Aula 19

F 502 - Eletromagnetismo I 2o semestre de 2020
19/11/2020

Aulas passadas

Campos magnéticos atuam sobre correntes/cargas em movimento

$$
\begin{gathered}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} \\
d \mathbf{F}=d \mathbf{I} \times \mathbf{B}
\end{gathered}
$$

$d \mathbf{I}=\mathbf{I} d l=I d \mathbf{l}$
$d \mathbf{I}=\mathbf{K} d S$
$d \mathbf{I}=\mathbf{J} d V$

Wire 1

Aulas passadas

Lei de conservação (local) da carga

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0 \\
& \oint_{S(V)} \mathbf{J} \cdot d \mathbf{S}=-\frac{d Q(V)}{d t}
\end{aligned}
$$

Aulas passadas

Campo magnético de correntes estacionárias:
lei de Biot-Savart

Se: $\boldsymbol{\nabla} \cdot \mathbf{J}=0$

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{I}\left(\mathbf{r}^{\prime}\right) \times \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d l^{\prime} \\
& \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{K}\left(\mathbf{r}^{\prime}\right) \times \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d S^{\prime} \\
& \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime}
\end{aligned}
$$

Aulas passadas

Leis da magnestostática

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{B} & =\mu_{0} \mathbf{J}(\operatorname{se} \boldsymbol{\nabla} \cdot \mathbf{J}=\bar{\nabla} \cdot(\bar{\nabla} \times \overline{\mathrm{B}})=\bar{\nabla} \cdot \overline{\mathrm{J}}
\end{aligned}
$$

Lei de Ampère na forma integral

$$
\oint_{C(S)} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I(S)
$$

O potencial vetor e a invariância de calibre (gauge)
NA ELETROSTA'TICA: $\bar{\nabla} \times$ 五 $=0 \Longleftrightarrow \bar{E}=-\nabla V$
NA MAGNETOSTA'TICA: $\bar{\nabla} \cdot \bar{B}=0 \longleftrightarrow \vec{B}=\bar{\nabla} \times \vec{A}$
QUE $\bar{\nabla} \cdot \bar{B}=0$ IMPLICA $\bar{B}=\bar{\nabla} \times \bar{A}$, TAMSEM PODE SER PROVADO.
O CAMPO VETORIAL $\vec{A}(\vec{\lambda})$ É CHAMADO DE DOTENCIAL VETOR.
na eletrostática, o potenclal era ben definido a mends de uma constante.

WO CASO QA MAGNITOSTA'TICA, A INDETERMINAGAOO DE \vec{A} É AINDA MAIDR:

POSSO SOMAR A \vec{A} un CAMPO VETORIAL \vec{G} DESDE QUS $\vec{\nabla} \times \vec{G}=0$:

$$
\begin{gathered}
\vec{A}^{\prime}=\vec{A}+\vec{G} \quad 0 N D \sqrt{B} \quad \bar{\nabla} \times \vec{G}=0 \\
\left.\Rightarrow \overrightarrow{B^{\prime}}=\vec{\nabla} \times \vec{A}^{\prime}\right\} \quad \vec{B}^{\prime}=\bar{\nabla} \times \vec{A}^{\prime}=\bar{\nabla} \times \bar{A}+\vec{\nabla} \times \vec{G}=\vec{\nabla} \times \vec{A}=\vec{B} \\
\vec{B}=\vec{\nabla} \times \vec{A},
\end{gathered}
$$

MAS $\vec{\nabla} \lambda \vec{G}=0 \Leftrightarrow \vec{G}=\vec{\nabla} \lambda$, OU SEJA, SE:

$$
\vec{A}^{\prime}=\vec{A}+\vec{\nabla} \lambda \quad \Rightarrow \quad \vec{B}^{\prime}=\bar{\nabla} \times \vec{A}^{\prime}=\bar{\nabla} \times \bar{A}=\vec{B}
$$

TRANSFORMACAO dE cALIBRE ("GAUGE").

- CAMPO \vec{B} E' DITO INVARIANTE POR TRANSFORMACOEES DE CALIBRE. O CAMPO \vec{A}, BOR 1550 , NATO E' PASSIVEL de medipa gireta. apenas \vec{B} é eísico.

