vec{n}^{\prime}\right|^{3}} \underbrace{\overrightarrow{\nabla^{\prime}} \cdot \vec{J}\left(\vec{n}^{\prime}\right)}_{\substack{=0 \\
\text { CORRENTE } \\
\text { ESTACIONARLA }}} d v^{\prime} \\
& \int_{S_{\infty}} \frac{\left(x-x^{\prime}\right)}{\left|\vec{n}-\bar{\pi}^{\prime}\right|^{3}} \quad \vec{J}\left(\vec{n}^{\prime}\right) \cdot d \vec{s}^{\prime}
\end{aligned}
$$

SE $\frac{7}{J}(\vec{r})$ FOR lo CALIzADA, O latiggrando É NULD NO INFINITO EA INTEGRAL E' ZERS

Analogamente: $\quad I_{y}=0 \quad I_{y}=0$
FINALOENTE:

$$
\begin{aligned}
& \vec{\nabla} \times \vec{B}(\vec{r})<\mu_{0} \vec{J} \\
& \text { LEI DE AMPERE }
\end{aligned} \quad(\bar{\nabla} \cdot \bar{J}=0)
$$

Leis da magnetostática

$$
\begin{aligned}
\nabla \boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{B} & =\mu_{0} \mathbf{J}
\end{aligned}
$$

A lei de Ampère na forma integral

$$
\begin{aligned}
& \int_{s} \bar{\nabla} \times \vec{B} \cdot d \vec{s}=\oint_{C(s)} \vec{B} \cdot d \vec{l} \\
& \int_{s} \mu_{0} \vec{J} \cdot d \vec{s}=\mu_{0} I(s) \\
& \Rightarrow \oint_{C(s)} \vec{B} \cdot d \vec{l}=\mu_{0} I(s)
\end{aligned}
$$

Campo de um fio reto infinito

SIMETRIA DO PROBLEMA:

$$
\text { - } \begin{aligned}
\vec{B}(\vec{r}) & =B_{\phi}(\vec{r}) \hat{\phi} \\
\cdot \vec{B}(\vec{r}) & =B_{\phi}(\rho) \hat{\phi}
\end{aligned}
$$

APLICANDO A LEI DE AOPÉRE
-a amperiana ao lador.

$$
\begin{aligned}
& \oint_{C(s)} \vec{B} \cdot d \vec{l}=\oint_{C(s)} \vec{B} \cdot d l \hat{\phi}=\oint_{C(s)} B_{\phi}(\rho) \rho d \phi=2 \pi \rho B_{\phi}(\rho) \\
& I(s)=I \\
\Rightarrow & 2 \pi \rho B_{\phi}(\rho)=\mu_{0} I \Rightarrow B_{\phi}(\rho)=\frac{\mu_{0} I}{2 \pi \rho} \\
& \vec{B}=\frac{\mu_{0} I}{2 \pi \rho} \hat{\phi}
\end{aligned}
$$

Exemplo 5.5: campo de um fio finito

para o fio finito não dá para usar lei de ampère porque nato HA' SIMETRIA SUFICIENTE \Rightarrow BIOT-SAVART

$$
\begin{aligned}
\vec{B}(\vec{r}) & =\frac{\mu_{0}}{4 \pi} \int I d^{\prime} \vec{a}^{\prime} \times \frac{\left(\pi-\pi^{\prime}\right)}{\left(\bar{\pi}-\left.\pi^{\prime}\right|^{3}\right.} \\
0 \times \quad \vec{r} & =y \hat{y} \quad \vec{n}^{\prime}=x^{\prime} \hat{x} \quad d \vec{a}=d x^{\prime} \hat{x} \\
d_{\vec{a}} \times\left(\pi-\lambda^{\prime}\right) & =d x^{\prime} \hat{x} \times\left(y \hat{y}-x^{\prime} \hat{x}\right) \\
& =y d x^{\prime} \hat{z} \\
\left|\pi-\pi^{\prime}\right| & =\left|y \hat{y}-x^{\prime} \hat{x}\right|=\sqrt{\left(x^{\prime}\right)^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{B}(\vec{\imath})=\frac{\mu_{0}}{4 \pi} y \hat{z} \int_{x_{1}}^{x_{2}} \frac{d x^{\prime}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}} \begin{aligned}
\text { TROCANDO VAR, }{ }^{\prime} \text { 'VEIS: }
\end{aligned} \\
& \sin \theta=\frac{x^{\prime}}{\sqrt{\left(x^{\prime}\right)^{2}+y^{2}}} \quad \cos \theta=\frac{y}{\sqrt{\left(x^{\prime}\right)^{2}+y^{2}}} \\
& \tan \theta=\frac{x^{\prime}}{y} ; d x^{\prime}=y \sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d x^{1}}{\left[\left(x^{\prime}+y^{2}\right)^{3 / 2}\right.}=\int y \operatorname{seg}^{2} \theta d \theta \frac{\cos ^{k} \theta}{y^{3^{2}}}=\frac{1}{y^{2}} \int \cos \theta d \theta=\frac{\sin \theta}{y^{2}} \\
& \vec{B}(\pi)=\left.\frac{\mu_{0} I}{4 \pi y} \hat{z}(\sin \theta)\right|_{\theta_{1}} ^{\theta_{2}}=\frac{\mu_{0} I}{4 \pi y} \hat{z}\left(\sin \theta_{2}-\sin \theta_{1}\right) \\
& \Rightarrow \vec{B}(\vec{\pi})=\frac{\mu_{0} I}{4 \pi \rho} \hat{\phi}\left(\sin \theta_{2}-\sin \theta_{1}\right)
\end{aligned}
$$