LEVANDO $\vec{B}=\bar{\nabla} X \bar{A}$ NA LEI DE AMP立RE:

$$
\bar{\nabla} \times \bar{B}=\bar{\nabla} \times(\bar{\nabla} \times \bar{A})=-\nabla^{2} \vec{A}+\vec{\nabla}(\bar{\nabla} \cdot \bar{A})=\mu_{0} \vec{J}
$$

USANDO A INDETERMINACEAO DE A RODEMOSIMPOR
$\vec{\nabla} \cdot \vec{A}=0$ ($*$ UER DISCUSSÃO MAIS TARDE)

$$
\Rightarrow \nabla^{2} \vec{A}=-\mu_{0} \vec{J}
$$

EM COMPONENTES:

$$
\left\{\begin{array}{lr}
\nabla^{2} A_{x}=-\mu_{0} J_{x} & \bar{\nabla} \cdot \bar{J}=0 \\
\nabla^{2} A_{y}=-\mu_{0} J_{y} & \bar{E} \\
\nabla^{2} A_{z}=-\mu_{0} J_{z} & \bar{\nabla} \cdot \bar{A}=0
\end{array}\right.
$$

E^{\prime} SEMPRE ROSSIUEL TOMAR $\bar{\nabla} \cdot \bar{A}=0$?

$$
\Rightarrow \bar{\nabla} \times \bar{A}=\vec{B} \quad \bar{\nabla} \cdot \bar{A}=0 \quad \text { PELO TEOREMA DE HELMHOLTZ E' }
$$

$$
\text { PODEMOS IAPOR } \bar{\nabla} \cdot \bar{A}=0, J A^{\prime} \text { QUE }
$$

essa lgualdade é "metade" Do
TEOREMA
PROVA: SUPONHA QUE TENHAMOS $\vec{A}_{0}(\pi)$ TAL Qve

$$
\begin{aligned}
& \vec{B}=\vec{\nabla} \times \vec{A}_{0}, \mu A S \quad \vec{\nabla} \cdot \vec{A}_{0}=f(\vec{r}) \neq 0, D E F I N 0: \\
& \vec{A}=\vec{A}_{0}+\vec{\nabla} \lambda \Rightarrow \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

ALर्巨ब DSSO: $\vec{\nabla} \cdot \vec{A}=\vec{\nabla} \cdot \vec{A}_{0}+\nabla^{2} \lambda=f(\vec{\lambda})+\nabla^{2} \lambda$
QUERO IMPOR: $\bar{\nabla} \cdot \bar{A}=0 \Rightarrow \dot{\nabla}^{2} \lambda+f(\pi)=0 \Rightarrow \nabla^{2} \lambda=-f(\pi)$ MAS, DA SOLUGÃo da \&Q. DE DOISSDN:

$$
\lambda(\vec{n})=\frac{1}{4 \pi} \int \frac{f(\vec{\lambda})}{\left|\vec{\lambda}-\vec{\pi}^{\prime}\right|} d v^{\prime} \Rightarrow \begin{aligned}
& \vec{A}=\vec{A}_{0}+\vec{\nabla} \lambda \text { TEM AS } \\
& \text { PRORRIERADES dUE EUPROCURO }
\end{aligned}
$$

O potencial vetor de correntes dadas

$$
\nabla^{2} A_{i}=-\mu_{0} J_{i} \Rightarrow A_{i}(\pi)=\frac{\mu_{0}}{4 \pi} \int \frac{J_{i}\left(\pi^{\prime}\right)}{\left(\pi-\pi^{\prime}\right)} d V^{\prime} \quad i=x, y, z
$$

VETORIALMENTE:

$$
\begin{aligned}
& \quad \Rightarrow \begin{array}{l}
\vec{A}(\vec{\lambda})=\frac{\mu_{0}}{L_{1 \pi}} \int \frac{\vec{J}\left(\vec{n}^{\prime}\right)}{\left|\pi-\vec{n}^{\prime}\right|} d V^{\prime}
\end{array} \text { SOLUSAO DA } \\
& \text { MAGNETOSTA'TICA } \\
& \left\{\begin{array}{l}
\bar{\nabla} \cdot \bar{J}=0 \\
\bar{\nabla} \cdot \bar{A}=0
\end{array}\right.
\end{aligned}
$$

ANALOGAME NTE:

$$
\vec{A}(\vec{\pi})=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{K}\left(\vec{\pi}^{\prime}\right) d s^{\prime}}{\left|\bar{\lambda}-\lambda^{\prime}\right|} ; \vec{A}(\pi)=\frac{\mu_{0}}{4 \pi} \int \frac{I\left(\pi^{\prime}\right) d \vec{l}^{\prime}}{\left|\vec{\lambda}-\vec{\lambda}^{\prime}\right|}
$$

Solução geral da magnetostática em termos do potencial vetor

$$
\begin{aligned}
& \mathbf{A (\mathbf { r })}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \\
& \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{K}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d S^{\prime} \\
& \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{I}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d l^{\prime}
\end{aligned}
$$

$$
\text { se } \boldsymbol{\nabla} \cdot \mathbf{J}=0 \text { e } \boldsymbol{\nabla} \cdot \mathbf{A}=0
$$

Exemplo 5.12: O potencial vetor de um solenóide infinito

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r})=\left\{\begin{array}{cc}
\mu_{0} n I \hat{\mathbf{z}} & \rho<R, \\
0 & \rho>R .
\end{array}\right. \\
& \vec{\beta}=\vec{\nabla} \times \overrightarrow{\mathrm{A}}
\end{aligned}
$$

LEMbREMOS DA DICA de QUE A DIRECAO DE \vec{A}

COSTUMA "SEGUR" A DIRECAO DE 子

$$
\Rightarrow \vec{A}=A \not(\vec{n}) \hat{\phi}
$$

POR STMETRIA $A_{\Phi}(\rho)$

O poder de uma analogia

Lei de Ampère	Definição do potencial vetor
$\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J}$	$\boldsymbol{\nabla} \times \mathbf{A}=\mathbf{B}$
$\oint_{C(S)} \mathbf{B} \cdot d \mathbf{l}=\int_{S} \mu_{0} \mathbf{J} \cdot d \mathbf{S}=\mu_{0} I(S)$	$\oint_{C(S)} \mathbf{A} \cdot d \mathbf{l}=\int_{S} \mathbf{B} \cdot d \mathbf{S}=\Phi_{B}(S)$
\mathbf{B}	\mathbf{A}
$\mu_{0} \mathbf{J}$	\mathbf{B}
$\mu_{0} I(S)$	$\Phi_{B}(S)$

PODEMDS USAR OS MESMOS
ARGUNENTOS QUE FORAM USADOS para calcular \vec{B} do fio (SIMETRIA, AMPERIANAS CIRCULARES, LEI DE AMPERE) para achar o $\hat{A}(\vec{A})$ do SOLENOIDE

$$
\oint_{c(s)} \vec{A} \cdot d \vec{l}=\int_{s} \vec{B} \cdot d \vec{s}=\Phi_{s}(s)
$$

$$
\int A_{\phi}(\rho) \rho d \phi=2 \pi \rho A_{\phi}(\rho)
$$

i)

$$
\begin{aligned}
& \rho\left\langle R: \quad \int_{S} \vec{B} \cdot d \vec{S}=B \pi \rho^{2}=\mu_{0} \mu I \pi \rho^{2}\right. \\
& 2 \not \mu \rho A_{\phi}(\rho)=\pi \mu_{0} \mu I \rho^{R} \\
& A_{\phi}(\rho)=\frac{\mu_{0} \mu I}{2} \rho \quad(\rho<R) \\
& i \lambda>\rho>R: \int_{s} \vec{B} \cdot d \vec{S}=B \pi R^{2}=\pi \mu_{0} \mu I R^{2} \\
& 2 \pi / \rho A_{p}(\rho)=\pi \mu_{0} \mu I R^{2} \\
& A_{\phi}(\rho)=\frac{\mu_{0} \mu I}{2} \frac{R^{2}}{\rho} \quad(\rho>R)
\end{aligned}
$$

NOTEM QUE, FORA DO SOLENOIDE, $\vec{B}=0$,

$$
\text { MAS } \vec{A}(\vec{R}) \neq 0 \quad!_{a}!
$$

TIREM A RROVA: CALCULEM $\vec{\nabla} \times \vec{A} E$ MOSTREM QUE OBTEOU-SE O \vec{B} CORRETO.

Exemplo: O potencial vetor de um circuito retangular de corrente se $r \gg a, b$

$$
\begin{aligned}
& \vec{A}(\vec{r})=\frac{\mu_{0} I}{4 \pi} \int_{c} \frac{d \vec{l}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \quad c=c_{1} u c_{2} \cup c_{3} \cup c_{4} \\
& \vec{A}_{1}(\vec{\lambda})=\frac{\mu_{0} I}{4 \pi} \int_{c_{1} \cup c_{2}} \frac{d \vec{R} \vec{R}^{\prime}-\vec{n}^{\prime} \mid}{} \\
& \vec{A}_{2}(\vec{N})=\frac{\mu_{0} I}{4 \pi} \int_{c_{3} \cup C_{4}} \frac{d \vec{Q}^{\prime}}{\left|\vec{n}-\vec{R}^{\prime}\right|} \\
& \vec{A}_{1}(\vec{R})=\frac{\mu_{0} I}{4 \pi}\left[\int_{c_{1}} \frac{d \vec{l} \overrightarrow{\lambda^{\prime}}}{|\vec{n}-\vec{\lambda}|}+\int_{c_{2}} \frac{d \vec{l} \mid}{|\vec{\lambda}-\vec{\lambda}|}\right]
\end{aligned}
$$