Campo de um fio finito

$$
B=\frac{\mu_{0} I}{4 \pi y}\left(\sin \theta_{2}-\sin \theta_{1}\right)
$$

Recuperando o campo do fio infinito

$$
\begin{array}{r}
\vec{B}(\vec{n})=\frac{\mu_{0} I \hat{\phi}\left(\sin \theta_{2}-\sin \theta_{1}\right)}{4 \pi \rho} \\
F 10 \text { INFINTTO: } \theta_{2} \rightarrow \frac{\pi}{2} \\
\theta_{1} \rightarrow-\frac{\pi}{2} \\
\Rightarrow \quad \min \theta_{2}-\sin \theta_{1} \rightarrow 2 \\
\Rightarrow \vec{B}(\vec{n})=\frac{\mu_{0} I \rho}{2 \pi \rho} \hat{\phi}
\end{array}
$$

Exemplo 5.9: solenóide infinito

$N=$ NUMよ RO DE ESPIRAS POR UNIDADE DE COMPRIMENTO

$$
K=\frac{d I}{d l_{1}}=\frac{\left(\mu d l_{\perp}\right) I}{d l_{\perp}}=\mu I \Rightarrow \vec{k}=(\mu I) \hat{\phi}
$$

SIMETRIA (USANDO COORDE NADASCILINDRICAS)

$$
\left.\begin{array}{l}
\overrightarrow{\mathbb{B}}=B_{z} \hat{z} \\
B_{z}(\rho)
\end{array}\right\} \vec{B}=B_{z}(\rho) \hat{z}
$$

VAMOS APIICAR LEI DE AMPERE AOS DOIS CIRCUITOS AO LADO:

1. $\oint_{c} \vec{B} \cdot d \vec{l}=B_{z}(\rho=c) C-B_{z}(\rho=b) \not \subset=0$
náo há correate atravessando A SUPERFICIE 1

$$
\begin{aligned}
& \Rightarrow B_{z}(a)=B_{z}(b) \\
& \Rightarrow B_{z}(\rho)=\operatorname{CONST} . \text { PARA } \rho>R
\end{aligned}
$$

MAS $\mathcal{L}_{z}(\rho) \underset{\rho \rightarrow \infty}{\longrightarrow} 0 \Rightarrow B_{z}(\rho)=0$ PARA $\rho>R$
VER ARGUMENTO RIGOROSO NO PAPER 2INKADO NA PA'GINA DO CURSO

USANDO AGORA A SUPERFÍCIE 2 :

$$
\begin{gathered}
\oint_{C(s)} \vec{B} \cdot d \vec{l}=B_{z}(\rho) L-B_{z}(\rho) L=\mu_{0} I(s)=\mu_{0}(n I) L \\
0 \\
\text { FORA DO } \\
\text { SOLENOIDE } \\
\Rightarrow \quad B_{z}(\rho)=\mu_{0} n I \quad(\rho<R 7
\end{gathered}
$$

En TERMOS DE $\vec{K}: \quad B_{z}(\rho)= \begin{cases}\mu_{0} k & \rho<R \\ 0 & \rho>R\end{cases}$