$$
\begin{aligned}
& d \vec{l}^{\prime}=d x^{\prime} \hat{x} \\
& \vec{r}^{\prime}=\left\{\begin{array}{l}
-\frac{b}{2} \hat{y}+x^{\prime} \hat{x} \in c_{1} \\
+\frac{b}{2} \hat{y}+x^{\prime} \hat{x} \in c_{2}
\end{array} \quad \vec{A}_{1}(\vec{\lambda})=\frac{\mu_{0} I \hat{I}}{4 \pi}\left[\int_{-\frac{a}{c_{1}^{2}}}^{+a / 2 / 2} \frac{d x^{\prime}}{\left|\vec{x}_{1}-\vec{x}^{\prime}\right|}-\int_{-\frac{a}{c_{2}^{2}}}^{+\frac{a}{2}} \frac{d x^{\prime}}{\left|\vec{n}-\hat{x}^{\prime}\right|}\right]\right.
\end{aligned}
$$

Qual é o potencial elétrico de duas linhas de carga de comprimento a ?

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}}\left[\int_{\substack{\frac{a}{2} \\ c_{1}}}^{+a / 2} \frac{\lambda+d x^{\prime}}{\left|\pi-\lambda^{\prime}\right|}+\int_{-\frac{a}{2}}^{+a / 2} \frac{\lambda-d x^{\prime}}{\mid \overline{c_{2}}} \underset{\substack{\prime \prime}}{ }\right]
$$

suponta que:

$$
\begin{aligned}
& \lambda_{+}=\mu_{0} \epsilon_{0} I \quad E \quad \lambda_{-}=-\mu_{0} \epsilon_{0} I \\
\Rightarrow & v(\rightarrow)=\frac{\mu_{0} I}{4 \pi}\left[\int_{-\frac{\pi}{2}}^{a / 2} \frac{d x^{\prime}}{\left|\bar{\lambda}-\lambda^{\prime}\right|}-\int_{-a / 2}^{+\infty / 2} \frac{d x}{\left|\pi-\lambda^{\prime}\right|}\right]
\end{aligned}
$$

Que é igual ao a ax que eú procuro. pOSSO USAR a EXPANSAD mULTIPOLAR.

CARGA TOTAL: $\lambda_{+} C+\lambda-a=0$
$D I R L_{D} ? \Rightarrow \vec{p}=-q b \hat{y}=-(\lambda+a) b \hat{y}=-\mu_{0} \epsilon_{0} I a b \hat{y}$

$$
\begin{aligned}
& V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{P} \cdot \vec{\lambda}}{\lambda^{3}} \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p}=\hat{\lambda}}{r^{2}} \\
& \vec{p} \cdot \vec{r}=-\mu_{0} \epsilon_{0} \operatorname{I} a b \hat{y} \cdot \vec{z} \\
& =-\mu_{0} \epsilon_{0} I a b y \\
& \Rightarrow V(\vec{r})=-\frac{\mu_{0} I}{4 \pi}(a b) \frac{y}{n^{3}}=A_{1 x}(\vec{r}) \\
& \vec{A}_{1}(\vec{x})=-\frac{\mu_{0} \pm}{4 \pi}(a b) \frac{y \hat{x}}{n^{3}} \\
& \text { ANALOGAMENTE: } \vec{A}_{2}(\dot{\lambda})=\frac{\mu_{0} I}{4 \pi}(a b) \frac{x \hat{y}}{\frac{1 \pi}{3}} \\
& \Rightarrow \vec{A}(\vec{r})=\vec{A}_{2}(\vec{r})+\vec{A}_{2}(\vec{r})=\frac{\mu_{0} I}{4 \pi} \frac{(a b)}{n^{3}} \underbrace{(x \hat{y}-y \hat{x})}_{\hat{z} \times \vec{r}} \\
& \vec{A}(\vec{n})=\frac{\mu_{0}}{4 \pi}(I a b) \frac{\hat{z} \times \vec{\lambda}}{\lambda^{3}} \Rightarrow \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \frac{\vec{\mu} \times \vec{r}}{\lambda^{3}} \\
& \text { I } a b \hat{z} \equiv \vec{M}=I(\text { area }) \hat{z} \quad \vec{A}(\vec{\lambda})=\frac{\mu_{0}}{4 \pi} \frac{\vec{\mu} \times \hat{\lambda}}{\hat{\lambda}^{2}}
\end{aligned}
$$

